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Abstract

Theability to dynamicallyadaptanunstructuedgrid (or
mesh)is a powerfultool for solving computationalprob-
lemswith evolving physicalfeatutes; however, an efficient
parallel implementations ratherdifficult, particularly from
theviewpointof portability on variousmultiprocessomplat-
forms. We addressthis problem by developing PLUM,
an automaticand architecture-independentramevork for
adaptivenumericalcomputationsn a messge-passingn-
vironment. Portability is demonstatedby comparingper-
formanceon an SP2,an Origin2000, and a T3E, without
any codemodifications We also presenta generl-purpose
load balancerthat utilizes symmetricbroadcastnetworks
(SBN) as the underlying communicationpattern, with a
goalto providing a global view of systemoadsacrosspro-
cessos. Experiment®nan SP2andan Origin2000demon-
stratetheportability of our approach which achievessuperb
load balanceat the costof minimalextra overhead.

1. Introduction

The succesf parallel computingin solving real-life,
computation-intensie problemsrelies on their efficient
mappingand executionon commerciallyavailable multi-
processorarchitectures. When the algorithms and data
structurescorrespondindo theseproblemsare dynamicin
nature(i.e.,theircomputationaorkloadsgrow or shrinkat
runtime)or areintrinsically unstructued mappingthemon
to distributed-memoryarallelmachinesvith dynamicload
balancingoffers considerablechallenges. Dynamic load
balancingaimsto balanceprocessomworkloadsat runtime
while minimizing inter-processocommunicationWith the
proliferationof parallelcomputing dynamicloadbalancing
hasbecomeextremelyimportantin severalapplicationdik e
scientificcomputing taskschedulingsparsematrix compu-

SajalK. Das,DanielHarvey
Deptof ComputerSciences
University of North Texas
Denton,TX 76203,USA
{das,harey} @cs.unt.edu

LeonidOliker
RIACS
NASA AmesResearciCenter
Moffett Field, CA 94035,USA
oliker@riacs.edu

tations,paralleldiscretesventsimulation,anddatamining.

Theability to dynamicallyadaptanunstructuredneshis
a powerful tool for efficiently solving computationaprob-
lemswith evolving physicalfeatures.Standardixed-mesh
numericalmethodscanbe mademore cost-efective by lo-
cally refiningandcoarseninghemeshto capturethesephe-
nomenaeof interest. Unfortunately an efficient paralleliza-
tion of adaptve methodsis ratherdifficult, primarily due
to theloadimbalancecreatedby the dynamically-changing
nonuniformgrids. Nonethelessit is believedthat unstruc-
tured adaptie-grid techniqueswill constitutea significant
fractionof future high-performancsupercomputing.

As anexample,if afull-scaleproblemin computational
fluid dynamicswereto be solved efficiently in parallel,dy-
namicmeshadaptatiorwould causdoadimbalanceamong
processors.This, in turn, would requirelarge amountsof
datamovementatruntime.lt is thereforeamperatveto have
an efficient dynamicload balancingmechanismas part of
the solution procedure.However, sincethe computational
meshwill befrequentlyadaptedor unsteadylows,therun-
time load also hasto be balancedat eachstep. In other
words, the dynamicload balancingprocedureitself must
not posea majoroverhead.This motivatesour work.

We have developeda novel method,called PLUM [7],
that dynamically balancesprocessorworkloads with a
global view when performingadaptive numericalcalcula-
tions in a parallel message-passingrvironment. Exam-
ining the performanceof PLUM for an actualworkload,
which simulatesan acousticwind-tunnelexperimentof a
helicopterrotor blade,on threedifferentparallelmachines
demonstratethatit canbe successfullyportedwithout ary
codemodifications.

We proposeanothemew approacho dynamicload bal-
ancingfor unstructuredgrid applicationsbasedon defin-
ing a robust communicationpattern (logical or physical)
among processorsgcalled symmetricbroadcastnetworks
(SBN) [3]. It is adaptve anddecentralizedn nature,and



canbe portedto ary topologicalarchitecturehrougheffi-

cientembeddingechniquesPortabilityresultsfor anadap-
tive unsteadygrid workload, generatedoy propagatinga
simulatedshock wave through a tube, shav that our ap-
proachreduceshe redistritution cost at the expenseof a
minimal extra communicationoverhead. In mary mesh
adaptatiorapplicationsn which thedataredistrikution cost
dominateghe processingand communicationcost, this is

anacceptableérade-of.

2. Architecture-Independent L oad Balancer

PLUM is an automaticand portableload balancingen-
vironment,specificallycreatedto handleadaptve unstruc-
turedgrid applications.It differsfrom mostotherloadbal-
ancerdn thatit dynamicallybalancegprocessomworkloads
with a global view [1, 7]. In this paper we examineits
architecture-independefgatureby comparingresultsfor a
testcaserunningon an SP2,0rigin2000,andT3E.

PLUM consistof apartitionerandaremappethatload
balanceandredistribute the computationameshwhennec-
essary After aninitial partitioningandmappingof the un-
structuredmesh,a solver executesseveral iterationsof the
application.A meshadaptatiorprocedurds invokedwhen
themeshis desiredto berefinedor coarsenedPLUM then
gainscontrolto determineif the workloadamongthe pro-
cessordhiasbecomeaunbalancediueto themeshadaptation,
andto take appropriateaction.If loadbalancings required,
theadaptedneshis repartitionecandreassigne@mongthe
processorsothatthe costof datamovementis minimized.
If the estimatedremappingcostis lower thanthe expected
computationalgain to be achieved, the grid is remapped
amongthe processorbeforesolver executionis resumed.

Extensve detailsaboutPLUM aregivenin [7]. For com-
pletenessye enumeratesomeof its salientfeatures.
¢ Reusing theinitial dual graph: PLUM repeatedIyuti-

lizesthe dual of the initial meshfor the purposef load

balancing.This keepsthe compleity of the partitioning
andreassignmenphasegonstanduringthe courseof an
adaptve computation New computationagridsobtained
by adaptationare translatedby changingthe weightsof

theverticesandedgesof thedualgraph.

e Parallel mesh repartitioning: PLUM can use ary
general-purposgartitioner that balancesthe computa-
tional loads and minimizes the runtime interprocessor
communication. Several excellent parallel partitioners
are now available [4, 5, 10]; however, the resultspre-
sentedn this paperusePMeTiS [6].

o Processor remapping and data movement: To mapnew
partitionsto processorsvhile minimizing the costof re-
distribution, PLUM first constructsa similarity matrix.
This matrix indicateshow the vertex weightsof the new
subdomainsare distributed over the processors. Three

generalmetrics: TotalV, MaxV, and MaxSR, are used
to modeltheremappingcoston mostmultiprocessosys-
tems[8]. Both optimalandheuristicalgorithmsfor mini-
mizing thesemetricsareavailablewithin PLUM.

e Cost model metrics: PLUM performsdataremappingn
a bulk synchronougashionto amortizemessagatart-up
costsandobtaingoodcacheperformanceTheprocedure
is similar to the superstepmodel of BSP[9]. The ex-
pectedredistribution costfor a givenarchitecturecanbe
expressedasa linearfunction of MaxSR. The machine-
dependenparameteraredeterminecempirically.

2.1. Helicopter Rotor Test Case

The computationalmesh usedto evaluatethe PLUM
loadbalanceis the oneusedto simulateanacousticsvind-
tunnel experimentof a UH-1H helicopterrotor blade[7].
A cut-outview of the initial tetrahedraimeshis shown in
Fig. 1. Threerefinemenstratgies,calledReal_1, Real_2,
andReal_3, arestudied,eachsubdviding varyingfractions
of the domainbasedon an errorindicator calculatedfrom
the flow solution. This increasedhe numberof meshel-
ementsfrom 60,968to 82,489,201,780,and 321,841,re-
spectvely.
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Figure 1. Cut-out view of the initial mesh for
the helicopter rotor blade experiment.

2.2. Experimental Results

The threeleft plotsin Fig. 2 illustrate parallel speedup
for the three edge-markingstratgies on an SP2, Ori-
gin2000,andT3E. Two setsof resultsarepresentedior each
machine:onewhendataremappings performedaftermesh
refinementandtheotherwhenremappings donebeforere-
finement.The speedupumbersarealmostidenticalon all
threemachines.The Real_3 caseshaws the bestspeedup
valuesbecausd is themostcomputatiorintensive. Remap-
ping databeforerefinementasthelargestrelative effectfor



Real_1, becausé hasthesmallestrefinementegion andit
returnghebiggestenefitby predictively loadbalancinghe
refinedmesh. The bestresultsarefor Real_3 with remap-
ping beforerefinementshowving an efficiency greaterthan
87%on 32 processors.

o 60 o
S SP2 g fa SP2
® |- Remap after refinement £ &
2 45— Remap before refinem gl
2]
= A4S

30{c Real_1 o
GEJ o Real"2 £
o s Real3 L=
E 15 ] 510‘1

Sgo 8 16 24 32 40 48 56 64~ 0 8 16 24 32 40 48 56 64
S Origin2000 S |a . Origin2000
S 4 Y
D 24 1M Bl
8 o1 b= NN
0 S
] 18 S !
[ =4
£12 E
< g
&5 6 . gl()fl

7 4

% 4 & 12 16 20 24 28 32 0
o 80 @
5 T3E e
9 )
3 60| o104
Q. o1 A
a £ A
T 40| o
£ =3 ‘5
2 o
§200 glgo—
& 2 - B2

% 16 3z 48 64 80 96 112128

0 16 32 48 64 80 96 112128

Number of processors Number of processors

Figure 2. Refinement speedup (left) and
remapping time (right) within PLUM on an
SP2, Origin2000, and T3E, when data is re-
distrib uted after or before mesh refinement.

The threeright plotsin Fig. 2 showv the corresponding
remappingtimes. In almostevery case,a significantre-
ductionin remappingtime is obsened when the adapted
meshis load balancedy performingdatamovementprior
to refinement.This is because¢he meshgrows in sizeonly
afterthe datahasbeenredistributed. In generaltheremap-
ping timesalsodecreas@asthe numberof processorss in-
creased.This is becauseaven thoughthe total volume of
datamovementincreaseswith the numberof processors,
thereareactuallymoreprocessorso sharethework.

Perhapghe mostremarkablefeatureof theseresultsis
the peculiarbehaior of the T3E whenP > 64. Whenus-
ing up to 32 processorsthe remappingperformanceof the
T3Eis verysimilarto thatof the othertwo machinesHow-
ever, for P = 64 and 128, the remappingoverheadbegins
to increaseand violatesour costmodel. The runtime dif-
ferencewhendatais remappedeforeandafterrefinement
is dramaticallydiminished;in fact,all theremappingimes
begin to corvergeto a singlevalue! This indicatesthatthe
remappingime is alsoaffectedby the interprocessocom-
municationpattern. One solutionwould be to take advan-

tage of the T3E’s ability to efficiently perform one-sided
communication.

3. Topology-I ndependent L oad Balancer

In this section, we describea dynamicload balancer
basedon a symmetricbroadcastnetwork (SBN), which
takesinto accountthe global view of systemloadsamong
theprocessorsThe SBN is arobust,topology-independent
communicatiorpattern(logical or physical)amongP pro-
cessorsn a multicomputersystem[3]. An SBN of dimen-
siond > 0, denotecasSBN(d), is a(d + 1)-stageintercon-
nectionnetwork with P = 2¢ processor# eachstage.lt is
constructedecursvely asfollows. A singlenodeformsthe
basisnetwork SBN(0). For d > 0, an SBN(d) is obtained
from a pair of SBN(d — 1)s by addinga communication
stagein the front with thefollowing additionalinterproces-
sor connections:(i) node: in stage0, is madeadjacento
nodej = (i + P/2) mod P of stagel and(ii) nodej in
stagel is madeadjacento the nodein stage? which was
the stage0 successoof nodes in SBN(d — 1).

The proposedSBN-basedoad balancertakes into ac-
counta global view of the systemand makesit effective
for adaptve grid applications. Prior work [2] hasdemon-
stratedthe viability of this SBN approachlt processesvo
typesof messages(i) load balancemessagewhena load
imbalances detectedand(ii) job distribution message®
reallocategjobs. We give a brief descriptionof the various
parameterandpoliciesinvolvedin ourimplementation.

e Weighted queue length: Thisis to take into accountall
the systemvariableslike computation,communication,
and redistritution costs, that affect the processingof a
local queue. Note that no redistrikution costis incurred
if the datasetis available on the local processar Simi-
larly, thecommunicatiorcostis zeroif the datasetsof all
adjacenterticesarestoredlocally.

e Prioritized vertex selection: Whenselectingverticesto
be processedthe SBN load balancertakes advantageof
theunderlyingstructureof theadaptve grid anddeferdo-
cal executionof boundaryerticesaslong aspossiblebe-
causehey may be migratedfor moreefficient execution.
Thus,verticeswith no communicatiorandredistritution
costsareexecutedirst.

¢ Differential edge cut: This is the total changein the
communicatiorand redistritution costsif a vertex were
moved from one processoito another The vertex with
the smallestifferentialedgecutis choserfor migration.
This policy strivesto maintainor improve the cut size
duringthe executionof theloadbalancingalgorithm.

e Data redistribution policy: Dataredistritution is per
formedin alazy manneri.e., the non-localdatasetfor a
vertex is not movedto a processountil it is aboutto be
executed. Furthermorethe datasetsof all adjacentver



ticesare alsomigratedat thattime. This policy greatly
reducesthe redistrilution and communicationcostsby
avoiding multiple migrationsof datasets.

3.1. Unsteady Simulation Test Case

To evaluatethe SBN framework, a computationalgrid
is usedto simulate an unsteadyervironment where the
adaptedregion is strongly time-dependent. This experi-
mentis performedby propagatinga simulatedshockwave
throughtheinitial grid shavn atthe top of Fig. 3. Thetest
caseis generatedy refining all elementswithin a cylin-
drical volume moving left to right acrossthe domainwith
constantvelocity, while coarseningpreviously-refinedele-
mentsin its wake. Performancés measureét ninesucces-
sive adaptatiorevelsduringwhichthemeshincreasefrom
50,000to 1,833,73Clements.

Figure 3. Initial and adapted meshes (after lev-
els 1 and 5) for the simulated unstead y exper-
iment.

3.2. Experimental Results

Table 1 presentgperformanceresultson an SP2, aver
agedover the nine levels of adaptation. In addition to
achieving excellent load balance,the redistribution cost
(expressedas MaxSR, the maximumnumberof vertices
movedin andoutof any processorjs significantlyreduced.
However, the edgecut percentagesire somavhat higher,
indicatingthat the SBN stratgy reduceghe redistritution
costattheexpenseof aslightly highercommunicatiorcost.

Table 2 gives the number of bytes that were trans-
ferred betweenprocessorgiuring the load balancingand
the job distribution phases. The numberof bytestrans-
ferred is also expressedas a percentageof the available
bandwidth. (A wide-nodeSP2hasa messagdandwidth
of 36 megabytes/secondnda messagéateng of 40 micro

EdgeCut Load

P || Before | After | MaxSR | Imbalance
2 2.88% | 5.51% | 80,037 1.00
4 7.27% | 10.76%| 76,665 1.00
8 || 12.71%| 16.35%| 53,745 1.00
16 || 19.40% | 23.87%| 46,825 1.01
32 || 24.42% | 30.41%| 28,031 1.02

Table 1. Grid adaptation results on an SP2
using the SBN-based load balancer.

seconds.Iheresultsdemonstratéhatthe costof vertex mi-
grationis significantlygreaterthanthe costof actuallybal-
ancingthe systemload. An extrapolationof the resultsus-
ing exponentialcurve-fitting indicatesthatnormalspeedup
will notscalefor P > 128.

BalancingMessages Migration Messages
P | Volume | Bandwidth| Volume | Bandwidth
2 | 0.342MB 0.00% 3.919MB 3.67%
4 | 0.150MB 0.00% 7.939MB 7.44%
8 | 0.463MB 0.01% | 25.397MB 23.79%
16 | 0.581MB 0.02% | 30.454MB 28.53%
32 | 1.550MB 0.12% | 38.244MB 35.83%

Table 2. Communication overhead of the SBN
load balancer.

Table 3 shaws the percentag®f time spentin the SBN
load balancercomparedo the executiontime requiredto
procesgshe meshadaptatiorapplication.Thethreecolumns
correspondo threetypesof loadbalancingactuities: (i) the
time neededto handlebalancerelated messages(ii) the
time neededo migratemessagefom oneprocessoto an-
other and (iii) thetime neededo selectthe next vertex to
be processed.The resultsshown that processingelatedto
the selectionof verticesis the mostexpensve phaseof the
SBNIloadbalancerHowever, thetotaltimerequiredto load
balanceis still relatively small comparedo the time spent
processinghe mesh.

Wewereableto directly portthe SBN methodologyfrom
an SP2to an Origin2000without any code modifications.
Thisdemonstratethearchitecturendependencef ourload
balancer The loadimbalancefactorswerealmostidentical
onthetwo machinesTheedgecutvalueswvereconsistently
largerontheOrigin2000 but theMaxSR valueswerelarger
only whenusinglessthan16 processors.

Someof the differencesn performanceesultson these



Balancing| Migration | Vertex
P | Activity Activity | Selection
2| 0.0053% | 0.0014% | 0.4530%
4 | 0.0087% | 0.0069% | 2.0381%
8| 0.1745% | 0.0569% | 2.8386%
16 | 0.2669% | 0.0629% | 0.8845%
32| 0.1154% | 0.0774% | 2.1043%

Table 3. Overhead of the SBN load balancer.

two machinesare dueto additionalrefinementgshat were
implementedprior to running the experimentson the Ori-
gin2000.First, thealgorithmfor distributing jobswasmod-
ified to guarantedhatthe processoinitiating load balanc-
ing always had sufficient workload. This reducesthe to-
tal numberof balancingrelatedmessagebut increaseshe
numberof verticesmigrated,especiallyfor smallnumbers
of processorsSeconddatasetscorrespondingo groupsof
verticesweremovedatatime. This bulk migrationstrateyy
reducesthe volume of migration messagedy more than
80% in our experiments.

4. PLUM vs. SBN

Let ushighlight someof thedifferencedetweerthetwo
dynamicloadbalancerslescribedn this paper

e Processings temporarilyhaltedunderPLUM while the
loadis beingbalanced.The SBN approachpn the other
hand allows processingo continueasynchronouslyThis
feature allows for the possibility of utilizing lateng-
toleranttechniquedo hide the communicatioroverhead
of redistritution.

¢ UnderPLUM, suspensiomf processingand subsequent
repartitioningdoesnot guaranteen improvementin the
quality of load balance. In contrast,the SBN approach
alwaysresultsin improvedloadbalance.

¢ PLUM redistritutesall necessarylatato the appropriate
processorsmmediatelybefore processing. SBN, how-
ever, migratesdatato a processoonly whenit is readyto
processt, thusreducingtheredistribution andcommuni-
cationoverhead.

e PLUM, unlike SBN, performsremappingpredictively.
This resultsin a significantreductionof datamovement
during redistribution andimprovesthe overall efficiency
of therefinemenprocedure.

e Load balancingunder PLUM occursbefole the solver
phaseof thecomputationwhereasSBN balancesheload
during the solver execution.We thereforecannotdirectly
comparePLUM and SBN-basedioad balancing,since
theirrelative performancés solver dependent.

5. Summary

We have demonstratedhe portability of our novel ap-
proachego solve the load balancingproblemfor adaptve
unstructuredgrids on three state-of-the-artcommercial
parallel machines. The experiments were conducted
using actualworkloadsof both steadyand unsteadygrids
obtained from real-life applications. We are currently
examining the portability of our software on other plat-
forms (suchas shared-memorgrvironmentsor networks
of workstations)as well as employing various parallel
programmingmnodels.
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