PLUM: PARALLEL LOAD BALANCING FOR
UNSTRUCTURED ADAPTIVE MESHES
by
LEONID OLIKER
B.S., University of Pennsylvania, 1991
B.S., Wharton School of Business, 1991

M.S., University of Colorado, Boulder, 1994

A thesis submitted to the
Faculty of the Graduate School of the
University of Colorado in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
Department of Computer Science

1998

This thesis for the Doctor of Philosophy degree by
Leonid Oliker
has been approved for the
Department of
Computer Science

by

Oliver A. Mcbryan

Charbel Farhat

Date

iii

Oliker, Leonid (Ph. D., Computer Science)
PLUM: Parallel Load Balancing for Unstructured Adaptive Meshes

Thesis directed by Professor Oliver A. Mcbryan

Dynamic mesh adaption on unstructured grids is a powerful tool for com-
puting large-scale problems that require grid modifications to efficiently resolve so-
lution features. Unfortunately, an efficient parallel implementation is difficult to
achieve, primarily due to the load imbalance created by the dynamically-changing
nonuniform grid. To address this problem, we have developed PLUM, an automatic
portable framework for performing adaptive large-scale numerical computations in
a message-passing environment.

First, we present an efficient parallel implementation of a tetrahedral mesh
adaption scheme. Extremely promising parallel performance is achieved for various
refinement and coarsening strategies on a realistic-sized domain. Next we describe
PLUM, a novel method for dynamically balancing the processor workloads in adap-
tive grid computations. This research includes interfacing the parallel mesh adaption
procedure based on actual flow solutions to a data remapping module, and incor-
porating an efficient parallel mesh repartitioner. A significant runtime improvement
is achieved by observing that data movement for a refinement step should be per-
formed after the edge-marking phase but before the actual subdivision. We also
present optimal and heuristic remapping cost metrics that can accurately predict
the total overhead for data redistribution.

Several experiments are performed to verify the effectiveness of PLUM on
sequences of dynamically adapted unstructured grids. Portability is demonstrated
by presenting results on the two vastly different architectures of the SP2 and the Ori-
gin2000. Additionally, we evaluate the performance of five state-of-the-art partition-
ing algorithms that can be used within PLUM. It is shown that for certain classes of

unsteady adaption, globally repartitioning the computational mesh produces higher

v

quality results than diffusive repartitioning schemes. We also demonstrate that a
coarse starting mesh produces high quality load balancing, at a fraction of the cost
required for a fine initial mesh. Results indicate that our parallel load balancing

strategy will remain viable on large numbers of processors.

ACKNOWLEGEMENTS

First, I would like to express my deepest gratitude to Rupak Biswas without
whom this thesis would never have been possible. I was truly fortunate to have such
a knowledgeable and generous mentor. Regardless of his busy schedule he always
found time to help me on my thesis. I especially would like to thank him for his
patience, encouragement, and most importantly his friendship.

I want to thank Oliver McBryan, Charbel Farhat, Xiao-Chuan Cai, and
Richard Byrd for serving on my committee.

I am deeply indebted to Roger Strawn. Our collaboration on the prediction
and analysis of helicopter noise, provided the starting ground from which my thesis
was built.

I was fortunate for the opportunity to work with Robert Schreiber. His
wisdom and enthusiasm are an inspiration. One of his many contributions was the
development of a theoretical framework for addressing the reassignment problem.
I would also like to thank Hal Gabow for taking the time to share his algorithmic
insights with me.

I want to thank Andrew Sohn and Horst Simon for their collaboration.
Their work greatly contributed to many of the ideas presented in this thesis. I also
sincerely thank Vipin Kumar and George Karypis for their help with the MeTiS
partitioners, and Chris Walshaw for his help with the Jostle partitioners.

My heartfelt gratitude goes to my parents for their dedication and love. I
was incredibly lucky to have their constant support and encouragement. I owe much
to Arin Fishkin for her love, proofreading skills, and yummy risotto. Her companion-

ship made my research efforts more enjoyable and productive. Additionally, I thank

vi

Tim Barkow for his editing skills and years of easy living. I also want thank my dear
friends Larry Smith, Ted Rheingold, Alex Hart, Sam Boonin, and Eric Hecker for
providing me with necessary distractions during my thesis work.

Finally, I would like to thank Joe Oliger for his gracious support and rock
climbing beta. This work has been supported by NASA via Contract NAS 2-96027
between NASA and the Universities Space Research Association (USRA). This work
was performed at the Research Institute for Advanced Computer Science (RIACS),

NASA Ames Research Center, Moffett Field, CA.

CONTENTS

CHAPTER
1 INTRODUCTIONo e 1
1.1 Thesis Objective 1
1.2 Historical Review oo 4
1.2.1 Combinatorial Methods 4
1.2.2 Local Diffusive Methods 6
1.2.3 General Global Methods 9
1.2.4 Repartitioning Methods 11
1.3 Thesis Outline oo 16
2 PARALLEL TETRAHEDRAL MESH ADAPTION 18
2.1 Serial Mesh Adaption Overview 20
2.2 Distributed-Memory Implementation 23
2.2.1 Imitializationo Lo 24
2.2.2 Execution e 26
2.2.3 Finalization oL o 29
2.3 Euler Flow Solver oo 31
2.4 Experimental Results 0000, 32
2.4.1 Refinement Phase oL o000 34
2.4.2 Coarsening Phase o oL 38
2.4.3 Initialization and Finalization Phases 39
3 DYNAMIC LOAD BALANCING, 41
3.1 Dual Graph of Initial Mesh 0L, 42

3.2 Preliminary Evaluation 43

3.3 Parallel Mesh Repartitioning 44
3.4 Similarity Matrix Construction 45
3.5 Processor Reassignment 000 46
3.5.1 TotalV metric oo 46
3.5.2 MaxV metric 48
3.5.3 MaxSR metrico oL 50
3.5.4 Heuristic Algorithm 52
3.6 Cost Calculation oo 54
3.7 Data Remapping o 58
3.8 Experimental results o o000 59
4 PORTABILITY AND REPARTITIONING ANALYSIS 73
4.1 Helicopter rotor test case 73
4.1.1 PLUM on the Origin2000 74
4.1.2 The redistribution cost model on the Origin2000. 77
4.2 Unsteady simulation test case 79
4.2.1 Comparison of partitioners 82
4.2.2 SP2vs. Origin2000 Lo 86
4.2.3 Coarse vs. fine initial mesho, 87
4.2.4 Growing vs.stablemesh o 0oL 91
5 SUMMARY AND FUTURE WORK 94
5.1 Summaryo e 94
5.2 Future Worko 99

BIBLIOGRAPHY e 102

TABLE

2.1

2.2

2.3

2.4

2.5

2.6

2.7

3.1

3.2

3.3

4.1

4.2

4.3

X

TABLES

Progression of Grid Sizes through Refinement and Coarsening for
the Different Strategies o . 33
Performance of Mesh Refinement when Edges are Bisected Randomly 34
Performance of Mesh Refinement when Edges are Bisected based
on Flow Solution 35

Performance of “Load-Balanced” Mesh Refinement when Edges are

Bisected based on Flow Solution 36
Quality of Load Balance Before and After Mesh Refinement 37
Performance of Mesh Coarsening 38

Performance of Initialization and Finalization Steps for REAL_1R
Strategy 39
Grid sizes for the three different refinement strategies 59
Comparison of five processor reassignment algorithms for the Real 2R

case on the SP2 with FF=1. 63
Progression of Grid Size through a Sequence of Three Levels of
Adaptiono 67
Execution time of 3D_TAG on the SP2 and the Origin2000 when

data is remapped before mesh refinemento L. 76
Remapping time within PLUM on the SP2 and the Origin2000 when

data is redistributed before mesh refinement 79
Partitioning time on the SP2 for P=64 using a variety of partition-

ers for Sequence 1o 83

4.4

4.5

4.6

4.7

4.8

4.9

4.10

Load imbalance factor before and after mesh partitioning for P=64

using a variety of partitioners for Sequence 1

Percentage of cut edges before and after mesh partitioning for P=64

using a variety of partitioners for Sequence 1

Remapping time on an SP2 for P=64 using the default and our

heuristic strategies for Sequence 1

Partitioning and remapping times on the SP2 and the Origin2000

for P=32 using PMeTiS and DAMeTiS for Sequence.1

Load imbalance factor and percentage of cut edges before and af-

ter mesh partitioning for P=32 using PMeTiS and DAMeTiS for

Sequence 1 L

Partitioning and remapping times on an SP2 for P=32 using PMeTiS

and DAMeTiS for Sequence 3,

Load imbalance factor and percentage of cut edges before and af-

ter mesh partitioning for P=32 using PMeTiS and DAMeTiS for

Sequence 3 e

FIGURES

FIGURE

1.1 Overview of PLUM, our framework for parallel adaptive numerical
computation. L L e
2.1 Three types of subdivision are permitted for a tetrahedral element.
2.2 Sample edge-marking pattern for element subdivision.
2.3 An example showing the communication need to form the SPL for
a shared vertex. L Lo
2.4 An example showing how boundary faces are represented at parti-
tion boundaries. Lo
2.5 A two-dimensional example showing communication during prop-
agation of the edge marking phase.
2.6 An example showing how a new edge across a face is classified as
shared orinternal. Lo Lo o
2.7 Cut-out view of the initial tetrahedral mesh.
3.1 An example of a similarity matrix M for P =4 and F = 2. Only
the non-zero entries are shown.
3.2 Various cost metrics of a similarity matrix M for P =4 and F =1
using (a) optimal MWBG algorithm, (b) optimal BMCM algo-
rithm, (c) optimal DBMCM algorithm, and (d) our heuristic al-
gorithm.
3.3 Pseudocode for our heuristic algorithm for solving the processor

reassignment problem. oo oL

xi

21

3.4

3.5

3.6

3.7

3.8

3.9

3.10

3.11

4.1

4.2

4.3

4.4

4.5

Speedup of the 3D_TAG parallel mesh adaption code when data is

remapped either after or before mesh refinement.

Remapping times within PLUM when data is remapped either after

or before mesh refinement.

Comparison of the optimal and heuristic MWBG remappers in

terms of the execution time (top) and the volume of data movement

(bottom) for the REAL_2R strategy..
Anatomy of execution times for the REAL_1R, REAL_2R, and REAL_3R

refinement strategies. oL o 0oL

Maximum (top) and actual (bottom) impact of load balancing on
flow solver execution times for different mesh growth factors G.

Final adapted mesh and computed pressure contours in the plane

of the helicopter rotor.

Anatomy of execution times for the three levels of adaption.

Remapping time as a function of the TotalV (top) and the MaxSR

(bottom) metrics.

Speedup of 3D_TAG the Origin2000 when data is remapped either

after or before mesh refinement.

Remapping time within PLUM on the the Origin2000 when data is

redistributed either after or before mesh refinement.

Anatomy of execution times for the Real_1R, Real 2R, and Real 3R

refinement strategies on the Origin2000.

Remapping time as a function of TotalV and MaxSR on the Ori-

gin2000.

Initial and adapted meshes (after levels 1 and 5) for the simulated

unsteady experiment. L

xii

60

61

62

66

69

70

72

75

77

78

80

81

xiii

4.6 Progression of grid sizes through nine levels of adaption for the
unsteady simulation. o o 0oL 82
4.7 PMeTiS partitioning and remapping times using the heuristic strat-
egy for P=16 and 64 on an SP2 for Sequence_1 and Sequence 2. . . 89
4.8 Load imbalance factor and percentage of cut edges after mesh par-
titioning using PMeTiS for P=16 and 64 for Sequence_1 and Se-
quence_2. Note that the imbalance factor curves for the two se-

quences are overlaid. L oo oo 90

CHAPTER 1

INTRODUCTION

Dynamic mesh adaption on unstructured grids is a powerful tool for com-
puting large-scale problems that require grid modifications to efficiently resolve so-
lution features. By locally refining and coarsening the mesh to capture physical phe-
nomena of interest, such procedures make standard computational methods more
cost effective. Unfortunately, an efficient parallel implementation of these adaptive
methods is rather difficult to achieve, primarily due to the load imbalance created
by the dynamically-changing nonuniform grid. This requires significant commu-
nication at runtime, leading to idle processors and adversely affecting the total
execution time. Nomnetheless, it is generally thought that unstructured adaptive-
grid techniques will constitute a significant fraction of future high-performance su-
percomputing. Various dynamic load balancing methods have been reported to
date [17, 18, 20, 21, 22, 37, 42, 67, 70]; however, most of them either lack a global
view of loads across processors or do not apply their techniques to realistic large-scale

applications.

1.1 Thesis Objective

The purpose of this research effort is to efficiently simulate steady and
unsteady aerodynamic flows around realistic engineering-type geometries on multi-
processor systems. The computational cost and memory requirements of large-scale
fluid dynamic simulations is prohibitive on classical scalar computers, while vector
computers do not seem to keep up with the demands of todays CFD applications [15].

Our thesis objective is to build a portable system for efliciently performing adaptive

MESH ADAPTOR LOAD BALANCER

INITIALIZATION

it
Initial Mesh Edge marking

Coarsening

FLOW SOLVER

Refinement

Figure 1.1. Overview of PLUM, our framework for parallel adaptive numerical com-
putation.

large-scale flow calculations in a parallel message-passing environment. Figure 1.1
depicts our framework, called PLUM, for such an automatic system. It consists of
a flow solver and a mesh adaptor, with a partitioner and a remapper that load bal-
ances and redistributes the computational mesh when necessary. The mesh is first
partitioned and mapped among the available processors. A flow solver then runs
for several iterations, updating solution variables. Once an acceptable solution is
obtained, a mesh adaption procedure is invoked. It first targets edges for coarsening
and refinement based on an error indicator computed from the flow solution. The
old mesh is then coarsened, resulting in a smaller grid. Since edges have already
been marked for refinement, it is possible to exactly predict the new mesh before
actually performing the refinement step. Program control is thus passed to the load
balancer at this time. A quick evaluation step determines if the new mesh will be
so unbalanced as to warrant repartitioning. If the current partitions will remain ad-
equately load balanced, control is passed back to the subdivision phase of the mesh
adaptor. Otherwise, a repartitioning procedure is used to divide the new mesh into

subgrids. The new partitions are then reassigned to the processors in a way that

minimizes the cost of data movement. If the remapping cost is less than the com-
putational gain that would be achieved with balanced partitions, all necessary data
is appropriately redistributed. Otherwise, the new partitioning is discarded. The
computational mesh is then actually refined and the flow calculation is restarted.
Notice from the framework in Fig. 1.1 that splitting the mesh refinement
step into two distinct phases of edge marking and mesh subdivision allows the sub-
division phase to operate in a more load balanced fashion. In addition, since data
remapping is performed before the mesh grows in size due to refinement, a smaller
volume of data is moved. This, in turn, leads to significant savings in the redis-
tribution cost. However, the primary task of the load balancer is to balance the
computational load for the flow solver while reducing the runtime communication.
This is important because flow solvers are usually several times more expensive than
mesh adaptors. In any case, it is obvious that mesh adaption, repartitioning, proces-
sor assignment, and remapping are critical components of the framework and must
be accomplished rapidly and efficiently so as not to cause a significant overhead to

the flow computation.

1.2 Historical Review

The introduction of grid adaption in a parallel environment generally inval-
idates the initial decomposition, since the computational requirements have changed
nonuniformly on each processor. Therefore it is critical that the load be dynamically
rebalanced as part of the adaptive calculation procedure. The general problem of dy-
namic load balancing has been widely studied in the literature and many techniques
have been proposed for parallel systems. Their performance depends on several
factors in addition to the specific application. These include the interconnection
network, the number of processors, and the size of the problem. The abstract goal

of load balancing can be stated as follows [73]:

Given a collection of tasks comprising a compulalion and a set of processors on which
these tasks can be executed, find the mapping of tasks to processors that minimize

the runtime of the compulation.

Various methods of dynamic load balancing have been reported to date,
however, most of them lack a global view of loads across processors. Some of these
techniques are not scalable, others have only been implemented on toy problems,
many theoretical schemes are too complex to reasonably implement, and some meth-
ods fail to consider communication locality. A popular approach is to rely on local
migration methods where each nodes decisions are based only on local knowledge,
and loads are exchanged between neighboring processors. The following section ex-

amines some of the dynamic load balancing techniques in the literature.

1.2.1 Combinatorial Methods
One way of performing dynamic load balancing is through general combi-
natorial techniques such as simulated annealing or genetic algorithms. Simulated

Annealing (SA) [46] is a popular heuristic method for finding suboptimal solutions

to combinatorial problems. The technique is analogous to a method in statistical
mechanics designed to simulate the physical process of annealing. SA simulates
the slow cooling of solids as a way to approximate the solutions to combinatorial
problems. It works by iteratively proposing new distributions and evaluating their
quality. If the new solution is an improvement over the previous iteration that state
is accepted. Otherwise the new solution may be chosen according to a probability
which decreases as the temperature cools. This process continues until the solution
state is frozen and no further improvements can be made. SA requires the user to
specify several parameters including the starting temperature and cooling schedule.
In general, finding a combination of these parameters to produce a balanced work
load in a small amount of time is difficult, because these inputs may differ for each
problem.

Genetic Algorithms (GA) [45] are a model of machine learning which derive
their behavior from a metaphor based on the processes of natural evolution. It is
considered a general and robust optimization method. Briefly, GA starts with an
initial population which is typically generated randomly and consists of a set of
individuals, or in our case a work load distribution. A set of generic operators
are used to generate new individuals from the current population using a process
called reproduction, consisting of crossovers and mutations. The basis of GA is that
individuals which contribute to the minimization of the object function are more
likely to reproduce. Omnce again, a large number of parameters must be set for a
successful distribution.

In general, stochastic optimization techniques on their own are not a popu-
lar approach for solving load balancing problems. They can be slow, trapped in local
minima, and their behavior depends on many parameters which must be carefully
tuned for each application. These methods, however, may be very useful in fine

tuning an existing load distribution.

Another combinatorial approach is to use probabilistic techniques. In Ran-
dom Seeking [49], source processors randomly seek out sink processors for load bal-
ancing by flinging probe messages. The probes not only locate sinks, but also collect
load distribution information which is used to efficiently regulate load balancing
activities. This method works well for certain types of problems such as parallel
best-first branch and bound algorithms.

Random Matching [31] is an algorithm based on solving the abstract prob-
lem of Incremental Weight Migration on arbitrary graphs, where edge mappings are
randomly chosen based only on local information. This is a simple, randomized
algorithm which provably results in asymptotically optimal convergence toward a
perfect balance. In general these probabilistic techniques are not suitable for bal-
ancing adaptive mesh computations. They require too many iterations, could result
in disjoint subdomains, ignore edge weights, and send small messages across the

network resulting in a high cumulative start up cost overhead.

1.2.2 Local Diffusive Methods

Diffusion is a well know algorithm for load balancing in which tasks model
the heat equation by moving from heavily loaded processors to lightly loaded neigh-
bors. A processor’s neighbor may be defined by its hardware topology or the con-
nectivity of the distributed domain. Diffusion was first presented as a method for
load balancing in [20] and is defined as follows: For a system of P processors, let
w;(t) be the work load on processor 7 at time {. Adjust the workloads at time ¢ + 1

as follows:

wilt+ 1) = wi(t)+ X (wi(t) - wi(1)) /2 (1.1)

JEN(7)
where N (1) is the set of all processors connected to processor ¢. This process can be

mapped onto the diffusion equation, and much is known about its properties. In par-

ticular, it can be shown that this process will eventually converge. The convergence

time, 7, however grows like 7 & %2 which is rather high.

Kohring [42] presents a simple non-linear variant on the diffusion scheme
which considers strip decompositions of the domain. Each processor calculates its
own load, by measuring the elapsed CPU-time since the last load balancing step. If
a processor finds that one of its neighbors has needed more CPU-time than itself,
it transfers one complete row of link-cells to that neighbor. This algorithm shows
better convergence properties then the standard diffusion methods.

The basic diffusion algorithm is improved in [73] by using a second-order
unconditionally stable differencing scheme. This algorithm improves convergence by
allowing larger time steps to be taken without adding substantial complexity. The
task transfers are still limited to nearest neighbors in this approach.

Sender Initiated Diffusion (SID) [74] is a highly distributed asynchronous
local approach which makes use of nearest neighbor load information to apportion
surplus load from heavily loaded processors to underloaded neighbors. Here proces-
sors whose loads exceed a certain prespecified threshold, apportion the excess load
to deficient neighbors. Receiver Initiated Diffusion (RID) is the converse of the SID
strategy in that underloaded processors request loads from overloaded neighbors.
For most cases RID has been shown as being a superior approach to SID.

Cyclic Pairwise Exchange is an algorithm presented by Hammond [32] in
which processor pairs are defined by the hardware interconnections. Pairwise ex-
changes of tasks are then performed to iteratively improve an imbalanced load. This
method has been shown to improve the mapping time of SA by up to a factor of six.
Unfortunately this approach works best for SIMD architectures, and task movements
are performed one at a time.

Tiling is another approach to dynamic load balancing originally based on

the work of Leiss and Reddy [47]. This procedure is modified by Devine et al. [24]

to migrate finite elements between processors. Each processor is considered a neigh-
borhood center, where a neighbor is defined as that processor and all processors
which share its subdomain boundaries. Processors within a given neighborhood are
balanced with respect to each other using local performance measurements. Task
migration occurs from highly loaded to lightly loaded neighbors within each neigh-
borhood. This iterative process continues until the load is globally balanced. In [23]
only one iteration of the tiling algorithm is performed, thereby not achieving a global
balance in exchange for speed.

To incorporate more global information, Shephard et al. [58] use a modified
Tiling technique where the processors are hierarchically arranged as nodes in a tree.
The load is then balanced by iteratively migrating the work from heavily loaded
processors through the tree until the load distribution is within a specified tolerance.
This methodology has an improved worst case load imbalance over the flat Tiling
model if enough iterations are permitted.

We believe that these local iterative techniques are not ideally suited for
dynamically balancing unsteady flow calculations. These applications are prone to
dramatically shifting the load distribution between adaption phases, causing small
regions of the domain to suddenly incur high computational costs. Local diffusion
techniques would therefore be required to perform many iterations before global con-
vergence, or accept an unbalanced load in exchange for faster performance. Also,
by limiting task movement to nearest neighbors, a finite element may have to make
several hops before arriving at its final destination. Current hardware architectures
such as the IBM SP2 use wormhole routing making it unnecessary for a unit of work
to be moved to more than one processor. Since the remapping must be frequently
applied, its cost can become a significant part of the overall performance and must

therefore be minimized. By moving large chunks of work units directly to their

destinations, the high start up cost of interprocessor communication can be amor-
tized. We therefore assert that there exists a need for balancing strategies which can

globally coordinate the distribution of all workloads within the system.

1.2.3 General Global Methods

Many global load balancing approaches are addressed in the literature. The
Dimension Exchange Algorithm (DE) is a global technique which steps through each
dimension in a hypercube. At each step ¢ a processor exchanges workload with its
dimension ¢ neighbor in such a way that their load becomes equal. After log(P)
passes, all P processors are guaranteed to have the same workload. DE has been
shown to outperform several local schemes [74] including nearest neighbor diffusion
and hierarchical balancing methods. This algorithm is ideal for hypercubes and store-
and-forward networks, but is not well suited for wormhole routed systems since the
global movement of data will usually require multiple hops.

Another approach to global load balancing is based on prefix computations

or scans [33].

A scan (6,V) on a vector V = (Vq,---,V,) with the associative operator
@ gives as a result the vector of partial results (Ig, V1, Vi @& Vs, -+, V1 & V,,_1) where

Ig is the identity for 6.

This operation can be carried out in O(logP) time. Load balancing techniques
based on this operation are interesting because they preserve decomposition locality,
i.e., given a definition of a neighborhood, tasks which are neighbors before the load
balance step will be neighbors afterwards as well.

The algorithm by Baigioni [6] first performs a scan of the load on each
processor, from which it calculates the flow. This is defined as the difference between
the processor index multiplied by the average work and the value for the scan in that

processor. The absolute value of the flow in any particular processor represents the

10

activity that must be moved to another the processor. This algorithm guarantees a
perfect load balance, but can only communicate a unit of work one step at a time and
is most suitable for SIMD architectures. A variation of this algorithm called Position
Scan Load Balancing (PSLB), communicates the work directly to the destination
processor, making it more suitable for MIMD systems [33]. This methodology is
currently limited to structured grids and does not consider subdomain boundary
quality.

A theoretical global technique by Bogleav [14] uses linear programming
algorithms to exactly load balance tasks on arbitrary topologies. This solution is
computed using the simplex method which is considered a fast and accurate op-
timization technique. Unfortunately the computation time is polynomial in the
number of elements which makes it prohibitively expensive within our framework.

Index-based algorithms are another approach to the partitioning problem
presented by Ou, Ranka, and Fox [51]. First, vertices of a graph are mapped onto one
dimensional list, which is then distributed among the processors by assigning con-
tiguous blocks of vertices to each partition. When the computational load changes,
the graph can be remapped by repartitioning the one-dimensional list. This requires
calculating the indices of the new vertices and combining them with the vertices of
the original list, which corresponds to merging an unsorted list of integers to a sorted
list. This operation can then be performed quickly in parallel. Unfortunately, the
index-based algorithms assume that only small perturbations are made in the load,
which does not hold true for unsteady flow problems. Subdomain interface quality
is also inferior to other methods, since mapping a three dimensional grid onto a one
dimension list results in degradation of boundary information.

In [58] an integrated system is built in a parallel framework which includes:
mesh generation, equation solution, mesh enrichment, mesh migration, and load

balancing. To date, this work mostly closely resembles our efforts. Here, two load

11

balancing schemes are compared in an adaptive grid calculation on a 128 node IBM
SP2. The first is a global repartitioning scheme based on a parallel version of Iner-
tial Recursive Bisection (PIRB) while the second is the more iterative approach of
hierarchical tiling. PIRB has two advantages over IRB [44] in a parallel setting: its
execution time decreases as the number of processors decrease; and the distributed
mesh no longer needs to be gathered on one processor before the partitioning phase
begins, which can become an expensive operation in both time and space as the mesh
grows. The preliminary test results indicate that the iterative load migration scheme
tends to be more computationally expensive than the global PIRB algorithm, while
at the same time yielding lower quality subdomains. Although these tests are by
no means exhaustive, they do support our claim that a global methodology is the

superior approach for addressing dynamic load balancing on these types of problems.

1.2.4 Repartitioning Methods

It usually considered too expensive to repartition the entire domain in the
inner loop of adaptive flow calculations, due to the potentially high partitioning and
data movement cost. Some dynamic load balancing techniques reuse the original par-
tition by only considering the transfer of those elements located on the subdomains
boundaries. In the work of Vanderstraeten et al. [69] a decomposed domain under-
goes one level of adaptive refinement resulting in an unbalanced load. A comparison
is then made between retrofitting the original decomposition along its boundaries
(using SA) and performing the decomposition from scratch (using the Greedy tech-
nique of Farhat [57] followed by SA). The results indicate that the latter technique
performed faster, contained higher quality subdomains, and required fewer element
exchanges between partitions. Since the adaption phase created many new elements
in a small region, as is common in unsteady flows, the original decomposition is not

necessarily a good starting point for the retrofitting approach. Retrofitting is only

12

useful when a small percentage of the elements are refined in a consistent manner
throughout the previously generated subdomains.

Many heuristics have been developed for graph partitioning since the op-
timal solution is an NP-hard problem [30]. Spectral bisection algorithms [25, 26]
are a class of partitioning techniques developed in the early 1970’s which are known
to produce high quality subdomains for a wide class of problems. These ideas were
extended in Recursive Spectral Bisection (RSB) by Simon [61] for partitioning finite
element meshes. Unfortunately, spectral methods are considered too expensive to
be performed within the inner loop of time critical computations. This is especially
true when the domain size grows in an adaptive refinement, since computing the
Fiedler vector for a problem of size n, is O(ny/n) [2]. Several attempts have been
made to integrate spectral techniques with dynamic load balancing. Walshaw and
Berzins [74] propose a method called Dynamic Recursive Spectral Bisection (DRSB),
which limits the repartitioning time by clustering internal vertices and only allowing
boundary elements to move across partitions. In other words, mesh elements which
are far enough away from an interprocessor boundary will be ignored during the
repartitioning phase, resulting in a clusters of mesh elements separated by a strip of
elements along the boundaries. The spectral partitioning algorithm then proceeds
on the reduced size graph, under the assumption that clustered nodes will remain
in their original partitions. This technique is only applicable under the assumption
that there will be a small change in the domain size, otherwise it reverts back to the
standard RSB method.

In [68] Driessche and Roose propose extending the (recursive) spectral bi-
section algorithm so that it applies to dynamically changing grids. They propose a
repartitioning technique which not only ensures that the grid subdomains are equally
sized with short interfaces, but attempts to minimize the cost of element transfers

across partition boundaries. Traditional spectral techniques do not incorporate this

13

last component, which can be a very costly operation. This more complex problem
is modeled as a partitioning problem, by extending the original grid with virtual
edges and virtual vertices. One virtual vertex is added to each partition with virtual
edges added between the virtual vertex and the vertices that correspond to the grid
points that were originally assigned to that processor. The weight of a virtual edge
is equal to the cost of transferring the corresponding grid point to another processor.
A partition of the extended graph not only cuts ordinary edges but also a number
of virtual ones, thereby modeling both the application communication cost and the
element transfer cost. The run time of this method is comparable to traditional spec-
tral algorithms, but due to the extension, several iterations of the new partitioner
must be executed to achieve a perfect load balance.

The HARP [60] repartitioner has recently been proposed as a method for
balancing adaptive grids. This new algorithm is based on the observation that for
most discretized bodies, a significant portion of their structure can usually be cap-
tured with only a few of their eigenvectors. Therefore, a preprocessing step computes
and stores the appropriate number of eigenpairs. In order for these values to remain
valid, the connectivity of the graph must remain the same throughout the computa-
tion. This can be achieved by adding weights to the vertices of the original graph,
as elements become refined. Once the flow computation starts, the Fiedler vector no
longer needs to be computed at each iteration, resulting in partitioning times which
are several orders of magnitude faster than RSB. Note that since the connectivity of
the graph remains the same, the partitioner must assume that edge weights do not
change throughout the course of the computation. The impact of this restriction is
application specific.

Multilevel algorithms [34, 36, 40, 71] present a way to reduce the com-
putational requirement of partitioning, while maintaining high quality subdomains.

These algorithms reduce the size of the graph by collapsing vertices and edges. The

14

smaller graph is then partitioned, and the results are uncoarsened to construct a par-
tition for the original graph. The most sophisticated schemes use several stages of
contraction and uncoarsening, and smooth the graph during the latter phase. It has
been shown [36] that for a variety of finite element problems, multilevel schemes can
provide higher partitioning quality than spectral methods at a lower cost. Chaco [34],
MeTiS [40], and Jostle [71] are three popular software package which provide several
powerful partitioning options.

Recently, several parallel multilevel schemes have become available. An ad-
vantage of these algorithms is that they are fast enough to be included in the inner
loop of adaptive flow calculations. PMeTiS [41] and Jostle-MS [72] are parallel, mul-
tilevel, k-way partitioning codes. They are considered global algorithms since they
make no assumptions on how the graph is initially distributed among the processors.
PMeTiS uses a greedy graph growing algorithm for partitioning the coarsest graph,
and uncoarsens it by using a combination of boundary greedy and Kernighan-Lin [43]
refinement. Jostle-MS uses a greedy algorithm to partition the coarsest graph fol-
lowed by a parallel iterative scheme based on relative gain to optimize each of the
multilevel graphs.

UAMeTiS [62], DAMeTiS [62], and Jostle-MD [72] are diffusive multilevel
schemes which are designed to repartition adaptively refined meshes by modifying
the existing partitions. Reported results indicate that these algorithms produce par-
titions of quality comparable to that of their global counterparts, while dramatically
reducing the amount of data that needs to be moved due to repartitioning. UAMeTiS
and DAMeTiS perform local multilevel coarsening followed by multilevel diffusion
and refinement to balance the graphs while maintaining the edge-cut. The differ-
ence between these two algorithms is that UAMeTiS performs undirected diffusion

based on local balancing criteria, whereas DAMeTiS uses a 2-norm minimization

15

algorithm at the coarsest graph to guide the diffusion, and is thus considered di-
rected. Jostle-MD performs graph reduction on the existing partitions, followed by
the optimization techniques used in Jostle-MS. One major difference between these
diffusive algorithms is that Jostle-MD employs a single level diffusion scheme, while
UAMeTiS and DAMeTiS use multilevel diffusion. An extensive performance anal-
ysis of the MeTiS and Jostle partiti