Multicore Autotuning for Stencil-based PDE Solvers

Cy Chan

NERSC
(in collaboration with HPCRD: Future Technologies Group)
Lawrence Berkeley National Laboratory

August 21, 2008
Introduction

• High Performance Computing is heading towards a highly parallel future
 – We need to adapt existing scientific programs to properly utilize the new hardware

• Two goals that are seemingly at odds in HPC:
 – Optimize program for many parallel hardware platforms
 – Preserve a maintainable (and human readable) code base

• Possible approaches to autotuning scientific code:
 – Current solution: for each scientific program, write a perl script that generates many tuned versions
 – Our approach: create a framework that will work automatically for many different programs
Autotuning Stencil Kernels

- Our framework is targeted to stencil kernels
- Advantages of working with stencils:
 - Large amount of computational work that is data independent
 - Data access pattern is fixed, so optimizations can be made during array indexing
- Data independence is key:
 - Compilers spend lots of computation doing dependency analysis, affine transformations, etc.
 - We can avoid this step because we know we have a stencil
Our Stencil Autotuner

- Work presented here leverages previous work (Shoaib Kamil) that parses Fortran to produce an abstract syntax tree (AST)
 - Fortran has a clear multidimensional array representation and is commonly used in scientific codes
- Workflow:
 - Parser (Fortran Loop \Rightarrow AST)
 - AST Transformations (AST \Rightarrow AST)
 - Code Generation (AST \Rightarrow Fortan/C/CUDA code)
- Languages used:
 - Parser is written in lex and yacc
 - Outputs Lisp data structure through interface to C supported by Embedded Common Lisp
 - AST Transformations and Code Generation are written in Lisp
Input: Fortran Loop

Input: Fortran stencil loop:

\[
\begin{align*}
\text{do } & k = \ldots \\
\text{do } & j = \ldots \\
\text{do } & i = \ldots \\
B(i,j,k) &= A(i+1, j, k) \\
&+ A(i, j+1, k) \\
&+ A(i, j, k+1)
\end{align*}
\]

enddo
dodo
dodo
Output: C Loop (1)

- Output C array indexing (pointer chasing):

```c
for (k = ... ) {
    for (j = ... ) {
        for (i = ... ) {
            B[k-1][j-1][i-1] =
                A[k-1][j-1][i-1] +
                A[k-1][j][i-1] +
                A[k][j-1][i-1];
        }
    }
}
```
Output: C Loop (2)

- Output C preprocessor indexing:

```c
#define _A_Index(G1,G2,G3) ((G3)*ny+(G2))*nx+(G1)
#define _B_Index(G1,G2,G3) ((G3)*ny+(G2))*nx+(G1)

for (k = ... ) {
    for (j = ... ) {
        for (i = ... ) {
            B[_B_Index(i-1,j-1,k-1)] =
                A[_A_Index( i ,j-1,k-1)]
                + A[_A_Index(i-1, j ,k-1)]
                + A[_A_Index(i-1,j-1, k )];
        }
    }
}
```
Output: C Loop (3)

- Output C pointer/offset indexing:

```c
for (k = ... ) {
    for (j = ... ) {
        double *G1, *G2;
        int G3 = _A_Index(-1,1,0);
        int G4 = _A_Index(-1,0,1);
        for (i = ... ,
             G1 = B + _B_Index(i-1,j-1,k–1),
             G2 = A + _A_Index( i ,j-1,k–1);
             ... ; i++, G1++, G2++) {
        }
    }
}
```
C Loop Test Framework

- We can now generate C stencil loops
 - Need to incorporate them into a program
- A template program `#includes` an auto-generated loop
- To test performance, we generated a bunch of loops
 - Applied AST transformations to vary cache blocking strategy
- We ran the template program for each loop to get timing data
- Testbed: NERSC Jacquard
 - 2.2 GHz AMD Opteron
C Loop Performance
7-Point Stencil Probe (N = 128)

Minimum values:
Fortran: (1,64,128): 1.99e-2
C-PP: (1, 1, 1): 2.05e-2
C-Ptr: (1, 1, 1): 2.16e-2
C Loop Test: Lessons Learned

- Fortran still competitive with optimized C code
 - Best case Fortran code is 8% faster than best case C code
- Performance sensitive to initialization values
 - Initializing values of data block to 1 resulted in early completion of a division in kernel
 - Computed 0 divided by 1
 - Computing 0 divided by X or Y divided by 1 also fast
 - Should initialize data to random numbers!
Stencil Parallelization with CUDA: Domain Decomposition

- Nested for loop specifies an **index block** to be iterated over
- Parallelize by splitting index block into sub-blocks
- Assign sub-blocks to different thread blocks on GPU
- Each thread block uses multiple threads to iterate over its sub-block

Image: NVIDIA
Stencil Parallelization with CUDA: Memory Hierarchy

- NVIDIA GPUs have a memory hierarchy
- **Global** memory is uncached
- **Shared** memory is on chip but small and inaccessible from host
- Two versions:
 1) global memory only
 2) use shared memory as local store (**still under development**)

Image: NVIDIA
Requirements for Our CUDA Framework

- Fortran loop must be contained within a time step
 - All calculations in the loop are independent
- Arrays must use loop index variables consistently, e.g.:
 - If \(A(i, j) \) appears, then \(A(j, i) \) cannot
- Index expressions are limited to the form:
 - \(\text{var} + \text{const} \)
 - necessary to compute extents in each array dimension
CUDA Output

- As with the C code generator, we take a Fortran loop as the input
- Produces two functions:
 - 1) Direct function – runs the stencil kernel on data already residing in device memory
 - 2) Wrapper function – copies an array from host to device, calls the direct function for a user-specified number of iterations, and copies the result back to the host
- Both functions allow the user to specify at runtime:
 - the problem size
 - data and thread blocking strategies
CUDA Code Generation Mechanics

- CUDA language: C with some extensions for GPU
 - Leverage our work with C
- In addition to generating the stencil loop, we need multiple auxiliary code snippets, including:
 - Indexing macros
 - Function definitions and calls
 - Memory management (allocations and copies):
 - host memory ⇔ device global memory ⇔ device shared memory
- Generic functions in template do heavy lifting:
 - Allocations (byte-alignment, dimension data)
 - Copies (coalesced memory access)
Example: Template Wrapper Function

```c
void cudaStencilWrapper( ... ) {

#include "kernelSpecific/allocations.c" // allocate device memory for arrays
#include "kernelSpecific/copyIn.c" // copy in arrays to device

    if (copyFlag) {
#include "kernelSpecific/copyToOutput.c" // copy input array to output array
    }

    for (int i = 0; i < numIterations; i++) {
        if (i > 0) {
#include "kernelSpecific/swapArrayPointers.c" // swap input & output ptrs
        }
        cudaStencil(
#include "kernelSpecific/hostFuncCallArgs.c" // call direct stencil function
                indexDim, indexBlockDim, threads);
    }

#include "kernelSpecific/copyOut.c" // copy out arrays from device
#include "kernelSpecific/frees.c" // free device memory
}
```
CUDA Testbed Specifications

- NVIDIA GeForce GTX280 GPU
 - Vector Cores: 30
 - Each core has 8 lane SP MAD and one DP MAD
 - Clock: 1.3 GHz
 - Peak: 624 Gflops SP, 78 Gflops DP
 - Device memory: 1 GB GDDR3
 - Memory bandwidth: 141.7 GB/s, 127 GB/s sustained
 - Host interface (PCIe 2.0): 6GB/s sustained
CUDA Performance
7-Point Heat Equation (N = 256)
NVIDIA GTX280 – Global Memory Only

CUDA Stencil Loop Performance

Maximum values:
- Single: (32, 32, 32, 32, 8, 1):
 25.1 Gflops
- Double: (32, 32, 64, 16, 16, 1):
 12.9 Gflops
Comparison Vs. Hand-Tuned 7-Point Heat Equation Code

- Hand-tuned code with hard-coded data and thread block sizes achieves 76 Gflops single precision and 27 Gflops double precision.
- Hand-tuned code leverages non-generalizable heuristics for maximum performance:
 - Some data are kept in registers instead of shared memory.
 - Circular queue is only one plane wide, so no circular addressing required.
- Our framework must work for generalized stencils:
 - One possible solution: try to recognize special cases and implement applicable heuristics.
 - Can default to general case.
Future Work

- Finish shared memory version of CUDA code
 - Reduce global device memory communication
 - Increase computational overhead
- Extend code generation framework to support pthreads on SMPs and chip multiprocessors
 - Can use same domain decomposition as CUDA
- Identify cases where we can exploit heuristics used in the hand-tuned version
- Reproduce all capabilities of the autotuning strategies previously presented by our group
We have built a framework that takes maintainable Fortran code and produces tuned versions of that code in C and CUDA. This work generalizes existing work (that uses perl scripts) to accommodate a broader range of stencil kernels. Performance is already reasonably good given the generality of framework.