
CFD Modeling in the San Francisco Bay and Delta

E. Ateljevich ∗ P. Colella† D.T. Graves ‡ T.J. Ligocki§ J. Percelay ¶

P.O. Schwartz‖ Q. Shu ∗∗

Abstract

We describe a two-dimensional shallow water model whose

initial implementation simulates flows in the San Francisco

Bay and Sacramento-San Joaquin Delta. This model, called

REALM, is based on a Cartesian grid, embedded boundary

discretization of the shallow water equations. We employ

parallel computation and adaptive mesh refinement for

rapid computation. Grid generation from digital elevation

models faithfully represents the shoreline and the use of

implicit functions and constructive solid geometry permits

the representation of structures such as gates.

1 Introduction

Motivation for modelling the San Francisco Bay-Delta
arises from water management concerns such as the
rapid decline of pelagic organisms, increased demand
for water, pollution from agricultural run-off, and the
danger from levee breaks and island flooding. Policy
makers ask difficult hydrodynamic, water quality, and
biological questions that traditional computer models
are not able to answer sufficiently quickly, flexibly or
accurately.

Research conclusions lead to policy decisions
through an open, public review process, which is fa-
cilitated by the use of open-source models. Specific re-
search questions can involve large time and spatial scales
or require detailed modeling involving complicated to-
pograpghy and man-made structures. Static unstruc-
tured grid models have been applied to this domain for
decision support in [10] using the pressure correction
algorithm in [5].

The desire for a reliable, extensible open-source
model employing high performance numerical algo-
rithms has led the Department of Water Resources
(DWR) to initiate a collaboration with Lawrence Berke-
ley National Lab and UC Berkeley to produce a high-

∗California Department of Water Resources
†Lawrence Berkeley National Lab
‡Lawrence Berkeley National Lab
§Lawrence Berkeley National Lab
¶L’Ecole Polytechnique
‖Lawrence Berkeley National Lab

∗∗California Department of Water Resources

performance computer model that can address the
pressing questions outlined above. We call this model
REALM (River, Estuary, And Land Model). The DWR
has identified core physical processes and scenarios in
the Bay-Delta that will be useful to simulate, which we
describe in the next section. In the remainder of the
paper we describe the extent of our progress using fi-
nite volume methods with adaptive Cartesian grids and
embedded boundaries to satisfy these modeling require-
ments.

2 Physical Processes in SF Bay and Delta

Useful models must be capable of simulating shallow
water flow and transport in an estuary. The shallow
water equations include terms representing advection,
gravity waves, point sources of mass, friction, wind, dif-
fusion, and the effect of salt concentrations on density.
Boundary conditions as well as friction and dispersion
coefficients may all vary with space and time.

The Bay-Delta domain also contains certain re-
gions, such as the Delta Cross Channel, Stockton Ship
Channel and Carquinez Straits, where flow, water qual-
ity and particle trajectories are significantly affected
by secondary circulations and stratification. Selective
modeling in three-dimensions will sometimes be neces-
sary. Similarly, in many regions the Delta flow is chan-
nelized and essentially one dimensional. The need for
long simulation times over large spatial scales also re-
quires the ability to selectively model 1D flows. Inter-
tidal habitat modeling, flooding and sediment transport
require the ability to model moving shorelines. Con-
taminant transport concerns require modeling the ad-
vective and diffusive transport of passive conservative
constituents and extensibility to non-conservative reac-
tions. Finally, data assimilation, ecological applications,
and some types of sediment transport require the capa-
bility to represent the transport of particles, including
particles exhibiting behavior.

These concerns shaped the following goals for the
model:

• Simulation of the entire Bay-Delta at once.

• Simulations of one, two and three dimensional



flows.

• Salinity and contaminant modeling.

• Simulation of tidal mud flats.

• Simulation of levee breaks, floods, and flooded
islands.

• Faithful representation of gates, structures, and
shoreline.

• Rapid grid generation.

• Simulation of the movements of fish eggs and young
fish.

These goals led to the following design decisions:

• Embedded boundary methods.

• Grid generation from implicit functions.

• Conservative discretization.

• Adaptive mesh refinement.

• Parallel computation.

Embedded boundary methods have been in exis-
tence since the 1960s; for a discussion of some of the
history, see [6]. Embedded boundary (EB) methods
use a cut-cell discretization that faithfully represents
the bathymetry and natural shorelines. Grid genera-
tion from implicit functions permits rapid prototyping
of new problems from digital elevation models (DEMs)
and the use of constructive solid geometry to repre-
sent detailed structures such as gates. Conservative dis-
cretizations remain robust in marginally resolved calcu-
lations that are typical in long-term studies. Embedded
boundaries characterize the domain boundary indepen-
dently of the Cartesian mesh; hence, our model is ex-
tensible to moving boundary problems such as island
flooding and intertidal wetting and drying.

Adaptive mesh refinement (AMR, [3], [2]) focuses
computational resources on areas of interest and parallel
computation increases the computational resources for
a given problem. Refinement can be static or dynamic
– adapting to transient phenonmena such as floods or
contaminant fronts. Our design decisions are consistent
with a particle model that simulates the passive advec-
tion of fish eggs or sensors as well as simple behavior
characteristics of young fish or active sensors. See Fig-
ure 1 for an illustration of how an adaptive mesh covers
the San Francisco Bay and Western Delta and Figure
2 for a close up of AMR results with passive particle
modeling.

A key facet of the project is the efficient reuse of
established algorithms in a new applied setting. Adap-
tive mesh refinement requires careful implementation
and load balancing when implemented on parallel, dis-
tributed memory systems [12]. In our AMR algorithm,
data must be interpolated, coarsened and moved effi-
ciently between multi-block elements at different refine-
ment levels. Embedded boundaries complicate the data
movement when non-conservative mass is redistributed
[8] and EB algorithms require a description of the topol-
ogy of the unstructured cut cells. These grid-related
requirements are common across EB-AMR applications
in fields as diverse as estuary modeling, gas dynamics,
biology and astrophysics. EB-AMR would be expen-
sive and redundant for modelers in individual research
domains to replicate and test in software. Recognizing
this, the LBNL partners in the present collaboration
have successfully abstracted the EB-AMR components
into a solver infrastructure (Chombo) independent of
the estuary physics. The present collaboration is able
to leverage these investments and serves as a test of
the generalization in an applied setting with numerous
practical complications.

3 Shallow Water Equations

We plan to integrate the equations for the conservation
of mass and momentum of water, the advection and dif-
fusion of salt and other constituents, and the movement
of neutrally buoyant particles. Our initial model is two
dimensional. Our shallow water formulation is based
on the depth-integrated Navier-Stokes equations, with
a hydrostatic treatment of pressure, Boussinesq assump-
tion concerning salt-induced horizontal (baroclinic) den-
sity variation and friction. The formulation presented
here defers the inclusion of diffusion in order to concen-
trate on the effects of geometry.

The problem domain is an estuary system of bays
and channels. The water column is delineated on
the bottom by a rigid boundary of known bathymetry
and on the top by a free surface. For the present,
the shoreline and the bottom do not change with
time. Ultimately, the design anticipates a shoreline
that evolves in time due to tides and flooding. The
treatment at the boundaries includes the effect of three
dimensional geometry on the two dimensional flows.

3.1 Conservation equations In terms of the height
of the water column h, local velocities u and v and salt
concentration s, the equations in conservation form are:

∂U

∂t
+

∂F x + F x
d

∂x
+

∂F y + F y
d

∂y
= S,(3.1)



where the vector of conserved variables:

U =




h
hu
hv
hs


(3.2)

represents the water mass/height h, momentum hu and
hv and mass of salt per unit area hs. The flux across cell
faces in the x- and y-directions combine the convective
acceleration and gravity wave terms:

F x =




hu

hu2 + gρh2

2ρ0

huv
hus


 and(3.3)

F y =




hv
huv

hv2 + gρh2

2ρ0

hvs


 .(3.4)

In these equations, g denotes the gravitational constant,
ρ0 denotes the density of fresh water, and

ρ = ρ(s(x, y, t))

denotes the density of salt water. The diffusive terms
F x

d and F y
d combine momentum diffusion due to eddy

diffusivity and a more general dispersion term for salt
(using a diffusion constant D):

F x
d =




0
−ǫh∂u

∂x

−ǫh ∂v
∂x

−Dh ∂s
∂x


 and(3.5)

F y
d =




0
−ǫh∂u

∂y

−ǫh∂v
∂y

−Dh ∂s
∂y


 .(3.6)

The sources and sinks include the pressure component
due to changes in bottom elevation, friction and any
other local sources of mass or stress such as wind. Here
we focus on bottom pressure and friction:

S =




0
−

gρ
ρ0

hbx − τx

−
gρ
ρ0

hby − τy

0


 ,(3.7)

where b(x, y) is the elevation of the bed and τx is a
bottom stress given by a zero-order closure relation
using the Manning’s friction coefficient [4]:

τx =
ρghn2

ρ0h
4

3

u
√

u2 + v2, τy =
ρghn2

ρ0h
4

3

v
√

u2 + v2.

We use a split treatment of the hyperbolic and diffusive
components. First we solve the hyperbolic component
of the equations, referencing the diffusive flux Fd only in
a predictor steps involving Taylor expansions in space
and in time. Subsequently, we use the hyperbolic ad-
vance as a source in the elliptical solver for diffusion.
The presentation here emphasizes the hyperbolic com-
ponent, which dominates in estuary flow.

3.2 Primitive form It is common to use “primitive”
variables W = W (U) that make the problem smoother
or simplify the characteristic structure of the equations.

For shallow water, we consider the change of vari-
ables

W = [δ, u, v, s]T ,

where δ is a perturbed surface above an unperturbed
reference depth h0 as shown in Figure 3. The primitive
variable δ is related to depth by h = h0 + δ. One
advantage of the perturbation formulation is that the
water surface is generally smoother than the depth h.
A second advantage is that h0 generalizes in a way that
will allow us to introduce aspects of the 3D geometry in
the 2D discretization.

The primitive formulation can be derived by pre-
multiplying the conservation equations 3.1 by ∇UW ,

and expanding ∂F d

∂x
using the chain rule:

∂F d(W,h0)

∂x
= ∇UF d

· ∇W U
∂W

∂x
+ F d

h0

∂h0

∂x
,

where F d
h0

= ∂F d

∂h0

, where the flux may have an explicit
spatial dependence on geometry.

The substitution leads to a quasi-linear system:

∂W

∂t
+ Ax ∂W

∂x
+ Ay ∂W

∂y
= S̃,(3.8)

Ad = ∇UW · ∇UF d
· ∇W U,(3.9)

S̃ = ∇UW · (S − F x
h0

∂h0

∂x
− F y

h0

∂h0

∂y
).(3.10)

The matrices Ad for each coordinate direction d are
given by:

Ax =




u h 0 0
c2

h
u 0 ρ′

2ρ
c2

0 0 u 0
0 0 0 u


 ,(3.11)

Ay =




v 0 h 0
0 0 v 0

c2

h
v 0 ρ′

2ρ
c2

0 0 0 v


 .(3.12)



Here ρ′ denotes the change in density with respect

to a change in salt concentration and c =
√

ρ
ρ0

gh is the

celerity of a shallow water gravity wave.
We use the primitive variables mostly in the predic-

tor step of our algorithm, in which we extrapolate vari-
ables from cell centers to cell faces at the mid-point of
the time step using a Taylor series. We also use the ma-
trix Ad to derive approximate Riemann solvers, which
determine the upwind fluxes across cell faces.

3.3 Boundary conditions The most common open
water boundary conditions for shallow water are pre-
scribed (Dirichlet) water surfaces, boundary velocities
and salt concentrations all of which are typically time-
varying. Boundary conditions at shores are reflective,
with zero flow normal to the boundary. Extrapola-
tion or radiation boundary conditions arise in problems
where the effect of the far-field is not meant to influ-
ence the interior of the domain. Hydraulic devices such
as weirs and culverts can be expressed as functions of
water surface and flow affecting two boundaries simul-
taneously.

We assume “subcritical” flow at the boundaries, so
that the normal-direction hydrodynamics develop one
incoming and one outgoing characteristic and hence one
boundary condition. In addition, the passive transport
of salt and transverse velocity each require boundary
information when flow is directed into the domain.
We enforce the boundary conditions numerically using
the method of partial Riemann problems. A Riemann
state at x/t = 0 is chosen that conforms to the
known information and that satisfies the Riemann wave
relations across the waves that are directed into the
domain.

4 Discretization

We use a finite volume discretization of the shallow wa-
ter equations, based on a Cartesian grid with embedded
boundaries. A primary new feature of the spatial dis-
cretization is the representation of spatial variation in
bathymetry and consideration of this variation in the
calculation and interpolation of cell and face-averaged
quantities. Our choice of discretization allows features
that arise from a three dimensional geometry (i.e., slop-
ing bottoms and shorelines) to be represented within a
2D domain and computational scheme. The design is
compatible with moving shorelines as well as a mixed
one, two and three dimensional model. The scheme re-
quires spatially varying parameters representing the ge-
ometry terms and a computational geometry capability
for computing these parameters (see section 6).

Our control volume is divided by a reference surface

into the two regions suggested by Figure 4. The
shoreline is the intersection of a reference surface and
the bathymetry b(x, y). Below the reference surface, the
geometry is detailed and 3D; above it is the perturbation
region defined by δ and approximated by a rectangle.

4.1 Geometry notation In addition to the notation
used in the shallow water formulation above, we will use
the following notation to discretize the flow equations
over cells with coordinate-aligned faces and embedded
boundaries:

• ζx, ζy, ζB and ζc denote an average depth over a
coordinate-aligned face, EB face or over a volume,
expressed as a fraction of a maximum depth, H.
Hence the area of a face normal to the x direction
would be given by A = ζxH∆x and the volume of
fluid in a cell is given by V = ζcH∆x2. h0 = ζH is
the generalization of h0 alluded to in section 3.2.

• < z >x and < z >y and < z >B denote the
z−component of the centroid of a vertical face in
the x and y directions or EB, measured from the
datum indicated in Figure 4.

• nB
x and nB

y denote the components of the normal
to the 2D embedded boundary, evaluated at the
centroid of the boundary.

4.2 Flux discretization We define the fluxes by in-
tegrating two dimensional mass and momentum trans-
port as well as pressure forces across the faces of a single
layer of three dimensional cells bounded above and be-
low by the free surface and bottom.

To make the following formulae easier to read, we
define:

qx =
gρ

ρ0

(δ− < z >x)Hζx,(4.13)

qy =
gρ

ρ0

(δ− < z >y)Hζy, and(4.14)

qB =
gρ

ρ0

(δ− < z >B)HζB ,(4.15)

which represent the average hydrostatic pressure forces
on the portions of faces below the reference surface.
The hydrostatic pressure in the δ region is included
separately. Given this notation, the discrete fluxes are:

F x =




(δ + ζxH)u

(δ + ζxH)u2 + qx + δ2

2
]

(δ + ζxH)uv
(δ + ζxH)us


 ,(4.16)



F y =




(δ + ζyH)v
(δ + ζyH)uv

(δ + ζyH)v2 + qy + δ2

2
]

(δ + ζyH)vs


 and(4.17)

FB =




(δ + ζBH)unB
x + (δ + ζBH)vnB

x

(δ + ζBH)u[unx
B + vny

B ] + qB + δ2

2
]nB

x

(δ + ζBH)v[unx
B + vny

B] + qB + δ2

2
]nB

y

(δ + ζBH)s[unx
B + vny

B]


 .

(4.18)

4.3 Bottom source The source components − gρ
ρ0

hbx

and −
gρ
ρ0

hby in the original PDE can be interpreted as
representing bottom pressure. Bottom pressure must
be discretized in such a way that free-stream conditions
([δ, u, v, s] = constant) are preserved in a frictionless
flow where the bed does not vary along streamlines.

Our discretization is based on this balance: we
require that the pressure forces normal to the bottom
in the x and y directions exactly balance the pressure
forces on the faces of the computational cell under the
conditions that the water surface is level and velocity
is zero. For each flux term in 4.16, 4.17, and 4.18 we
define an analogous face contribution by substituting a
cell averaged δ = δc, u = 0, v = 0. We difference these
contributions using the same divergence representations
we use for the face fluxes. Our approximation is
consistent with the source terms −

gρ
ρ0

hbx and −
gρ
ρ0

hby

in the original PDE and the algorithm preserves free-
stream.

5 Solution Algorithm

Our time update is a finite volume predictor-corrector
method: We construct accurate, upwinded estimates of
the fluxes on cell faces and then update cell average
values. Specifically, we employ the solution algorithm
first used in [8], which itself was based on earlier work
[7]. The technique requires the following steps:

1. Extrapolation in space and time of variables from
cell centers to edge centers, momentarily neglecting
the contribution of the transverse component of the
operator, which results in dual “high” and “low”
side estimates of the primitive variables at the cell
faces.

2. Solution of a Riemann problem which converts
the dual estimates of extrapolated variables to
upwind fluxes. We use the primitive solver based
on the linearized problem as described in [13].
The solution is modified to include salinity-induced
density variation.

3. Differencing of transverse fluxes to obtain a cor-
rection corresponding to the previously neglected
transverse component of the operator, which is ap-
plied to the original (dual) edge-centered primi-
tive variable estimates. This again results in dual
estimates, which are resolved by solving another
Riemann problem. At this point we have edge-
centered, time-centered estimates of the primitives
and fluxes on regular cells.

4. At cut cells, where the shoreline interesects the
computational cell, interpolation of time-centered
estimates of primitive variables from edge centers
to edge centroids and reconstruction of the flux (we
do not interpolate the fluxes directly as in [8]).

5. At cut cells, calculation of a conservative (re-
spectively, non-conservative) update based on
time-centered, edge-centered (respectively, time-
centered, edge-centroid) estimates of the flux. At
cells with no shoreline, the two estimates agree,
since the centroid is the edge-center.

6. Update of the solution in time, by calculating
the divergence of the flux. At cut cells, use a
volume weighted hybrid of the conservative and
non-conservative flux estimate.

7. Use of the modified Euler (Heun) predictor-
corrector formalism to estimate and add the source
terms at the same time-centering as the flux.

8. Redistribution of mass locally to conserve total
mass lost through using the hybrid update.

Hybridizing the conservative and non-conservative
estimates of the flux permits a explicit time-step that
doesn’t decrease because of small cut cells: The weight
given to the conservative update decreases as the area
of the cell tends to zero. We mitigate the penalty this
imposes on conservation by tracking the deficit/surplus
and adding that mass (respectively, momentum, salt
mass) to neighboring cells. The bottom source is
hybridized the same way the fluxes are on irregular cells
to preserve free-stream.

6 Grid Generation

The discretization described in this document requires
the delineation of the 2D grid and the calculation of 2D
and 3D moments (centroids, volumes and face fractions)
included in the integral 2D fluxes. The design must
also be efficient for 2D problems with both fixed and
evolving boundaries, and must be sufficiently accurate
for moving boundary applications. The present design
satisfies these requirements with a geometry engine



based on the divergence theorem that can calculate
moments of arbitrary order and degree of accuracy.
Note that although we accurately calculate the moments
associated with the embedded boundary, we do not
actually model the boundary itself.

Our geometry generation is based on an implicit
function. This function is a smooth function with
continuous second derivatives that is zero where the
boundary is encountered. For 3D bathymetry, such a
function is given by:

φ(x, y, z) = z − b(x, y)(6.19)

which measures the difference between a point z and the
elevation of the bed b(x, y) at the same horizontal (x, y)
location. This function clearly evaluates to zero at the
bed itself.

To delineate a 2D boundary, we use the function:

φ(x, y) = zref − b(x, y),(6.20)

where zref is the elevation of a reference plane whose
intersection with the 3D terrain gives the 2D domain.

The algorithm supposes the implicit function is
available everywhere in space with smooth derivatives
and continuous second derivatives. In practical appli-
cations only samples are available. We use data in the
form of digital elevation models (DEMs). To work with
DEMs we use bicubic interpolation to provide values
and derivatives for the geometry calculation. We find
that when high resolution data are used a small degree
of smoothing (a Gaussian kernel spanning 1-2 grid cells
in each direction) reduces the need to compute geome-
try at high resolution. For instance, on parts of the San
Francisco Bay we use 200-800m cells for the computa-
tional grid, with geometry calculated from 30m DEMs
smoothed on a radius of 60m. In this location, the com-
putational grid is greatly oversampled by the DEM.
Without the smoothing, the geometry would have to
be calcultated at 15m and coarsened, which represents
a tedious computational burden just to obtain a 500m
mesh.

7 Particle Tracking

A particle model (Figure 2) will be used to visualize
and calculate trajectories of neutrally buoyant particles
travelling on streamlines:

dsp

dt
= u(x, t),(7.21)

where sp is the position of the pth particle and u(x, t)
is the local velocity. The particle model is intended
to be extensible to biology applications that may in-
clude drag, behavior and subgrid mixing (stochastic dif-
fusion).

The particle tracking algorithms we considered
draw from these approaches:

1. Direct solutions of (7.21) based on an ordinary dif-
ferential equation method such as Euler or Runge
Kutta.

2. Locally exact methods such as [9] or [11] which
discretize the flow field in time and space and then
track particle movement exactly as they enter and
exit cell faces.

Under the ODE approach, the flow field may be
interpolated along particle paths to any accuracy sup-
ported by the output of the hydrodynamic model. Care
must be taken to monitor interaction with the embedded
boundary and movement between multi-block patches
assigned to different processors in parallel computa-
tions.

The locally exact approach assumes something
about the flow over a cell (usually that it is linear in
space or time) and then integrates from face to face
by calculating exit times and locations. The method
is more difficult to apply accurately to stochastic diffu-
sion, but makes it easy to keep track of the topology and
processor layout near boundaries. Face-to-face methods
are stable.

Our method is a low order variant of the locally
exact method. We assume piecewise constant cell values
in space and time. For each particle, (7.21) is integrated
exactly (equivalent to forward Euler) until an outer time
step is exhausted or the particle reaches a new cell edge.
If a particle crosses an edge, the velocity in the new cell
is re-evaluated linearly in time.

Our first implementation focuses on off-line veloc-
ity computations where regridding does not occur adap-
tively. We are currently working on an in-line version
with the possibility of adapting the grid to particle
density and eventually moving shorelines. The linear
time interpolation we perform when particles cross cell
boundaries is complicated by mesh changes and load
rebalancing for parallel computation. We intend to in-
vestigate the cost of this interpolation versus the cost of
implicit methods using only velocities at the new time
step. Adaptation makes piecewise-constant approxima-
tions in cells reasonable; without adaptation our method
can be extended to higher order in space and time as in
[11].

Particles are reflected when they hit embedded
boundaries. Some biological applications require that
particles stay in the fluid even in underresolved cases.
When a particle moves in an irregular cell that intersects
the embedded boundary, we construct a linear approx-
imation of the EB using the 2D cell area and normal,
check whether the particle has crossed the boundary



and reflect the particle back into the domain for the
remaining part of the time step.

8 Summary and Future Work

Out of the goals presented earlier we have completed an
initial implementaion of three major tasks in the context
of parallel computation and adaptive mesh refinement:
grid generation, two dimensional modeling, and an
offline particle tracking model.

The accomplishment of several additional tasks will
enable the enlargement of the domain to the entire Bay-
Delta. First, our discretization depends on a notion of
a reference depth, which we denoted H. However in
the eastern Sacramento-San Joaquin Delta, the channel
bottom is at a higher elevation then the water surface
in the Bay, which does not permit the definition of a
single reference surface; a reasonable nominal surface
in the Bay would be near or below the channel bottom
upstream in the Delta. Hence, the algorithm must be
modified to allow a slowly varying H. Additionally, the
eastern Delta contains mostly one dimensional hydro-
dynamics. Adaptive mesh refinement in principle could
allow an efficient representation of channel networks us-
ing long, narrow patches of refinement. However, the
current time-stepping algorithm would force unaccept-
ably small time steps due to the small transverse dis-
tance in a channel. Nonetheless, the absence of flow
in the transverse direction implies that this limitation
can be overcome without loss of stability or accuracy
for many applications. Finally, optimization for speed
will make the model available for full delta studies over
long simulation times.

Acknowledgements: Work at LBL was by sup-
ported by the U.S. Department of Energy Office of
Advanced Scientific Computing Research, contract DE-
AC02-05CH11231, and by the California Department
of Water Resources Delta Modeling Section, contract
4600003803

References

[1] M. Aftosmis, M. Berger and J. Melton, Robust and

efficient Cartesian mesh generation for component-base

geometry AIAA Journal, Vol 36, 1998, pages 952-960 .
[2] M. J. Berger and P. Colella, Local Adaptive Mesh

Refinement for Shock Hydrodynamics, J. Comput.
Phys.,Vol. 82, 1989, pages 64-84.

[3] M. Berger and J. Oliger, Adaptive Mesh Refinement for

Hyperbolic Partial Differential Equations, J. Comput.
Phys.,Vol. 53, 1984, pages 484-512.

[4] L. Brice, C. Y. Niño and M.C. Escauriaza, Finite

Volume Modeling of Variable Density Shallow-water

Flow Equations for a Well-mixed Estuary: Application

to the Riò Maipo Estuary in Central Chile, J. Hydraulic
Engineering, ASCE, Vol 43, pages 339-350.

[5] V. Casulli and P. Zanolli, High Resolution Methods

for Multidimensional Advection-Diffusion Problems in

Free-Surface Hydrodynamics Ocean Modelling, Vol 10,
2005, pages 137-151.

[6] P. Colella, Volume-of-fluid Methods for Partial Differ-

ential Equations, Godonov Methods: Theory and Ap-
plications, Ed. E. F. Toro, Kluwer Academic, 2001,
pages 161-177.

[7] P. Colella, Multidimensional Upwind Method for Hy-

perbolic Conservation Laws , J. Comput. Phys.,Vol. 87,
1990, pages 171-200.

[8] P. Colella, D. T. Graves, B. Keen and D. Modiano,
A Cartesian Grid Embedded Boundary Method for

Hyperbolic Conservation Laws, J. Comput. Phys.,Vol.
211, 2006, pages 347-366.

[9] P. Kipfer, F. Reck and G. Greiner, Local Exact Particle

Tracing on Unstructured Grids, Computer Graphics
Forum, Vol. 22, 2003, pages 133-142.

[10] E. Gross, M. MacWilliams and W. Kimmerer, Three-

dimensional Modeling of Tidal Hydrodynamics in the

San Francisco Estuary San Francisco Estuary and
Watershed Science, Vol 7, 2009.

[11] DW Pollock, Semi-analytical Computation of Path

Lines for Finite-Difference Models, Ground Water, Vol
26, 1988, pages 743-750.

[12] C. Rendleman, V. Beckner, M. Lijewski, W. Crutch-
field and J. B. Bell, Parallelization of Structured, Hier-

archical Adaptive Mesh Refinement Algorithms, Com-
puting and Visualization in Science, Vol. 3, 2000, pages
147-157.

[13] E. Toro, Shock-Capturing Methods for Free-Surface

Shallow Flows, John Wiley and Sons,2006.



Figure 1: Adaptive mesh refinement on San Francisco
Bay and Western Delta. The boxes represent multi-
block elements. The largest boxes have a resolution
of 750m. Three levels of refinement by a factor of
two appear in this mesh, with the finest level covering
channelized areas in the Delta on the east side of the
map.

Figure 2: Particle tracking (red) near the Suisun marsh
with velocity vectors illustrating two levels of AMR.
The adaptation in this case resolves some complex local
bathymetry.

Hb(x,y)

δ

h
0
=ζH

Figure 3: Side view of water column showing nominal
and perturbed water column height.



b(x,y)

H

δ

〈z〉

datum
x

y

z

Figure 4: A computational cell illustrating aspects of
the 3D geometry. Our 2D discretization requires the
area of the face A, the z-component, denoted < z >,
of the centroid on a vertical face, and the gradient of
b(x, y). This illustration also shows perturbation region,
defined by δ, where we approximate the bathymetry
with vertical walls. For cells that contain shoreline, we
also require the centroid, normal, areas, and apertures
on the top face (not shown.)


