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Abstract

Computational grids hold great promise in utilizing geographically separated heterogeneous re-
sources to solve large-scale complex scientific problems. However, a number of major technical hurdles,
including distributed resource management and effective job scheduling, stand in the way of realizing
these gains. In this paper, we propose a novel grid superscheduler architecture and three distributed job
migration algorithms. We also model the critical interaction between the superscheduler and autonomous
local schedulers. Extensive performance comparisons withideal, central, and local schemes using real
workloads from leading computational centers are conducted in a simulation environment. Additionally,
synthetic workloads are used to perform a detailed sensitivity analysis of our superscheduler. Several
key metrics demonstrate that substantial performance gains can be achieved via smart superscheduling
in distributed computational grids.
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1 Introduction

Grid computing [1, 8] holds the promise to effectively sharegeographically distributed heterogeneous re-
sources in a seamless and ubiquitous manner. The development of computational grids and the associated
middleware has therefore been actively pursued in recent years. There are many potential advantages to
utilizing the grid infrastructure, including the ability to simulate applications whose computational require-
ments exceed local resources, and the reduction of job turnaround time through workload balancing across
multiple computing facilities. However, many major technical (and political) hurdles stand in the way of re-
alizing these gains. Among the myriad research issues to be addressed is the problem of distributed resource
management and job scheduling for computational grids. Although numerous researchers have proposed
scheduling algorithms for parallel architectures [5, 6, 7,9, 13, 15], the problem of scheduling jobs in a
heterogeneous grid environment is fundamentally different. This is the focus of our work in this paper.

Job scheduling on computational grids is conducted via autonomous local schedulers that cooperate
through asuperscheduler[16] using grid middleware. Since the superscheduler (or grid scheduler) does
not have control over the resources of the distributed computing centers, it depends on the individual local
batch queuing systems to initiate and manage job execution.The superscheduler is thus responsible for
discovering grid resources, monitoring system utilization, and intelligently migrating workloads to the local
queues of distributed resource centers.
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In this paper, we first investigate the architectural requirements of a superscheduler. Although various
aspects of its infrastructure have been studied before [3, 4, 10, 14], a number of important issues remain
unaddressed. These include the superscheduling algorithm, interaction between the superscheduler and
various local schedulers, selection of jobs for migration,and destination choice for the transferred jobs
(also known as the location policy). The superscheduler algorithm is basically a job transfer policy that
determines if there is a need to migrate jobs from one computing server to another. Using system and
workload requirements, the grid scheduler determines whena server becomes eligible to act as a sender
(transfer a job to another server) or as a receiver (retrievea job from another server). The location policy
selects a partner server for a job transfer transaction. In other words, it locates complementary computing
nodes to/from which another node can send/receive workloads to improve critical performance metrics.
Since these issues are important for effective grid scheduling, we propose a novel distributed superscheduler
architecture and three job migration algorithms in this paper. We then compare their performance in terms
of several key metrics with ideal, central, and local schemes in a simulation environment.

The other distinguishing aspect of this research is the set of real and synthetic workloads used in our
experiments. We obtained real workload data (binary compatible) from three leading computational centers
over the same six-month period of 2002. Since the trace data is for the same period of time, we are able
to evaluate the potential benefits of allowing jobs to migrate between distributed compute nodes. By exam-
ining real data, we accurately demonstrate the substantialperformance improvement, in terms of average
waiting time and average response time, that can be achievedvia smart superscheduling in computational
grid environments. Additionally, we present simulation results based on heavy and light synthetic workloads
that are derived from the real workloads using the hyper-Erlang distribution of common order [11, 12]. By
varying the model parameters, synthetic workloads allow usto conduct a detailed sensitivity analysis of
superscheduling architectures and algorithms under different conditions, such as over-/under-subscription
and additional compute servers.

Our overall results demonstrate that intelligent superscheduling can deliver substantial performance
gains compared to locally isolated machines. However, it isimportant to note that this preliminary study
does not attempt to address many complex questions related to computational grids. Future research will
build on our simulation environment to address issues such as job migration overhead, grid network costs,
superscheduler scalability, fault tolerance, multiple-resource requirements, and architectural heterogeneity.

The remainder of the paper is organized as follows. Section 2describes the distributed superscheduler
architecture and the three job migration algorithms that wedeveloped. Section 3 discusses the simulation
environment, including the real and synthetic workloads, and various performance metrics. Detailed per-
formance analysis, including the effects of local scheduling policy on overall grid performance, is reported
in Section 4. Finally, Section 5 concludes the paper by summarizing this work and providing a preview of
future research in this area.

2 Superscheduler Architecture

This section presents the three job superscheduling architectures examined in this study. We first de-
scribe the distributed architecture and three job migration algorithms:sender-initiated, receiver-initiated,
andsymmetrically-initiated. Next we present a centralized architecture that uses a single global queue to
schedule jobs in a grid environment. Finally, we introduce an idealized strategy to establish an upper bound
on performance.
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2.1 Distributed

The distributed architecture for the grid job superscheduler is depicted in Figure 1. It is composed of a
collection of autonomous local schedulers that cooperate with the superscheduler through grid middleware.
A new job is first submitted to agrid queue(GQ), which then forwards the job’s resource requirements to
thegrid scheduler(GS). In the distributed architecture, the GS is assumed to have an affinity to a particular
local scheduler(LS). The GS queries the LS via thegrid middleware(GM) for theapproximate wait time
(AWT) that the job would have stay in thelocal queue(LQ) before beginning execution on the local system.
The LS computes the AWT based on the local scheduling policy and the LQ status. If the local resources
cannot satisfy the requirements of the job, an AWT of infinityis returned. If the AWT is below a minimal
thresholdφ, the job is moved from the GQ directly into the LQ without any external network communication.
Otherwise, one of the three distributed job transfer algorithms is invoked by sending workload information
to apartner setof computing facilities connected via the grid. The pseudo-codes for all three algorithms are
shown in Figure 2. For the simulations in this paper, the partner set contains all of the available machines
on the grid. However, in a large computational grid setting,each machine would intelligently organize
and dynamically update a subset of the available partners tokeep the system efficient and scalable. The
management of partner sets will be the subject of future work.
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Figure 1: Distributed architecture of the grid superscheduler (solid arrows represent movement of jobs,
dashed arrows represent transfer of information).

2.1.1 Sender-Initiated

In the sender-initiated (S-I) strategy, the GS sends the resource demands of the job to the compute server’s
partner set via the GM. In this study, we only consider the CPUand run time requirements of each job;
however, this can be extended to an arbitrary number of resource constraints. In response to the GS query,
each partner returns the AWT andexpected run time(ERT) of the requested job, as well as its personal
resource utilization status(RUS). Note that the ERT can vary from one computational nodeto another
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All Job Migration Algorithms:

JobJ arrives in Global Queue of MachineL (GQL)
Compute Approximate Wait Time ofJ onL (AWTL

J )
If (AWTL

J < φ) MoveJ to Local Queue of L (LQL)
Else Call S-I, R-I, or Sy-I

Sender-Initiated (S-I):

Send Resource Requirements ofJ (RRJ ) to Partner Set ofL (PS(L))

Compute Turnaround Cost forJ on all Machines inPS(L) (TC
PS(L)
J )

Find MachineM such thatTCM
J = min (TCL

J , TC
PS(L)
J )

MoveJ to LQM

Receiver-Initiated (R-I):

Each MachineR checks own Resource Utilization Status (RUSR) at time intervalσ
If (RUSR < δ) Send Availability Message (AMR) to Partner Set ofR (PS(R))
If (MachineL with JobJ in GQL receivesAMR)

SendRRJ to all MachinesR
ComputeTCR

J for all R
Find MachineM such thatTCM

J = min (TCR
J )

If (TCM
J < TCL

J ) MoveJ to LQM

Symmetrically-Initiated (Sy-I):

Call R-I
If (No Availability Messages) Call S-I

Figure 2: Pseudo-codes for the three distributed job migration algorithms.

depending on their architectural designs and program characterizations. If certain partners do not respond
within a specified time limit due to traffic congestion or machine failure, they are simply ignored for that
request.

Based on the collected information, the GS calculates the potential turnaround cost(TC) of itself and
each partner. To compute the optimal TC, first the minimumapproximate turnaround time(ATT) is calcu-
lated as the sum of AWT and ERT. If the minimum ATT is within a small toleranceε for multiple machines,
the system with the lowest RUS is chosen to accept the job. Thus the TC metric attempts to minimize the
user’s time-to-solution, while using system utilization as a tiebreaker. We found this approach to be more
effective then simply relying on ATT. A more robust TC metricwould also consider the communication
overhead of data and job migration, and will be considered infuture research. The job is then migrated into
the LQ of the machine with the minimal TC. The GM is responsible for handling the job transfer to the LQ
either locally or across the communication network to a remote site. Note that once a job enters a LQ, it
will be scheduled and run based exclusively on the local policy of the LS, and will no longer be controlled
by the superscheduler or migrated to another site. When the job is completed, the results are sent back to
the compute node where it was originally submitted. In orderto avoid message congestion, the GS can only
send out a query for a new job after it has received all of the responses from a previous call. During this
time, the new job waits in the GQ.
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2.1.2 Receiver-Initiated

The receiver-initiated (R-I) algorithm takes a more passive approach to job migration than the S-I strategy.
Here, each system in the computational grid checks its own RUS periodically at time intervalσ. If the RUS
is below a certain thresholdδ, the machine volunteers itself for receiving jobs by informing its partner set
of its low utilization. Once a partner (say,L) receives this information, it checks its GQ for the first job
waiting to be scheduled. If a job is indeed queued, its resource requirements are sent to the volunteer node.
The underutilized system then responds with the job’s ATT, as well as its own RUS. Based on this data,L
computes and compares the TC between itself and the volunteer system. If the TC of the volunteer is lower
than that ofL, the job is transferred to the LQ of that system through the GM. Otherwise, it continues to wait
in the GQ until either its local AWT falls belowφ (examined at time intervalσ), or an available machine
volunteers its services.

2.1.3 Symmetrically-Initiated

Unlike S-I and R-I, the symmetrically-initiated (Sy-I) algorithm works in both active and passive modes.
As in the R-I strategy, each machine periodically checks itsown RUS and broadcasts a message to its
partner set if it is underutilized. The difference occurs when the local AWT of a job exceedsφ but no
underutilized machine volunteers its services. In the R-I approach, the job passively sits in the GQ while
waiting for a volunteer, and periodically checks its local AWT at eachσ time interval. However, the Sy-I
algorithm immediately switches to active mode and sends a request to its partners using the S-I strategy. The
main differences in the three job migration algorithms therefore lie in the timing of the job transfer request
initiations and the destination choice for those requests.

2.2 Centralized

In the centralized architecture, all jobs are submitted to asingle GQ which does not have an affinity to a
specific local system. The GS is responsible for making global decisions and assigning each job to a spe-
cific machine. The GS tracks the status of each job and maintains up-to-date information on all available
resources, allowing it to compute the TC directly, without the need for any communication. When a job
arrives, the GS computes its TC for all systems, selects the one with the minimum TC, and immediately
migrates the job to that system. Although communication-free resource awareness is an unrealistic assump-
tion, it allows us to model the potential gain of a centralized architecture. However, it constitutes a single
point of failure and thus suffers from a lack of reliability and fault tolerance. Additionally, this approach has
severe scalability problems that may result in a performance bottleneck for large-scale grid environments.
In contrast, the distributed approach has the potential to be highly scalable and robust, since each computa-
tional facility runs its own GS. Detailed superscheduler scalability and fault-tolerance will be addressed in
future work.

2.3 Idealized

Finally, we present an idealized superscheduler architecture to establish an upper bound on grid perfor-
mance. Here, the entire computational grid is viewed as a single virtual machine, where each node is con-
sidered to contain exactly one CPU running at 1 MHz. Thus, each CPU in the grid running atX MHz will
contributeX nodes to the virtual machine, for a sum total of

∑

m∈Servers #CPUsm × CPUSpeedm nodes.
Each submitted job is treated as a modulable workload, i.e. the number of CPUs assigned to the job can be
varied arbitrarily according to the machine status, with anassumption of ideal scalability. The idealized GS
can therefore perfectly pack the available resources with incoming jobs. For example, if a job requests eight
300 MHz CPUs for 100 seconds, the GS may assign the job to 8×300×100 CPUs in the virtual machine,
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which would complete the computation in one second. Although the performance predicted by this virtual
architecture can never be achieved, it establishes an idealperformance upper bound for computational grids.

3 Simulation Environment

The configurations of the computational servers used in our simulations are shown in Table 1. They are
six binary-compatible architectures currently deployed and listed in the Top500 [2]. Each system is simi-
lar architecturally, consisting of cache-coherent SMP nodes interconnected via a fast proprietary network.
However, individual characteristics such as CPU speed, SMPsize, node count, and interconnect topology do
vary across the machines. Future work will address true server heterogeneity. Currently, a common practice
for this type of architecture is that a single node cannot runmore than one job simultaneously, regardless of
the number of CPUs actually consumed by the job. We thereforeimplemented the same restriction in our
simulation environment. For the experiments in this paper,we also made the simplifying assumption that
program performance is linearly related to CPU speed.

Server Number CPUs CPU Speed
Identifier of Nodes per Node (MHz)

M1 192 16 375
M2 305 4 332
M3 144 8 375
M4 8 16 1300
M5 74 4 375
M6 180 4 375

Table 1: Configurations of the computational servers.

3.1 Workloads

We used both real and synthetic workloads in our experiments. The real workloads were collected from three
supercomputing centers: National Energy Research Scientific Computing Center (NERSC) at Lawrence
Berkeley National Laboratory, Lawrence Livermore National Laboratory, and San Diego Supercomputer
Center. These three machines are listed asM1, M2, andM3 in Table 1. All three logs started on March
1, 2002 and ended August 31, 2002, and contained 132069, 42339, and 36131 batch jobs, respectively.
Interactive jobs were filtered out of the job submissions since they would normally be restricted to run on
the local systems. By using real user batch data over the sametime period in our experiments, we are able
to accurately simulate the potential contribution of a smart grid scheduler.

However, real workloads have certain limitations. First, it is a non-trivial task to obtain log reports
from various computing facilities, thus limiting the potential scope of the simulations. It is also difficult
to use existing batch data to perform parameter studies of varying workload conditions, such as over- or
under-subscribed systems. Therefore, we derived a set of synthetic workloads from the real logs using the
methodology described in [11, 12].

In this approach, the real job data is first grouped into different classes based on the number of processors
required for each execution. The initial class size is set tothe number of CPUs per node for the corresponding
machine. If the percentage of jobs within a class is below 2% of the total, the class is merged with the smaller
of its neighboring classes. For each class, we then compute the first three non-center moments (µ1, µ2, µ3)
separately for the inter-arrival and service times. The three moments essentially capture the generic features
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of the workloads. Next, the hyper-Erlang distribution of common order, based on four parameters:n, λ1,
λ2, andρ, that fits these three computed moments is selected. An example of a server with hyper-Erlang
distribution of common order is a system where a job must passthrough only one of two service paths
to completion. The parameterρ is the probability of selecting the first path. In each path, the job passes
throughn stages, spending a random amount of service time at each stage. The probability density function
of service time at each stage of the two paths is an exponential distribution with mean times1/λ1 and
1/λ2, respectively. The parameters for the hyper-Erlang distributions that model the real workloads onM1,
M2, andM3 are presented in Table 2, which clearly shows that the three real workloads have significantly
different characteristics. Finally, the synthetic job submissions are generated by combining the different
class models. We can create different workloads by varying the model parameters that control the inter-
arrival rate and service time.

Inter-arrival time Service time
Nmin Nmax % Jobs n λ1 λ2 ρ n λ1 λ2 ρ

MachineM1

1 16 43.0 1 2.75E-04 4.71E-03 0.0197 1 9.10E-05 4.55E-03 0.4695
17 32 15.2 1 1.44E-04 2.41E-03 0.0571 2 1.04E-04 2.74E-03 0.3119
33 48 2.12 1 2.37E-05 4.36E-04 0.0847 1 7.22E-05 2.99E-03 0.3319
49 112 27.9 1 2.22E-04 4.16E-03 0.0448 1 7.31E-05 3.94E-03 0.2241

113 240 6.21 1 1.62E-04 1.41E-03 0.2253 1 6.03E-05 3.80E-04 0.4072
241 3072 5.57 1 1.42E-04 3.11E-03 0.2728 1 5.69E-05 7.93E-04 0.2473

MachineM2

1 4 19.0 1 3.99E-05 1.64E-03 0.0555 1 1.00E-04 6.79E-03 0.0697
5 12 10.4 1 2.18E-05 9.08E-04 0.0554 1 1.43E-04 5.39E-03 0.1947

13 24 17.0 1 3.14E-05 8.07E-04 0.0319 1 1.47E-04 1.07E-03 0.3335
25 28 2.07 1 1.76E-06 2.59E-04 0.0250 1 1.82E-04 3.13E-02 0.0115
29 44 4.84 1 2.02E-05 3.76E-04 0.1080 1 6.09E-05 2.41E-04 0.0082
45 60 2.75 1 1.14E-05 1.08E-04 0.0561 4 3.65E-04 4.47E-02 0.5000
61 92 10.8 1 2.98E-05 3.49E-04 0.0200 1 4.89E-06 2.48E-04 0.0009
93 104 5.07 1 1.72E-05 1.64E-04 0.0251 2 1.09E-04 3.64E-04 0.0314

105 124 3.16 1 1.59E-06 1.38E-04 0.0074 1 2.23E-04 3.02E-03 0.4179
125 176 13.6 1 1.09E-04 5.27E-04 0.1149 2 8.07E-05 3.19E-04 0.0210
177 188 4.32 2 9.87E-05 1.17E-03 0.3762 3 2.01E-04 2.13E-02 0.6043
189 252 3.67 1 9.15E-06 1.38E-04 0.0293 1 9.26E-05 3.28E-04 0.0603
253 1220 3.41 1 8.73E-06 1.93E-04 0.0532 1 1.97E-04 1.75E-03 0.4098

MachineM3

1 8 55.0 1 4.01E-05 1.47E-03 0.0047 1 3.99E-05 1.01E-03 0.0411
9 24 8.09 1 3.77E-05 4.35E-04 0.1281 2 3.92E-05 2.25E-03 0.2113

25 56 9.99 1 4.15E-05 6.33E-04 0.1235 2 4.13E-05 2.16E-03 0.1400
57 120 13.8 1 5.57E-05 5.53E-04 0.0833 1 3.03E-05 6.79E-04 0.2539

121 248 4.99 1 2.73E-05 3.64E-04 0.1731 3 6.91E-05 1.01E-02 0.2479
249 504 5.09 1 2.09E-05 5.08E-04 0.1431 1 1.89E-05 2.64E-04 0.1033
505 1152 2.99 1 7.31E-06 2.63E-04 0.0766 2 6.05E-05 1.13E-02 0.0671

Table 2: Parameters for the inter-arrival and service timesof workloads onM1, M2, andM3.
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3.2 Performance Metrics

We use several key metrics in our simulations to evaluate theeffectiveness of the proposed grid supersched-
uler and the three distributed job migration algorithms. These metrics are also used to compare performance
with local, central, and ideal job scheduling schemes. The local and ideal strategies respectively are expected
to provide lower and upper bounds on the performance of a gridscheduler.

Since individual users and center system administrators often have different (and possibly conflicting)
demands, no single measure can comprehensively capture overall grid performance. From the users’ per-
spective, key measures of grid performance include theAverage Response Timeand theAverage Wait Time.
These are computed as follows (N is the total number of jobs):

Average Response Time=
1

N

∑

j∈Jobs

(EndTimej − SubmitTimej)

Average Wait Time=
1

N

∑

j∈Jobs

(StartTimej − SubmitTimej)

whereSubmitTimej , StartTimej , andEndTimej are the times when jobj is submitted to the queue, when it
commences execution, and when it is completed. The response(or turnaround) time is probably the single
most important measure for an individual submitting a job; however, the wait time is also critical to users
even though it is usually beyond their control. The wait timeis especially important for users running short
jobs. Finally, we also examine theAverage Wait Time Deviationin order to investigate overall fairness and
performance variability:

Average Wait Time Deviation=
1

N

√

∑

j∈Jobs

(WaitTimej)2 − (
∑

j∈Jobs

(WaitTimej/N))2

whereWaitTimej = (StartTimej − SubmitTimej).
A system administrator (or funding agency), on the other hand, is more interested in maximizing the

utilization of the available computational resources at his/her center. Thus, we present theGrid Efficiency
metric, which measures the overall ratio between consumed and available computational resources across
the distributed grid. It is computed as:

Grid Efficiency=

∑

j∈Jobs(EndTimej − StartTimej) × CPUsj × CPUSpeedj
(EndTimelast job − SubmitTimefirst job) ×

∑

m∈Servers CPUsm × CPUSpeedm
×100%

where(EndTimelast job−SubmitTimefirst job) is the duration of the entire simulation;CPUsj andCPUSpeedj
are the number of processors used by jobj and their clock speed; andCPUsm andCPUSpeedm are the num-
ber of processors in machinem and their clock speed. Individual site-specific system utilizations are also
reported to understand the effects of superscheduling on local computational centers.

Finally, we present theFraction of Jobs Transferredfor each scheduling approach:

Fraction of Jobs Transferred=
Number of Jobs Transferred

Total Number of Jobs

Although our turnaround cost metric TC (defined in Section 2.1.1) does not explicitly incorporate job migra-
tion overhead at this time, it is clear that network traffic must be minimized. The fraction of jobs transferred
is an initial attempt to capture this cost.

Note that performance, measured by any metric, is highly dependent on the workload requirements. For
example, we would not expect an underloaded system to derivemuch benefit from a superscheduler in terms
of grid efficiency, as there may not be much room for improvement.
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4 Performance Analysis

This section presents and analyzes the simulation results of our job migration algorithms in terms of the per-
formance metrics described in Section 3.2. We first examine real workload data from three supercomputing
centers, over one- and six-month submission periods. Next,we use our synthetic workloads to evaluate a
larger, six-machine grid configuration under heavy and light system load conditions. Finally, the effects of
the local scheduling policy on overall grid performance is investigated.

4.1 Real Workloads

The real workload data was obtained from the job logs for the same six-month period (March 1, 2002
through August 31, 2002) of the machinesM1, M2, andM3 listed in Table 1. We also examine a one-month
period (August 2002) to investigate differences in performance trends for shorter workload durations. Note
that only batch job data are used in our simulations; interactive submissions have been removed.

Table 3 presents the local run characteristics of the three machines examined. MachineM1 is the most
heavily loaded, with an utilization of over 90%, whileM2 andM3 have lighter loads and lower utilization.
Also notice that the average wait time and response time forM2 is significantly lower than the other two
machines. By examining the workload data, we found bulk jobsthat require a relatively large fraction of
the computational resources often arrive at approximatelythe same time, thus preventing one another from
being efficiently scheduled. This presents an opportunity for a smart superscheduler to improve the average
turnaround times of these large submissions.

Six-month Workload One-month Workload
M1 M2 M3 M1 M2 M3

Number of Jobs 132,069 42,339 36,131 26,343 5,735 5,974
Local Machine Utilization 91% 72% 79% 92% 72% 73%
Average Wait Time (sec) 8,318 1,955 11,506 7,977 5,173 15,271
Average Response Time (sec) 13,404 5,445 16,660 12,770 9,525 20,075

Table 3: Characteristics of real workloads for local runs.

Figure 3 presents simulation results for the one- and six-month real workload data sets for the five
metrics described in Section 3.2. Both the average wait timeand the average response time are normalized
relative to the performance of the local scheduler. Resultsare compared among the three distributed job
migration algorithms: sender-initiated (S-I), receiver-initiated (R-I), and symmetrically-initiated (Sy-I), as
well as with local, central, and ideal strategies.

Notice that the one- and six-month data exhibit similar overall performance trends, indicating that the
workload characteristics change little across months and that we do not expect to see a dramatic change
in our observations for longer time durations on these systems. The normalized average wait and response
times, and the average wait time deviation are all key metrics from an individual user’s perspective. These
results clearly demonstrate the large potential gain of using a superscheduler, as opposed to relying on
traditional local job submission in a grid environment. Forexample, comparing the local and S-I schemes
for six-month data, we see that the average wait time is reduced by a factor of 2.5, along with a 30%
improvement in its deviation and a 1.5X reduction in the average response time.

Comparing the individual distributed job migration schemes among themselves, we find the R-I per-
formance to be lower than that of S-I. This is because the R-I approach is the most passive, waiting for
machines to advertise themselves and thus migrating the fewest number of jobs. Figure 3 shows that R-I
migrates less than 10% of all jobs, while S-I transfers over 40%. Lowering the utilization thresholdδ from
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Figure 3: Performance results for the one- and six-month real workloads.

0.7 and/or the time intervalσ from 300 secs (see Section 2.1.2) would improve performancebut increase the
number of jobs transferred. Nonetheless, compared to the local scheme, the average wait time of R-I is still
reduced by an impressive 50%. The Sy-I scheme is more flexiblethan R-I, having the option to passively
wait for a machine to advertise their availability, or to actively migrate jobs if no volunteers appear. The
Sy-I algorithm strikes a good balance, achieving better performance than R-I while transferring significantly
fewer jobs than S-I. Future work will directly incorporate job migration overhead into our cost models.

The central scheme achieves about the same performance as S-I, while transferring a higher fraction of
its jobs to a remote site. Recall from Section 2.2 that the centralized architecture has a single grid queue
whereas S-I has multiple grid queues. In S-I, a job is considered for migration only if its approximate wait
time is larger than a thresholdφ (see Section 2.1) set to 60 secs; instead all jobs are assigned to machines
solely based on turnaround cost in the centralized approach. Therefore, the S-I algorithm is significantly
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more conservative in moving jobs. However, observe that notall jobs are transferred in the central scheme.
Since input/output data for each job still has an affinity to aparticular computational node, we do not
consider it a transfer if a job migrates to that node. The central scheme is also too limited in terms of
fault tolerance and scalability. Finally, an idealized (unattainable) algorithm is presented to establish upper
bounds on performance.

Grid efficiency for the six schemes are also presented in Figure 3. Rather surprisingly, it remains prac-
tically unchanged regardless of the scheduling algorithm.On closer inspection, we found that the overall
grid resources were under-subscribed, thus allowing little improvement in grid efficiency even in the ideal
case. This result further motivated us to explore superscheduling performance under both heavy and light
grid load conditions, using synthetically generated data sets. Note that even though there is little change in
grid efficiency, individual site utilization is dependent on the specific job migration scheme. For example,
comparing local and S-I for the six-month data, utilizationchanged from 92%, 72%, and 73% to a more
“balanced” 86%, 81%, and 78% forM1, M2, andM3, respectively. However, interpreting these results can
be rather difficult. For example, if an over-subscribed site’s utilization decreases due to grid participation,
it may seem like a positive consequence to an individual user; however, the center management may be
unhappy with the new outcome since lower utilization may jeopardize future funding.

4.2 Synthetic Workloads

To study superscheduler performance with respect to various workload demands, we generated synthetic job
submission data using the methodology described in Section3.1. The statistical models of the real workload
data using the hyper-Erlang distribution of common order are shown in Table 2. Once these parameters
are generated, they can be adjusted accordingly to simulatedifferent workload conditions. Our synthetic
workloads simulate heavily- and lightly-loaded system conditions for a relatively larger six-machine grid
configuration over a two-week period. Synthetic data for machinesM1, M2, andM3 are derived from
their own individual models, while those for machinesM4, M5, andM6 are based onM1, M2, andM3,
respectively. Table 4 shows the local run characteristics of all six machines for both the heavy and light
workloads.

Heavy Workload
M1 M2 M3 M4 M5 M6

Number of Jobs 10,192 3,342 2,900 336 830 1,658
Local Machine Utilization 94% 83% 88% 33% 72% 81%
Average Wait Time (sec) 254,797 5,871 14,293 2,779 6,872 18,697
Average Response Time (sec)260,010 9,295 19,554 7,756 10,154 24,460

Light Workload
M1 M2 M3 M4 M5 M6

Number of Jobs 10,432 3,483 2,774 350 864 1,704
Local Machine Utilization 82% 72% 42% 36% 75% 62%
Average Wait Time (sec) 3,064 661 1,241 3,099 7,463 5,509
Average Response Time (sec) 8,266 4,199 6,321 7,466 11,146 10,865

Table 4: Characteristics of synthetic workloads for local runs.

Figure 4 presents simulation results for the heavy and lightsynthetic workloads for the five performance
metrics described in Section 3.2. Observe that, as with the real workloads, superschedulers significantly
outperform the local scheme from the users’ perspective (interms of normalized average response and wait
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Figure 4: Performance results for the heavy and light synthetic workloads.

times, and average wait time deviation). Furthermore, as the number of machines grows from three to six,
the advantages of a grid scheduler become more pronounced even for the lightly-loaded case. For example,
compared to local scheduling, the S-I approach improves theaverage wait time by factors of 5.9 and 21,
and the average response time by factors of 5.0 and 1.5 for theheavy and light workloads, respectively. For
the heavily-loaded simulation, there is a more dramatic improvement in the average response time when
compared with the real workload results in Figure 3. The key difference is the introduction of machineM4,
whose 1300 MHz clock allows the simulated computations to complete approximately 3.5 times faster than
the other machines in our study. This highlights the dramatic potential gain that could be attained within a
large-scale heterogeneous grid configuration.

Grid efficiency in Figure 4 shows that for the lightly-loadedtest case, there is almost no change in
performance relative to the local algorithm. This is consistent with the results for the real (under-subscribed)
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workload data. However, the heavily-loaded configuration demonstrates that for over-subscribed systems,
grid efficiency can be improved through the use of an intelligent superscheduler. For example, the S-I
strategy achieves 85% grid efficiency, compared with 65% forthe local approach. In fact, the idealized
case achieves 100% efficiency in this example. As discussed previously in Section 4.1, each of the grid
scheduling algorithms offers a tradeoff between performance and the number of transferred jobs. Overall
our simulation results demonstrate the tremendous potential of using a superscheduler, for both individual
users and system administrators.

4.3 Effects of Local Scheduler

The simulation results presented in Sections 4.1 and 4.2 assume that the local scheduling policy of each
individual machine is the popular first-come-first-serve with backfilling (FCFS+BF). However, the local
scheduling algorithm will definitely affect overall grid behavior. Since the superscheduler has no control
over local scheduling policies, we evaluate grid performance using two alternative local scheduling policies:
first-fit (FF) and shortest-job-first (SJF). Figure 5 examines the effects of the different local schedulers using
the sender-initiated distributed job migration algorithmfor the one-month real workload data set.
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Figure 5: Effects of local scheduler policy on grid performance for the S-I job migration algorithm.

Results indicate that the choice of local scheduler has a significant effect on grid performance. For
example, FCFS+BF minimizes the average wait and response times for our test workload; however, SJF
transfers the fewest number of jobs. Grid efficiency (not shown) is not affected by the local scheduling
policy since the workload is under-subscribed, as discussed in Section 4.1. Nevertheless, even the slowest
local scheduler (SJF) with superscheduling still outperforms the local run by more than a factor of two in
terms of average response time.

5 Conclusions and Future Work

Computational grids hold great promise in utilizing geographically separated heterogeneous resources to
solve large-scale complex scientific problems. However, a number of major technical hurdles, including
distributed resource management and effective job scheduling, stand in the way of realizing the true po-
tential of grid computing. In this work, we proposed a novel superscheduler architecture and investigated
its performance across a number of key metrics in a simulation environment. Three distributed job migra-
tion algorithms were introduced: sender-initiated (S-I),receiver-initiated (R-I), and symmetrically-initiated
(SY-I). The S-I approach actively attempts to migrate jobs whose resource requirements cannot be quickly
satisfied on the local system. R-I scheduling, on the other hand, uses a more passive strategy where queued
jobs must wait for remote systems to advertise their availability. The SY-I algorithm is a hybrid scheme,
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combining elements of both passive and active job migration. We also investigated a centralized architec-
ture to compare distributed performance with a global approach; however, this methodology has practical
limitations in terms of fault tolerance and scalability. Finally, an idealized (and unattainable) algorithm was
presented to establish an upper bound on superscheduler performance.

A critical aspect of this research was the set of real and synthetic workloads used in our experiments.
Real workloads were collected from three leading supercomputing centers over the same six-month period,
allowing us to accurately simulate the potential contribution of an intelligently implemented superscheduler.
Additionally, sophisticated statistical methods were used to generate synthetic data for parameter studies of
varying workload conditions.

Several key metrics were used in our experiments to evaluatethe effectiveness of the proposed super-
scheduler and job migration algorithms. Results demonstrated the tremendous potential of an effectively
implemented grid environment, even for a small number of participating architectures. For example, com-
paring the local scheme with S-I for six-month data, the average wait time was reduced by a factor of 2.5,
along with a 30% improvement in deviation and a 1.5X reduction in the average response time. Compar-
ing individual job migration schemes, we found that the SY-Iapproach struck the best balance between
optimizing performance and reducing job transfers.

The synthetically generated workload data allowed us to perform experiments for both heavily- and
lightly-loaded system conditions. Results demonstrated that for a larger heterogeneous six-machine config-
uration, the advantages of the superscheduler becomes morepronounced, even for the lightly-loaded case.
For example, compared to local scheduling, the S-I approachimproved the average wait time by factors
of 5.9 and 21, and the average response time by factors of 5.0 and 1.5 for the heavy and light workloads,
respectively. Furthermore, grid efficiency increased from65% to 85% under heavy workload conditions.

Finally, we investigated the relationship between the superscheduler and three different local scheduling
policies. Results showed that first-come-first-serve with backfilling gave the best performance in terms of
average wait and response times; however, all three local scheduling approaches together with a supersched-
uler improved overall performance compared with locally isolated systems. Our results demonstrated that
superscheduling can deliver substantial performance gains; however, it is important to realize that many im-
portant questions have not been addressed in this preliminary study. Future work will build on our simulation
environment to include critical parameters, such as job migration overhead, grid network costs, supersched-
uler scalability, fault tolerance, multi-resource requirements, and architectural heterogeneity. Additionally,
we plan to investigate the practical implementation requirements necessary to deploy a distributed super-
scheduler into a real-world grid environment.
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