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Abstract 
 
VIRAM1, the first incarnation of the VIRAM ISA, is a 130M transistor, 325mm2, vector processor, with 

embedded DRAM designed to produce 12.8GOPS (16b), 12.8GB/s of memory bandwidth at 200MHz, and 

consume less than 2W.  This report presents the series of verification strategies used to ensure that such a 

massive and complex design could be realized, from ISA to tape-out, by four hardware designers, in only 

three years.  The four methodologies used were:  IP blocks for memories and the core, partitioning of the 

design into fixed-spec, easy to construct and verify sub-blocks, correct-by-construction design 

methodology, and abstraction of tests.  This abstraction minimized the coding effort, maximized 

readability, allowed for avoidance of known bugs, and allowed a massive number of different code 

generations to be generated to explore the instruction sequence space.   
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1 Introduction to IRAM and VIRAM1 
 

IRAM is a research project at the University of California at Berkeley that investigated processor 

design of a low-power gigascale system-on-a-chip environment.  The ever-increasing gap between logic 

and DRAM speed has resulted in designers adding prodigious SRAM caches to chip designs.  The 

alternative solution is to place DRAM on chip resulting in more than eight times the memory per unit area.  

This method also allows for a significant memory bandwidth, just as a cache would.  Mobile products, 

multimedia devices, as well as massively-multiprocessor systems, and compute farms require power 

efficiency to maximize battery life or even to help minimize the total cost of ownership.  IRAM designs 

with a large on-chip DRAM memory would easily fall into one of these categories, necessitating that the 

microarchitecture be power-efficient, and furthermore, that the system architecture ideally should be 

implicitly power-efficient.  These constraints helped focus the project into a series of design refinements 

and in turn into a prototype processor. 

Keeping with the initial goal of a low-power, high-performance processor to be included in 

parallel systems, the IRAM concept design – VIRAM [Koz99] - was based on a vector architecture.  To 

provide network connectivity, four gigabit links were built into a network interface (NI).  To satisfy the 

voracious memory bandwidth appetite of a vector processor, a sufficient number of DRAM macros were 

embedded on chip.  In addition, this guaranteed predictably low latency.  In order to avoid having to design 

an entire vector processor from the ground up, including all the system and compiler support, it was 

partitioned along the core/coprocessor model, where the core would be a FP enabled MIPS compliant IP 

core, and the coprocessor would be designed by UCB to perform all vector operations.  This view of the 

architecture would evolve over time to better match a moving target and to fit available IP and human 

resources (averaging only four people) and a limited timeframe.  Figure 1 illustrates the basic VIRAM 

architecture.  The first incarnation of the VIRAM concept, VIRAM1, which chose specific values for 

memory (eight 13Mb DRAM banks), computational elements, and Instruction Set Architecture (ISA) 

specific issues, was completed in August of 2002 and mask construction began in October.  The first wafer 

was delivered to Berkeley in February 2003.  
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Figure 1 – Initial VIRAM System Architecture Overview 
The system-on-a-chip component of a VIRAM system (dotted box) embeds a MIPS core, a 
compliant vector coprocessor, on-chip DRAM, on-chip memory-mapped devices, and an 
interconnection network. 
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The coprocessor (vector unit) was designed with “ease of design” and “easy scalability” in mind.  

In order to add flexibility, an instruction set architecture (ISA) [Mar00] was constructed around the virtual 

processor (VP) model where the n bit functional units are partitioned into virtual processor widths (VPW) 

of 64, 32, 16 or possibly 8 bits.  To simplify the design, functional units, as well as vector registers were 

partitioned into 64b granularities, thus avoiding having a single functional unit or register file provide 

access and computation on all elements in a vector register.  As a result, a multiplier need only operate on a 

single element in vpw64, and four in vpw16.  Similarly, a vector register file now contains only 64b 

registers.  Although not immediately obvious, this is a more implementation-friendly method, as only one 

instance, which is a partition of a functional unit, needs to be designed, verified, and implemented.  A 

functional unit is bit sliced, 64 bits in the final implementation, into instances of these partitions.  

Extending this partitioning methodology across multiple functional units and a large vector register file 

leads to identical blocks called vector lanes.  Within this block, several slices are lumped together.  

However, there is still a single centralized control module for decode, pipelining, chaining [HP96], 

configuration, address calculation, and memory control.  This control module is basically a simplified core 

without datapaths or register files.  Even without these large structures, it is about the same size because it 

controls so much.  Figure 2 illustrates the vector unit, which is a MIPS compliant coprocessor.  Neither the 

maximum vector length nor the widths of the functional units are defined in the ISA.  As a result, an 

implementation may vary these to find a balance between area and performance.  Obviously, both represent 

near linear changes to area, but subtle and an implementation specific change in cycle time.   

 

 

 

 

 

 

 

 

 

 

 

 

Originally, no separate FPU was required since the core would be floating-point capable.  

Unfortunately, by early 2000, it was clear that we would not be able to procure this core, resulting in the 

selection of an alternate MIPS ISA core.  More over, this new core did not support floating-point 

operations.  This deficiency necessitated the development of FPU.  We decided to use a single precision 

floating-point execution unit IP block to minimize the design time.  However, this soft IP FPU only 

supported computation; it contained no registers, decoding, or interface.  Figure 3 shows the architectural 
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Figure 2 – VIRAM1 Vector Unit 
The vector coprocessor in the VIRAM1 system (dotted line) is partitioned into a control 
unit, and four vector lanes.  Each lane has a 64x256b register file, 2 arithmetic units, 
a memory unit, a flag functional unit, and a flag register file. 
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part of the FPU, which is a module we designed ourselves.  Now that the basic architecture of VIRAM1 has 

been described, the rest of the paper details the verification flow from software simulators to layout.   

 

 

 

 

 

 

 

 

 

 

 

 

 

2 Introduction to the Verification Environment 
 
The verification work required was originally described as: show that both the vector unit (VU) 

and the network interface (NI) are correct.  VU verification only pertained to ISA compliance.  As a result, 

timing verification was included either in the workload of the designer or whoever would run the blocks 

through place and route (PnR) tools.  The other blocks, DRAM and the core, were IP blocks, and were thus 

assumed to be correct.  Of course, this simplification did not mean that verification stopped with the VU.  

Full-chip verification was also required.  The majority of verification for the network interface could be 

performed on a standalone environment, since it had no ISA dependence.  However, because it is a 

memory-mapped device, it still must be included at the top-level verification.   

The goals of verification, aside from the obvious goal of producing a correct design, were to 

balance the following: testsuite design effort, machine requirements for full chip verification, effective use 

of the tools by the RTL designers, and finally, evolvability of the testbench and tools so that it can adapt to 

changes.  Only one person would be responsible for verification, and tape-out was initially only six months 

away.  Thus, the testsuite and testbench had to be extremely easy to implement as well as requiring 

relatively few CPU days to run.  It was the responsibility of the RTL designers to fix their own code after 

bugs have been discovered, necessitating the tests be easily readable, and the tools user-friendly and 

intuitive.  Finally, since it is difficult to foresee every eventuality, the testsuite and tools must be designed 

so that they can grow and evolve. 

The environment at the beginning of verification included only software simulators.  Over time, 

this toolbox would grow to include more realistic software simulators, hardware simulators, and formal 

Figure 3 – VIRAM1 Floating-Point Unit 
The Floating-point coprocessor (dotted line) is attached to the MIPS core, and contains 
three major blocks: a soft IP execution unit, a macro-based register file, and an in-
house architectural control RTL block.   
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verification tools.  The original software simulators were vsim-isa (VIRAM ISA simulator) and vsim-p 

[Fro00] (VIRAM performance simulator).  The performance simulator expanded on the basic (one 

“cycle”/one instruction) functionality of the ISA simulator by attempting to accurately simulate the actual 

VIRAM1 microarchitecture.  Initially it shared no common code with the ISA simulator, and both 

simulators had apparently been used to run small kernels leading to the assumption that they were 

functionally correct.  Eventually another software simulator had to be written to reflect changing 

microarchitecture, memory organization, ISA issues, and the need to model kernel mode activity.  Some 

hardware simulators were based on VCS, and others using Spice or TimeMill or eventually Nanosim.  VCS 

simulators eventually included the integer unit (multiply, add, shift, round, and saturate) testbenches, the 

crossbar, the MIPS core, the MIPS core with a FPU, the MIPS core with the vector unit, behavioral 

crossbar, behavioral register files, and memory, and finally the full VIRAM1 environment.  Spice and 

TimeMill testbenches included benches for the vector register file (RF), the crossbar (XBAR), and the 

integer unit modules (IU).  

In August of 1999, VIRAM1 was organized as follows.  The core, which we planned to use, was 

from SandCraft, and although it was to include floating-point support, it was to be full custom, and had not 

yet been delivered.  The VU was being designed in-house (RTL took more than a year to write) and 

included full custom integer units, which were under construction, and a full custom crossbar, also under 

construction.  VIRAM1 tape-out had been initially set for January of 2000.  The full custom vector register 

file, although part of the vector unit, was to be designed by an external source.  IBM provided DRAM IP, 

and the NI was to be written in-house.   

With the initial environment and status described, the rest of the paper follows the development of 

the final version of the VIRAM1 verification testbenches and flow, as well as illustrating the 

misconceptions and catastrophes that required major changes in the approaches used. The following 

sections of the paper are formatted as a cycle of: concept for verification, description of the method, its 

good points, and finally why it fails to be a viable verification method.   

 

 

3 VSIM-P Verification 
 

As previously stated, the initial verification timeframe was about six months.  This necessitated a 

quick and dirty method.  The ISA simulator was assumed to be correct, but it presented a large problem for 

verifying a temporally complex out-of-order system.  The hope was to use the touted cycle-accurate 

performance simulator to verify the correctness of the RTL via trace comparison.  Since the performance 

simulator (vsim-p) did not share any common code with vsim-isa, or any code with the RTL, it needed to be 

verified before RTL verification could proceed.  In this method (the first of many), vsim-p was first verified 

by comparing it to the “known to be correct” vsim-isa, and then would be used to verify the RTL.  

Verifying vsim-p was not an exact science since simple trace comparison was not applicable.  Instructions 
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can commit out-of-order.  When coupled with the fact that unreflected latencies are included, the two traces 

might look very different.  A formal method was not used for several reasons, paramount of which was the 

time to develop such a strategy.   

 

3.1 Trace Generation and Comparison 
Verification of vsim-p is checking functional equivalence to vsim-isa.  Both simulators were 

modified to produce a verification trace and a trace comparator was written.  This trace was slightly 

different than the original trace provided by the simulator framework.  In effect, the comparator is an out-

of-order ISA comparator. That is, it checks to ensure that vsim-p is consistent with vsim-isa on a per 

element basis.  This verification method is just correct by association, so it is necessary to show that at least 

vsim-isa has some basic functionality.  Accordingly, a small set of directed tests were written and 

simulated. 

An example will likely make these concepts clear.  Figure 4 shows a series of instructions from a 

detailed ISA level trace.  In this case, initially, vector length is set to nine. This is followed by a vfset 

instruction, which is used to set vfmask0 (register 0 of the vector flag register file).  It was already set for 

vl=mvl.  It should be noted, that there is one flag bit for each VP.  The simulator supports 8b VPW’s, and 

thus with a 2048 bit vector register (default for VIRAM), flags are 256 bits (2048/8=256).  VIRAM1, 

however, does not support such a virtual processor width, and thus simulators present vector flags with 

twice as many bits as hardware simulators.  Finally, a vector add is executed.  It is clear which elements 

were changed, and that integer overflow occurred in three 64 bit elements.  Address translation is used to 

determine the physical addresses in memory, which in this case, were on-chip DRAM.  The instructions are 

then fetched, decoded, and executed in a single iteration.  This information, and similar traces from other 

simulators, must be parsed and compared by the comparator.   

In this case, all software simulators would produce code in this order, but independent instructions 

might occur out-of-order.  For example, it is possible for the scalar core to run ahead of the vector unit, thus 

a vector add followed by a scalar add in program order could be reversed in execution order and therefore 

in trace order.  In a case more critical to correct verification, two mutually independent vector add’s could 

execute out of order in the presence of the multiple integer units that VIRAM1 has.  Furthermore, since 

there is no reorder buffer in the vector unit, instructions commit in element groups leading to multi-cycle 

commit.  Thus it is clear that for a design like this, not only must traces be processed on a per register basis, 

but also a per element basis.  In figure 5, two vector add instructions each write elements on each of four 

cycles to the same register, via chaining, followed by a write from an add in the scalar core. The second 

instruction presumably uses a conditional execution mask so that it only writes 14 elements. 
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      1110      TLB 0x00000000000107e4 --> 0x00000000000107e4 0x00000000000107e4 

      1110      LOAD [0x00000000000107e4-->(on-chip-dram)0x00000000000107e4] 0x48 

      1110      LOAD [0x00000000000107e5-->(on-chip-dram)0x00000000000107e5] 0xc4 

      1110      LOAD [0x00000000000107e6-->(on-chip-dram)0x00000000000107e6] 0x00 

      1110      LOAD [0x00000000000107e7-->(on-chip-dram)0x00000000000107e7] 0x00 

      1111 INST 0x00000000000107e4 48c40000 ctc2 a0,vl 

      1111      WRITE vc32 vl 0 0x00000009 

      1111      WRITE pc 0x00000000000107e8 

 

      1112      TLB 0x00000000000107ec --> 0x00000000000107ec 0x00000000000107ec 

      1112      LOAD [0x00000000000107ec-->(on-chip-dram)0x00000000000107ec] 0x4a 

      1112      LOAD [0x00000000000107ed-->(on-chip-dram)0x00000000000107ed] 0xc0 

      1112      LOAD [0x00000000000107ee-->(on-chip-dram)0x00000000000107ee] 0x00 

      1112      LOAD [0x00000000000107ef-->(on-chip-dram)0x00000000000107ef] 0x21 

      1113 INST 0x00000000000107ec 4ac00021 vfset vfmask0 

      1113      WRITE pc 0x00000000000107f0 

      1113      WRITE vf vfmask0 0 1111111111111111 1111111111111111 1111111111111111 1111111111111111  

                                   1111111111111111 1111111111111111 1111111111111111 1111111111111111 

                                   1111111111111111 1111111111111111 1111111111111111 1111111111111111 

                                   1111111111111111 1111111111111111 1111111111111111 1111111111111111 

 

      1113      TLB 0x00000000000107f0 --> 0x00000000000107f0 0x00000000000107f0 

      1113      LOAD [0x00000000000107f0-->(on-chip-dram)0x00000000000107f0] 0x4a 

      1113      LOAD [0x00000000000107f1-->(on-chip-dram)0x00000000000107f1] 0x06 

      1113      LOAD [0x00000000000107f2-->(on-chip-dram)0x00000000000107f2] 0x3a 

      1113      LOAD [0x00000000000107f3-->(on-chip-dram)0x00000000000107f3] 0x00 

      1114 INST 0x00000000000107f0 4a063a00 vadd.vv $vr8,$vr7,$vr6 

      1114      WRITE vr $vr8 8 0 3 fffffffffffffffe 

      1114      WRITE vr $vr8 8 1 3 8000000000000000 

      1114      WRITE vr $vr8 8 2 3 7ffffffffffffffe 

      1114      WRITE vr $vr8 8 3 3 8000000000000000 

      1114      WRITE vr $vr8 8 4 3 0000000000000002 

      1114      WRITE vr $vr8 8 5 3 0000000000000000 

      1114      WRITE vr $vr8 8 6 3 7ffffffffffffffe 

      1114      WRITE vr $vr8 8 7 3 0000000000000000 

      1114      WRITE vr $vr8 8 8 3 fffffffffffffffe 

      1114      WRITE pc 0x00000000000107f4 

      1114      WRITE vf vfe0.F 8 1111111111111111 0000000011111111 0000000000000000 0000000000000000 

                                  0000000000000000 0000000000000000 0000000000000000 0000000000000000 

                                  0000000000000000 0000000000000000 0000000000000000 0000000000000000 

                                  0000000000000000 0000000000000000 0000000000000000 0000000000000000 

      1114      WRITE vr $vr8 8 0xfffffffffffffffe 0x8000000000000000 0x7ffffffffffffffe 0x8000000000000000 

                                0x0000000000000002 0x0000000000000000 0x7ffffffffffffffe 0x0000000000000000 

                                0xfffffffffffffffe 0x0000b13500004363 0x000069330000070b 0x000082a70000979d 

                                0x0000fee50000a891 0x0000762300004eb1 0x0000c06f0000c27d 0x0000673500009c97 

                                0x0000c5090000ba9b 0x0000e8cd00003873 0x0000cd1300002363 0x00001bad000021f3 

                                0x0000695300009d09 0x0000746b0000641f 0x00005dab0000b01f 0x0000e8df00002db5 

                                0x0000774f0000b9a7 0x00007d2700001701 0x00008e7d000080ab 0x0000a8150000ed33 

                                0x0000ebb900008d5b 0x0000872b0000db3d 0x0000c8810000d99b 0x00005a1100004821 

 

Figure 4 – ISA (vsim) Trace example 
The first column in the trace represents the instruction count.  The keyword, INST, 
represents a newly decoded instruction.  The WRITE keyword signifies a write to memory or 
a register file.  Vector registers appear as a sequence of 32 double words (vpw64 
elements 0 thru 31), and flag registers appear as a sequence of 16 half words (expressed 
in binary).  From this flood of information, architectural state can be derived. 
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ISA level trace: 
1      VADD1   VR[0] =  0  1  2  3    4  5  6  7    8  9 10 11   12 13 14 15 
2      VADD2   VR[0] = 15 14 13 12   11 10  9  8    7  6  5  4    3  2  -  - 
3      ADD     R[0] = 5 
note: time is vertical 
 
 
Cycle accurate trace: 
Cycle Scalar  AU0 write port   AU1 write port   
1 R[0] = 5  -    - 
.  -  -    - 
.  -  -    - 
. -  -    - 
n -  VR[0][ 0: 3] =  0  1  2  3  - 
n+1 -  VR[0][ 4: 7] =  4  5  6  7  VR[0][ 0: 3] = 15 14 13 12 
n+2 -  VR[0][ 8:11] =  8  9 10 11  VR[0][ 4: 7] = 11 10  9  8 
n+3 -  VR[0][12:15] = 12 13 14 15  VR[0][ 8:11] =  7  6  5  4 
n+4 -  -    VR[0][12:13] =  3  2   
note: time is vertical 
 
 
Transformed ISA trace   Transformed cycle accurate trace 
R[0] = 5,     R[0] = 5,      
VR[0][ 0] =  0,15,    VR[0][ 0] =  0,15, 
VR[0][ 1] =  1,14,    VR[0][ 1] =  1,14,     
VR[0][ 2] =  2,13,    VR[0][ 2] =  2,13,     
VR[0][ 3] =  3,12,    VR[0][ 3] =  3,12,     
VR[0][ 4] =  4,11,    VR[0][ 4] =  4,11, 
VR[0][ 5] =  5,10,    VR[0][ 5] =  5,10,     
VR[0][ 6] =  6, 9,    VR[0][ 6] =  6, 9,     
VR[0][ 7] =  7, 8,    VR[0][ 7] =  7, 8,     
VR[0][ 8] =  8, 7,    VR[0][ 8] =  8, 7,     
VR[0][ 9] =  9, 6,    VR[0][ 9] =  9, 6,     
VR[0][10] = 10, 5,    VR[0][10] = 10, 5,     
VR[0][11] = 11, 4,    VR[0][11] = 11, 4,     
VR[0][12] = 12, 3,    VR[0][12] = 12, 3,     
VR[0][13] = 13, 2,    VR[0][13] = 13, 2,     
VR[0][14] = 14,    VR[0][14] = 14,     
VR[0][15] = 15,    VR[0][15] = 15,     
note: time is horizontal, and element is vertical 
 

Figure 5 – Multicycle Out-of-Order Commit Trace Comparison 
This figure details 4 views of trace comparison: ISA, cycle accurate, and transformations 
of those two into an internal representation.  Transformation can change a very complex 
problem into string comparison on thousands of strings. 
 

 

At this point it is clear that after the element group transformation, all that is required is to traverse 

the list of comparable elements and examine their result traces.  Simple string comparison can be 

performed to determine if an element in the cycle-accurate domain is consistent with the ISA level domain.  

With the addition of instruction and simulation time, it is not too difficult to determine and report the exact 

point at which a failure occurred.  This additional check was performed and was found to be extremely 

beneficial by those who debugged various blocks.   

 

 

3.2 Random Testing 
Given the impending deadline, it was necessary to expedite verification time, so a relatively 

simple random test generator (RTG) was written.  The RTG is a one-pass code generator.  It does not 

simulate any instructions, since it would be necessary to verify its functionality in addition to that of vsim-p 

and vsim-isa.  To make it more configurable, each class of instructions was given a probability to be 

generated.  This probabilistic code generation scheme also applied to primitives - collections of 

instructions, which perform some operation or test an important sequence/combination.  In addition there 

were configuration variables to allow certain types of exceptions, for example arithmetic (vARI), illegal 

use of instruction (vIUI), or invalid vector length (vIVL).  Setting these variables did not guarantee that 
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these exceptions would be raised, but instead removed any guards that prevented them from occurring.  

Where an arithmetic exception can be avoided by clearing the exception enables, an IUI or IVL exception 

requires keeping track of some of the most critical vector control registers such as VL and VPW.  All of 

these configuration variables could be included in a file, which could be passed to the generator.  A simple 

script was written to run the random test generator, to run both simulators on the produced code, and finally 

to run the trace compactor to determine whether or not the performance simulator had failed.  The script 

would then repeat this process until it had found ten failing tests.  The configuration variables are detailed 

in Table 1. 

 
WEIGHTS   CONTROLS  

VLD_WEIGHT Relative weight for vector load 

(all forms)  

 MAIN_INSTR Number of primitives 

VINT_WEIGHT vector integer  SUB_INSTR Primitives in a subroutine 

VFP_WEIGHT Vector floating-point weight  SUN_IN_SUB Allow subroutines to call 

other subroutines 

VCVT_WEIGHT Vector convert weight  ALLOW_IUI Illegal use of Instruction 

VST_WEIGHT Vector store (all forms)  ALLOW_ADA Address alignment 

LD_WEIGHT Scalar Load (all forms)  ALLOW_ARITH Arithmetic 

ST_WEIGHT Scalar Store (all forms)  ALLOW_IVL Invalid vector length 

FORS_WEIGHT For-loop start weight  VSYNC_LEVEL 0 = never 

1 = best guess 

2 = always 

FORE_WEIGHT For-loop end weight (must be 

greater than start) 

 DEBUG_LEVEL Allows debug information to 

be commented to program 

IFES_WEIGHT If-then-else start weight  MIT_DP Switch between original FPU 

spec and the actual datapath 

from MIT 

IFEE_WEIGHT If-then-else end weight  ALLOW_CoPinBDS Allow for coprocessor 

instructions in a branch 

delay slot 

JSR_WEIGHT Jump subroutine weight  NUMBER_OF_VRs Number of vector registers 

CPLX_WEIGHT Complex primitive weight  NUMBER_OF_VSs Number of vector scalar 

VCVS_WEIGHT Vector control / vector scalar  NUMBER_OF_FPRs Number of floating-point 

registers 

VF_WEIGHT Vector flag processing    

FP_WEIGHT Scalar floating-point    

CHAIN_WEIGHT Chaining primitive (select 

source read class, destination 

write class, instructions from 

each class, a dependent 

register, and fill a number of 

intervening cycles) 

   

Table 1 – Random Test Generator Parameters 
This table details the most often used configuration variables parsed by the random test 

generator.  There are three basic classes of variables: weights, switches, and 

architectural configurations.  Weights are designed so that the probability of generating 

a primitive of the corresponding class is equal to the weight of the primitive divided by 

the sum of weights of all primitives.   
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3.3 Putting it All Together 
Figure 6 illustrates the resulting design flow.  The abstractions of the processor, in the form of 

software simulators that model the ISA and predicted performance, are each executed using either 

handwritten tests or random tests.  For the initial runs, traces were visually inspected to ensure that the ISA 

simulator was correct.  After basic functionality was confirmed, random test generation and trace 

comparison was used exclusively.   

Almost every failure from this method was due to a bug in the performance simulator.  The bugs 

varied from simple functionality and computation, to severe hazard violations, to causing the simulator to 

crash.  The test code was not bad or poorly written, but was randomly generated code that adhered to the 

programming semantics set forth by the ISA.  In some ways this was good, since running handwritten code, 

designed for kernels, on the simulators is not a particularly thorough verification method.  This failing was 

obvious, since other designers had run many kernels without incident.  In many ways running a random test 

generator is very useful in catching non-intuitive bugs.  Getting complaints like “I would never write code 

like that” is not necessarily bad if the code is still valid and adheres to the programming semantics, and it is 

quite useful if it actually finds bugs. 
 

 

 

 

 

 

 

 

 

 

 
 

More troubling was the fact that not only did the performance simulator have bugs, but so did the 

ISA simulator.  Unfortunately, these bugs were primarily functionality bugs.  It was clear that the ISA 

simulator had not been verified to any extent, and the only reason any bugs were found was that the 

functionality code was written by two different people, and thus there was a good chance that at least one 

of them got the code right.  All of the functionality issues were seen in the instructions or configurations 

not often used by developers who wrote relatively simple code. 

Eventually, in order to avoid many common bugs, a common set of libraries was written for both 

simulators to use.  This code reuse of course ensured that they would always both produce the same results, 

simulate and 
generate trace 

handwritten 
tests 

vsim-isa 

vsim-p 

Trace_comparator 
pass/fail? 

simulate and 
generate trace 

random 
tests 

Random Test 
Generator + 

Control Script 

Figure 6 – Initial test flow 
Simulator source (left) is compiled and executed using stimulus in the form of 
assembly language programs (right).  Each simulator produces a trace.  They are 
compared to determine whether or not the performance simulator is consistent with the 
ISA.   
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based on functionality, but it did not guarantee that both simulators would be correct.  As a result, the 

random test regressions stopped finding comparison bugs, but continued to find major failings due to 

chaining, segmentation faults, or assertion checks in the performance simulator. 

 The use of a common library in conjunction with the already existent ISA bugs was the death 

knell for this method. The execution of vsim-p should always be same as vsim-isa, but they might both be 

wrong – and ever-present bugs in vsim-p exacerbated the problem.  It was clear that if verification would 

ever proceed to RTL, it would be necessary to ensure that, from the ground up, each abstraction level or 

representation of the architecture (ISA/Performance/RTL/gate) was correct.   

 

 

4 VSIM-ISA Verification 
 

The second method applied to verification of the chip attempts to address the major shortcomings 

of the first (simple trace comparison) by adding another verification step, vsim-isa verification.  Since the 

ISA level simulator is the lowest level (closest to the ISA document), there is nothing to compare against 

but the document itself.  A possible method would be to use equivalence checking to prove that the 

equations found in the document are identical to the code in the simulator.  This did not address the need to 

prove that the higher levels of the design also conformed to the ISA without having to rely on associativity 

and trace comparison.  Furthermore, equivalence checking could neither be used to prove that the ISA 

document was actually correct, nor be implemented in the time allotted.   

The solution chosen was to write an extensive set of self-checking programs, which would start 

from trivial pieces of code and evolve into extremely intricate and thorough programs.  Each test would 

contain code to determine whether or not the results it produced through computation were what would be 

produced based on the algorithms presented in the ISA document.  A final pass/fail value would be 

produced as an exit code that would allow the verification engineer to know whether or not the simulator 

was working correctly.  The beauty of this approach is that these tests could also be run directly and 

independently on the performance simulator and the RTL simulators without having to rely on trace 

comparison.  Trace comparison, however, could still be used as an added measure of confidence.  Figure 7 

illustrates the basics of this method.   

Each of the initial tests was written in assembly language and designed to test only a small piece 

of the ISA (a single instruction initially).  As tests became more complex, the time required to write tests 

skyrocketed.  This severe time consumption in conjunction with the immensity of the ISA and with the fact 

that handcrafted assembly language tests would need to be completely rewritten in the event of ISA 

changes, necessitated refinement of this verification strategy.  Some facilitation method was required to 

ensure that this step could be completed in a timely manner and still allow for growth and evolution of the 

budding testsuite.   
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5 Abstraction and Evolution 
 

The third method, which initially seemed only to be a refinement of the previous method, grew 

rapidly and formed the basis for all ISA level verification for the design.  In this method, tests were written 

in a language of test primitives, and a translator was used to generate assembly language appropriate for the 

current ISA, test conditions, and so forth.  Once the now self-checking assembly language had been 

produced, it was run on the various simulators, and the simulator traces were also compared to determine 

which fail and where.   

 

5.1 Abstraction and Primitives 
These test primitives included not only plain assembly language, but also initialization 

instructions, test instructions, macroinstructions, configuration variables, custom kernel configuration, self-

generating code (written in C), and test restrictions.  Plain assembly language was included to ensure that 

tests would contain exactly the instruction sequence to be tested.  Thus, unlike a compiler, the writer is 

guaranteed that the code desired for verification is generated.  All other components of a self-checking test 

were greatly abstracted to expedite coding time, as well as allowing for mapping to any desired set of 

instructions capable of performing that operation.   

This freedom to map to any instruction leads to another concept, software modes.  These modes 

dictate control signals to the translator on how to map certain instructions, as well as global configuration 

parameters for a test.  As a result, a “test” is actually more like a superposition of several variants of 

Simulate,  
self-check, and 
generate trace 

handwritten 
self-checking 

tests 

vsim-isa 

vsim-p 

Trace_comparator 

Simulate,  
self-check, and 
generate trace 

Pass iff: 1. vsim-isa self-check passes 
2. vsim-p self-check passes 
3. trace compare passes 

Figure 7 – Self-checking test flow 
This verification flow adds an additional step to that seen in Figure 6.  Each test 
now includes code to test the result of various instruction sequences to determine if 
the simulator produced the correct result.  If not, the test will force the simulator 
(through test code) to produce an exit code that signals an error. 
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assembly language code, compressed down to less than the length of any single program, and selected by 

the mode.   This means it is possible for a few dozen lines of test code to be mapped to thousands of 

different programs, each with hundreds of lines of code.  Thus only one test for a specific code snippet had 

to be written, and all variations could be automatically generated, thus greatly facilitating the work 

required.  Thousands of short tests could be written and thousands of variations could be generated for each 

instead of writing a million longer pieces of code. 

An example might be useful in showing the flexibility of this concept.  Let’s look at an 

initialization construct for which we wish to place the 64b values 0,1,2,3 into vector register 0.  The test 

level code would look like: 

 

[INIT] VR:0 dword 0 1 2 3 

 

However, a single parameter passed to the code generator would allow this test code to be mapped to 

assembly language via any of the following methods: 

1. A vector load loading the first four elements from on-chip memory 

2. Looping 4 times on: scalar load, move to cop2, and vector insert to increasing indexes 

3. Looping 4 times on: scalar load immediate, move to cop2, and vector insert to increasing 

indexes 

4. Looping 4 times on: clearing all elements up to vector length using a vector-scalar and, a 

scalar load immediate, a move to cop2, a vector-scalar or, and decreasing vector length 

The RTL designer would know that these methods exist.  In conjunction with his knowledge of which 

functional units were working, he could select the appropriate code generation method, and proceed to 

testing another functional unit potentially bypassing broken units. 

Another concept included was that of register variables.  For example, instead of specifying $vr1, 

One could specify $vr[X] and the script would choose a value at random for [X].  Although this works well 

for most instructions, some instructions have restrictions (vIUI) on which registers can be used.  Thus it 

was necessary to introduce restrictions such as “[X] ne [Y]” and so forth.  This concept was overly 

cumbersome on larger programs and the feature was only used in a couple of simple tests. 

In order to consolidate all the work necessary to translate test code, generate assembly language, 

configure and run all simulators, and finally to determine failure locations, an all-encompassing script was 

written in PERL.  This was called the verify script: verify.execute.pl, Figure 8 shows its general 

functionality and Figure 9 details its position in the overall verification flow. 
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Figure 8 – verify.execute.pl script 
This figures details only the flow of data through the translator script.  First, a 
self-checking test (top left) is processed and translated into an intermediate form.  
Self-generating tests produce C code, which is compiled, executed, and redirected.    
The intermediate form, common in most tests, is then mapped to assembly language 
constructs and merged with code from self-generating tests.  In addition, C code can 
be passed to vcc (the vector c compiler) for compilation and inclusion within the 
final assembly program.  The assembly language program is then run on any specified 
software simulator (producing traces, and memory images, self-checking results).  The 
memory images are then used as stimulus for any specified RTL build.  This simulation 
produces more traces and self-checking results.  All traces are compared to ensure all 
simulators are consistent with each other.  Finally, all self-checking results are 
ANDed with the trace comparison result to determine a final pass/fail condition.  
(lower right) 

test.c 

compile, execute, redirect 
generate assembly language via 
cout, and generate binaries 
from vcc 
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Code Mapping 
1. Code remapping 
2. Address remapping 
    (move off chip) 
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Run all specified software simulators 
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3, produce trace 
4. produce self-check exit code 
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    (all traces must match order/values for each register) 
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In addition to the basic functionality, the test file format included support for I/O operations 

allowing for testing of the network interface and JTAG/VTAP ports.  These additional constructs weren’t 

used except for a few specific tests that were used to verify the functionality of modules like the test access 

port in the vector unit. 

 

5.2 The Initial Testsuite 
Once the test language translator in the verify script and language semantics were reasonably 

stable, a thorough testsuite could be written.  Since at this time we were still planning on using the 

Sandcraft core, which being an IP block should have already been verified, there was no need to write 

scalar tests (either integer or floating-point).  Nevertheless, the testsuite for the vector unit, which 

comprises more than 80% of the logic of the chip, was a daunting task. 

 The testsuite was initially partitioned into several smaller testsuites whose statistics are detailed in 

Table 2.  This partitioning allowed both the verification engineer and the RTL writer to check off 

functionality one step at a time, instead of having to initially deal with programs that required several major 

functional units to work correctly.  It should be noted that since there is a mapping step during translation, 

verify.execute.pl 

Self-check 
testsuite 

vsim-isa 

vsim-p 

Self-checking 
random tests 

Random Test 
Generator + 

Control Script 

Figure 9 – Verification Flow Using The Verify Script 
The verification script from the previous example can be condenced to a single node in 
the verification flow graph.  It takes tests and simulators, and produces a pass/fail 
condition.  This greatly simplifies the work required by a designer to test a change 
made to a RTL block or simulator.   

Pass/Fail on self-check/trace comparison 

verify.execute.pl 

random 
tests 
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vector initialization statements, which most efficiently can be written with vector load instructions, can be 

replaced with a slower process of using scalar loads and vector insert instructions, thus ensuring that only 

the vector arithmetic block is being exercised.   

There were some cases where trying to express certain instruction combinations was overly 

complicated in the semantics of the test file format.  Furthermore, there had been enough bugs to 

necessitate very thorough and complete testsuites for these instruction classes.  These testsuites were 

generated using a very small test generator written in C.  These self-checking test generators were easy to 

write, allowed coverage of most critical cases, saved significant coding time, and all in all were very useful 

in verification.  The test generators could have been folded into the verify script through the C code section.  

However, the RTL designers typically found it useful to have assembly-like test level programs in lieu of 

an extremely complex test level language program or even a C generator.  Writing every test in C would 

have complicated and sacrificed some of the mapping capabilities of the verify script. 

  
TestSuite Description Tests Test Code Lines 

Vector/Basic ISA perspective of the simplest tests 12 216 

Vector/Arithmetic Vector integer arithmetic tests 193 18261 

Vector/LoadStore All forms of vector load and store tests (unit 

stride, stride, indexed) 

557 64145 

Vector/Processing* Vector processing tests (insert, extract, 

half, butterfly 

495 36214 

Vector/FlagProcessing* Logical, pop, 8 at a time 514 32659 

Vector/Misc To/from control/scalar, vsatvl 12 242 

Vector/Exceptions Test the vector exceptions and different 

conditions they arise under 

128 9112 

  1,911 160,849 

Table 2 – Initial Testsuite 
This table details the original self-checking testsuites.  It should be noted that Test 
code is an abstraction from assembly language.  As such, each of the thousands of modes 
for each test typically had ten times as many lines of assembly language.  Although Test 
Code is often unique, generated assembly language rarely is. 

*these testsuites included some generated tests totaling about 60,000 lines. 

 

 

It took about a month to write and debug these vector tests on the ISA simulator.  Since the 

performance simulator now shared a common library with the ISA simulator, bugs fixed in the ISA 

simulator were fixed in the performance simulator as soon as it was recompiled.  However, there were still 

plenty of other bugs in the performance simulator that were being found.   

It also quickly became clear that the ISA simulators had several shortcomings, the first of which 

was the lack of any kernel mode support.  Thus trying to run the Vector/Exception tests caused the 

simulator to terminate instead of jumping to the appropriate exception vector.  This lead to the memorable 

“what do you mean its not supported” response that would become all too familiar when dealing with 

various simulators and representations of the design.   
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By the spring of 2000, it became clear that we would not be using the Sandcraft core.  As a result, 

we needed not only a new core, for which we decided on a MIPS M5KC, but also a FPU, part of which we 

designed, and the remainder of which came from MIT.  Of course, we also needed testsuites for both.  

Given the constant bugs in the ISA simulator coupled with the impending task of RTL simulations, it was 

decided to simply write a whole new ISA simulator designed to mimic the functionality of the hardware as 

closely as possible (ignoring timing).  Thus it would accurately represent the ISA based on the MIPS core, 

the FPU, and would include full kernel mode support.   

It took some time to bring the new simulator, vsim, up to speed, and it required several new 

testsuites (detailed in Table 3) to verify it, but once it was verified, it has remained virtually untouched, 

even in the presence of RTL verification.  Floating-point tests were assumed to be unnecessary since the 

MIT execution unit was believed to be correct. 

 
TestSuite Tests Lines of Test Code 

Vector/FloatingPoint 42 2561 

FloatingPoint/Arithmetic 18 891 

FloatingPoint/Arithmetic.with.NaNs 10 520 

FloatingPoint/Exceptions 43 2095 

FloatingPoint/LoadStore 4 238 

FloatingPoint/uKernel 10 1151 

uKernel 46 9953 

TLB/Exceptions 50 2989 

TLB/Instructions 6 179 

TLB/uKernel.generated.stride 9 4722 

TLB/uKernel.generated.unitStride 3 534 

TLB/uKernel.old 17 6740 

 258 32,573 

Table 3 – Additional Testsuites 
This table details additional floating-point and micro kernel self-checking testsuites.   
 

5.3 Changes in the Project and the Problems Which Arose 
In the summer of 2000, the performance simulator writer graduated, leaving the performance 

simulator unmaintained.  This meant that neither the current unfixed bugs, nor any new ones found, could 

be fixed.  Week by week the performance simulator fell more and more behind as changes were made to 

the ISA as well as the microarchitecture.  As a result it ended up being utterly useless for verification and 

was discarded.   

The other major shift was the departure from the high-end computing arena in favor of the 

embedded arena.  Some of these changes are only visible in the microarchitecture (such as the removal of 4 

of the vector multipliers), but others, such as only supporting single precision floating-point computation, 

required changes to the ISA, simulators, and RTL.  The other change dictated by this shift was the removal 

of the NI.  In the end this was a much more moderate change, as tests were simply not run, as opposed to 

having to make modifications or changing either simulators or RTL. 
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Overall, this verification method was highly successful, and adapted well to the slight changes in 

the ISA and the loss of the performance simulator.  The flexibility of the verification script is based on the 

abstraction of code snippets into the test file format, which means only the code mapper needed to be 

changed, not the individual tests, to compensate for minor changes to the ISA.  Similarly, the abstraction 

and reduction in coding significantly facilitates verification effort by allowing more widely varied tests to 

be written in a shorter time.  On the downside, self-checking data (not code) had to be either written by 

hand through knowledge of the ISA, or generated by a program with knowledge of the ISA.  This meant 

that tests could be wrong (proven so by ISA simulation), but also, that the ISA could be wrong.  By the end 

of the summer of 2000, the new ISA simulator had been fully verified, and verification was poised to move 

onto RTL as soon as it was deemed ready.   

 

 

6 Basic RTL Verification 
 

More than six months after the originally scheduled tape-out, the major RTL blocks neared 

completion.  Additionally, the MIPS core RTL was delivered.  It was necessary, however, to perform some 

basic verification on these blocks individually to fix all the trivial bugs in parallel.  Since the FPU 

instantiated the MIT execution unit IP block, which was tied directly to the IBM SA27E [IBM00] standard 

cell library as well as IBM designWare components, its verification could not be started until we received 

the design kit from IBM.   

While waiting for the IBM components used by the FPU, its designer created a small testbench 

that issues instructions via the coprocessor interface that are then dispatched to a stand-in execution unit, 

which in turn, produces a set of prescribed results for various instructions.  The testbench then examined 

the results written to registers to ensure that the correct operation was being written to the destination 

register.  Of course this method is extremely limited, but was useful in fixing the most trivial (non-

computational) bugs.   

The VU designer opted for a similar, yet reduced strategy.  Instead of feeding an instruction from 

the coprocessor interface and checking its progress through the pipeline like what was done for the FPU, he 

partitioned the vector unit into several blocks and tried to verify them independently.  For example, to 

verify the lane, data and control were driven directly at the lane level, but only for a tiny subset of the ISA.  

Furthermore, instead of relying on a script to check the results, they were only eyeballed.  As the designers 

were responsible for fixing their own blocks using the verification framework, this only saved him time in 

the short term.   

On the bright side was the MIPS core.  Even thought it is an IP block, it was a pleasant surprise to 

receive a thorough testsuite and testbench with the distribution.  Unfortunately, early releases required the 

core to be configured with the default cache and TLB sizes in order to run the testsuite correctly.  Once this 
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was corrected, it was very useful in debugging modules, macros, and pseudocells, as well as ensuring that 

before integration, the design was valid. 

 

 

7 Partitioning – RTL, IP, and Custom Block Verification 
 

Now that major RTL blocks were available, they could be integrated and ISA verification could be 

performed at the RTL level.  The next major modification to the verification flow was the partitioning of 

RTL verification tasks so that progress could be made in parallel by the designers and the verification 

engineer.  In addition to the use of self-checking tests to determine pass/fail conditions, RTL trace 

comparison was needed to ensure complete adherence to the ISA as well as to facilitate debug by finding 

the exact failure point. 

Since not all blocks had been completed, it was necessary to try to partition and parallelize the 

verification work in order to make progress on completed blocks.  Moreover, since custom blocks were 

lagging well behind, they were separated and stand-in behavioral models were used.  Each of the custom 

blocks (vector register file, vector multiplier, vector adder, vector shifter, vector rounder, vector saturation, 

and crossbar) would be initially verified with a standalone testbench created by their designers.  Only when 

they had been fully verified would they be integrated with the rest of the design.  Similarly IP blocks, 

which should work by their very nature, were also separated and verified immediately.  The remaining 

blocks were synthesizable RTL, including the FPU, and the VU.  RTL verification progressed quite 

differently than custom module verification.  Whereas custom blocks were designed to meet a specific 

spec, which was easy to verify in most cases due to the lack of state, these RTL blocks were verified along 

ISA lines.  These two had received some verification work, but nowhere near enough.  Since each of them 

is a coprocessor, once the MIPS core was stable, these blocks (FPU and VU) could be attached individually 

and then debugged.  Once this was complete they would both be used simultaneously (while still using 

behavioral versions of the custom blocks) to simulate the full VIRAM1 architecture.  Succinctly put, in-

house RTL verification was broken into three parts:  MIPS+FPU, MIPS+VU, and VIRAM1 

(MIPS+VU+FPU).  The first two combinations could be debugged in parallel by their respective designers 

and the verification engineer.   

 

7.1 Custom Block Verification 
The first custom block, the register file, was somewhat unique in that not only was it extremely 

regular, but it also made extensive use of dynamic logic.  Because it is regular, only single row/column 

pairs needed to be simulated (with appropriate dummy load) to ensure electrical timing and functionality.  

However, the use of dynamic logic prevents any direct extraction to Verilog for simulation with the rest of 

the design.  As a result, it was necessary for the designer to verify the layout, and then provide an exact 

functionally equivalent RTL representation for simulation.  This ensured that the version simulated was 



 21 

based on the designer’s interpretation of the spec, and not the spec itself.  If there were any 

misunderstanding, it would show up.  In order to verify the layout, a test generator was written that 

accurately represented the register file, its contents, the write style, and the ports used.  The test generator 

produced code that was parsed, converted to a Spice deck, and embedded with the extracted Spice netlist.  

The Spice deck was simulated with either Spice or TimeMill, and outputs were extracted and compared 

against data produced by the test generator.  The designer found the generator very useful in tracking down 

bugs, which usually amounted to wiring problems.  Relatively few bugs were found, a testament to the 

designer and the regularity of the block.  However, Spice simulation could take a day per cycle, resulting in 

a somewhat lengthy verification phase. 

The remaining custom blocks (the crossbar, and the five vector integer blocks) were all destined to 

use the same flow by their designer.  Since they are comprised entirely of CMOS or PTL, a Verilog netlist 

could be extracted.  These blocks were first verified with directed inputs, then random inputs with 

cosimulation of the behavioral model to ensure correctness.  Finally, the Verilog netlists were inserted with 

the rest of the RTL for full chip verification.  Significant delays, required to verify the extremely complex 

custom integer datapaths (remember they are variable bit width vector integer/fixed point, signed/unsigned, 

high/low, upper/lower datapaths), coupled with significant area overhead required to fix the ensuing bugs, 

necessitated the use of synthesizable integer datapaths in VIRAM1.  The crossbar, although even larger, 

was extremely regular like the register file, and was essentially a routing exercise instead of array 

construction.  Once verification work was begun on this block in earnest, it was quickly completed. 

 

7.2 Floating-Point Unit RTL Verification 
As discussed previously, the MIPS core was quickly verified so that it could be included with 

more encompassing simulations. However, the MIT floating-point datapath is not distributed with a 

testsuite.  Although a standalone testbench could have been written,  lumping its verification together with 

the rest of the FPU was a more efficient solution.  The advantage here would be that ISA tests already 

existed, and trace comparison could be used to provide more coverage.  The downside was that this is both 

ISA and IEEE verification, and it is possible that many bugs were present in the datapath that now could 

only be found by examining the numerous corner cases required for IEEE compatibility.  Since the FPU 

RTL was completed first, its verification was started immediately.  The FPU, being a coprocessor, was 

easily attached to the MIPS core.  Instead of using the on-chip memory found in VIRAM1, we continued to 

use the sparse memory model provided by MIPS and accessed it through the SYSAD interface.  Very little 

work was required to attach, compile, and bring this environment up.  Verification was then broken into a 

testsuite MIPS provided for floating-point instructions and one written not knowing we would be receiving 

one from MIPS.   

The MIPS testsuite found a few IEEE bugs with the FPEU, including some with exception 

handling, but very few in the reorder buffer logic of the FPU.  The lack of bugs in the architectural part of 

the FPU is primarily due to the way tests were written.  Virtually every test was of the form load, load, 
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operation, compare, and branch.  This structuring prevented virtually any hazard from occurring.  It was 

clear that given the small number of bugs found with these simple tests, all of which were critical, not only 

would more extensive directed tests be needed, but also significant random testing.   

In order to begin running the UCB testsuite, several changes needed to be made.  The first was a 

modification to enable the running of code generated from vsim on the MIPS core.  The MIPS testbench 

was reused and a few changes were made to the simulator to produce a binary image that the testbench 

could read.  The verify script would then apply the appropriate command-line switches to vsim, which in 

turn would produce this “.hex” file.  The verify script would then post process it as necessary and run the 

RTL simulator providing this as an input.  The simulator would run to completion as usual, but now the 

verify script would examine its output to determine the pass/fail condition used by self-checking tests.   

The other change was to add support for trace comparison.  Although both the core and the FPU 

are inorder machines, the trace comparator was designed to support out-of-order commit, which is useful 

for the vector unit.  As previously discussed, there are three phases to trace comparison:  trace generation, 

parsing, and comparison.  Generation has to be handled by each designer.  In this case, a trace was 

produced only for the FPU.  This trace included the 32 FPR’s and the control register FCSR.  The trace, 

which was printed to standard out, included an identifier (to show it was for the verify trace), the simulation 

time, the register in question (e.g. FPR[12]), and the value written to the register.  Generation on the ISA 

side is the same trace originally used for vsim-isa/vsim-p comparison. That is nothing more than the ISA 

level trace (including instruction number).  Parsing was nothing more than reading from these two sources 

into two pairs of associative string arrays (time/value for ISA/RTL) indexed by the register.  The new value 

is appended to the list.  The final step, comparison, simply ensures that writes to a given register occur in 

the order specified by the ISA, which is an acceptable practice for an out-of-order commit machine.   

After completing these modifications, the directed self-checking tests were run with trace 

comparison turned on.  A few new bugs were found.  Some dealt with IEEE compatibility, and others with 

exception handling in the architectural part of the FPU.  These directed tests were significantly less 

thorough than those written for the vector ISA, primarily because it was believed that initially not only 

would we receive an implicit FPU embedded within the core, and that the new IP datapath would be 

correct, but that the MIPS testsuite would be sufficient.   

The overall lack of success here motivated me to write a simplified random test generator 

specifically for the FPU.  It was designed to generate all the cases any sane programmer would not.  Like 

the full random test generator described earlier, it was highly programmable, but instead of broad 

instruction classes, the instruction classes in the floating-point random test generator were based on the 

datapaths they exercised (add, mul, i2f, f2i, and so forth).  The tests produced by this generator were 

extremely effective in finding the impossible to enumerate cases involving exceptions, nullifies, kills, data 

arriving out of order (from registers or memory) and the reorder buffer.  In addition to these cases, for 

which no reasonable number of directed tests could have ever found, there were several IEEE issues that 
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were uncovered and not covered by the other testsuites.  The majority FPU verification took less than three 

months, but the trailing edge (caused by reorder buffer issues) took several more months to complete.   

In many ways the FPU RTL verification was a dry run for VU or even full chip verification, since 

it forced all bugs in the tools to be worked out, the testsuite/simulators to be adapted to the MIPS testbench, 

and examined the more subtle issue of how two RTL designers feel about the tools and the way failure 

information was presented.  On the upside, the testsuite and tools were readily understandable, allowing the 

designers to debug their blocks individually.  For most cases, the trace comparison and the way failure data 

is presented (time, ISA cycle, register, RTL data, ISA data) was sufficient to fix any computational bug and 

many of the reorder buffer issues.  Where verification information fails to be obvious, or at least becomes a 

little more cryptic, is in the case where either the same data is written over and over to the same register 

and one write is missing, or in the case of sticky bits in FCSR.  In the latter case, it is not clear that an 

exception occurred if the bit is already set.  Nevertheless, it took relatively little time to completely debug 

the FPU, despite the fact that the rate at which bugs were found was basically asymptotic.   

 

7.3 Vector Unit RTL Verification 
Once the VU RTL was believed to be completed, its verification proceeded along lines similar to 

that of the ongoing FPU verification, correcting any issues that had previously arisen.  The original plan 

was to run through the directed self-checking tests one testsuite at a time, then move on to simple and 

highly-restrictive random tests, and finally employ all the functionality of the random test generator.  

However, the combination of the complexity of the design and the desire of the VU designer to keep 

verification as simple as possible for him required some additions.  The first testsuite, Vector/Basic, which 

amounts to nothing more than a few ctc2/cfc2 instructions in the preliminary tests, was far too much for the 

designer initially.  What was not clearly seen was the fact that in addition to testing the vector unit, simple 

things like clock generation, as well as the vector I/O block (an arbiter between MIPS LSU, VU, on-chip 

DRAM, off-chip DRAM, and DMA), needed to be verified.   

These restrictions required the creation of several new testsuites, which defied the simplicity and 

flexibility of the previous testsuites.  These tests had to be pure assembly language, since there was a 

requirement imposed by the VU designer, that only necessary instructions be present.  Thus, boot kernel 

generation, essentially a parameterized PERL script that generates a boot kernel, could not be used.  A 

custom boot kernel was required on a per test basis.  These custom boot kernels were hand-optimized 

versions of the code seen in the generated boot kernels.  Each of these tests had to be changed whenever a 

major change to the design was made, like the amount of on-chip DRAM.  The initial tests were run 

completely from off-chip memory and progressed through testing a few rows in DRAM.  Table 4 describes 

these initial testsuites.   
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TestSuite Description Tests Lines of Test Code 

Other/BabyScalar Basic boot kernels, and off-chip memory accesses 8 2248 

Other/DRAM Basic boot kernels, Scalar and Vector on-chip 

memory access 

21 4702 

Vector/Baby Trivial vector instructions without memory 

accesses 

2 290 

Other/Milestone Most basic scalar test (nop), and a scalar 

Y=aX+b 

2 66 

  27 7366 

Table 4 – Simple Testsuites for RTL Verification 
This table details the testsuites added to verify the RTL testbench and simplify the 
initial RTL debug. 

 

The bugs these tests found would have been in every other test.  This meant that they were nothing 

more than an apparent timesavings.  However, this was not the opinion of the VU designer/debugger.  The 

advantage, from the designer’s point of view, was that these tests start from the ground up.  Make sure a 

nop works, make sure the off-chip boot kernel can run, make sure on-chip memory can be accessed, and so 

on.  Harkening back to one of the tenets of verification, to make it easy for the designer, it was acceptable 

to create these tests to make it easier for him to debug his code.  Figure 10 details the verification flow 

including RTL simulation.  Design components (simulators or RTL) can be compiled and executed by the 

verification scripts using parsed testsuite information as stimulus.  At this point, RTL includes behavioral 

blocks for datapaths.   

We were now able to proceed with the rest of the Vector testsuite.  The VU designer chose to run 

the Vector/Arithmetic before the simpler testsuites.  However, the code mapper in the verify script was 

mapping vector initialization constructs to vector load (vld) instructions.  Normally this mapping would be 

perfectly acceptable, except it became apparent that a major bug was present in the crossbar, which is 

required to accesses on-chip memory.  This bug was far more than simply a coding style, it was a total lack 

of communication on functionality resulting in the crossbar designer implementing what he thought it 

should be, not what the behavioral RTL specified.  Instead of waiting for it to be resolved, a simple toggle 

in the verify script was utilized, which instead of mapping initialization constructs to vector load, mapped 

them to vector insert (vins) instructions.  This vector insert mapping utilized the scalar load store unit, 

which bypassed the vector load bug, a transfer across the coprocessor interface, and a vector insert.  

Luckily the vector insert instruction is very simple to implement and worked correctly from the start.  

Similarly, the verify test construct used a vector store instruction by default.  Reversing the operation, this 

new mapping used a vector extract.  This simple transformation allowed verification progress in parallel 

with fixing the crossbar.  The bugs found in the Vector/Arithmetic testsuite ranged from computational 

errors to more subtle issues where it is documented that there is not an interlock on certain operations, or 

the flipside where there are undocumented cases where there is no interlock.  The later two were fixed by 

changing the code to adhere to the RTL.  The former bugs were fixed in the RTL.   
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Running the first few vector testsuite uncovered some bugs that were extremely nasty.  For 

example, some instructions were either encoded by the assembler or decoded by the RTL incorrectly.  Thus 

a vadd in the simulator was executed as a vsub in the RTL.  As a result, a testsuite was written to ensure 

that instructions were being encoded correctly by vsim.  Perhaps more critical were chaining bugs.  The 

RTL defines four kinds of read chaining styles, and four types of write chaining styles, and the three 

standard hazards.  An attempt was made to enumerate these cases into directed tests.  Because these 

conditions are timing critical, these tests were essentially worthless.  The search for these potential bugs 

was temporarily bypassed in favor of making progress on other testsuites.  As the search for reorder buffer 

bugs in the FPU used a random test generator, so did the search for chaining bugs. 

The vector floating-point testsuite was passed quickly because the datapath had been previously 

debugged in conjunction with the FPU RTL, and the VU used an imprecise exception model.  The other 

vector testsuites were also very easy to run due to relatively simple instructions, and in some cases, their 

previous use in the code-mapping fix.   

A set of more complicated tests was also written to handle the rarely used, but critical, 

functionalities of the chip and project.  Unlike all previous tests, many of these exercised functionality only 

present in the hardware, and not in the software simulator.  As a result, where other tests could rely on trace 

comparison as a safety net or even a primary strategy, these tests had to be completely self-checking, and in 

some cases, rely on visual inspection.  The interleaving and Syscall tests had analogous functionality in the 

software simulator. Once they had been debugged, the functionality was applied to all previous tests via the 

verify script.  A mode switch was used to determine the interleaving.  However, Syscall emulation allowed 

me to replace the hack exit code solution previously used, where the contents of one specific register 

became the exit code, with a termination signal code that embodied the pass/fail condition.  Thus the same 

method is used in all simulators, and can even be used in real hardware.  A similar mode switch prompts a 

loader that uses either DMA transfers or a series of word copies to transfer the program from off-chip 

memory to on-chip DRAM.  There is no support for this in the software simulator, and it requires extensive 

reworking of the simulator’s output in order to allow it to run on either the RTL or on hardware.  The 

testsuites required to verify these unsupported functionalities are detailed Table 5.   

Unlike the FPU, which included a reorder buffer and implemented a precise exception model, the 

VU, which implements an imprecise exception model and element group execution, allows for multi-cycle 

out-of-order commit.  This meant that in order to correctly perform trace comparison against the RTL, 

significant modifications on the trace comparator were required.  A (vector) scalar commit, a commit to the 

vector unit’s scalar register file, was straightforward and relatively simple.  The trace comparator was 

modified to show that writes to a given register occur in order, which is a departure from the conventional 

view that writes to all registers must occur in order.  However since the commit occurs in a single cycle, it 

was a relatively simple modification.  A vector register commit, however, is entirely different.  Writes to 

the vector register file occur in element groups of 256 bits.  Thus, for most instructions, a vector register 
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write will require eight cycles.  The logical conclusion is not to view the register file as 32 registers of 2048 

bits, but more simply as a register file of 1024 registers of 16 bits, or ideally a 2 dimensional array (32 by 

32) of 16 bit elements.  Now, each element write is atomic, allowing this interpretation to easily be folded 

into the existing trace comparator.   

 
TestSuite Description Tests Lines of Code 

Other/ContextSwitch Runs two “programs” and switches between them on 

exceptions 

9 4502 

Other/DMA Exercises the DMA engines in the VIO block. 12 2761 

Other/Interleaving Changes the interleaving of eDRAM (i.e. reorders 

address bits and thus mapping of physical 

address to DRAM macro bank, row, and column) 

1 53 

Other/Syscall Tests the RTL SysCall Emulator which was 

retroactively applied to all tests via the 

verify script. 

2 24 

Other/Lib Due to miscommunication, the compiler will 

generate unimplemented FPU instructions, which 

are handled via a library routine.   

4 1324 

  28 8664 

Table 5 – Verification of RTL specific functionality 
This table details the testsuites added to verify the RTL specific functionality.  Some 

of these tests could not be run on the ISA simulator at all.   
 

Unfortunately, the VU RTL implemented a slightly different ISA than the ISA simulator.  As a 

result some tests would fail trace comparison even though the test would pass self-check.  Furthermore, 

directed tests designed to trace some of these failures would still pass self-check at the failing instruction.  

It quickly became clear that one of the following solutions had to be implemented:   

1.  Modify the VU RTL to work as the ISA specifies, 

2.  Modify the ISA simulator to work like the vector unit RTL, 

3.  Modify the trace comparator in the verification script to account for the discrepancy  

in the case where the results of instructions under certain conditions are  

conceptually invalid.   

The third choice was selected for several reasons.  Foremost, the difficulty involved on the part of the VU 

designer in making the hardware work would require a complicated or cumbersome implementation. 

Similarly, there was no reason to make the ISA simulator conform to behavior that is invisible from 

software.   

 

7.4 VIRAM1 RTL Verification 
After both individual RTL modules were working reasonably well, they were combined and 

verification proceeded with larger more complicated programs.  One type of these new larger more 

complete tests was the micro kernel testsuite, which performs a series of memory and CPU intensive 

operations including transfers, vector arithmetic, matrix arithmetic, on relatively large structures using both 
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coprocessors.  Additionally, the random test generator was updated.  Memory coherency events were 

created and handled via the generation of the sync instructions.  Finally, a chaining primitive was created.  

This would select two instructions, one each from the four read and four write types, a hazard, and a shared 

register, and generate a series of intervening instructions to generate a chaining event.  These were 

extremely useful in finding timing dependent bugs.  However, the cases previously found by VU RTL 

verification, which had not been resolved, made complete random tests very difficult until these bugs were 

fixed.   

 

 

8 Coping with ISA Evolution and  

Verification in the Presence of Unspecified Functionality 
 

There were several major groupings of failure signatures.  The first were false writes, in which  

data is actually written to the vector register file and thus the RTL trace, even though the write is invisible 

to software.  The second group is a lack of interlocks on flag registers allowing out-of-order commit to flag 

registers from arithmetic exceptions.  Unfortunately, since the writes are sticky, simple reorder checking is 

insufficient.  Third, vector compress and iota instruction boundary cases are a clear departure from the ISA 

manual.  Fourth, nullified writes from stride zero or certain indexed stores will not appear in the RTL trace. 

Finally, there is some randomness in the hardware, which can never be reflected in software.  The solutions 

were to modify the RTL to note when a write is not a commit, modify tests not to generate certain now 

“invalid” cases, and finally, modify the trace comparator to pick up on notes from the RTL as well as 

keeping track of the machine state in order to decide whether or not a miscompare is really that.   

 

8.1 Coping with ISA changes 
In addition to these problems, and the microarchitecture changes, ISA level changes were made, 

the most notable of which was the number of flag register files.  Changing the number of vector register 

elements (either MVL or the number of registers) had been considered, but this was never done.  If the 

testsuites had been further abstracted, these ISA changes would have been completely invisible, and in 

some cases, actually were.  However, the desire by designers to make the tests easily readable meant that 

this abstraction could not have been implemented without sacrificing the goal of making the testsuite/bench 

usable by the designers.  As a result, the solution was a mix of code generator changes and rewriting tests.  

The limited abstraction helped simplify this process.   

 

8.2 Vector Unit Issues Which Caused False Failures 
The vector unit was not strongly tied to either the simulators or the publicly available ISA 

documentation.  As a result, in many cases, tests would fail because either the test or the testbench made 
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the assumption that the ISA documentation specified exact functionality and included all restrictions in the 

form of various exceptions, typically vIUI.  Actual implementation, with functionality determined by 

conceptual understanding of tests in private benchmarking kernels, allowed for, in some cases, unspecified 

results.  The ISA document, originally generated from the ISA simulator, presented the image of a fully 

deterministic processor.  Communication between designers is key to any project, and the lack of it can 

manifest itself in failures, delays, kludges, and less than acceptable design performance.  Having the 

hardware designers update the ISA document to reflect non-deterministic behavior is essential. 

 
8.2.1 Spurious Writes to the Register File 

The vector control unit cannot predict before a load is committed, without extensive additional 

logic, whether or not a stall will force the write of a 256 bits load to be spread across multiple cycles.  In 

fact, it cannot even determine on the cycle before it is writing whether or not the data being written is 

correct.  This is perfectly acceptable, since on the next cycle it can determine that a stall occurred, allowing 

garbage to be written, and prevent any other instruction from reading from the vector register file until the 

final data has been written.  However, from a trace generation perspective, it seems like a spurious write, or 

even an unchecked hazard, has occurred.  The solution was to append the trace with another entry stating 

that the previous write was garbage.  The trace comparator in the verification script can implicitly read this 

entry, understand it, and compensate for any number of consecutive spurious writes.   

 

8.2.2 Issues with Exception Flags 

Exception bits are sticky in the sense that the exception conditions from an arithmetic operation 

are OR’d with the exception register, instead of simply written. There is no interlock to ensure that flags 

written from the first arithmetic unit (AU0) are ordered with respect to instruction order with those written 

from the second arithmetic unit (AU1).  Thus the exceptions from a VADD instruction could be written 

before those of a VMADD, even though the VMADD was both fetched and issued first.  This is not a 

violation of the ISA since instructions are no longer atomic in the vector unit. They can be interrupted by 

an exception, and later resumed.  However, since exception bits are sticky, the trace comparator cannot 

simply try to swap two writes to the flag registers holding the exception bits, but must try to ascertain 

whether or not a possible reordering resulted from completely aberrant values in the trace.  

Perhaps an example will more adeptly illustrate the predicament.  In this case the VADD 

completes out-of-order and ahead of instruction order.  The exceptions generated are not visible to either 

software or hardware traces. Only the contents of the flag registers that hold the resulting exception bits are 

visible.  The exception bits represent elements that produced exceptions. 
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 ISA   RTL  

Instruction 

commit order 

Actual 

Exceptions 

(not visible) 

Value in flag register 

(i.e. trace) 

Instruction 

commit order 

Actual 

Exceptions 

(not visible) 

Value in flag register 

(i.e. trace) 

- - 0000 - - 0000 

VMADD 1000 1000 VADD 0001 0001 

VADD 0001 1001 VMADD 1000 1001 

 

 Thus the trace comparator would infer from examination of the ISA trace that the VMADD 

produced an exception in element 0 (MSB).  We know this because the value in the flag register before the 

execution of the instruction is 0000, and after it is 1000.  The MSB is the only one that is obviously set.  

Thus the exception nibble for the VMADD instruction must be “1000”.  The exception nibble produced by 

the VADD is far less clear.  We know that the LSB (element 3) is set, because that bit in the register file 

changes.  However, we cannot tell if the MSB of the actual exception nibble is set entirely because 

exception writes are sticky.  The previous value of the MSB was 1, and since 1+? is 1 (logical OR), we 

cannot determine the value of Z.  As a result, we can say that the exception nibble for the VADD instruction 

is “?001”.  i.e. we don’t know the MSB. 

 When we examine the RTL trace, we can infer that the VADD instruction produced an exception 

nibble of “0001”, and the VMADD instruction produced an exception nibble of “100?”.  Now we can let 

the trace comparator compare the exception nibbles produced by each instruction.  Any bit that is known in 

both the RTL and the ISA traces can be compared: 

VMADD  “1000” vs “100?”  consistent, but not conclusive 

VADD  “?001” vs “0001”  consistent, but not conclusive 

At best, we can say the RTL trace is consistent with the ISA trace.  However, we cannot conclude that the 

RTL is correct.  In practice, having such luck with numbers is rare.  Typically, in random arithmetic 

programs with out-of-order commit enabled, the trace comparator is dealing with derived exception nibbles 

like “????”.  That is, nothing can be said about it, and thus anything can be consistent with the RTL trace. 

The fact that the underlying reordering is completely unknown to the trace comparator, in 

conjunction with pipelined execution and sticky bits, results in low confidence for this method when 

applied to tests that generate large numbers of exceptions.  Basically, all that can be said is that nothing is 

obviously wrong, but it cannot be said that it is correct.  The verification script, where it failed to make a 

determination, produced a warning allowing the designer to verify correctness.  No real errors involving 

sticky exception bits were ever detected because of reordering, partly due to the flexible program semantics 

involved.   

 

8.2.3 Unspecified results for Trailing Elements in an Element Group 

One of the worst failures, leading to the most heated debates, dealt with how vcompress and viota 

instructions should be handled in hardware.  The ISA documentation is explicit on the functionality, but the 

hardware accepts a more “spirit of the instruction” approach.  It came as no surprise that these two distinct 

approaches lead to differences in the trace that were initially flagged as failures.  In the ISA, a compress or 
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iota will write elements only up to that inferred from the flag, but in hardware, entire element groups are 

always written.  Even worse, the data written for elements beyond the last element inferred from the mask 

and up to the last element in the element group is unpredictable in the RTL.  The merits of either method 

are not pertinent to this discussion, only the fact that the RTL solution won out.  To account for this, the 

trace comparator had to keep track of instructions, the values in the flag registers, the vector length, and 

vpw in addition to the normal <time|register|data> tuples.  When it is determined that a compress or iota 

has finished while parsing ISA trace, it is possible to reconstruct the bits of the mask it used and determine 

what the index of the last element written by the ISA was.  With this in hand, it was easy to determine how 

many elements (0…25-vpw) had been written by the RTL with indeterminate data.  Additional tuples were 

appended to the ISA trace with data fields replaced with a symbol to denote “Don’t care – its garbage from 

a compress/iota”.  During trace comparison when this was seen, the corresponding write in the RTL trace 

was ignored.  This solution allowed continued reuse of the hundreds of tests in the testsuite that otherwise 

would have had to been rewritten.   

 

8.2.4 Nullified Writes to Memory 

Another interesting case arises for indexed stores where elements within the same element group 

have the same index and the similar cases where strided stores are used when stride is set to zero.  In either 

case the RTL processes address calculations in element groups and implements a micro TLB (uTLB) to 

quicken the address translation.  If both addresses in question can be translated by the TLB, then the two 

separate writes to the same physical memory address are coalesced into a single write, which is sent down 

the memory pipeline.  A uTLB miss followed by an eviction of the critical entry could result in the case 

that both writes to the same address actually take place, albeit on different cycles.  From a trace point of 

view, which has absolutely no knowledge of the uTLB state, whether or not writes are consolidated appears 

completely random.  Since vector registers are processed in order of increasing elements for this particular 

access operation, the last write to that address in question is considered the correct value.   

To handle this potential discrepancy in the trace comparator, all preceding writes to this address in 

both the ISA and RTL traces, for this and only this store, can be ignored.  A simple $display() statement 

was added to the Verilog code to note when a vector store has finished which is when the last element of 

the last element group commits.  This comment was noted by the trace parser and used to mark the end of a 

vector store to memory.  A similar point could be inferred from the ISA trace.  When comparing traces, we 

know there is an error or nullifications if when we reach the end of a vector store in the ISA trace, there are 

still more trace entries before the end of the vector store in the RTL trace.  Simply scanning forward until a 

match is found, the end of the vector store is found, or the end of the vector trace is reached, will determine 

whether or not this is a failure or acceptable uTLB behavior.  Spurious matches on comparison will soon be 

determined, since either the trace will be shorter or different.  Memory coherency issues arising from the 

dual load store units (vector and scalar) are implicitly avoided since traces are maintained on a per 

address/element concept, and memory coherency is handled via software instructions like vsync.   
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8.2.5 Other Issues 

The next problem, DMA transfers, arose because they are not supported in the ISA simulator, so 

when running DMA tests on the hardware, we do not run trace comparison on memory.  Trace comparison 

on registers, as well as the self-checking option, are still available and are used to verify the tests during 

regression.  To ensure that DMA transfers function correctly, self-checking can be performed on memory 

locations, and timing can be verified by visual inspection.   

Finally, some control registers in the vector control unit, such as vtlbrandom, are either not 

modeled at all in software or do not use the same model.  As a result, ISA and RTL might never match up.  

This is perfectly acceptable, and problems can be avoided by restricting the visibility of values in these 

registers.  For trace comparison, like memory accesses for DMA tests, these registers were ignored without 

any loss in confidence in the verification.   

All of these problems were resolved, or acceptable solutions were presented, allowing completion 

of the verification of the RTL level of this design.  The designer could rapidly verify any future changes for 

performance based on timing from synthesis transparently on both SPARC and x86 processing farms with 

this extensive testsuite and flexible and easily understandable testbench.   

 

 

9 Back-end Flow Verification 
 

After RTL was verified, our design followed a “correct-by-construction” approach.  At each stage 

from RTL to GDS, the design should always correct.  Of course, it would be foolish to believe that the tools 

will work as advertised, or more importantly, that the human interaction to configure and run the tools can 

ensure correct-by-construction.  To verify the flow from RTL to GDS, a few additions were made to the 

existing verification method, some of which are textbook.   

First, it became clear that custom integer blocks were not a good choice for this design, so five 

synthesizable modules were written for the following vector datapaths: add, shift, multiply, round, and 

saturate.  In addition to the blocks themselves, a testbench was written that instantiates the synthesizable 

code (either in RTL or gates), the behavioral model, and a random test generator.  Furthermore, Formality, 

an equivalence checking tool, was used to prove that the original behavioral models (proven correct in RTL 

ISA simulation) were equivalent to the resultant gate level netlist.  These blocks were then merged with the 

rest of the standard cell flow, which included IP blocks, control blocks, and the FPU.   

All synthesizable blocks were synthesized using Design Compiler, which should produce a correct 

mapping to gates.   However, in order to prove this equivalence, two additional methods were used.  The 

first and most general method was to take the gate level block, instantiate it in place of the existing RTL 

module, and rerun the testsuite.  This worked for all blocks since the watcher modules were external to 

synthesized blocks.  The second pass, where appropriate, was to run the block through Formality, which 
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would then determine if the synthesized block was equivalent or not to the original RTL.  However, all 

invalid states must produce x’s in the behavioral version in order to be ignored by Formality.  This is 

clearly not possible for most of the blocks.  In fact, only the datapaths and the MIPS core were run.  At this 

point it became clear that even Synopsys/Formality could be fooled.  Poor coding style in the RTL, in the 

form of unsynthesizable code, can pass through Synopsys/Formality without any errors, but will quickly 

fail on gate level simulations since the mapping generated has no grounds in hardware or four-state logic. 

The next step in the backend flow was place and route (PnR).  Apollo, our PnR tool, is capable of 

in-place optimizations including logic restructuring.  Since the netlist was changed in this part of the flow, 

it was necessary to verify the correctness of the final netlists.  Once again multiple checks were made to 

ensure this.  The first was a simple power/ground check that verifies that all power/ground connections in 

layout are the same as those specified in the netlist.  This could catch some issues where there were opens 

or shorts generated in the power grid.   

The second was Layout vs. Schematic (LVS).  This was run from inside the PnR tool.  

Occasionally it would find something wrong – shorts, opens, power grid issues, and of course any hand 

edits used to fix charge-collecting diodes issues, ECO’s, or DRC errors.   

Third, all six PnR blocks were streamed out as a Verilog netlist and run through our testbench.  In 

order to save time, these blocks were inserted one at a time, and various combinations were distributed 

across our processing cluster.  The only problems that arose were the need to write case converting 

wrappers and a few timing problems arising from event ordering issues in Verilog.  The original netlist was 

case sensitive, but the library that Apollo used was case insensitive.  This required Apollo to be case 

insensitive.   

Finally, a series of DRC checks was performed.  The first was a simplified rule set run from 

within Apollo.  The other five checks were Hercules runs using ever more detailed run sets.  Using simpler 

run sets first quickly found simple common bugs, allowing a shorter cycle in the DRC flow.  The first 

three, metal only, everything but DRAM, and full chip, were run using an older version of IBM’s ASIC run 

set, as we did not have a license for Hercules to run the newer one on.  They required 6 hours, 12 hours, 

and 48 hours respectively for each run.  The next two DRC runs were full ASIC and full foundry post 

processing.  They were run by IBM, but required a week turnaround for various reasons.  As expected, 

DRC checks found many thousands of bugs since internally Apollo only uses a small subset of the design 

rules, but only one was a critical functionality issue.  All were fixed.   

After including the back-end verification flow, Figure 11 illustrates the entire VIRAM1 design 

flow.  Whenever a testbench or test from the testsuite fails, the designer must backtrack to find the point in 

the design flow in which the bug was introduced.  Of course, it is possible that the testbench or the test 

itself introduced the bug, although this tended to happen when the documentation describing the block in 

question was inaccurate, incomplete, or out of date.  Full-chip RTL simulations were by far the most time 

consuming, as suggested by the convergence of arcs for that step in the flow, but also the most beneficial, 

as far and above the vast majority of the bugs were found there.   
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Figure 11 – Final verification flow 
The MIPS, custom, and datapath RTL blocks run their individual testsuites first.  
Second, each RTL block, or set of blocks, is compiled, and executed by the verify 
script with stimulus from the testsuite.  In addition to self-checking results, 
register values are compared against those from the software simulator for every 
instruction.  Next, all RTL blocks are synthesized.  The resulting netlist is 
simulated using the testsuite.  Finally, ApolloII is used to place and route all RTL 
blocks.  After LVS, and DRC flows, a netlist is extracted.  The final netlist is 
simulated using the testsuite just as all other blocks had been.  The flow encompasses 
ISA, RTL, gate and post PnR levels of abstraction.   
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RTL Level 

Gate Level 

Post PnR Gate Level 
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10 Related Work 

 

Cosimulation is a popular technique for verification of microprocessors.  In essence two 

simulators (test and good) are run in lockstep, and the results are compared at commit to test for any 

problems with the test simulator.  The use of the VIRAM1 ISA simulator to check the other simulators is a 

similar approach.  However, fast fail was not possible since it was not run in lock step with the 

performance, RTL, or gate simulators.  As a result the entire ISA simulation had to be run.  Then the entire 

RTL simulation had to be run.  Finally, the traces from each had to be compared to determine if there was a 

failure.  Failure determination would have been much quicker if traces could be compared dynamically.   

The other major obstacle was that the cosimulation approach assumes that both simulators implement 

exactly the same ISA, clearly not the case for the VIRAM1 simulators.    

Cosimulation can be extended to hardware by embedding a simple hardware checker to verify the 

execution of a much more complex processor.  The goal here is not to verify the chip after tapeout, but 

instead to catch any bugs not found before tapeout – in affect, trade performance for accuracy.  In addition 

it is possible to catch electrical/timing issues such as setup, hold time, v boxes, alpha particles, and so forth.   

DIVA [Aus00] embeds this checker module in the commit stage within the final hardware with 

negligible slowdown and area penalties.  Instructions passed to the commit stage contain the inputs in 

addition to the result value.  The checker reexecutes the instruction to verify the result.  In addition to avoid 

deadlock cases, a watchdog timer is implemented to wait for the maximum instruction latency.  If no 

instruction has completed its execution in the allotted time, the core is restarted at the last instruction 

committed.  Of course the maximum effort must be applied to verifying the DIVA checker.  Although, 

since it is small and relatively simple, a formal method could be applied.   

 [MAW01] is an extension of the previous paper [Aus00].  The core 

(fetch/decode/issue/execute/reorder) produces a program stream of executed instructions.  These 

instructions include a predicted next program counter, instruction word, operand values, result, and so 

forth.  The checker now executes all four basic stages (fetch/decode/execute/memory) in parallel since it 

can use the predicted values as inputs to each stage.  For example, the predicted instruction word is used as 

an input to the checker’s decode stage.  If any prediction is shown to be incorrect, then the core is flushed 

and restarted.  Otherwise, the instruction commits.  Once again a formal method is applied to prove the 

correctness of the checker “pipeline”.   

 Although DIVA might be appropriate in VIRAM1 for the MIPS core or the FPU, it is certainly not 

appropriate for the vector unit.  This is because the checker replicates the datapath.  Since the vector 

datapaths constitute roughly 60% of the vector unit, doubling them would be impractical for VIRAM1 or 

any data parallel architecture.  Furthermore, the lack of a precise exception would hamper restart 

implementation.  A simplified checker might be a possibility.    

Consider the 32 entry, 2048b, VIRAM1 register file.  There are 265536 initial states, each with 226 

possible transitions.  This is an unimaginably complex state machine, and it ignores the MIPS core, cop0, 
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FPU, and much of the vector unit.   To check every possible transition through simulation is impossible.  

For simpler designs, such as a 32b core, formal methods could be applied to verify the design.  One such 

method [PJB99] attempts to verify the RTL, gate, or switch-level version of an ARM processor against its 

ISA.  This process requires several steps:  1. Describe the ISA using an ADL. 2. Define the mapping from 

the high-level language to the low-level implementation. 3. Use STE (Symbolic Trajectory Evaluation) to 

verify the assertions.  The major problems that prevent use of this methodology in VIRAM1 verification 

were the complexity of the architecture, and the fact that the only person who had the knowledge to 

generate the mapping machines was the RTL designer.   

In the end, verification of VIRAM1 required tried and true methods.  Massive simulation, with the 

timesavings of a test file format abstraction, was used for ISA and RTL verification.  Gate level verification 

was performed with industry standard correct-by-construction methodologies and formal verification where 

possible.  Any other method would have been an unacceptable gamble. 

 

 

11 Conclusions 
 

The incredibly nebulous task of verifying the IRAM project (ISA design, software, and hardware 

in the form of VIRAM1) was completed in less than three years.  The constant evolution of the project, 

changing timetable, and loss of manpower through graduation, meant that unlike a conventional project, 

this was not a single large task that could logically be partitioned into a hierarchy of sub tasks, each which 

could be completed independently, but a series of hundreds small interdependent tasks.  Figure 12 details 

the project tasks over time, including design steps, verification steps and correct-by-construction tools.  

Many believe that verification technically should not be necessary at the end, given the use of correct-by-

construction tools.  However, in reality this is completely untrue.  Correct-by-construction tools are only as 

good as the library or information or completeness of the design rules passed to them. 
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The five major goals of the project were each handled in different ways.  The broad concept of 

correctness was accomplished via a tremendous number of cycles simulated using handwritten self-

checking, generated self-checking, compiled, and random tests.  Correctness of the ISA was attained by 

writing tests based on the description and intended use of the instruction.  Synthesizable RTL was verified 

in the same way using the same tests.  Datapaths were verified through standalone testbenches and the use 

of Formality to prove that the original behavioral RTL previously verified matched the synthesized gate 

level netlist.  Custom modules were verified either through cosimulation of behavioral representation with 

the extracted netlists or in the time prohibitive designs, via high-level modeling and Spice deck generation 

for simulation.  Correct-by-construction methodology - synthesis, restructuring in Apollo, and the like - 

was used extensively to ensure that correctness of the RTL translated into correctness of layout.  

Additionally, LVS and DRC checks were performed to check for cases that might be missed by these tools.  

For a final measure of confidence, gate level netlists were simulated using the ISA testbench just as RTL 

had been.   
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Figure 12 – Final Timeline 
VIRAM1 flow from design through implementation.  The three fill shades represent 
design, verification, and implementation.  Verification must be performed after design 
and after implementation.  Decreasing manpower resulted in a significant increase in 
individual workload. 
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TestSuite 

 

Description 

 

Tests 

Test Code 

Lines 

FloatingPoint/Arithmetic Basic floating point arithmetic 18 891 

FloatingPoint/Arithmetic.with.NaNs Basic floating point arithmetic using and 

producing NaNs 

10 520 

FloatingPoint/Bugs Bugs with the MIT execution unit reported 

by other companies. 

2 20 

FloatingPoint/Exceptions Test all floating point exceptions 43 2095 

FloatingPoint/LoadStore Test all floating point loads and stores 

(e.g. lwc1) 

4 238 

FloatingPoint/uKernel Small floating point kernels.  (e.g. dot 

product) 

10 1151 

Other/BabyScalar Basic boot kernels, and off-chip memory 

accesses 

8 2248 

Other/Cache Cache initialization/invalidation tests 2 529 

Other/Compiled Tests generated by compiling C code 2 N/A 

Other/ContextSwitch Runs two “programs” and switches between 

them on exceptions 

9 4502 

Other/DMA Exercises the DMA engines in the VIO 

block. 

12 2761 

Other/DRAM Basic boot kernels, Scalar and Vector on-

chip memory access 

21 4702 

Other/Interleaving Changes the interleaving of eDRAM (i.e. 

reorders address bits and thus mapping of 

physical address to DRAM macro bank, row, 

and column) 

1 53 

Other/JTAG Vector JTAG test 1 5 

Other/Lib Due to miscommunication, the compiler 

will generate unimplemented FPU 

instructions, which are handled via a 

library routine.   

4 1324 

Other/Milestone Most basic scalar test (nop), and a 

scalar Y=aX+b 

2 66 

Other/Syscall Tests the RTL SysCall Emulator which was 

retroactively applied to all tests via 

the verify script. 

2 24 

Other/TestVSim Tests designed to test vsim non-ISA 

functionality 

5 35 

TLB/Exceptions Test for every TLB exception 50 2989 

TLB/Instructions Tests for controlling the TLBs 6 179 

TLB/uKernel.generated.stride Small kernels for testing the TLB using 

faults arising from strided accesses 

9 4722 

TLB/uKernel.generated.unitStride Small kernels for testing the TLB using 

faults arising from unit stride accesses 

3 534 

TLB/uKernel.old Older set of TLB kernels 17 6740 

  

 

 

Table is continued on next page 
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Vector/Arithmetic Vector integer arithmetic tests 193 18261 

Vector/Baby Trivial vector instructions without 

memory accesses 

2 290 

Vector/Basic ISA perspective of the simplest tests 12 216 

Vector/Chaining Basic vector chaining tests 48 848 

Vector/Encoding Look for encoding bugs 6 834 

Vector/Exceptions Test the vector exceptions and different 

conditions they arise under 

128 9112 

Vector/FlagProcessing Logical, pop, 8 at a time 514 32659 

Vector/FloatingPoint  42 2561 

Vector/LoadStore All forms of vector load and store tests 

(unit stride, stride, indexed) 

557 64145 

Vector/Misc To/from control/scalar, vsatvl 12 242 

Vector/Processing Vector processing tests (insert, extract, 

half, butterfly 

495 36214 

uKernel Large programs, e.g. matrix matrix 

multiply 

46 9953 

  2296 211663 

 
Table 6 – Complete Testsuite 

This table details all self-checking testsuites.  Note that most tests could be run in 
thousands of different modes, and each test x mode generation typically had ten times as 
many lines of assembly language as test code.  It should also be noted that in addition 
to these tests, the random test generators produced tens of thousands of tests, the vast 
majority of which found no bugs.  In addition, there are about 500 tests that became 
obsolete as the design evolved. 

 

Minimizing the testsuite design effort and adaptability to changes went hand in hand.  Abstraction 

of the testsuite into a language of primitives, which had direct ties to instructions, allowed for rapid 

construction of a testsuite of thousands of highly configurable tests capable of producing hundreds of 

millions of lines of assembly language.  The complete testsuite is detailed in Table 6.  Additionally, this 

abstraction allowed for a parameter to completely change the code generated and in turn run.  Thus, bugs 

and known issues could easily be avoided and verification could continue without blocking.  Similarly, this 

mapping allowed for variations in the code generated to be randomly selected allowing rapid exploration of 

the instruction sequence space.  This abstraction, in conjunction with straightforward traces and debug 

information, had the benefit of making tests extremely easy to be read by the designers.  This meant that 

they could simulate, ascertain what and when the failure occurred, determine what the problem was, and fix 

it quickly.  It should be noted that with over 500,000 lines of processor simulator code (both hardware and 

software), coupled with the typical 6 lines per bug error rate, that nearly 100,000 bugs should be present.  

Although we quickly stopped recording every bug due to the time wasted, without a doubt there were 

thousands.  Software simulators, for which we did initially track bugs, had hundreds.  This vastly improved 

error rate was accomplished through an extremely thorough testsuite, clearly noting what the failure was, 

and extremely capable designers.  It should be noted that had the RTL designers, after deciding on 

implementation, updated the ISA documentation to reflect possible non-deterministic behavior, those cases 

could have been avoided altogether and significant testsuite construction time could have been saved. 
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In the end, minimization of CPU requirements was easily accomplished through parallelism.  ISA 

simulations could be run on the Millennium cluster (over 100 nodes), allowing a single mode of the 

testsuite, normally whose tests individually take less than ten seconds to run, to be run in less than ten 

minutes.  The time required to debug ISA level tests obviously far outweighed the CPU time required for 

simulation.  Even the CPU time required to simulate RTL was still far outweighed by the human-centered 

debug time due to the drastically increased complexity of the RTL.  Problems with the Millennium cluster, 

and having only ten licenses, forced all simulation to migrate to the IRAM and Oceanstore clusters.  Even 

after this drastic reduction in parallelism, debug time still dominated the verification work.   

As this design shifted to a logic ratio of 20% soft IP, 65% synthesizable, and 15% custom, future 

designs will likely shift to more soft IP, and less custom logic. Additionally, the majority of synthesizable 

RTL will likely be further abstracted into a high-level architectural modeling language that could be 

synthesized into RTL, which in turn, could be synthesized to gates.  Thus verification could be performed 

on the high level design, and correct-by-construction could be used to ensure that the resulting RTL and 

netlist implement the design.  The entire design could be modeled in this high-level of abstraction, given 

that high-level models of the IP and custom blocks were available, allowing for rapid simulation to verify 

that the design implements the ISA.  Alternately, a formal model of computation could have been used to 

represent the processor, thus allowing a variety of formal modeling techniques to be used to expedite 

design and verification.  Of course, simulation will be ever-present at every level of the design to insure 

that the design does actually work for at least some code snippets.  Furthermore, cosimulation of RTL with 

high level language will allow for construction and testing of a single block at a time, while not suffering 

the time penalties of waiting for complete RTL completion nor the inherently slower RTL simulation time.  

Minimization of custom RTL and large use of IP will also simplify the verification work since less will 

need to be verified via Spice or extracted netlists, and more could be verified by a single provider instead of 

every customer.  Finally, abstraction from the ISA into macro instructions and generation of tests, while 

maintaining a clear picture of the ISA level instructions that tests would be mapped to, will allow for 

flexibility in the design space exploration while minimizing the verification time. 
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