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Abstract

Theability to dynamicallyadaptanunstructuredgrid (or
mesh)is a powerful tool for solving computationalprob-
lemswith evolving physicalfeatures; however, an efficient
parallel implementationis ratherdifficult,particularly from
theviewpointof portability on variousmultiprocessorplat-
forms. We address this problem by developing PLUM,
an automaticand architecture-independentframework for
adaptivenumericalcomputationsin a message-passingen-
vironment.Portability is demonstratedby comparingper-
formanceon an SP2,an Origin2000,and a T3E, without
anycodemodifications.We alsopresenta general-purpose
load balancerthat utilizes symmetricbroadcastnetworks
(SBN) as the underlying communicationpattern, with a
goal to providing a global view of systemloadsacrosspro-
cessors. ExperimentsonanSP2andanOrigin2000demon-
stratetheportability of ourapproachwhichachievessuperb
loadbalanceat thecostof minimalextra overhead.

1. Introduction

The successof parallel computingin solving real-life,
computation-intensive problems relies on their efficient
mappingand executionon commerciallyavailable multi-
processorarchitectures. When the algorithms and data
structurescorrespondingto theseproblemsaredynamicin
nature(i.e.,theircomputationalworkloadsgrow or shrinkat
runtime)or areintrinsicallyunstructured, mappingthemon
to distributed-memoryparallelmachineswith dynamicload
balancingoffers considerablechallenges. Dynamic load
balancingaimsto balanceprocessorworkloadsat runtime
while minimizing inter-processorcommunication.With the
proliferationof parallelcomputing,dynamicloadbalancing
hasbecomeextremelyimportantin severalapplicationslike
scientificcomputing,taskscheduling,sparsematrixcompu-

tations,paralleldiscreteeventsimulation,anddatamining.

Theability to dynamicallyadaptanunstructuredmeshis
a powerful tool for efficiently solving computationalprob-
lemswith evolving physicalfeatures.Standardfixed-mesh
numericalmethodscanbemademorecost-effective by lo-
cally refiningandcoarseningthemeshto capturethesephe-
nomenaof interest.Unfortunately, an efficient paralleliza-
tion of adaptive methodsis ratherdifficult, primarily due
to theloadimbalancecreatedby thedynamically-changing
nonuniformgrids. Nonetheless,it is believedthatunstruc-
turedadaptive-grid techniqueswill constitutea significant
fractionof futurehigh-performancesupercomputing.

As anexample,if a full-scaleproblemin computational
fluid dynamicswereto besolvedefficiently in parallel,dy-
namicmeshadaptationwould causeloadimbalanceamong
processors.This, in turn, would requirelarge amountsof
datamovementatruntime.It is thereforeimperativeto have
an efficient dynamicload balancingmechanismaspart of
the solutionprocedure.However, sincethe computational
meshwill befrequentlyadaptedfor unsteadyflows,therun-
time load also has to be balancedat eachstep. In other
words, the dynamic load balancingprocedureitself must
not poseamajoroverhead.Thismotivatesourwork.

We have developeda novel method,calledPLUM [7],
that dynamically balancesprocessorworkloads with a
global view whenperformingadaptive numericalcalcula-
tions in a parallel message-passingenvironment. Exam-
ining the performanceof PLUM for an actualworkload,
which simulatesan acousticwind-tunnelexperimentof a
helicopterrotor blade,on threedifferentparallelmachines
demonstratesthat it canbesuccessfullyportedwithout any
codemodifications.

We proposeanothernew approachto dynamicloadbal-
ancing for unstructuredgrid applicationsbasedon defin-
ing a robust communicationpattern(logical or physical)
among processors,called symmetricbroadcastnetworks
(SBN) [3]. It is adaptive anddecentralizedin nature,and



canbe portedto any topologicalarchitecturethrougheffi-
cientembeddingtechniques.Portabilityresultsfor anadap-
tive unsteadygrid workload, generatedby propagatinga
simulatedshockwave througha tube, show that our ap-
proachreducesthe redistribution cost at the expenseof a
minimal extra communicationoverhead. In many mesh
adaptationapplicationsin which thedataredistributioncost
dominatesthe processingandcommunicationcost, this is
anacceptabletrade-off.

2. Architecture-Independent Load Balancer

PLUM is an automaticandportableload balancingen-
vironment,specificallycreatedto handleadaptive unstruc-
turedgrid applications.It differsfrom mostotherloadbal-
ancersin that it dynamicallybalancesprocessorworkloads
with a global view [1, 7]. In this paper, we examineits
architecture-independentfeatureby comparingresultsfor a
testcaserunningon anSP2,Origin2000,andT3E.

PLUM consistsof apartitionerandaremapperthatload
balanceandredistributethecomputationalmeshwhennec-
essary. After an initial partitioningandmappingof theun-
structuredmesh,a solver executesseveral iterationsof the
application.A meshadaptationprocedureis invokedwhen
themeshis desiredto berefinedor coarsened.PLUM then
gainscontrol to determineif the workloadamongthe pro-
cessorshasbecomeunbalanceddueto themeshadaptation,
andto takeappropriateaction.If loadbalancingis required,
theadaptedmeshis repartitionedandreassignedamongthe
processorssothatthecostof datamovementis minimized.
If theestimatedremappingcostis lower thanthe expected
computationalgain to be achieved, the grid is remapped
amongtheprocessorsbeforesolverexecutionis resumed.

ExtensivedetailsaboutPLUM aregivenin [7]. For com-
pleteness,we enumeratesomeof its salientfeatures.� Reusing the initial dual graph: PLUM repeatedlyuti-

lizesthedualof the initial meshfor thepurposesof load
balancing.This keepsthecomplexity of thepartitioning
andreassignmentphasesconstantduringthecourseof an
adaptivecomputation.New computationalgridsobtained
by adaptationare translatedby changingthe weightsof
theverticesandedgesof thedualgraph.� Parallel mesh repartitioning: PLUM can use any
general-purposepartitioner that balancesthe computa-
tional loads and minimizes the runtime interprocessor
communication. Several excellent parallel partitioners
are now available [4, 5, 10]; however, the resultspre-
sentedin this paperusePMeTiS [6].� Processor remapping and data movement: To mapnew
partitionsto processorswhile minimizing the costof re-
distribution, PLUM first constructsa similarity matrix.
This matrix indicateshow thevertex weightsof thenew
subdomainsare distributed over the processors.Three

generalmetrics: TotalV, MaxV, and MaxSR, are used
to modeltheremappingcostonmostmultiprocessorsys-
tems[8]. Bothoptimalandheuristicalgorithmsfor mini-
mizing thesemetricsareavailablewithin PLUM.� Cost model metrics: PLUM performsdataremappingin
a bulk synchronousfashionto amortizemessagestart-up
costsandobtaingoodcacheperformance.Theprocedure
is similar to the superstepmodel of BSP [9]. The ex-
pectedredistribution costfor a givenarchitecturecanbe
expressedasa linear functionof MaxSR. Themachine-
dependentparametersaredeterminedempirically.

2.1. Helicopter Rotor Test Case

The computationalmeshusedto evaluate the PLUM
loadbalanceris theoneusedto simulateanacousticswind-
tunnel experimentof a UH-1H helicopterrotor blade[7].
A cut-outview of the initial tetrahedralmeshis shown in
Fig. 1. Threerefinementstrategies,calledReal 1, Real 2,
andReal 3, arestudied,eachsubdividing varyingfractions
of the domainbasedon an error indicatorcalculatedfrom
the flow solution. This increasedthe numberof meshel-
ementsfrom 60,968to 82,489,201,780,and321,841,re-
spectively.

Figure 1. Cut-out view of the initial mesh for
the helicopter rotor blade experiment.

2.2. Experimental Results

The threeleft plots in Fig. 2 illustrateparallel speedup
for the three edge-markingstrategies on an SP2, Ori-
gin2000,andT3E.Two setsof resultsarepresentedfor each
machine:onewhendataremappingis performedaftermesh
refinement,andtheotherwhenremappingisdonebeforere-
finement.Thespeedupnumbersarealmostidenticalon all
threemachines.The Real 3 caseshows the bestspeedup
valuesbecauseit is themostcomputationintensive. Remap-
pingdatabeforerefinementhasthelargestrelativeeffectfor



Real 1, becauseit hasthesmallestrefinementregionandit
returnsthebiggestbenefitbypredictively loadbalancingthe
refinedmesh.Thebestresultsarefor Real 3 with remap-
ping beforerefinement,showing anefficiency greaterthan
87%on32 processors.
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Figure 2. Refinement speedup (left) and
remapping time (right) within PLUM on an
SP2, Origin2000, and T3E, when data is re-
distrib uted after or before mesh refinement.

The threeright plots in Fig. 2 show the corresponding
remappingtimes. In almostevery case,a significant re-
duction in remappingtime is observed when the adapted
meshis loadbalancedby performingdatamovementprior
to refinement.This is becausethemeshgrows in sizeonly
afterthedatahasbeenredistributed.In general,theremap-
ping timesalsodecreaseasthenumberof processorsis in-
creased.This is becauseeven thoughthe total volumeof
datamovementincreaseswith the numberof processors,
thereareactuallymoreprocessorsto sharethework.

Perhapsthe most remarkablefeatureof theseresultsis
thepeculiarbehavior of theT3E when �����	� . Whenus-
ing up to 32 processors,theremappingperformanceof the
T3Eis verysimilar to thatof theothertwo machines.How-
ever, for ��
��	� and128, the remappingoverheadbegins
to increaseandviolatesour costmodel. The runtimedif-
ferencewhendatais remappedbeforeandafterrefinement
is dramaticallydiminished;in fact,all theremappingtimes
begin to convergeto a singlevalue! This indicatesthat the
remappingtime is alsoaffectedby the interprocessorcom-
municationpattern.Onesolutionwould be to take advan-

tageof the T3E’s ability to efficiently perform one-sided
communication.

3. Topology-Independent Load Balancer

In this section, we describea dynamic load balancer
basedon a symmetricbroadcastnetwork (SBN), which
takesinto accountthe global view of systemloadsamong
theprocessors.TheSBN is a robust,topology-independent
communicationpattern(logical or physical)among� pro-
cessorsin a multicomputersystem[3]. An SBN of dimen-
sion �
��� , denotedasSBN����� , is a ��������� -stageintercon-
nectionnetwork with ��
���� processorsin eachstage.It is
constructedrecursively asfollows. A singlenodeformsthe
basisnetwork SBN(0). For ����� , an SBN� �!� is obtained
from a pair of SBN���#"��$� s by addinga communication
stagein thefront with thefollowing additionalinterproces-
sor connections:(i) node % in stage0, is madeadjacentto
node &�
'� %(�)�+*	�,�.-0/213� of stage1 and(ii) node & in
stage1 is madeadjacentto the nodein stage2 which was
thestage0 successorof node% in SBN���4"��$� .

The proposedSBN-basedload balancertakes into ac-
count a global view of the systemand makes it effective
for adaptive grid applications.Prior work [2] hasdemon-
stratedtheviability of this SBN approach.It processestwo
typesof messages:(i) load balancemessageswhena load
imbalanceis detected,and(ii) job distribution messagesto
reallocatejobs. We give a brief descriptionof the various
parametersandpoliciesinvolvedin our implementation.� Weighted queue length: This is to take into accountall

the systemvariableslike computation,communication,
and redistribution costs,that affect the processingof a
local queue.Note that no redistribution cost is incurred
if the dataset is availableon the local processor. Simi-
larly, thecommunicationcostis zeroif thedatasetsof all
adjacentverticesarestoredlocally.� Prioritized vertex selection: Whenselectingverticesto
be processed,the SBN load balancertakesadvantageof
theunderlyingstructureof theadaptivegrid anddeferslo-
calexecutionof boundaryverticesaslongaspossiblebe-
causethey maybemigratedfor moreefficient execution.
Thus,verticeswith no communicationandredistribution
costsareexecutedfirst.� Differential edge cut: This is the total changein the
communicationandredistribution costsif a vertex were
moved from oneprocessorto another. The vertex with
thesmallestdifferentialedgecut is chosenfor migration.
This policy strives to maintainor improve the cut size
duringtheexecutionof theloadbalancingalgorithm.� Data redistribution policy: Data redistribution is per-
formedin a lazymanner, i.e., thenon-localdatasetfor a
vertex is not movedto a processoruntil it is aboutto be
executed.Furthermore,the datasetsof all adjacentver-



ticesarealsomigratedat that time. This policy greatly
reducesthe redistribution and communicationcostsby
avoidingmultiplemigrationsof datasets.

3.1. Unsteady Simulation Test Case

To evaluatethe SBN framework, a computationalgrid
is used to simulate an unsteadyenvironment where the
adaptedregion is strongly time-dependent.This experi-
mentis performedby propagatinga simulatedshockwave
throughthe initial grid shown at thetop of Fig. 3. Thetest
caseis generatedby refining all elementswithin a cylin-
drical volumemoving left to right acrossthe domainwith
constantvelocity, while coarseningpreviously-refinedele-
mentsin its wake. Performanceis measuredat ninesucces-
siveadaptationlevelsduringwhichthemeshincreasesfrom
50,000to 1,833,730elements.

Figure 3. Initial and adapted meshes (after lev-
els 1 and 5) for the sim ulated unstead y exper -
iment.

3.2. Experimental Results

Table 1 presentsperformanceresultson an SP2,aver-
agedover the nine levels of adaptation. In addition to
achieving excellent load balance,the redistribution cost
(expressedas MaxSR, the maximumnumberof vertices
movedin andoutof any processor)is significantlyreduced.
However, the edgecut percentagesare somewhat higher,
indicatingthat the SBN strategy reducesthe redistribution
costat theexpenseof aslightly highercommunicationcost.

Table 2 gives the number of bytes that were trans-
ferred betweenprocessorsduring the load balancingand
the job distribution phases. The numberof bytes trans-
ferred is also expressedas a percentageof the available
bandwidth. (A wide-nodeSP2hasa messagebandwidth
of 36megabytes/secondanda messagelatency of 40 micro

EdgeCut Load
P Before After MaxSR Imbalance

2 2.88% 5.51% 80,037 1.00
4 7.27% 10.76% 76,665 1.00
8 12.71% 16.35% 53,745 1.00

16 19.40% 23.87% 46,825 1.01
32 24.42% 30.41% 28,031 1.02

Table 1. Grid adaptation results on an SP2
using the SBN-based load balancer .

seconds.)Theresultsdemonstratethatthecostof vertex mi-
grationis significantlygreaterthanthecostof actuallybal-
ancingthesystemload. An extrapolationof the resultsus-
ing exponentialcurve-fitting indicatesthatnormalspeedup
will not scalefor �5�)�$��6 .

BalancingMessages MigrationMessages
P Volume Bandwidth Volume Bandwidth

2 0.342MB 0.00% 3.919MB 3.67%
4 0.150MB 0.00% 7.939MB 7.44%
8 0.463MB 0.01% 25.397MB 23.79%

16 0.581MB 0.02% 30.454MB 28.53%
32 1.550MB 0.12% 38.244MB 35.83%

Table 2. Comm unication overhead of the SBN
load balancer .

Table3 shows the percentageof time spentin the SBN
load balancercomparedto the executiontime requiredto
processthemeshadaptationapplication.Thethreecolumns
correspondto threetypesof loadbalancingactivities: (i) the
time neededto handlebalancerelatedmessages,(ii) the
timeneededto migratemessagesfrom oneprocessorto an-
other, and(iii) the time neededto selectthe next vertex to
be processed.The resultsshow that processingrelatedto
theselectionof verticesis themostexpensive phaseof the
SBNloadbalancer. However, thetotal timerequiredto load
balanceis still relatively small comparedto the time spent
processingthemesh.

WewereabletodirectlyporttheSBNmethodologyfrom
an SP2to an Origin2000without any codemodifications.
Thisdemonstratesthearchitectureindependenceof ourload
balancer. Theloadimbalancefactorswerealmostidentical
onthetwo machines.Theedgecutvalueswereconsistently
largerontheOrigin2000,but theMaxSR valueswerelarger
only whenusinglessthan16 processors.

Someof thedifferencesin performanceresultson these



Balancing Migration Vertex
P Activity Activity Selection

2 0.0053% 0.0014% 0.4530%
4 0.0087% 0.0069% 2.0381%
8 0.1745% 0.0569% 2.8386%

16 0.2669% 0.0629% 0.8845%
32 0.1154% 0.0774% 2.1043%

Table 3. Overhead of the SBN load balancer .

two machinesaredue to additionalrefinementsthat were
implementedprior to runningthe experimentson the Ori-
gin2000.First, thealgorithmfor distributing jobswasmod-
ified to guaranteethat the processorinitiating loadbalanc-
ing always had sufficient workload. This reducesthe to-
tal numberof balancingrelatedmessagesbut increasesthe
numberof verticesmigrated,especiallyfor small numbers
of processors.Second,datasetscorrespondingto groupsof
verticesweremovedata time. Thisbulk migrationstrategy
reducesthe volume of migration messagesby more than
6���7 in ourexperiments.

4. PLUM vs. SBN

Let ushighlightsomeof thedifferencesbetweenthetwo
dynamicloadbalancersdescribedin this paper.� Processingis temporarilyhaltedunderPLUM while the

loadis beingbalanced.TheSBN approach,on theother
hand,allowsprocessingto continueasynchronously. This
feature allows for the possibility of utilizing latency-
toleranttechniquesto hide the communicationoverhead
of redistribution.� UnderPLUM, suspensionof processingandsubsequent
repartitioningdoesnot guaranteean improvementin the
quality of load balance. In contrast,the SBN approach
alwaysresultsin improvedloadbalance.� PLUM redistributesall necessarydatato theappropriate
processorsimmediatelybeforeprocessing. SBN, how-
ever, migratesdatato aprocessoronly whenit is readyto
processit, thusreducingtheredistributionandcommuni-
cationoverhead.� PLUM, unlike SBN, performsremappingpredictively.
This resultsin a significantreductionof datamovement
during redistribution andimprovesthe overall efficiency
of therefinementprocedure.� Load balancingunder PLUM occursbefore the solver
phaseof thecomputation,whereasSBNbalancestheload
during thesolverexecution.We thereforecannotdirectly
comparePLUM and SBN-basedload balancing,since
their relativeperformanceis solverdependent.

5. Summary

We have demonstratedthe portability of our novel ap-
proachesto solve the load balancingproblemfor adaptive
unstructuredgrids on three state-of-the-artcommercial
parallel machines. The experiments were conducted
usingactualworkloadsof both steadyandunsteadygrids
obtained from real-life applications. We are currently
examining the portability of our software on other plat-
forms (suchasshared-memoryenvironmentsor networks
of workstations)as well as employing various parallel
programmingmodels.
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