
Message Passing Vs. Shared Address Space on a Cluster of SMPs

Hongzhang Shan, Jaswinder Pal Singh
Dept. of Computer Science

Princeton University
Princeton, NJ 08544�

shz,jps � @cs.princeton.edu

Leonid Oliker
NERSC Center

Lawrence Berkeley Lab.
Berkeley, CA 94720

loliker@lbl.gov

Rupak Biswas
NAS Systems Division

NASA Ames Research Ctr.
Moffett Field, CA 94035
rbiswas@nas.nasa.gov

Abstract

The emergence of scalable computer architectures using
clusters of PCs (or PC-SMPs) with commodity network-
ing has made them attractive platforms for high-end sci-
entific computing. Currently, message passing (MP) and
shared address space (SAS) are the two leading program-
ming paradigms for these systems. MP has been standard-
ized with MPI, and is the most common and mature par-
allel programming approach. However, MP code develop-
ment can be extremely difficult, especially for irregularly
structured computations. SAS offers substantial ease of pro-
gramming, but may suffer from performance limitations due
to poor spatial locality and high protocol overhead. In this
paper, we compare the performance of and programming
effort required for six applications under both program-
ming models on a 32-CPU PC-SMP cluster. Our appli-
cation suite consists of codes that typically do not exhibit
scalable performance under shared-memory programming
due to their high communication-to-computation ratios and
complex communication patterns. Results indicate that SAS
can achieve about half the parallel efficiency of MPI for
most of our applications; however, on certain classes of
problems, SAS performance is competitive with MPI.

1. Introduction

The emergence of scalable computer architectures using
clusters of PCs (or PC-SMPs) with commodity network-
ing has made them attractive platforms for high-end sci-
entific computing. Currently, message passing (MP) and
shared address space (SAS) are the two leading program-
ming paradigms for these systems. MP has been standard-
ized with MPI, and is the most common and mature par-
allel programming approach. It provides both functional
and performance portability. However, MP code devel-
opment can be extremely difficult, especially for irregu-
larly structured computations. A coherent SAS has been

shown to be very effective at moderate scales for a wide
range of applications when supported efficiently in hard-
ware. The automatic management of naming and coher-
ent replication in this programming model also substantially
eases the programming task compared to explicit MP, espe-
cially for complex, irregular applications that are becoming
increasingly routine as multiprocessing matures. This ease
of programming can often be translated directly into perfor-
mance gains [18, 19]. Even as hardware-coherent machines
replace traditional distributed-memory systems at the high
end, clusters of commodity PCs and PC-SMPs have become
popular for scalable computing. On these, the MP program-
ming model is dominant while the SAS model is unproven
since it is implemented in software. Thus, given the ease of
SAS programming, it is important to understand its perfor-
mance tradeoffs with MP on commodity cluster platforms.

Approaches to support SAS in software across clusters
differ not only in the specialization and efficiencies of net-
works but also in the granularities at which they provide co-
herence. Fine-grained software coherence uses either code
instrumentation [13, 14] for access control or commodity-
oriented hardware support [12] with the protocol imple-
mented in software. Page-grained software coherence takes
advantage of the virtual memory management facilities to
provide replication and coherence at page granularity [10].
To alleviate false sharing and fragmentation problems, a
relaxed consistency model is used to buffer coherence ac-
tions. Lu et al. [11] compared the performance of PVM
and the TreadMarks page-based software shared-memory
library on an 8-processor network of ATM-connected work-
stations and on an 8-processor IBM SP2. They found that
TreadMarks generally performs slightly worse. Karlsson
and Brorsson [9] compared the characteristics of commu-
nication patterns in MP and page-based software shared-
memory programs, using MPI and TreadMarks running on
an SP2. They found that the fraction of small messages in
the TreadMarks executions lead to poor performance. How-
ever, the platforms both these groups used were of much
lower performance, smaller scale, and not SMP based. In

addition, the protocols used for these experiments were not
very efficient. Recently, both the communication network
and protocols for shared virtual memory (SVM) have made
great progress. Some GB/s networks have been put into
use. A new SVM protocol, called GeNIMA, for page-
grained SAS on clusters uses general-purpose network in-
terface support to significantly reduce protocol overheads.
It has been shown to perform quite well for moderate-scale
systems on a fairly wide range of applications: achieving at
least half of the parallel efficiency of a high-end hardware-
coherent system and often exhibiting comparable behav-
ior [4, 7]. Thus, a study comparing the performance of us-
ing GeNIMA against the dominant way of programming for
clusters today, namely MPI, becomes necessary and impor-
tant.

In this paper, we compare the performance of MP and
SAS programming models using the best implementations
available to us (MPI/Pro from MPI Software Technology,
Inc., for MPI, and the GeNIMA SVM protocol for SAS) on
a cluster of eight, 4-way SMPs (for a total of 32 proces-
sors). Our application suite includes codes that scale well
on tightly-coupled machines, as well as codes that are chal-
lenging to obtain scalable performance due to their high
communication-to-computation ratios and complex com-
munication patterns. Our results show that if very high
performance is the goal, the difficulty of MP programming
appears to be necessary for commodity SMP clusters of to-
day. On the other hand, if ease of programming is impor-
tant, then SVM provides it at roughly a factor-of-two de-
terioration in performance for many applications, and less
for others. This may be considered encouraging for SVM,
given the nature of our application suite and the relative ma-
turity of the MPI library. Application-driven research into
coherence protocols and extended hardware support should
reduce SVM and SAS overheads on future systems.

The remainder of this paper is organized as follows. Sec-
tion 2 describes our PC cluster platform, and the implemen-
tation of the two programming models. The benchmark ap-
plications are briefly described in Section 3, as are the mod-
ifications that were made to improve cluster performance.
Performance results are presented and critically analyzed in
Section 4. Finally, Section 5 summarizes our key conclu-
sions.

2. Platform and Programming Models

The platform used for this study is a cluster of eight 4-
way 200 MHz Pentium Pro SMPs. Each of the 32 proces-
sors has separate 8 KB data and instruction L1 caches, and a
unified 4-way set-associative 512 KB L2 cache. Each of the
eight nodes, running Windows NT 4.0, has 512 MB main
memory, and are connected together either by Myrinet [5]
or Giganet [1]. The SAS and MP programming models are

built in software on top of these two networks respectively.

2.1. SAS Programming Model

Much research has been done in the design and imple-
mentation of shared address space (SAS) for clustered ar-
chitectures, both at page and at finer fixed granularities
through code instrumentation. Among the most popular
ways to support a coherent SAS in software on clusters
is page-based shared virtual memory (SVM). SVM pro-
vides replication and coherence at the page granularity by
taking advantage of virtual memory management facilities.
To alleviate problems with false sharing and fragmenta-
tion, SVM uses a relaxed memory consistency model to
buffer coherence actions such as invalidations or updates,
and postpones them until a synchronization point. Multiple
writer protocols are used to allow more than one proces-
sor to modify copies of a page locally and incoherently be-
tween synchronization points, thereby reducing the impact
of write-write false sharing and making the page consistent
only when needed by applying diffs and write notices.
Many distinct protocols have been developed which use dif-
ferent timing strategies to propagate write notices and ap-
ply the invalidations to pages. Recently, a new protocol for
SVM called GeNIMA has been developed and shown good
performance on moderate-scale systems for a fairly wide
range of applications, achieving at least half the parallel ef-
ficiency of a high-end hardware-coherent system [4, 7]. It
uses general-purpose network interface support to signifi-
cantly improve protocol overheads. Thus, we select GeN-
IMA as our protocol for the SAS programming model. It is
built on top of VMMC, a high-performance, user-level vir-
tual memory mapped communication library [6]. VMMC
itself runs on top of the Myrinet network.

Each SMP node in our cluster is connected to a Myrinet
system area network via a PCI bus. A single 16-way
Myrinet crossbar switch is used to minimize contention in
the interconnect. Each network interface has a 33 MHz pro-
grammable processor and connects the node to the network
with two unidirectional links of 160 MB/s peak bandwidth
each. The actual node-to-network bandwidth however is
constrained by the 133 MB/s PCI bus. The parallelism con-
structs and calls needed by the SAS programs are identical
to those used in our hardware-coherent platform (SGI Ori-
gin2000) implementation [16, 17, 18], making portability
trivial between these systems.

2.2. MP Programming Model

The message-passing (MP) implementation used in this
work is MPI/Pro from MPI Software Technology, Inc., and
is developed directly on top of Giganet networks by the
VIA [3] interface. By selecting MPI/Pro instead of build-

2

Msg. size 4 16 64 256 1024 4096 16384

VMMC 10.9 11.2 15.1 20.0 34.2 80.1 210
VIA 10.3 10.6 12.4 14.3 23.8 65.5 231

Table 1. Communication times (in microsecs)
of different message sizes (in bytes) for the
VMMC and VIA interfaces.

ing our own MPI library from VMMC, we can compare the
best known versions of both programming models. Thus
our final conclusions are not affected by a potentially poor
implementation of the communication layer. Fortunately,
as shown in Table 1, VIA and VMMC have similar commu-
nication times for a range of message sizes on our cluster
platform. Giganet performs somewhat better for short mes-
sages while Myrinet has a small advantage for larger mes-
sages. There should thus be little performance difference
for similar MPI implementations across these two networks.
Note that the Giganet network interfaces are also connected
together by a single crossbar switch.

3. Benchmark Applications

Our application suite consists of codes used in previ-
ous studies to examine the performance and implementation
complexity of various programming models on hardware-
supported cache-coherent platforms. These codes include
regular applications (FFT, OCEAN, and LU) as well as
irregularly structured applications (RADIX sort, SAM-
PLE sort, and N-BODY). All six codes have either high
communication-to-computation ratios or complex commu-
nication patterns, making scalable performance on cluster
platforms a difficult task. FFT uses a non-localized but reg-
ular all-to-all personalized communication pattern to per-
form a matrix transposition; i.e., every process commu-
nicates with all others, sending different data across the
network. OCEAN exhibits primarily nearest-neighbor pat-
terns, but in a multigrid formation rather than on a sin-
gle grid. LU uses one-to-many non-personalized commu-
nication. RADIX uses all-to-all personalized communica-
tion, but in an irregular and scattered fashion. In contrast,
the all-to-all personalized communication in SAMPLE is
much more regular. Finally, N-BODY requires all-to-all
all-gather communication and unpredictable send/receive
patterns. All these applications have shown good paral-
lel performance under both MPI and SAS for reasonably
large data sets on hardware-supported cache-coherent plat-
forms [16].

Most of the MPI programs were ported directly onto our
cluster platform without any changes. However, OCEAN
and RADIX required some modifications for better perfor-
mance. In OCEAN, the matrix is now partitioned by rows

instead of by blocks. This allows each processor to commu-
nicate only with its two neighbors, thus reducing the num-
ber of messages while improving the spatial locality of the
communicated data. For RADIX, in the key exchange stage,
each processor now sends only one message to every other
processor, containing all its chunks of keys that are destined
for the destination processor. The receiving processor then
reorganizes the data chunks to their correct positions. On
a hardware-supported cache-coherent platform, a proces-
sor would send each contiguously-destined chunk of keys
directly as a separate message, so that the data could be
inserted into the correct position at the destination proces-
sor immediately. However, this requires multiple messages
from one processor to every other processor. While this
method succeeds on systems like the Origin2000, the mod-
ified approach is better suited for cluster platforms since re-
ducing the number of messages at the cost of increased local
computations is more beneficial. To study the two-level ar-
chitectural effect (intra-node and inter-node), we tested our
applications by reorganizing the communication sequence
(intra-node first, inter-node first, or intra-node and inter-
node mixed). Interestingly, our results showed that the per-
formance of the MPI programs is insensitive to the commu-
nication sequence.

For the SAS codes, FFT, LU, and SAMPLE were ported
without any modifications. For RADIX, we used the im-
proved version described in [17] where keys destined for the
same processor are buffered together instead of exchanging
them in a scattered fashion. Several changes were made
to the original version of OCEAN to improve its shared-
memory performance [7] on clusters. The matrix was parti-
tioned by rows across processors instead of by blocks, and
significant changes were made to the data structures. The
N-BODY code also required substantial modifications since
the original version suffered from the high overhead of syn-
chronizations during the shared-tree building phase. A new
tree building method, called Barnes-spatial [15], has been
developed to completely eliminate the expensive synchro-
nization operations.

These applications have been previously used to evalu-
ate the performance of different programming models on
a hardware-supported cache-coherent platform [16]. In
that study, it was shown that SAS programs provide sub-
stantial ease of programming compared to MP implemen-
tations, while performance, though application-dependent,
was sometimes better for SAS. The ease of programming
holds true also on cluster systems, although some SAS
code restructuring was required to improve performance.
Nonetheless, a SAS implementation is still easier than MPI
as has been argued earlier in the hardware-coherent con-
text [8].

A comparison between MPI and SAS programmability
is presented in Table 2. Notice that SAS programs require

3

Appl. FFT OCEAN LU RADIX SAMPLE N-BODY
MPI 222 4320 470 384 479 1371
SAS 210 2878 309 201 450 950

Table 2. Number of essential code lines for
MPI and SAS implementations of our bench-
mark applications.

fewer lines of essential code (excluding the initialization
and debugging code, and comments) compared with MPI.
In fact, as application complexity (e.g., irregularity and dy-
namic nature) increases, we see a bigger reduction in pro-
gramming effort using SAS.

4. Performance Analysis

In this section, we compare the performance of our
applications under both the MP and SAS programming
paradigms. For each application, parallel speedups and
detailed time breakdowns are presented. To derive the
speedup numbers, we use our best sequential runtimes as
the baseline. The parallel runtimes are broken up into three
components: LOCAL, RMEM, and SYNC. LOCAL in-
cludes CPU computation time and CPU waiting time for
local cache misses, RMEM is the CPU time spent for re-
mote communication, while SYNC represents the synchro-
nization overhead. Two data set sizes are chosen for each
application. The first is a baseline data set at which the
SVM begins to perform “reasonably” well [7]. Next, we
use a larger data set, since increasing the problem size gen-
erally tends to improve many inherent program characteris-
tics, such as load balance, communication-to-computation
ratio, and spatial locality.

4.1. FFT

FFT has very high communication-to-computation ratio,
which diminishes only logarithmically with problem size. It
requires a non-localized but regular all-to-all personalized
communication pattern to perform the matrix transposi-
tion, and cannot overlap the transposition and computation
stages. In general, it is much more difficult to achieve high
performance on the one-dimensional FFT, studied here,
compared with higher-dimensional FFTs. Speedups for the
SAS and MPI versions are presented in Table 3 for 1M and
4M data sets.

Neither MPI nor SAS show high scalability for our test
cases. Increasing the data set size improves performance,
but only slightly. This is mainly due to the pure commu-
nication of the transpose stage whose communication-to-
computation ratio is not affected by problem size. In the

1M data set 4M data set
P=16 P=32 P=16 P=32

SAS 3.39 3.90 3.83 5.42
MPI 5.94 9.18 5.35 10.43

Table 3. FFT speedups.

sequential case, the transposition is responsible for approx-
imately 16% of the overall runtime. However, this percent-
age increases to 50% when using all 32 processors. It is
inherently difficult to scale pure all-to-all communications.
As the number of active processors increases, so does the
contention in the network interface. Additionally, since
each remote request requires access to the memory bus, in-
creasing the number of processors has a deleterious effect
on the local memory access time. This is particularly true
for our commodity 4-way SMP platform which suffers from
high memory bus contention when all four processors si-
multaneously attempt to access memory. For example, the
FFT LOCAL time (which includes the memory stall time)
on two processors for the 4M data set is about 6 secs. How-
ever, LOCAL drops to only about 4.8 secs when all four
processors are used, compared to an ideal of 3 secs.

Observe though that the MPI implementation signifi-
cantly outperforms SAS. To better understand the perfor-
mance difference, Figure 1 presents the time breakdown for
the 4M data set running on 32 processors.

Figure 1. FFT time breakdown for SAS and
MPI on 32 processors for 4M data set.

We find that all the three time components (LOCAL,
RMEM, and SYNC) are much higher in SAS than in MPI.
In order to maintain page coherence, a high protocol over-
head is introduced in SAS programs, including: computing
diffs, creating timestamps, generating write notices,
and performing garbage collection. This protocol overhead
dramatically increases compute time while degrading local
cache performance, thus causing a higher LOCAL time. In
addition, the diffs generated for maintaining coherence
immediately cause pages to be propagated to their home
processors, thereby increasing network traffic and possi-

4

bly causing more memory contention. Finally, at synchro-
nization points, handling the protocol requirements causes
a significant dilation of the synchronization interval, includ-
ing the expensive invalidation of necessary pages. None of
these protocol overheads exist in the MPI implementation.
MPI does have the additional cost of packing and unpacking
data for efficient communication; however, this overhead is
incurred locally on the processors and is insignificant com-
pared to the protocol costs associated with SAS. One possi-
ble way to improve SAS performance would be to restruc-
ture the code so that the data structures more closely resem-
ble the MPI implementation. For example, instead of allo-
cating the matrix as a shared data structure, each sub-matrix
that is transposed onto a different processor could be allo-
cated separately. However, this would dramatically increase
the complexity of the SAS implementation, and thus sacri-
fice the programming ease of the shared-memory paradigm.

4.2. OCEAN

OCEAN exhibits a commonly used nearest-neighbor
pattern, but in a multigrid rather than a single-grid for-
mation. Parallel speedups are presented in Table 4.
The scalability of the commodity SMP platform is rel-
atively low, compared with previously obtained results
on the hardware-supported cache-coherent architecture of
the Origin2000 [16]. Although, the communication-to-
computation ratio of OCEAN is high for smaller data sets,
it quickly improves with larger problem sizes. This is espe-
cially true for the MPI version as shown in Table 4. Notice
that SAS achieves superlinear speedup between 16 and 32
processors on the smaller data set. This occurs partly be-
cause as the number of processors increases, a larger frac-
tion of the problem fits in cache.

258 � 258 grid 514 � 514 grid
P=16 P=32 P=16 P=32

SAS 2.17 5.96 5.44 6.49
MPI 4.97 8.03 7.45 15.20

Table 4. OCEAN speedups.

The SAS implementation suffers from expensive syn-
chronization overheads, as shown in Figure 2. After each
nearest-neighbor communication, a barrier synchronization
is required in SAS to maintain coherence. Further anal-
ysis of the synchronization costs show that about 50% of
the synchronization overhead is spent waiting, while the re-
mainder is for protocol processing [4]. Thus, the synchro-
nization cost can be improved either by reducing protocol
overhead or by increasing the data set size. Unfortunately,
there is not enough computational work between the syn-
chronization points for the

���������	�
�
problem size, espe-

cially because this grid is further coarsened into smaller

3URFHVVRUV�,GHQWLILHU

6$6

�

�

��

��

��

��

��

� �
�
�

�
�

�
�

7
LP

H
��
�V
��

03,

� �

�
�

�
�

�
�

6<1&

50(0

/2&$/

Figure 2. OCEAN time breakdown for SAS and
MPI on 32 processors for 514x514 grid size.

subgrids during program execution. Moreover, OCEAN has
a large memory requirement due to its use of more than 20
large data arrays, required for the multi-grid code. Thus, we
are prevented from running larger data sets due to memory
constraints. The synchronization within the MPI program is
dramatically lower since it is implicitly implemented using
send/receive pairs.

4.3. LU

The communication requirements of LU are relatively
small compared to our other benchmark codes, and thus
we expect better performance for this application. This is
confirmed by the results shown in Table 5. LU uses one-
to-many non-personalized communication where the pivot
block and the pivot row blocks are each communicated to� �

processors. From the time breakdown in Figure 3, it is
obvious that most of the overhead is in the LOCAL time.
The LU performance could be further improved by reduc-
ing the synchronization cost caused by the load imbalance
associated with the CPU wait time.

4096 � 4096 matrix 6144 � 6144 matrix
P=16 P=32 P=16 P=32

SAS 12.48 22.98 11.79 21.78
MPI 13.15 23.04 12.31 22.43

Table 5. LU speedups.

Notice that for LU, the performance of the SAS and MPI
implementations are very close in both speedup and time
breakdown characteristics. The protocol overhead of run-
ning the SAS version constitutes only a small fraction of the
overall runtime. Unlike our FFT example, the LU matrix is
organized in a four-dimensional array such that blocks as-
signed to each processor are allocated locally and contigu-
ously. Thus, each processor modifies only its own blocks,

5

3URFHVVRU�,GHQWLILHU

6$6

�

��

��

��

��

���

���

���

� �

�
�

�
�

�
�

7
LP

H
��
V
�

03,

� �

�
�

�
�

�
�

6<1&

50(0

/2&$/

Figure 3. LU time breakdown for SAS and MPI
on 32 processors for 6144x6144 matrix size.

and the modifications are immediately applied to local data
pages. As a result, no diffs generation and propaga-
tion are required, greatly reducing the protocol overhead.
These performance results show that for applications with
relatively low communication requirements, it is possible to
achieve high scalability on commodity clusters using both
MPI and SAS programming approaches.

4.4. RADIX

Unlike the previous three regularly structured codes
(FFT, OCEAN, and LU), we now investigate three appli-
cations with irregular characteristics: RADIX, SAMPLE,
and N-BODY. The RADIX sort benchmark requires all-
to-all personalized communication, but in an irregular and
scattered fashion. It also has a high communication-to-
computation ratio that is independent of problem size and
the number of processors. This application has high mem-
ory bandwidth requirements which can exceed the capacity
of current SMP platforms; thus, high contention is caused
on the memory bus when all four processors of a node are
in use. The “aggregate” LOCAL time across processors is
much higher than in the uniprocessor case, which leads to
the poor performance shown in Table 6. However, MPI sig-
nificantly outperforms the SAS implementation, since the
latter has higher RMEM and SYNC times as shown in Fig-
ure 4. These costs are due to the expensive protocol over-
heads of performing all-to-all communications, for similar
reasons as already discussed for FFT.

4M integers 32M integers
P=16 P=32 P=16 P=32

SAS 1.33 1.66 1.86 2.70
MPI 3.78 5.67 4.16 7.78

Table 6. RADIX speedups.

3URFHVVRU�,GHQWLILHU

6$6

�

����

����

����

�����

� �

�
�

�
�

�
�

7
LP

H
��
�P

V
�

03,

� �

�
�

�
�

�
�

6<1&

50(0

/2&$/

Figure 4. RADIX time breakdown for SAS and
MPI on 32 processors for 32M integers.

Note that choice of the proper implementation strategy
for the MPI all-to-all communication is platform depen-
dent. On the commodity cluster, each processor sends only
one large message to all the other processors. The mes-
sage contains all the data chunks required by the destination
processor, which in turn reorganizes the separate blocks of
data into their correct positions. This is similar to the algo-
rithm used in the IS NAS Parallel Benchmark [2]. However,
on the hardware-supported cache-coherent Origin2000 plat-
form, each processor sends the contiguous chunks of data
directly to their destination processors in separate messages.
Thus, unlike the cluster, each processor sends multiple mes-
sages to all the other processors in the system. The dif-
ference in these two approaches stems from the relatively
high latency and low bandwidth of the cluster, where it is
more efficient to send fewer messages in exchange for in-
creased computational requirements of assembling the scat-
tered data chunks.

4.5. SAMPLE

SAMPLE sorting also requires an irregular personalized
all-to-all communication pattern; however, it contains more
regularity than the RADIX algorithm. Speedups for SAM-
PLE are presented in Table 7, and compare favorably to the
RADIX performance. Note that the same sequential time is
used as a baseline when computing the speedups for both
RADIX and SAMPLE. In SAMPLE, each processor first
performs a local sort on its partitioned data using the radix
sorting algorithm. Next, an all-to-all communication is used
to exchange keys, and a second local sort is performed on
the newly-received data. However, in the sequential case,
only a single local sort is required. Thus, it is reasonable to
expect ideal SAMPLE performance to achieve only a 50%
parallel efficiency.

Figure 5 presents the time breakdown of SAMPLE for
the larger data set on 32 processors. Observe that the

6

4M integers 32M integers
P=16 P=32 P=16 P=32

SAS 2.10 2.13 4.97 4.89
MPI 4.89 8.60 5.73 11.07

Table 7. SAMPLE speedups.

RMEM and SYNC times are significantly smaller than
those of RADIX in Figure 4, for both MPI and SAS. As a
result, the SAMPLE algorithm outperforms RADIX. Note
that the LOCAL time in SAMPLE sort is only slightly
higher than RADIX, even though much more computa-
tion is performed during SAMPLE. This indicates that con-
tention on the memory bus for RADIX sorting is higher than
that for SAMPLE due to the higher irregularity of its mem-
ory access patterns.

3URFHVVRUV�,GHQWLILHU

6$6

�

����

����

����

�����

� �
�
�

�
�

7
LP

H
��
P
V
�

03,

� �
�
�

�
�

6<1&

50(0

/2&$/

Figure 5. SAMPLE time breakdown for SAS
and MPI on 32 processors for 32M integers.

4.6. N-BODY

Finally, we examine the performance of the N-BODY
simulation. Table 8 shows that MPI again outperforms SAS,
especially for the larger data set. For 128K particles on 32
processors, MPI achieves almost twice the performance of
SAS. The time breakdown for this data set on 32 proces-
sors is shown in Figure 6. The SAS implementation has
higher SYNC and RMEM times compared to MPI, but the
synchronization overhead clearly dominates the overall run-
time. This is because at each synchronization point, many
diffs and write notices are processed by the coherence
protocol. In addition, a large number of shared pages are
invalidated. Further analysis shows that 82% of the bar-
rier time is spent on protocol handling. This expensive syn-
chronization overhead is incurred in all of our applications
except LU, causing a degradation of SAS performance. Fu-
ture research on the SVM coherence protocol should focus
on reducing this synchronization cost. Possible approaches

32K particles 128K particles
P=16 P=32 P=16 P=32

SAS 6.05 9.31 10.64 14.30
MPI 8.15 14.10 14.05 26.94

Table 8. N-BODY speedups.

may include applying the diffs before the synchroniza-
tion points, moving the shared-page invalidation operation
out of synchronization points, and increasing the protocol
hardware support.

Unlike our other five applications, the MPI version of
N-BODY has a higher LOCAL time than the SAS coun-
terpart. This is due to the use of different high-level al-
gorithms for each programming model. In the SAS im-
plementation, each processor builds one part of a globally
shared tree; while in MPI, a locally essential tree is cre-
ated on each processor. Building the locally essential tree
across distributed memories is much more complex than us-
ing a shared address space to build a single globally ad-
dressable tree. Therefore, there is a higher computational
tree-building cost in the MPI implementation [18]. How-
ever, with large data sets, the tree-building phase becomes
computationally insignificant compared to the other phases
of the N-body simulation, notably the force calculation.

3URFHVVRU�,GHQWLILHU

6$6

�

����

����

����

����

� �

�
�

�
�

7
LP

H
��
P
V
�

03,

� �

�
�

�
�

6<1&

50(0

/2&$/

Figure 6. N-BODY time breakdown for SAS
and MPI on 32 processors for 128K particles.

5. Conclusions

In this paper, we studied the performance of and pro-
gramming effort required for six applications using the mes-
sage passing (MP) and shared address space (SAS) pro-
gramming models on a 32-CPU PC-SMP cluster. To create
a fair comparison between the two programming method-
ologies, we used the best known implementations of the
underlying communication libraries. The MP version used

7

MPI/Pro which is implemented directly on top of Giganet
by the VIA interface. The SAS implementation uses the
GeNIMA SVM protocol over the VMMC communication
library, which runs on Myrinet. Experiments showed that
VIA and VMMC have similar communication characteris-
tics for a range of message sizes on our cluster platform.
Our application suite consisted of codes that typically do
not exhibit scalable performance under shared-memory pro-
gramming due to their high communication-to-computation
ratios and complex communication patterns.

Overall, SAS provides substantial ease of programming,
especially for the more complex applications which are ir-
regular or dynamic in nature. However, unlike in a previ-
ous study on hardware-coherent machines where the SAS
implementations were also performance-competitive with
MPI, and despite all the research in SVM protocols and
communication libraries in the last several years: SAS
achieved only about half the parallel efficiency of MPI for
most of our applications. The LU benchmark was an ex-
ception, in which the SAS implementation on the PC clus-
ter achieved very similar performance compared to the MPI
version. The higher runtimes of the SAS versions were due
to the excessive cost of the SVM protocol overhead asso-
ciated with maintaining page coherence and implementing
synchronizations. These costs include: computing diffs,
creating timestamps, generating write notices, and per-
forming garbage collection. Thus, if very high performance
is the goal, the difficulty of MP programming appears to
be necessary for commodity SMP clusters of today. On the
other hand, if ease of programming is important, then SVM
provides it at roughly a factor-of-two deterioration in per-
formance for many applications, and less for others. This
may be considered encouraging for SVM, given the nature
of our application suite and the relative maturity of the MPI
library. Application-driven research into coherence proto-
cols and extended hardware support should reduce SVM
and SAS overheads on future systems.

Acknowledgements

The work of the first two authors is supported by NSF
under grant ESS-9806751. The second author is also sup-
ported by PECASE and a Sloan Research Fellowship. The
work of the third author is supported by the U.S. Depart-
ment of Energy under contract DE-AC03-76SF00098.

References

[1] www.giganet.com.
[2] www.nas.nasa.gov/Software/NPB.
[3] www.viarch.org.
[4] A. Bilas, C. Liao, and J. P. Singh. Using network interface

support to avoid asynchronous protocol processing in shared

virtual memory systems. In Proc. 26th Intl. Symp. on Com-
puter Architecture, pages 282–293, 1999.

[5] N. J. Boden, D. Cohen, R. E. Flederman, A. E. Kulawik,
C. L. Seitz, J. N. Seizovic, and W.-K. Su. Myrinet:
A gigabit-per-second local area network. IEEE Micro,
15(1):29–36, February 1995.

[6] C. Dubnicki, A. Bilas, Y. Chen, S. Damianakis, and
K. Li. VMMC-2: Efficient support for reliable, connection-
oriented communication. In Proc. 5th Hot Interconnects
Symp., 1997.

[7] D. Jiang, B. O’Kelly, X. Yu, S. Kumar, A. Bilas, and J. P.
Singh. Application scaling under shared virtual memory on
a cluster of SMPs. In Proc. 13th Intl. Conf. on Supercom-
puting, 1999.

[8] D. Jiang and J. P. Singh. Scaling application performance on
cache-coherent multiprocessors. In Proc. 26th Intl. Symp. on
Computer Architecture, pages 305–316, 1999.

[9] S. Karlsson and M. Brorsson. A comparative characteri-
zation of communication patterns in applications using mpi
and shared memory on an IBM SP2. In Proc. 2nd Intl. Work-
shop on Communication, Architecture, and Applications for
Network-Based Parallel Computing, pages 189–201, 1998.

[10] K. Li and P. Hudak. Memory coherence in shared vir-
tual memory systems. ACM Trans. on Computer Systems,
7(4):321–359, November 1989.

[11] H. Lu, S. Dwarkadas, A. L. Cox, and W. Zwaenepoel.
Quantifying the performance differences between PVM and
TreadMarks. J. of Parallel and Distributed Computing,
43(2):65–78, June 1997.

[12] S. K. Reinhardt, J. R. Larus, and D. A. Wood. Tempest
and Typhoon: User-level shared memory. In Proc. 21st Intl.
Symp. on Computer Architecture, pages 325–336, 1994.

[13] D. J. Scales, K. Gharachorloo, and C. A. Thekkath. Shasta:
A low overhead, software-only approach for supporting fine-
grain shared memory. In Proc. 6th Intl. Conf. on Architec-
tural Support for Programming Languages and Operating
Systems, pages 174–185, 1996.

[14] I. Schoinas, B. Falsafi, A. R. Lebeck, S. K. Reinhardt, J. R.
Larus, and D. A. Wood. Fine-grain access control for dis-
tributed shared memory. In Proc. 6th Intl. Conf. on Architec-
tural Support for Programming Languages and Operating
Systems, pages 297–306, 1994.

[15] H. Shan and J. P. Singh. Parallel tree building on a range of
shared address space multiprocessors: Algorithms and ap-
plication performance. In Proc. 12th Intl. Parallel Process-
ing Symp., 1998.

[16] H. Shan and J. P. Singh. A comparison of MPI, SHMEM and
cache-coherent shared address space programming models
on the SGI Origin2000. In Proc. 13th Intl. Conf. on Super-
computing, pages 329–338, 1999.

[17] H. Shan and J. P. Singh. Parallel sorting on cache-coherent
DSM multiprocessors. In Proc. Supercomputing99, 1999.

[18] H. Shan, J. P. Singh, L. Oliker, and R. Biswas. A comparison
of three programming models for adaptive applications on
the Origin2000. In Proc. Supercomputing2000, 2000.

[19] J. P. Singh, A. Gupta, and M. Levoy. Parallel visualiza-
tion algorithms: Performance and architectural implications.
IEEE Computer, 27(6), June 1994.

8

