
Using IOR to Analyze the I/O performance for HPC Platforms

Hongzhang Shan1, John Shalf2

National Energy Research Scientific Computing Center (NERSC)2

Future Technology Group, Computational Research Division1

Lawrence Berkeley National Laboratory
{ hshan@lbl.gov , jshalf@lbl.gov }

Abstract

The HPC community is preparing to deploy petaflop-scale computing platforms that may
include hundreds of thousands to millions of computational cores over the next 3 years.
Such explosive growth in concurrency creates daunting challenges for the design and
implementation of the I/O system. In this work, we first analyzed the I/O practices and
requirements of current HPC applications and used them as criteria to select a subset of
microbenchmarks that reflect the workload requirements. Our analysis led to selection of
IOR, an I/O benchmark developed by LLNL for the ASCI Purple procurement, as our tool
to study the I/O performance on two HPC platforms. We selected parameterizations for
IOR that match the requirements of key I/O intensive applications to assess its fidelity in
reproducing their performance characteristics.

1. Introduction

The advent of petascale computing is leading to HEC platforms of unprecedented
concurrencies. Within the next three years, platforms will be built with unprecedented
concurrencies that may, in some cases include over a million computational cores. This
daunting level of concurrency will pose enormous challenges for future I/O systems that
must support efficient and scalable the data movement between disks and distributed
memories. In order to guide the design of the new underlying I/O system, we need to gain
a better understanding of applications requirements. However, it is impractical to run the
full-fledged applications for testing and evaluation of new I/O solutions. Therefore, we
also need to select a compact proxy benchmark that is capable of emulating both the disk
access patterns of a diverse workload.

In this paper, we describe the results of a comprehensive analysis of the I/O requirements
and usage patterns at the National Energy Research Supercomputing Center (NERSC).
We describe how the workload analysis fed into the selection of the LLNL IOR
benchmark to emulate elements of the NERSC workload. We describe a variety of
pitfalls for developing sensible and reproducible IO benchmark results. Finally, we
describe our analysis of the disk access patterns of a selection of I/O intensive
applications, and how to select suitable parameters for IOR to emulate their behavior.
We demonstrate that with suitable parameterizations, IOR is capable of closely
approximating the performance and behavior of the original application.

mailto:hshan@lbl.gov
mailto:jshalf@lbl.gov

2. Workload Analysis

We conducted a workload assessment that studied the current practice and future
requirements of I/O systems for the NERSC user community. Based on the project
descriptions in yearly allocation requests (ERCAP), 50 I/O intensive projects were
selected from field over 300 allocation requests for the NERSC computing platforms. For
this subset of 50 projects, each PI was asked to fill a detailed questionnaire regarding
their current I/O practices and future requirements of their applications. We also
performed some application drilldowns and performance studies to provide a more
detailed picture of application I/O requirements. The major results of this study include:

! Random access is rare; the I/O access is dominated by sequential read/write.
! Application I/O is dominated by append-only writes.
! I/O transactions sizes vary widely: from several Kilobytes to tens of megabytes.
! The majority of applications have adopted a one-file-per-processor approach to

disk-IO (POSIX I/O for Fortran unformatted I/O) rather than using parallel I/O
APIs (such as MPI-IO).

! Most applications use their own custom file-formats rather than portable self-
describing formats such as NetCDF or HDF5, but interest in these formats is
growing.

From a system level, the I/O activity is nearly equal between reads and writes – with
some dominance by the reads. However, the system-level activity includes data
movement to and from the archival storage systems. With a narrower focus on parallel
applications, the data flow for writes is more dominant. The following factors also
contribute to the dominance of writes in application I/O activity: 1) In most cases, users
will transfer the result files to other machines for post-processing or visualization analysis
and not on the same platforms on which the computation has been done. 2) Users
frequently output data to files for checkpointing or restart purpose. Most of these files
may never need to read back. 3) Input files to initialize the applications are often small –
particularly when the input conditions are automatically generated by the code from the
parameters supplied in the input-deck.

The majority of users continue to embrace the approach that each process uses its own
file to store the results of its local computations. An immediate disadvantage of this
approach is that after program failure or interruption, a restart must use the same number
of processes. A more serious problem is that this approach does not scale, and leads to a
data management nightmare. Tens or hundreds of thousands of files will be generated on
petascale platforms. A practical example [15] is that a recent run on BG/L using 32K
nodes for a FLASH code generated over 74 million files. Managing and maintaining
these files itself will become a grand challenging problem regardless of the performance.
Using a single or fewer shared files to reduce the total number of files is preferred on
large-scale parallel systems.

Most users still use the traditional POSIX for Fortran77 unformatted IO (usually
implemented on top of POSIX) interfaces to implement the I/O operations. The

traditional POSIX/F77 serial interfaces are not designed for the large-scale distributed
memory systems. Each read/write operation is associated with only one memory buffer
and cannot read/write a distributed array together. If the application has complex data
structures, this simple interface may cause significant inconvenience for application users
to reassemble the data files for the purpose of data analysis and visualization. In addition,
the parallel file reassembly process tends to be implemented serially, which performs
very poorly on cluster filesystems.

Even worse, we found that some users assign one process to handle all I/O operations.
The process, typically with MPI rank = 0, is responsible for collecting the data from all
other processes and writing it incrementally to the file, or for distributing the data to other
processes after it has read the data from the file. This practice not only limits the data size
to access (due to memory size limitation accessible to the responsible process) but also
serializes the I/O operations and significantly impacts the I/O performance.

Concurrent access to a single file using parallel I/O APIs such as MPI-IO [9] is slowly
emerging. This trend is motivated by using fewer files and will greatly simplify the data
analysis and archival storage. Ultimately, the users would like to have the same logical
data organization within the data file, regardless of how many processors were involved
in writing the file. However, there continues to be considerable resistance to this
approach due the perception that parallel I/O is less efficient than one-file-per-processor.
Some of the perception is derived from user experiences on non-parallel IO systems such
as NFS, but we hope to dispel many of those rumors with data collected on modern
parallel filesystems such as GPFS and Lustre.

Some users are beginning to adopt advanced file formats, such as HDF5 [10] and parallel
NetCDF [7,11] to increase the portability, enable file format evolution without breaking
older file readers, and improve data provenance. However, users also have a perception
that these higher-level file formats are more difficult to program and will cause
significant performance loss compared with the traditional POSIX interface. In this
report, we quantify the amount of overhead incurred by using these higher-level file
formats.

The data size of each I/O operations varies widely from small to very large (several KB
to tens of MB) on a per-application basis, which argues for a benchmark that is highly
parameterized to cover the range of application behaviors. However, small transactions
and random accesses result in very poor I/O performance and are often implicated as the
primary performance bottleneck in poorly written I/O implementations. Therefore we
worry that many of the applications that exhibit very small transaction sizes and
gather/scatter I/O behavior are not employing best-practices in the design of their I/O.
Designing an I/O subsystem around the raw statistical description of the I/O patterns of
the NERSC workload without understanding the intentions of the application developers
may result in selecting filesystem based on the requirements of poorly written
implementations! Therefore, we are slowly working through a deeper analysis of key I/O
intensive applications in order to select an even smaller subset that conform to best
practices in order to motivate future I/O system requirements.

Our selection of a proxy IO benchmark figures heavily into this analysis process because
it is used to set our expectations for the application I/O performance so that we can
validate our understanding of its behavior. Changing the I/O implementation to favor
larger transactions requires examination of the intended (logical) data layout, to see
whether the application is misusing the filesystem, or if the application requirements
demand use of small/scattered disk accesses. In most cases, we have found that poorly
formulated I/O patterns are indicative of a misunderstanding of the inefficient data
patterns that would presented to the filesystem, and that simple changes to the
implementation could result in dramatic improvements in performance.

3. Benchmark Selection

Our goal is to select (or write) a benchmark that is capable of emulating the full range of
workload characteristics that we identified in the survey of NERSC applications. Based
on the survey results, we characterized the I/O requirements of these applications into
following parameters: access pattern, file type, I/O transaction size, file size,
concurrency, and programming interface. We examined a wide variety of publicly
available and actively maintained I/O benchmarks [1,2,3,4,5,6,12]. We found that most of
the existing benchmarks are not reflective of the current I/O practice of HPC applications,
either because the access pattern did not correspond to that of the HPC applications,
because they only exercise POSIX APIs (eg. no MPI-IO, HDF5, NetCDF), or because
they measure only serial performance.

Ultimately our benchmark survey determined that LLNL’s IOR benchmark met all of our
requirements for a parameterized benchmark that reflects HPC I/O requirements in the
NERSC workload. IOR [1] was developed to set performance targets for LLNL’s ASCI
Purple system procurement. It focuses on measuring the sequential read/write
performance under different file size, I/O transaction size, and concurrency. It also
differentiates the strategies to use a shared file or one file per processor. More
importantly, it supports both the traditional POSIX interface and the advanced parallel-
I/O interfaces, including MPI-IO, HDF5, and parallelNetCDF. These alternative file
strategies can be directly compared head-to-head for an identical set of testing
parameters.

4. Organization of IOR benchmark

In this section, we describe the design of the IOR and its parameters. Figure 1 illustrates
the relationship between the file structure and the processors when writing to a shared
file.

File Structure: Distributed Memory:

Fig. 1. The design of the IOR benchmark for shared file type. Blocks are stored in
separate files for the 1-file-per-processor mode of operation.

Is organized as a sequence of “segments” that represent the application data for either one
simulated time step of a single data variable (eg. pressure for timestep1, 2, 3, etc..) or a
sequence of data variables (eg. pressure, temperature, velocity). For high-level file
formats such as HDF5 and NetCDF, each segment directly corresponds to a “dataset”
object in the nomenclature of these respective file formats. Each segment is divided
evenly among the processors who share this data file into units called “blocks” to
represent the array re-assembly performed by the parallel I/O layer. The process with
rank 0 gets the first block and the process with rank 1 gets the second block and so on.
The physical file layout corresponds to the application data resident in the distributed
memories. Each block is further divided into many transfer units called TransferSize, in
order to emulate the strided/stanza-like access patterns required to undo multi-
dimensional domain decompositions, such as reassembling a bunch of 3D subdomains
that reside on each processor into a single 3D logical array on disk. The TransferSize

Segment

Segment

time step,
dataset

transferSize
transferSize

…

transferSize

…

transferSize

…

transferSize

…

blockSize
(data for P0)

blockSize
(data for Pn)

blockSize
(data for P0)

blockSize
(data for Pn)

transferSize

P0

Pn

…

chunks directly correspond to the I/O transaction size, which is the amount of data
transferred from the processor’s memory to file for each I/O function call (eg. the buffer
size for a POSIX I/O call). For the one-file-per-processor case, the file structure is nearly
identical to the diagram in Figure 1, but except that each process will write/read data
to/from its own file (eg. each “block” is packed contiguously in separate files).

The following parameters of IOR are important to our study: API, SegmentCount,
BlockSize, FilePerProc, ReadFile, WriteFile, TransferSize, NumTasks. The API describes
which I/O API to use. Currently IOR supports POSIX, MPI-IO, HDF5, and NetCDF
APIs. The ReadFile and WriteFile indicate whether the read operation or write operation
will be measured. The SegmentCount decides the number of datasets in the file. The
BlockSize represents the size of the subdomain of the dataset stored on each processor.
The TransferSize is the I/O transaction size used to transfer data from memory to the data
file, which may require multiple transfers per segment to copy the entire “BlockSize” to
the data file. The NumTasks is the number of processors participated in the I/O
operations.

5. I/O Performance Analysis

We selected two HPC platforms for comparison in our study. One is the IBM
Power5/Fereration cluster running GPFS file system, located at NERSC. The other is the
Cray XT4 from the Oak Ridge National Laboratory running luster file system. They
represent two typical systems from HPC community. Given the relative size of these
systems, it is important to compare the systems on the basis of performance
characteristics rather than raw performance. Table 1 shows some of the highlights of
these two architectures.

Table 1. The highlights of architectures and file systems of Bassi and Jaguar

Name Location File System Processor Interconnect Peak I/O Band

Jaguar ORNL Lustre Power5 SeaStart 42 GB/s
Bassi NERSC GPFS Opteron Federation 6.4GB/s

5.1. Platforms
Jaguar: Cray XT4 with Lustre
Jaguar the 11,701 node Cray XT4 supercomputer is located at Oak Ridge National
Laboratory (ORNL) and utilizes the Lustre parallel filesystem. Each XT4 node contains a
dual-core 2.6~GHz AMD Opteron processor, tightly-integrated to the XT4 interconnect
via a Cray SeaStar ASIC through a 6.4~GB/s bidirectional HyperTransport interface. All
the SeaStar routing chips are interconnected in a 3D torus topology, where each node has
a direct link its six nearest neighbors. For the file system we tested, there are 144 OSTs,
18 DDN 9550 couplet, each delivering 2.3 ~ 3GB/s data transfer bandwidth, providing a
theoretical 42~54GB/s aggregate I/O rate.

Bassi: IBM Power5 with GPFS
The 122-node Power5-based Bassi system is located at Lawrence Berkeley National
Laboratory (LBNL) and employs GPFS as the global file system. Each node consists of
8-way 1.9 GHz Power5 processors, interconnected via the IBM HPS Federation switch at
4 GB/s peak (per node) bandwidth. The experiments conducted for our study were run
under AIX~5.3 with GPFS v2.3.0.18. Bassi has 6 VSD servers, each providing sixteen
2~Gb/s FC links. The disk subsystem consists of 24 IBM DS4300 storage systems, each
with forty-two 146 GB drives configured as 8 RAID-5 (4data+1parity) arrays, with 2 hot
spares per DS4300. For fault tolerance, the DS4300 has dual controllers; each controller
has dual FC ports. Bassi's maximum theoretical I/O bandwidth is 6.4 GB/s.

5.2 Caching Effects

When we measure the I/O performance, file caching (usually caused by the Unix “block
buffer cache”) result in anomalously high measured I/O rates because the data is being
buffered in memory rather than hitting the disk. The block-buffer cache can use any
unoccupied memory on a compute node to buffer I/O transactions and flush them to disk
gradually in order to improve apparent I/O performance for small files. Therefore IO
benchmarks must be scaled so as to exhaust the memory buffers and ensure that the
performance of the underlying disk subsystem is actually being measured. In order to
avoid caching effect on IO performance, benchmarks typically size the files to be several
times larger than node memory size. We use a testing protocol that determines the
optimal filesize to use to eliminate the influence of caching effects, by measuring the
system’s sensitivity to changes in the written file size. Ultimately we select a filesize for
each system that demonstrates the least sensitivity to changes in filesize.

100

1000

10000

100000

16
MB

32
MB

64
MB

12
8M

B

25
6M

B

51
2M

B
1G

B
2G

B
4G

B
8G

B

File Size / Processor

Write

Read

Fig. 2. The I/O performance under different file sizes on Bassi

(using POSIX, one file per processor).

On bassi, the memory size is 32GB/node, i.e., 4GB/processor while on Jaguar, the
memory size is 8GB/node, i.e., 4GB/processor. Fig. 2 shows the measured aggregate I/O
bandwidth for a node using one file per processor strategy for different file sizes (by
changing the blockSize in IOR to adjust file size, file size =
blockSize*numTasks*segmentCount, the transferSize is fixed at 2MB and there is only
one segment, 8 processors in a node on Bassi and 2 processors on Jaguar.)

When the file size is small, file caching has a considerable effect on the performance. We
can clearly see the two performance regions on Bassi. When the file size is 16MB, the
data is clearly being buffered in memory. At this time, the read performance is
corresponds to the memory read performance, which is around12GB/s. With the increase
of file size, the memory cache can no longer hold all the data and the read operation must
get the data from the disks. The read performance degrades and gradually becomes stable
when all data access is from disks. We see no caching effect on write. We find this
behavior somewhat unexpected because many serial I/O systems, such as SGI’s XFS
exhibit a more pronounced write-caching than read-caching, where the apparent
performance of writes is greatly exaggerated when the data files are smaller than
memory.

Surprisingly, we see no virtually no caching effect on Jaguar (Fig. 3). There is a
possibility that the Catamount microkernel on the compute nodes does not cache the file
data on this specific system. The fact that the performance increases with the file size is
probably an indication of metadata server overhead, which is gradually amortized by the
larger file.

0

50

100

150

200

250

300

350

400

450

500

16
MB

32
MB

64
MB

12
8M

B

25
6M

B

51
2M

B
1G

B
2G

B
4G

B
8G

B

File Size / Processor

Write

Read

Fig. 3. The I/O performance under different file sizes on Jaguar

(using POSIX, one file per processor).

By examining the results on these two platforms, we can notice that caching effects are
platform dependent and can be significant on read performance. However, there is no a
prior rule of thumb what file size to use to avoid the caching effect. To calibrate the
filesize for our benchmarks, we used an exhaustive search for the filesize where first
derivative of the performance was asymptotically zero (eg. least sensitive to changes in
filesize). For the following measurements, we use 256MB and 2GB file size per
processor for Bassi and Jaguar respectively.

0

500

1000

1500

2000

2500

3000

3500

4000

1 10 100 1000 10000 100000 1000000

TransferSize (KB)

Bassi, Write

Jaguar , Write

Bassi, Read

Jaguar, Read

Fig. 4. The performance effect of transferSize on Bassi and Jaguar.

5.3 The effect of transaction size
The transferSize is the amount of data to be transferred each time for a processor between
memory and file. Fig. 4 indicates that using larger transferSize is critical to achieve high
I/O performance, especially on Jaguar. When transferSize=1KB, the system overhead is
so high that only 2MB/s I/O performance is delivered. However, when 256MB
transferSize is used, the I/O performance could go as high as 3500MB/s, amazingly 1700
times better. On Bassi, the performance gap between small and large transferSize is much
more smaller. Jaguar is really focus on optimizing the performance for large files and
large I/O transaction sizes.

5.4 The effect of Parallel IO

In the earlier section, we have discussed the advantage of using fewer files on large
parallel platforms. Now, let’s look at the performance difference in Fig. 5 (write
performance) between using a single shared file by all processes and using a unique file
by each processor. On Bassi, these two strategies perform similar to each other. On
Jaguar, using shared strategy performs even better. This is perhaps related with the
metadata server, which has to manage thousands of files for unique file case instead of
one file for shared case. The read performance is very similar to the write performance.

0

5000

10000

15000

20000

25000

30000

35000

8 32 64 128 256 1024

No. Of Processors

Unique, Bassi

Shared, Bassi

Unique, Jaguar

Shared, Jaguar

Fig. 5. The effect of file types on write performance on Bassi and Jaguar

(transferSize= 2MB on Bassi, 256MB on Jaguar).

5.5 The effect of concurrency
Fig. 6 displays the aggregate read/write performance for different concurrencies in terms
of MB/s using POSIX shared interface. (Note that given the POSIX shared file
performance is nearly identical to the MPI-IO performance for these experiments, we
present only the POSIX results for simplicity.) On Bassi, at first, the aggregate
performance scales very well with increasing node counts (every node has 8 processors).
After the number of processors reaches 64 (8 nodes), the improvement of performance
starts to slow down and reaches its top when using 256 processors. We believe that the
back-end of Bassi’s GPFS storage system becomes saturated when the number of
compute nodes (8) is modestly larger than the number of VSDs that connect to the disk
subsystem (6 VSDs on Bassi).

On Jaguar, the performance scales well up to 256 processors and then starts to go
degrade. Recall that althought this platform has over ten thousands nodes, the I/O peak is
achieved at relatively low concurrency. But like Bassi, the peak is achieved when the
number of compute nodes is modestly larger than the number of IO servers for the back-
end of the disk subsystem. Also, there is a considerable performance gap between read
and write performance for higher concurrencies.

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

8 32 64 128 256 1024

No. of Processors

Bassi, Write

Bassi, Read

Bassi, Peak

Jaguar, Write

Jaguar, Read

Jaguar, Peak

Fig. 6. The I/O scaling performance on Bassi and Jaguar for POSIX Interface

5.6 The effect of programming interfaces
Finally, let’s look at the I/O performance under different programming interfaces. IOR
provides us with the unique ability to directly compare multiple parallel IO strategies
under identical testing parameters, for head-to-head comparisons under a variety of
parametric conditions. Although the most recent release of parallelNetCDF is able to
overcome the traditional 4Gigabyte filesize and dataset size limitations of the previous
versions, we discovered that it still cannot accommodate dataset dimensions that are
greater than 4billion elements[3]. Since the IOR benchmark expresses the datasets as 1D
arrays we had to modify the current IOR to fold the arrays into additional (redundant)
array dimensions. While this approach is impractical for realistic file storage purposes, it
enabled direct comparisons of NetCDF performance some of the larger datasets that
otherwise would not have been possible.

Fig. 7 and 8 exhibit the write performance for POSIX, MPI-IO, HDF5 (v1.6.5), and
paralleNetCDF (v1.0.2pre). On Bassi, MPI-IO performs very similar to POSIX, followed
closely by HDF5. However, the performance of parallelNetCDF falls far behind and
performs worst. We have not been able to collect results for parallelNetCDF at higher
concurrencies due to the long running time.

Jaguar shows similar performance behavior, although HDF5 performance is even more
closely matched to the MPI-IO performance than on bassi. We note that the default
striping on Lustre performs very poorly compared to one-file-per-processor. However,
the user-level ‘lstripe’ command can be used to set the striping to maximum, 144 OSTs in
the case of jaguar, which meets or even exceeds the one-file-per-processor performance.

The results show that users should expect performance of parallel IO strategies
(concurrent access to a single file) that matches one-file-per-processor performance.

Furthermore, the results demonstrate that advanced file formats such as pHDF5 should be
able to deliver performance comparable to that achieved when writing raw binary files
using MPI-IO. This will be a great relief for many HPC users who worry that adopting
the new parallel I/O interface may seriously slow down there applications.

Bassi

0

1000

2000

3000

4000

5000

6000

0 50 100 150 200 250 300

No. of Processors

Posix

MPI-IO

HDF5

NETCDF

Fig. 7 The performance effect of different programming interfaces on Bassi.

Jaguar

0

5000

10000

15000

20000

25000

30000

8 32 64 128 256 1024

No. of Processors

Posix

MPI-IO

HDF5

NETCDF

Fig. 8 The performance effect of different programming interfaces on Jaguar.

6 Application study
In this section, we are trying to relate the IOR performance to MADBench application
performance (16). If successful, IOR could be used to mimic application I/O behavior.

MADBench is derived directly from the analysis of very massive Cosmic Microwave
Background (CMB) datasets collected from satellite missions. Using a benchmark that is
derived directly from the production scientific application allows us to study the
architectural system performance under realistic I/O demands and communication
patterns. The parameters that are closely related with I/O are:

! The size of the pseudo-data, nPixel. All the matrices have the size of
nPixel*nPixel. Each matrix element is a double float variable.

! The number of the pseudo-data sets, nBin. There are total nBin matrices that are
evenly distributed among all the participated processors (when nGang=1) or the
subsets of the participants (when nGang > 1).

! The number of processor groups, Ngang. The processors are divided into Ngang
groups so that each group is responsible to compute nBin/nGang matrix
multiplications in the last phase of Madbench. The performance effect is a
tradeoff between computation and communication.

IOR vs. MADBench

-100%

-80%

-60%

-40%

-20%

0%

20%

40%

60%

80%

100%

Read,
Individual

Read,
Shared

Write,
Individual

Write,
Shared

%
 P

re
d

ic
ti

o
n

 E
rr

o
r Bassi

Jaguar UnderPrediction

OverPrediction

!

Fig. 9 The prediction error of using IOR to predict performance for MADBench.

Each matrix is written to the disk or read back independently. We assume nGang is 1 in
our analysis. In this case, the memory buffer size on each processor is
nPixel*nPixel*sizeof(double)/P. Madbench uses a weak scaling strategy, so the data set

size on a processor keeps constant. The typical memory buffer size used on a processor is
75Mb/s. The main I/O characteristic of this code all the processes read/write their local
subsection of the dataset sequentially using large I/O buffer concurrently. Therefor,
MadBench’s IO pattern can be easily simulated using appropriate parameterization of the
IOR benchmark.

Fig. 7 shows the prediction errors for 64 processors measured by IOR
(transferSize=2MB, segmentCount=1, blockSize=76MB, API=MPI-IO) to predict
MADBench I/O performance. We find that the predicted results match the MADBench
results very well on Bassi. On Jaguar, the write performance also matches well. However,
the read performance is modestly over-predicted. Currently we are examining whether
this poor prediction for read performance on Jaguar is due to the interference of other
applications during the benchmark data collection or system’s interference or the read
operation in MADBench is not implemented perfectly and needs to be improved. We are
investigating other applications, including Chombo, FLASH, and GTC.

7 Summary
In this work, we analyzed the NERSC workload to develop a better understanding of the
IO strategies used by a diverse array of applications. The workload analysis led to the
selection of IOR as our synthetic benchmark to represent the requirements of the NERSC
workload. We used IOR to study the I/O performance of two popular HPC platforms.

We have shown that the I/O performance of current HPC systems is highly affected
access file type, access pattern, file size, I/O transaction size (transfer size), and
concurrency. On Jaguar, in order to obtain good performance, large file size and large I/O
transaction size are absolutely required. On Bassi, such requirements are not quite as
demanding. We find that users should expect parallel IO and even advanced parallel file
formats such as HDF5 to match the performance of more primitive one-file-per-processor
POSIX IO. Rumors of performance loss that have discouraged adoption of advanced file
formats are potentially exaggerated, but the performance of parallelNetCDF falls far
behind the other interfaces.

We also observe that the best performance is achieved at relatively low concurrency on
both systems, so it is important not to assess parallel IO “scalability” in terms of parallel
speedup that exactly matches the speedup in FLOPs. One must determine what
concurrency is required to reach saturation for the disk subsystem and set expectations
based on that metric. IOR can be used to set expectations as to when the IO subsystem
achieves saturation.

Finally, we show that by choosing IOR parameters, it can be used to mimic the access
patterns of real applications. Not only does it mimic the access patterns, it is also
relatively good at predicting the performance for these applications. Further application
studies will appear in upcoming papers.

References

[1] IOR, http://www.llnl.gov/asci/purple/benchmarks/limited/ior/.
[2] Iostone, http://www.iostone.org

http://www.llnl.gov/asci/purple/benchmarks/limited/ior/
http://www.iostone.org

[3] Bonnie, http://textuality.com/bonnie
[4] PRIOmark, http://www.ipacs-
benchmark.org/index.php?s=download&unterseite=priomark
[5] Input/Output IObench, http://www.sdsc.edu/pmac/Benchmark/iobench/
[6] Effective I/O Bandwidth Benchmark,
http://www.hlrs.de/organization/par/services/models/mpi/b_eff_io/
[7] ParallelNETCDF, http://trac.mcs.anl.gov/projects/parallel-netcdf
[8] http://www.opengroup.org/platform/hecewg/uploads/40/10894/POSIX-extensions-
some-goals.pdf
[9] MPI-2: Extensions to the Message Passing Interface. http://www.mpi-
forum.org/docs/mpi-20-html/mpi2-report.html
[10] HDF5, http://hdf.ncsa.uiuc.edu/HDF5
[11] J. Li, W.K. Liao, R. Ross, R. Thakur, W. Gropp, R. Latham, A. Siegel, B. Gallagher,
and M. Zingale, “Parallel netCDF: A High-Performance Scientific I/O Interface”,
SC2003.
[12] Peter M. Chen, David A. Patterson, “A new approach to I/O Performance Evaluation
Self-Scaling Benchmarks, Predicted I/O Performance”, Proceedings of the 1993 ACM
SIGMETRICS Conference on Measurement and Modeling of Computer Systems.
[13] ASC/Alliance Center for Astrophysical Thermonuclear Flashes,
http://flash.uchicago.edu/website/home/
[14] MADbench2, https://crd.lbl.gov/~borrill/MADbench2/
[15] K. Antypas, A.C.Calder, A. Dubey, R. Fisher, M.K. Ganapathy, J.B. Gallagher, L.B.
Reid, K. Reid, K. Riley, D. Sheeler, N. Taylor, “Scientific Applications on the Massively
Parallel BG/L Machines”, http://ww1.ucmss.com/books/LFS/CSREA2006/PDP4125.pdf

http://textuality.com/bonnie
http://www.sdsc.edu/pmac/Benchmark/iobench/
http://www.opengroup.org/platform/hecewg/uploads/40/10894/POSIX-extensions-some-goals.pdf
http://www.opengroup.org/platform/hecewg/uploads/40/10894/POSIX-extensions-some-goals.pdf
http://www.mpi-forum.org/docs/mpi-20-html/mpi2-report.html
http://www.mpi-forum.org/docs/mpi-20-html/mpi2-report.html
http://flash.uchicago.edu/website/home/
https://crd.lbl.gov/%7Eborrill/MADbench2/

