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Abstract

Continental scale marine ice sheets such as the present day West Antarctic Ice Sheet are strongly affected by
highly localized features, presenting a challenge to numerical models. Perhaps the best known phenomenon
of this kind is the migration of the grounding line — the division between ice in contact with bedrock
and floating ice shelves — which needs to be treated at sub-kilometer resolution. We implement a block-
structured finite volume method with adaptive mesh refinement (AMR) for three dimensional ice sheets,
which allows us to discretize a narrow region around the grounding line at high resolution and the remainder
of the ice sheet at low resolution. We demonstrate AMR simulations that are in agreement with uniform
mesh simulations, but are computationally far cheaper, appropriately and efficiently evolving the mesh as
the grounding line moves over significant distances. As an example application, we model rapid deglaciation
of Pine Island Glacier in West Antarctica caused by melting beneath its ice shelf.

1. Introduction

The West Antarctic Ice Sheet (WAIS) is the world’s major present-day continent-sized marine ice sheet
[1]. In general, a marine ice sheet consists of an expanse of grounded ice in contact with a bed that is
largely below sea level, joined at some (or all) of its edge to floating ice shelves across a contour known as
the grounding line. In their turn, the ice shelves end at calving fronts [2], which then form part or all of
the ice sheet’s horizontal boundary. Ice flowing across the grounding line into the ice shelves is ultimately
lost to the ocean, either through melting, departing across the calving front as icebergs, or even through
large-scale disintegration of an ice shelf [3]. In 1979, Mercer proposed that the ice shelves surrounding WAIS
may be vulnerable to additional melting due to anthropogenic global warming, which may in turn make the
ice sheet unstable [4], a proposal that is still considered credible [5].

Theoretical and numerical studies have shown that marine ice sheets can be unstable, and so might
undergo rapid change, if they lie on beds that slope upward toward the sea. The ice shelves which surround
WAIS are all fed by narrow, fast flowing ice streams, whose velocity is dominated by sliding at the base.
Schoof proved that for an idealized ice stream flowing in the xz−plane that does not vary in y the flux of
ice across the grounding line increases with its thickness there and hence the bedrock depth [6, 7]. Thus,
the grounding line cannot come to stable equilibrium anywhere that the bedrock slopes up toward the sea,
something also seen in numerical studies which permit both sliding and vertical shear [8]. Now, the flow
of marine ice sheets which vary in y is buttressed, that is, stabilized by additional stresses arising from the
motion of ice shelf within a bay [9] or across obstructions [10]. Provided that the regions of up-sloping bed
are wide enough at the grounding line, removal (or reduction) of the ice shelves can lead to an unstable
marine ice sheet [11].
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Rapid retreat of the grounding line in the Amundsen sea sector of the West Antarctic Ice Sheet has
indeed been observed since the early 1990s [1, 12–14], leading to a net loss of 105 Gt of ice from the region
in 2007 [15]. In particular, the grounding line of Pine Island Glacier has retreated at a rate of more than
1 km per year between 1996 and 2007 [15] leading to considerable interest in its future [16–20]. Over
longer timescales, the majority of WAIS is thought to deglaciate periodically, according to, for example,
numerical modeling [9], and observations of the close genetic relationship between marine fauna in the Ross
and Weddell seas [21]. Looking to the future, observations of its bowl-shaped bedrock topography suggest
that the deglaciation of WAIS due to marine ice sheet instability would result in sea level rise of around 3 m
[5].

Modeling marine ice sheets, at least using conventional finite difference, finite volume or finite element
methods1, requires fine spatial resolution, of the order of 100 m in the region of the grounding line [8, 10, 22,
23]. At the root of this is an assumption that resistance to sliding changes abruptly at the grounding line
from a finite value to zero; lower resolution might be sufficient whenever resistance decays gradually [24]. In
this paper, we take discontinuous change for granted, and describe and test a finite volume ice sheet model
which employs adaptive mesh refinement (AMR) to obtain fine spatial resolution only where it is required.
We take special care to demonstrate that:

• our AMR results converge with spatial resolution,

• AMR results obtained on a non-uniform mesh (or sequence of such meshes) whose finest resolution is
∆x agree with results obtained on a uniform mesh of resolution ∆x, and

• that we can apply the model to realistic problems.

To this end, after presenting the model’s governing equations and numerical methods in sections 2 and 3, we
describe a number of tests in section 4. We compare AMR and uniform mesh results that exhibit spatially
second-order accuracy when there is no grounding line in 4.1, and first-order accuracy when a grounding line
is present in 4.2. Finally, we consider the retreat of Pine Island Glacier’s grounding line driven by extremely
rapid melting of its ice shelf in 4.3.

2. Governing equations

We consider a volume of ice whose upper surface is given at any instant by z = s(x, y) and whose lower
surface is z = b(x, y), as shown in figure 1. We neglect time evolution of the underlying bedrock, whose
elevation is r(x, y). Sea level, assumed to be spatially constant, is at z = 0. Parts of the ice sheet are
grounded — the lower surface is in contact with the bedrock — and the remainder is floating in ocean
water. The grounding line (or its projection onto the xy-plane, Γgl), marks the boundary between these
regions. Lateral boundaries, which we assume to be constant in time, are made up by vertically extruding
a closed contour Γ partitioned into ice divides Γd and calving fronts Γcf .

The evolution of s(x, y) and b(x, y) with time may be treated as a thin-film free-surface problem, subject
to incompressible Stokes flow with shear-thinning, non-linear rheology and sliding at the base [25–27]. At
any instant, the components of the deviatoric stress tensor, τij(x, y, z) are related to the components of the
rate-of-strain tensor, ε̇ij(x, y, z) through Glen’s law,

ε̇ij(x, y, z) = A
(
τ2
)(n−1)/2

τij(x, y, z) : n ≥ 1. (1)

Here, the second invariant of the stress tensor is, making use of the Einstein summation convention,

τ2 =
1

2
τijτji, (2)

1An unconventional method was described by Pollard and DeConto, who treated their grounding line by applying Schoof’s
expression to avoid the need for high resolution, and were able to run simulations spanning millions of years [9]. It is not
straightforward to quantify the validity of this treatment, though it may well be a small source of error among the myriad
uncertainties that face ice sheet models.
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Figure 1: Schematic marine ice sheet geometry.

and the rate-of-strain is expressed in terms of the velocity field vi(x, y, z) through

ε̇ij =
1

2
(∂jvi + ∂ivj) . (3)

Commonly, and throughout this paper, the power-law exponent in Glen’s law is taken to be n = 3. The
rate factor A depends strongly on temperature, but we will consider only isothermal ice.

The upper surface of the ice is stress-free everywhere, but boundary conditions at the base of the ice
vary between grounded and floating regions. Where the ice is floating, the normal stress at the lower surface
of the ice matches the hydrostatic water pressure. Elsewhere, the ice is in contact with bedrock and there
can be no flow of ice normal to it. Sliding generates resistance according to a power law, so that if ~n is a
unit normal to the lower surface, and ~t is any unit vector tangential to it

nitjτij(x, y, z = b) = −C(x, y) (vivi)
(m−1)/2

tjvj(x, y, z = b), (4)

where the basal traction coefficient C(x, y) ≥ 0 and the exponent m ≥ 0.
A number of approaches to this free-surface problem exist in the literature, the principal distinction

between them being the choice of stress-balance equation. The most general models solve the full Stokes
problem across the whole domain [8, 28, 29] but, as these can be computationally expensive, approximate
models which assume a small aspect ratio of vertical to horizontal length scale, ε, are widespread. The
simplest such approximation, the shallow-ice approximation [11, 30], also assumes a large ratio of vertical
to horizontal stress, λ, and is not at all applicable to floating ice. Intermediate approaches which are valid
for both grounded and floating ice include Blatter’s model [25, 31, 32] (also known as the Blatter-Pattyn
model) and the shelfy-stream approximation [10, 17, 33]. Blatter’s model reduces the Stokes problem to a
three-dimensional stress-balance equation in the two horizontal velocity components vx and vy, incurring
an error of order O(ε2) to do so [27]. The shelfy-stream approximation further assumes that λ is small, so
that vertical strains are neglected, an O(ελ) error is introduced, and only a two-dimensional stress-balance
equation needs to be solved. As well as these, a hybrid category of models has been reported, which also
only require the solution of a two-dimensional stress-balance equation, but take some account of vertical
strains [34, 35]. We employ a model devised along those lines by Schoof and Hindmarsh [27].

2.1. Schoof-Hindmarsh model

The Schoof-Hindmarsh model [27] is an approximation to the full Stokes model comprised of an elliptic
problem to be solved for the x− and y− components of the velocity at the base of the ice, vi(x, y) =
vi(x, y, z = b), and a simple formula for vi(x, y, z) that is applied once vi(x, y) has been found. The resulting
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vi(x, y, z) deviates from solutions to the full Stokes problem by O(ε2) in moderate or fast sliding regimes
and O(ε1+2/n) in slow sliding regimes. Originally, this model was derived for geometries which do not vary
in y but adapting it to a three-dimensional ice sheet is straightforward.

At low aspect ratios the full Stokes model can be approximated by the Blatter-Pattyn model. In this
case, the pressure field is hydrostatic, and the z−component of the velocity field is eliminated from the x−
and y−components of the stress balance, which take the form

∂j (τij(x, y, z) + δijτkk(x, y, z)) = ρg∂is(x, y) for i, k ∈ x, y j ∈ x, y, z. (5)

Here, ρ is the density of ice, g is the gravitational acceleration, and δij is the Kronecker delta. As the
pressure field is hydrostatic, the grounding line is determined by a simple flotation criterion, and the upper
surface elevation is related to the thickness through

s =

{
r +H if ρ

ρw
H > −r

(1− ρ
ρw

)H otherwise,
(6)

where ρw is the density of ocean water. This allows the incompressibility equation to be integrated vertically
to provide a horizontal, two-dimensional thickness transport equation. If we denote the vertical average of
vi by v̄i, then

∂tH(x, y) + ∂i (v̄i(x, y)H(x, y)) = Ms(x, y) +Mb(x, y) for i ∈ x, y. (7)

Ms and Mb are the rates of accumulation (or loss) of ice at the upper and lower surfaces respectively. In
section 4.3, we will consider a case where Mb is large and negative underneath the ice shelf due to contact
with warm water.

By making one further approximation (5) can integrated vertically, leading to the the final, two-dimensional
elliptic equations. First, the deviatoric stress is split into horizontal and normal components ϑij and vertical
shear components ϕij , such that

τ (x, y, z) =

 ϑxx ϑxy 0
ϑxy ϑyy 0
0 0 ϑzz

+

 0 0 ϕxz
0 0 ϕyz
ϕxz ϕyz 0

 . (8)

Then, (1) is replaced with

ζ̇ij(x, y) = A
(
ϑ2(x, y, z) + ϕ̃2(x, y, z)

)(n−1)/2
ϑij(x, y, z) +O(λε), (9)

neglecting the O(λε) remainder, where

ζ̇ =

 ∂xvx
1
2 (∂yvx + ∂xvy) 0

1
2 (∂yvx + ∂xvy) ∂yvy 0

0 0 −∂xvx − ∂yvy

 (10)

and the ϕ̃iz ≈ ϕiz are given by the shallow ice approximation

ϕ̃iz(x, y, z) = −ρg(s− z)∂is(x, y) for i ∈ x, y. (11)

Since ζ̇ depends only on the velocity field at the base of the ice, (5) can now be integrated with respect to
z. Doing so, we arrive at the two-dimensional elliptic equation

∂j (Hµ̄ Fij) + τ bi = ρgH∂is i, j, k ∈ x, y, (12)

where Fij = ∂jvi + ∂ivj + 2δij∂kvk, Hµ̄ =
∫ s
b
µ(x, y, z)dz, and the effective viscosity µ satisfies

2µ(x, y, z)A(4µ2(x, y, z)ζ̇2(x, y) + ϕ̃2(x, y, z))(n−1)/2 = 1. (13)
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The basal traction term is

τ bi =

{
−C |vkvk|(m−1)/2

vi if ρ
ρw
H > −r

0 otherwise.
(14)

Although (13) has an analytic solution when n = 3, it is somewhat cumbersome and we generally solve
it numerically, using the secant method. Equations (12) are similar to the stress-balance equations which
appear in the shelfy-stream model, reducing to just those if ϕ̃ = 0.

To form a closed problem, we need to complement (12) and (7) with the conditions at the lateral boundary
of the ice sheet. At the ice divides, we impose a Dirichlet condition on the velocity normal to the divide

nivi(x, y) = 0 for i ∈ x, y and x, y ∈ Γd (15)

and Neumann boundary conditions on the tangential velocity

ni∂ivj(x, y)tj = 0 (16)

where ~t is a unit vector tangent to the boundary. A Neumann condition also applies to the thickness:

ni∂iH(x, y) = 0. (17)

Normal stress across the calving front is equal to the hydrostatic water pressure there, leading to a Neumann
condition:

niH(x, y)µ̄(x, y)Fij(x, y) =
1

2
ρg

(
1− ρ

ρw

)
H2(x, y)nj for i ∈ x, y and x, y ∈ Γcf . (18)

These boundary conditions, and indeed, (18) alone for a problem whose entire boundary is a calving front,
are sufficient provided that H(x, y, t = 0) is given and that the basal friction coefficient C is non-zero in at
least part of the ice sheet.

Having solved (12)-(18) for vi(x, y), one needs to find vi(x, y, z) (and hence v̄i(x, y)). Properly, we should
use the formula

vi(x, y, z) = vi(x, y)

+2

∫ z

b

A(4µ2(x, y, z)ζ̇2(x, y) + ϕ2(x, y, z))(n−1)/2ϕiz(x, y, z) dz′ (19)

where

ϕxz(x, y, z) =

∫ s

z

∂x

[
2µ(x, y, z)(2ζ̇xx(x, y) + 2ζ̇yy(x, y))

]
dz′

+

∫ s

z

∂y

[
2µ(x, y, z)ζ̇xy(x, y)

]
dz′

−ρg(s− z)∂xs(x, y) (20)

and similarly for ϕyz. However, this introduces a diffusion-like flux into (7) so that the stable timestep
decreases with the square of mesh resolution. While we made some progress toward stable time evolution
by splitting the fluxes and evolving some parts implicitly, we could not stably treat grounding line evolution
at the resolutions required. For the remainder of this paper we neglect this O(ελ) additional velocity, so
that we are limited to considering fast flowing ice streams, and set vi = vi. The resulting scheme is still
distinct from the shelfy-stream approximation due to the modified viscosity calculation. For example, the
steady state grounding line we compute in section 4.2 is around 5 km short of that computed by the full
Stokes model Elmer/Ice [36]: using the shelfy-stream model, it is more than 50 km in advance.
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(a) Example block-structured mesh (b) Fluxes at a coarse-fine interface

Figure 2: Block structured meshes. (a) Example block structured mesh. Discrete level domain Ω0 comprises the cell centers
of the coarsest grid, marked ‘A’, while while Ω0,x and Ω0,y are made up from the corresponding cell faces. Ω1, Ω1,x and Ω1,y

are built from two rectangular blocks, marked ‘B’ and ‘C’; Ω2, Ω2,x and Ω2,y from the block marked ‘D’. The valid domains
Ω`

valid are the subsets of Ω` which are not overlaid by the cells of Ω`+1. (b) Fluxes at a coarse-fine interface. The discrete
cell-centered divergence ∂iFi integrated over a level ` cell adjacent to a coarse-fine boundary is expressed in terms of the valid

face-centered vectors F `,i
i (Ω`,i

valid) and F `+1,i
i (Ω`,i

valid) only.

3. Numerical treatment

3.1. Discretization on block structured grids

It seems clear from the outset that we should make use of a spatially varying mesh resolution and also
that the mesh might need to evolve over time [8, 10, 22, 23]. If we assume that a mesh spacing ∆x ∼ 250 m
is needed at the grounding line, and that we want to model regions with surface areas of 1011 m2 (the
area of Pine Island Glacier’s catchment) or more, then a uniform mesh would contain at least ∼ 106 cells .
If we can restrict such high resolution to only a small fraction of the domain, say, within a few kilometers
of the grounding line, then we expect to reduce the number of degrees of freedom significantly. That said,
the grounding line might migrate to sweep out a major proportion of the problem domain, so we will need
to modify the mesh over time. To these ends, we discretize equations (12) and (7) on block-structured,
non-uniform meshes using a finite volume method, supported by the Chombo AMR framework. [37]

As in [38], our meshes, illustrated in figure 2(a) for 2 dimensions, are composed of a hierarchy of cell-
centered level domains Ω0,Ω1, . . . ,ΩL on which the discrete thickness and velocity fields are located . Certain
derived quantities, such as mass fluxes, are located on two supplementary hierarchies of face-centered level
domains, Ω0,x,Ω1,x, . . . ,ΩL,x and Ω0,y,Ω1,y, . . . ,ΩL,y. At each level `, the problem domain is discretized on

a grid Γ` with spacing ∆x` chosen such that the refinement ratio r` = ∆x`+1

∆x` is an even integer. Each Ω` is

then constructed from one or more rectangular subsets of Γ` (and each Ω`,i from the corresponding faces)
such that Ω` is properly nested ; that is, interfaces only exist between Ω` and Ω`±1, and never, say, Ω` and
Ω`±2.

Having defined the level domains, we need to define notation for cell- and face-centered level variables.
We define a grid vector, p ∈ Z2, choosing to number cells starting at p0 = (0, 0), and grid basis vectors
ex = (1, 0) and ey = (0, 1). Cell centers within Ω` are located at x`p = ∆x`(p+ 1

2ex+ 1
2ey), and the midpoints

of cell faces within Ω`,i at x`p ± ∆x`

2 ei. Cell-centered level variables φ`p = φ`(x`p) and face-centered level
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variables F `,ip = F `,i(x`p − ∆x`

2 ei) follow naturally. Notice that F `,xp is located on the ‘west’ face of the cell

p, and F `,yp is on the ‘south’ face.
Following [38], the discrete representations of continuous fields are cell-centered composite variables φcomp

and face-centered composite variables F comp, which are composed from portions of the level variables. First,
level domains Ωl are then divided into valid and invalid regions Ω`valid and Ω`invalid, such that Ω`valid is the
part of Ωl not covered by Ω`+1. Then,

φcomp(Ω0
valid ∪ Ω1

valid ∪ . . . ∪ ΩLvalid) = φ0(Ω0
valid) ∪ φ1(Ω1

valid) ∪ . . . ∪ φL(ΩLvalid), (21)

and F comp,i is defined similarly. It is important to note that while we make use of φ`(Ω`invalid) for computa-
tional convenience, our solutions depend on φcomp and nothing else.

Given the valid and invalid regions, we now have two natural measures of the size of a given mesh: the
valid cell count includes only the valid regions, while the total cell count includes the invalid regions too.
While the valid cell count is related to the number of degrees of freedom, the total cell count is a better
measure of computational cost, certainly in terms of storage, but also in terms of cost in time because
we carry out most calculations on both the valid and invalid regions, replacing data in the invalid regions
afterward.

We also construct ghost regions Ω`ghost that surround Ω`. They are used to store either data calculated

by interpolation with Ω`−1 data, at coarse-fine interfaces between levels ` and (`− 1) or extrapolated data
at the problem boundaries. As with the invalid regions, the ghost regions do not contribute any degrees of
freedom to the problem and exist purely for numerical convenience.

Finite volume discretization of (7) and (12) on the meshes described above is a conventional affair, except
at the coarse-fine boundaries separating Ω`valid and Ω`+1

valid. Modifications to the usual discrete operators are
required for three terms: the flux divergence on the left hand side of (7), the driving stress on the right hand
side of (12), and the viscous term on the left of (12). Such modifications are discussed elsewhere [39], but
we describe them briefly here for clarity. Consider a level ` cell with its center at x`p, which is adjacent to a

coarse-fine boundary along its x−face, such that the cell face p+ex ∈ Ω`,xinvalid, as in figure 2(b). Introducing
a shorthand notation for the cell average

〈f〉p =
1

(∆x`)2

∫ y`p+∆x`/2

y`p−∆x`/2

∫ x`
p+∆x`/2

x`
p−∆x`/2

f(x, y) dxdy, (22)

the divergence of a vector field can be approximated by applying the usual formula

〈∂iFi〉p =
1

∆x`

{(
F `,xx

)
p+ex

−
(
F `,xx

)
p

+
(
F `,yy

)
p+ey

−
(
F `,yy

)
p

}
+O

(
(∆x`)2

)
(23)

if and only if (F `,xx )p+ex
is expressed in terms of fluxes defined on Ω`+1,x

valid . Assuming also that the refinement
ratio r` = 2, the appropriate relation is:(

F `,xx
)
p+ex

=
1

2

{(
F `+1,x
x

)
2p+2ex+ey

+
(
F `+1,x
x

)
2p+2ex

}
+O

(
(∆x`)2

)
. (24)

Note that (24) relies on our starting p at (0, 0).
As for the driving stress, an expression of the form

〈ρgH∂is〉p = ρgHp

s`p+ei
− s`p−ei

2∆x`
+O

(
(∆x`)2

)
(25)

applies once s`(Ω`invalid) has been calculated by averaging s`+1(Ω`+1
valid), and s`(Ω`ghost) has been found by

linear interpolation of s`−1(Ω`−1
valid). Finally, the viscous term can be approximated using (22) provided

that the face-centered gradients ∂ju
`
i(Ω

`,k
ghost) in both normal (k = j) and transverse (k 6= j) directions are

determined from ucomp
i to second order accuracy, which is achieved by quadratic interpolation across the

coarse-fine boundaries using the approach described in the appendix.
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3.2. Grounding line

We replace (25) in the region of the grounding line with a formula that uses one-sided differences to eval-
uate the driving stress. In preliminary work, we treated the grounding line conventionally and encountered
a step change in the discretized basal traction there,

〈τ bi 〉p =

{
−C`p

(
v`jv

`
j

)(m−1)/2

p

(
v`i
)
p

ρH`
p > −ρwr

0 otherwise
+O

(
(∆x`)2

)
, (26)

but a smoothly changing driving stress term. The result was an unphysical combination of large driving
stress and no basal stress in the floating ice adjacent to the grounding line, leading to unphysical thinning
rates there especially at low resolution.

We retain (26), but alter (25) wherever cell centers at p and p − ei are grounded and the cell centers
at p+ ei and p+ 2ei are floating. If the face-centered driving stress on the grounded side, located midway
between p and p− ei, is

R`,ip = ρg
H`

p +H`
p−ei

2

s`p − s`p−ei

∆x`
(27)

then we modify the cell-centered stress to be

〈ρgH∂is〉p = R`,ip +O(∆x`). (28)

Likewise, we replace the cell-centered driving stress in the first floating cell with the face-centered driving
stress on its floating side,

〈ρgH∂is〉p+ei = R`,ip+2ei
+O(∆x`). (29)

We carry out a similar replacement when the cells p and p+ei are grounded and the cells p−ei and p−2ei
are floating. Others have considered special treatment of the grounding line, imposing a known mass flux
[6, 7, 9], softening the step change over an extended region [24, 32], or attempting to locate the grounding
line with sub-grid resolution and modifying both basal traction and driving stress terms [23].

3.3. Calving front

Simply including appropriate ice free cells in our domains is enough to ensure that the calving front
boundary condition (18) is satisfied. Consider a one-dimensional ice shelf with a calving front located at
xcf . The stress-balance equation (18) reduces to

∂x (H(x)µ̄(x) Fxx(x)) = ρg

(
1− ρ

ρw

)
H(x)∂iH(x) (30)

and the boundary condition is

H(xcf)µ̄(xcf) Fxx(xcf) =
1

2
ρg

(
1− ρ

ρw

)
H2(xcf) (31)

and the cells up to p contain ice, while cells p + ex and onward are ice-free. If we integrate (30) over the
first ice free cell p+ ex, we have

− (Hµ̄ Fxx)
`,x
p+ex

= O
(
(∆x`)2

)
(32)

because H is certainly zero beyond the face p+ex, if undetermined at the face itself. Now, integrating over
the last ice filled cell gives us

(Hµ̄ Fxx)
`,x
p+ex

− (Hµ̄ Fxx)
`,x
p = ρgHp

H`
p+ei

−H`
p−ei

2
+O

(
(∆x`)2

)
. (33)
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so we can satisfy both (32) and (33) if we assume the calving front is just short of the cell face so that

H`,x
p+ex

= 0. That means that (33) does not retain any terms in (v`x)p+ex
and the system of equations is

closed. Finally, if we integrate (30) from xcf to the cell face p+ ex,

(Hµ̄ Fxx)
`,x
p+ex

−H(xcf)µ(xcf)Fxx(xcf) =
1

2
ρg

(
1− ρ

ρw

)(
H`,x

p+ex
−H2(xcf)

)
, (34)

and since H`,x
p+ex

= 0, the boundary condition (31) is satisfied. The same idea applies in two dimensions.
It is hardly surprising that the calving front condition is equivalent to having an adjacent ice-free region.
However, imposing the boundary condition in this way allows us to avoid explicit calculation of velocity
gradients at the calving front.

3.4. Solution of the stress-balance equations

To solve the nonlinear force balance equations, we implemented both a Jacobian-free Newton-Krylov
(JFNK) method [40, 41], and a simpler Picard iteration method. As others have noted [42], it is possible
to share a great deal between the two methods. Most importantly, we were able to use the same multigrid
preconditioner when solving the different linearized force balance equations which arise.

We need to introduce some notation just for the purposes of this section. First we subsume a composite
vector field vcomp

i into a single state vector, v. Then, we can write the discretized stress-balance equation,
including boundary conditions as

L[v]v = r, (35)

where L[v] is a linear operator defined by a particular v. L[v] is linear in the usual sense, that is,

L[v](p+ q) = L[v]p+ L[v]q. (36)

Note that L[v] is not symmetric, due to its formulation at coarse-fine interfaces. We describe the multilevel
discretization of L[v] in the appendix.

Equation (35) can be solved by means of Picard iterations, as follows:

1. choose an initial vk = v0 and a tolerance ε;

2. compute the effective viscosity and basal traction coefficients given vk;

3. if
∣∣∣∣L[vk]vk − r

∣∣∣∣
∞ < ε

∣∣∣∣L[v0]v0 − r
∣∣∣∣
∞ stop, else

4. solve the linear system L[vk]vk+1 = r , set k ← k + 1, and repeat 2-4

Step 4 requires solution of the linear system L[vk]vk+1 = r, and we employ a either a multigrid method or
a multigrid-preconditioned BiCGStab [43] method to do so. The multigrid method is straightforward; we
simply compute a sequence of approximations to vk+1 ,

vk+1
j+1 = vk+1

j +M−1[vk](r − L[vk]vk+1
j ) (37)

starting from vk+1
0 = vk, and stopping once

∣∣∣∣r − L[vk]vk+1
j

∣∣∣∣
∞ drops below some chosen tolerance . Of

course, we do not form a matrix M−1[vk] explicitly; rather it represents the execution of one multigrid
V-cycle given the viscosity and basal friction coefficients implied by vk. As for BiCGStab , if we wish to
solve a preconditioned linear system

L[vk]P−1[vk]P [vk]vk+1 = r (38)

we need to compute a vector L[vk]P−1[vk]q twice per iteration. To do so, we calculate a vector q̃ = P−1[vk]q
by carrying out one or more iterations of (37), that is, one or more V-cycles, and then calculate L[vk]q̃.

JFNK methods rely on a well-known property of Krylov subspace projection methods (including BiCGStab):
they require only matrix-vector products Jy to be computed in order to find an approximate solution to
the linear system Jx = b. The same is true of (37). If J [vk] is the Jacobian operator which appears in
Newton’s method applied to (35), then
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J [vk]y ≈ 1

h

(
L[vk + hy](vk + hy)− L[vk]vk

)
(39)

where h is small but finite, and the elements of J itself need never be computed. We can then use the
same methods and the same multigrid operator M−1[vk] to solve the resulting linear system as we did for
the Picard methods. We therefore have a multigrid method

vk+1
j+1 = vk+1

j +M−1[vk](r − J [vk]vk+1
j ) (40)

and a BiCGStab method, where we calculate q̃ = P−1[vk]q in the same way as before, and then apply
(39) to compute J [vk]P−1q̃. In essence, we are assuming that approximations to L[vk] are a good choice of
preconditioner for J [vk].

Although L[vk] was chosen to precondition the JFNK linear system for pragmatic reasons, in some
circumstances we can see that it is the ideal choice, and furthermore, that the Picard iterations are bound
to converge more slowly. Consider a one-dimensional ice stream or shelf where both vx and ∂xvx are positive
and ∂xs , vy and all y−derivatives are negligible. Given these assumptions,

L[vx]w ≈ ∂x
(
A−1/n (∂xvx)

1/n−1
w
)
− C (vx)

m−1
w (41)

while

J [vx]w ≈ 1

n
∂x

(
A−1/n (∂xvx)

1/n−1
w
)
−mC (vx)

m−1
w. (42)

If C = 0, or C(x, y) is constant and, as is common, m = 1 or m = 1/n, L and J have the same eigenvectors,
and, if C = 0 or m = 1/n, L−1J is diagonal. On top of that, provided that n ≥ 1 and m ≤ 1 — which
is usually the case — each eigenvalue of J is smaller than the corresponding eigenvalue of L, so the steps
taken in the Picard iterations are shorter than the Newton steps, constituting a form of under-relaxation.

Both the Picard and JFNK solvers require an initial guess for the velocity fields v0. In idealized geome-
tries without floating ice shelves we find that the obvious initial guess, v0 = 0, works well enough but in
other cases, especially in realistic problems we see only slow or erratic reduction of the residual. Instead,
we choose a viscosity coefficient that is constant over the domain, and, when the basal friction law is not
linear, an initial non-zero constant velocity field. That leads to a linear system, which we solve to give v0

. We also find that the radius of convergence of the JFNK solvers are somewhat smaller than the Picard
solvers, so we initialize those by carrying out a few Picard iterations.

3.5. Explicit treatment of the thickness evolution equation

To compute a conservative update of the ice thickness from time tn to time tn+1 = tn + ∆t, we follow
the approach used to advect passive scalars in [39]. Given H`(tn) and v̄li(t

n), the cell-centered ice thickness
and vertically averaged velocity at time tn, we require face-centered evaluations of the thickness fluxes
Q`,ii (tn + 1

2∆t). We first make use of the piecewise parabolic method (PPM)[44], an upwind scheme that
uses a Taylor expansion of (7) in time and space to provide explicit predictions of the face-centered thickness
values H`,i(tn + 1

2∆t). We then multiply these face-centered thickness values by a face-centered velocity

V `,ii to compute the requisite fluxes, Q`,ii (tn + 1
2∆t) = H`,i(tn + 1

2∆t)V `,ii . Last of all, we compute the

multilevel divergence of these fluxes and update the ice thickness according to (7). Now, if V `,ii was centered

at tn+ 1
2 , we would have a temporally second-order scheme, but in our initial implementation we derive V `,ii

by averaging the cell-centered v̄`i (t
n) to cell faces. So we expect our scheme, even without the difficulties

introduced by the grounding line, to only be temporally first-order. It is still spatially second order for
problems without grounding lines.

Our AMR discretization is simplified by the fact that unlike the scheme described in [38], we do not
refine temporally but instead all AMR levels are advanced at the same timestep: ∆t` = ∆t. While this
results in some inefficiency (all AMR levels are advanced at a timestep dictated by the stability requirements
of the finest level), temporal refinement (also known as sub-cycling) has proved most useful for problems
which are hyperbolic in nature, and those with deep AMR hierarchies which span large ranges of spatial
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scales. Because this problem is dominated by the elliptic nature of the ice velocity equation, and because our
refinement hierarchies tend to be only moderately deep, we have not found sub-cycling to be necessary for the
problems described here. Unlike the relatively simple sub-cycled AMR schemes for fully hyperbolic systems
like gas dynamics [45], a subcycled scheme which correctly respects the elliptic nature of this problem would
result in a significantly more complex algorithm along the lines of that in [38], without obviously improving
the actual efficiency of the code due to the increased computational overhead inherent in such an algorithm.

3.6. Mesh refinement and coarsening

To generate an initial mesh, we begin with single level mesh with a single domain, Ω0, that spans the
problem domain at the coarsest resolution ∆x0. We find a solution to the stress balance equations there,
and then apply refinement criteria to tag regions of the base level domain for refinement to level 1. Next, the
Berger-Rigoutsos point-clustering algorithm[46] is employed to form the refined level 1 domains, which will
cover all of the level 0 tags as well as some of the surrounding untagged region. We then need to compute
a velocity field on the new mesh, which we do by re-solving the stress-balance equations starting from the
level 0 solution. That completed, regions of Ω1 are tagged according to the same criteria, leading to a yet
more refined mesh and solution, and so on until no further refinement is indicated or until the finest level,
L, is reached.

A similar procedure is then used to generate a new mesh every nregrid timesteps, refining some regions
and coarsening others. First, the velocity and thickness fields are approximated in the invalid regions of
Ω0 . . .ΩL−1 by averaging the fields from ΩL onto ΩL−1 and so on down. Next, the cells in both the valid and
invalid regions of each level domain are tagged according to the chosen refinement criteria, and the tagged
cells are used to generate a new mesh. Any regions of Ω`valid that are tagged will certainly be refined relative
to the older mesh. On the other hand, if the approximation to the velocity and thickness fields in a given
region of Ω`invalid is such that the refinement criteria are no longer met the new mesh may — depending on
the behavior of the Berger-Rigoutsos algorithm — be coarsened there.

Clearly, the success or failure of our methods will depend in large part on the refinement criteria we
choose. We will investigate two physically motivated criteria in section 4: in 4.1 we refine the mesh in the
region of a fast-flowing, narrow ice stream by considering the Laplacian of the velocity field, and in 4.2 and
4.3 we choose meshes that are refined in the region of the grounding line by tagging cells adjacent to it.
In other problems, such as in our submission to the MISMIP3D inter-comparison exercise[36], we use both
criteria.

Block-structured meshes are well suited to problems, like that of grounding line evolution, where spatial
resolution needs to be time-dependent. Mesh generation itself is inexpensive, but more importantly, it is
straightforward to transfer the ice sheet state from one mesh to another. Imagine that at time t we need
to replace a union of valid sub-domains Ω`,valid,t− with a new set Ω`,valid,t+. Wherever Ω`,valid,t+ intersects
Ω`,valid,t− , we simply set H(Ω`,valid,t+) = H(Ω`,valid,t−) to obtain the thickness on the new mesh. Linear
interpolation is used to determine H(Ω`,valid,t+) where the mesh is newly refined, that is, where Ω`,valid,t+

replaces regions of Ω`−1,valid,t−. The slope-limiting scheme due to van Leer [47] prevents the introduction of
spurious extrema. Likewise, arithmetic averaging is used in regions where the mesh is coarsened. In principle,
we could follow the same procedure with the velocity components, resulting in a field v∗i (Ω

`,valid,t+) but we
obtain better accuracy by solving the stress-balance equations as described in 3.4 using v∗i (Ω

`,valid,t+) as an
initial guess, which is potentially as expensive as solving the stress-balance equations starting from vi = 0
(or some other guess far from the solution), but is usually less so.

4. Numerical tests

4.1. AMR ice stream.

To demonstrate the effectiveness of our AMR approach on a simple fully-grounded ice sheet, we look
at a simple ice stream in a doubly-periodic domain of size 160km × 160km. In this example, the ice has
constant thickness H = 1 km on a sloping bed,

r = −x cos(θ) (43)
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Figure 3: Ice stream velocity magnitude, computed on a single mesh with ∆x = 5 km (a) and on a refined mesh with L = 2 and
∆xL = 1.25 km. Finer level domains Ω1 and Ω2 are centered on the fast flowing ice, with Ω2 made up from several rectangular
patches. Each patch includes a dark cell at the bottom left indicating the mesh spacing.

where θ = 0.5◦. The basal friction law is linear, with a coefficient given by

C(x, y) = C0

{
1 + ε+ sin

[
2πy

R
+m sin

(
2πx

R

)]}
(44)

where C0 = 1.0× 105 Pa m−1 a, ε = 5.0× 10−5, R = 160 km and m = 0.25. We compute the velocity field
for both single-level and AMR solutions, with a refinement criterion based on the Laplacian of the velocity
field. Figure 3(a) depicts a single level solution with mesh spacing ∆x = 5 km. Starting from there, cells on

level ` are tagged wherever the size of the undivided Laplacian,
∣∣∣4φ`p − φ`p+ex

− φ`p+ex
− φ`p+ey

− φ`p+ey

∣∣∣,
exceeds a threshold value for either φ` = v`x or φ` = v`y, leading to mesh refinement around the ice stream
in the upper half of the figure. After two rounds of refinement, we arrive at the solution shown in figure
3(a), which has finer level domains centered on the fast flowing region, and coarse resolution elsewhere.

We first use Richardson extrapolation to calculate the convergence rate of the velocity field on uniform
meshes, which involves pairwise comparison between solutions with grid spacing ∆x and 2∆x. Convergence
results are shown in figure 4; both velocity components exhibit second-order convergence.

To be effective, our AMR scheme should produce solutions with comparable accuracy to a uniform
mesh solution with the same resolution. To demonstrate this, we compute a uniform-mesh solution on a
very fine mesh (in this case 2048 × 2048), which we take as the “exact” solution, against which we can
compute “error” for single-level and AMR solutions. This will give a slightly different convergence rate from
Richardson extrapolation, but still indicates that the error in our AMR solutions is comparable to that of
the single-level solution with the same effective resolution. Figure 5 shows that for two-level solutions with
refinement ratios of r0 = 2, r0 = 4, and for three-level solutions with r0 = r1 = 2 we see the same error
as the equivalent-resolution single-level solutions for the L1- and L∞-norms (the L2-norm is similar) – a
horizontal line drawn from a point on the “uniform mesh” line should intersect the corresponding points on
the other lines, as is generally the case.

The multigrid-based methods that we use to solve the stress balance equations perform well enough that
a total cell count, including both Ω`valid and Ω`invalid, is a sensible indicator of the computational expense
of a given mesh. Figure 6 plots the residual norm of the stress balance equations,

∣∣∣∣L[vk]vk − r
∣∣∣∣
∞, as a
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Figure 4: Richardson convergence of velocity

(a) Comparison of solver methods

Mesh details Solution method CPU time (s)

AMR, L = 2, ∆x0 = 2.5 km,

∆xL = 625 m, 16,096 valid cells,
20,096 total cells

Picard/MG 133
Picard/BiCGStab 189
JFNK/MG 66
JFNK/BiCGStab 93

uniform, ∆x = 625 m, 65,536
cells

Picard/MG 572
Picard/BiCGStab 1730
JFNK/MG 203
JFNK/BiCGStab 210

(b) Comparison of AMR and uniform mesh performance

∆xL L ∆x0 valid cells total cells CPU time (s)

1.25 km 0 1.25 km 16,384 16,384 52
1.25 km 2 5 km 5,248 6,656 17

625 m 0 625 m 65,536 65,536 203
625 m 2 2.5 km 16,096 20,096 66

312.5 m 0 312.5 m 262,144 262,144 957
312.5 m 2 1.25 km 70,372 88,368 318

156.25 m 0 156.25 m 1,048,576 1,048,576 3,810
156.25 m 2 625 m 276,064 346,240 1,460

Table 1: Solver performance for the the ice stream problem. (a) Comparison of solver methods for AMR and uniform meshes
with ∆xL = 625 m. Complementary plots are given in figure 6. (b) Comparison of AMR and uniform mesh performance, for
the JFNK/MG method only. This table corresponds to the uniform mesh and r = (2, 2) curve in figure 5. CPU times given for
the AMR runs include the entire calculation, starting from a coarse mesh. Calculations were carried out in serial on a 2.26GHz
Intel Core 2 Duo P7550 CPU.
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Figure 5: Error estimates computed by comparing AMR solutions with a fine mesh reference solution.
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Figure 6: Performance of the Picard and JFNK solvers in AMR and uniform mesh ice stream experiments. The outer
residual norm

∣∣∣∣L[vk]vk − r
∣∣∣∣
∞ is plotted against the number of multigrid V-cycles, and each outer iteration k is marked

with a solid circle. The residual is reduced at a similar rate on coarse (a) and fine (d) uniform meshes, and as the AMR
calculation progresses through additional levels of refinement (b) and (c). Results are shown for the Picard methods, using the
simple multigrid method (Picard/MG) and the multigrid-preconditioned BiCGStab method (Picard/BiCGStab), and for the
corresponding JFNK methods (JFNK/MG and JFNK/BiCGStab). Note that the JFNK methods are identical to the Picard
methods at first, because we initialize them with a few Picard iterations. CPU times and cell counts are given in table 1.
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function of the number of multigrid V-cycles taken, for the four solution methods available to us. Plots
6(a)–(c) track the solution of an AMR problem, starting from a coarse uniform mesh with ∆x0 = 2.5 km,
and progressing through one level of refinement (b, L = 1) and then two (c, L = 2), to a final solution with
∆xL = 625 km. Figure 6(d) shows a similar plot for a uniformly fine mesh with ∆x = 625 km.

Most importantly we see that the number of multigrid V-cycles needed to progress from level ` to level
` + l does not grow as we add levels of refinement. Our program spends most of its time carrying out
V-cycles, and since they have a cost in time proportional to the total cell count, the AMR solution should
be far less costly than the uniform mesh solution. Measuring the CPU time for the uniform and AMR mesh
calculations supports this, as shown in table 1, where the uniform meshes typically have three times as many
cells as the AMR meshes, and the runs take three times as long.

As expected, and as others have noted for related problems [42, 48], the Newton methods outperform
the Picard methods by some margin. Comparing the simple multigrid methods first, in figures 6, the New-
ton method (JFNK/MG) residual drops at an increasing rate, outstripping the corresponding Picard/MG
method. That results in calculations that are around twice as fast in the AMR case and three times as
fast in the uniform mesh case, according to table 1. The BiCGStab calculations are somewhat more mer-
curial, and although JFNK/BiCGStab can deliver similar results to JFNK/MG, it is often slower, while
Picard/BiCGStab performs worst of all. Later on we will see that in the Pine Island Glacier example,
JFNK/BiCGStab outperforms JFNK/MG by some margin, but overall we find JFNK/MG to be the most
reliable method.

4.2. Grounding line steady states

We considered the evolution of an ice stream towards steady state, in tests similar to the forthcoming
marine ice sheet inter-comparison 3D (MISMIP3D) standard experiment. An ice stream sits on an inclined
plane sloping down to the sea such that r = −100−x/1000 m. There is an ice divide at x = 0 km; a marine
boundary at x = 800 km; and, for our simulations, periodic conditions at y = 0 km and y = 100 km. Values
for the parameters in (7) and (12) were the same as those prescribed for MISMIP3D: n = 3, m = 1/3,

A = 3.1536 × 10−18 Pa−3 a−1, C = 31651.76 Pa m−1/3 a1/3 , ρ = 900 kg m−3, ρw = 1000 kg m−3,
g = 9.8 m s−2 and Ms = 500 mm a−1. Given these conditions, one expects a unique steady state solution
which does not vary in y, consisting of an ice sheet joined to an ice shelf across a grounding line at x = xgl,
much as in the earlier flowline marine ice sheet inter-comparison (MISMIP) exercise [49].

As this problem has no variation in y we were able to carry out both one-dimensional uniform mesh
simulations, and two-dimensional AMR simulations over a range of resolutions, which allowed us to both
study the convergence of the basic discretization scheme with mesh spacing, and compare AMR and uniform
mesh solutions. The uniform mesh simulations were run at resolutions ranging from ∆x = 12.5 km (128
cells) to ∆x = 24 m (32768 cells), starting from a 150 m thick slab of ice and then running for 50,000 years
— sufficient time to reach a steady-state. As for the AMR calculations, the finest resolution was varied
from ∆xL = 6.25 km to ∆xL = 195 m. These were also started from a 150 m thick slab of ice and run
for 50,000 years, with the first AMR level added after 10,000 years and another every 1,000 years after
that. New meshes were generated at every timestep by tagging 4 cells for refinement on either side of the
grounding line at every level ` < L. We arrived at the number 4 by experimentation : tagging fewer cells
leads to meshes with a similar number of degrees of freedom but with the grounding line much closer to one
coarse-fine interface than the other, while tagging many more makes little difference to the results but does
increase the computational cost. Figure 7 show an ice sheet with two levels of refinement at a point during
its evolution and at steady state along with the corresponding meshes.

Convergence with mesh resolution is at best first-order in ∆x, and that modest target is only achieved
at very fine resolutions.2 Figure 8(a) plots the final grounding line positions attained in the flow-line shelfy-
stream and Schoof-Hindmarsh simulations against mesh resolution. In the shelfy-stream calculations, the

2We place the grounding line at cell faces between grounded and floating cells having computed H(x), so that a first-order
error in xgl of at least ∆x/2 would be present even if we knew H(x) exactly. The error in the calculation of H(x) is much
larger.
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Figure 7: Cross-section through part of an AMR ice sheet geometry close to the grounding line during evolution and at
steady state (a) with corresponding meshes (b) and (c). The figures show a model with L = 2 levels of refinement in addition to
the base level. Starting from a slab of uniform thickness, the ice sheet is first evolved for ten thousand years at low resolution,
then progressively finer AMR levels are added every thousand years until there are L. At that time the ice sheet, shown as a
dark shaded region in panel (a) is still far from equilibrium. From then the model is run to steady state, corresponding to the
light shaded region in panel (a), over tens of thousand of years. As the grounding line migrates, so does the finely resolved
portion of the mesh. In both (b) and (c) the unshaded area is filled with grounded ice and the shaded area with floating ice.
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Figure 8: (a) Steady-state grounding line positions computed with the shelfy-stream (xssa
gl ) and Schoof-Hindmarsh (xsha

gl )

approximations plotted against grid resolution. Results from the 1D uniform mesh calculations are plotted with solid lines
and results from the 2D AMR calculations are plotted with symbols. (b) Estimates of the error in grounding line position
xgl plotted against grid resolution. For the shelfy-stream calculations, the Richardson estimates εssar are close to 20∆x (the
upper dashed line) once ∆x / 500 m. For calculations carried out using the Schoof-Hindmarsh approximation, the Richardson
estimates ultimately satisfy εsha

r ≈ 10∆x (the lower dashed line).

grounding line position xssa
gl changes by around 100 km (one eighth of the problem domain’s length) from

the coarsest to the finest mesh: from xssa
gl = 513 km when ∆x = 12.5 km to xssa

gl = 606.8 km when
∆x = 0.0244km. In comparison, an analytic approximation to the shelfy-stream model gives xa

gl = 606.8 km

[6, 7]. The Schoof-Hindmarsh grounding line position xsha
gl is somewhat further upstream, varying over

around 50 km from xsha
gl = 475 km when ∆x = 12.5 km to xsha

gl = 532.8 km when ∆x = 0.0977 km . Both
sets of results do appear to converge on a limit as ∆x decreases, and the nature of this convergence is evident
in figure 8b. Two error estimates are plotted there: a Richardson estimate of the error in xssa

gl ,

εssar (∆x) =
∣∣xssa

gl (∆x)− xssa
gl (2∆x)

∣∣ , (45)

and a Richardson estimate, εsha
r of the error in xsha

gl . For each, the rate of convergence approaches first-order

with εssar ≈ 20∆x and εsha
r ≈ 10∆x only when ∆x / 500 m.

Our 2D AMR simulations result in grounding line positions in close agreement with the 1D uniform
mesh simulations at a far lower computational cost than would be required to perform 2D uniform mesh
simulations. Figure 8a also plots the (constant in y) distance of the grounding line from x = 0 computed
in these simulations as a function of the finest resolution (∆xL)−1 : they are no further than ∆xL from
the positions attained in the uniform mesh flow-line calculations. Table 2 shows the valid and total cell
counts on the final meshes of each of the Schoof-Hindmarsh calculations, which increase at a rate roughly
proportional to their finest resolution (∆xL)−1; and the cell counts on a mesh with a uniform resolution
∆xL, which are of course proportional to (∆xL)−2. At the finest resolution, where ∆xL = 195 m, the
uniform mesh problem would have more than one hundred times as many valid cells, and hence degrees of
freedom, as the adaptive mesh. Storage requirements and calculation time grow with the total cell count
rather than the valid cell count, but this is still eighty times larger for the uniform mesh.

18



L ∆xL valid cell count total cell count uniform mesh cell count

0 6.25 km 2,048 2,048 2,048
1 3.12 km 2,624 2,816 8,192
2 1.56 km 3,776 4,352 32,768
3 781 m 6,468 8,488 131,072
4 391 m 13,568 17,408 524,288
5 195 m 20,096 26,112 2,097,152

Table 2: Cell counts on the final adaptive meshes of the Schoof-Hindmarsh simulations. The valid cell counts include only the
valid regions Ω`

valid, while the total cell count also includes Ω`
invalid and is thus a better indicator of computational cost. The

uniform mesh cell count is simply that of a uniform mesh with spacing ∆xL.
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Figure 9: Pine Island Glacier, West Antarctica. (a) Bedrock topography with the initial grounding line Γgl and calving front
Γcf marked. Ice flows along the deep channel, marked by Γfl and its branches. The channel floor rises toward the calving front
and attains its maximum beyond the present day grounding line. (b) Observed upper surface speed |~vs|, (m a−1) at the upper
surface of the ice [50].
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Figure 10: Performance of the Picard and JFNK solvers at the start of the Pine Island Glacier calculations. The outer residual
norm

∣∣∣∣L[vk]vk − r
∣∣∣∣
∞ is reduced at similar rates in a low resolution calculation (a) and in a high resolution calculation (b).

We plot the number of multigrid V-cycles taken on the x-axis (rather than the outer iteration number k) as this operation
occupies most of the program’s time. Results are shown for both Picard and JFNK methods, each with simple multigrid
iterations and with multigrid preconditioned BiCGStab iterations used to solve the inner linear systems. The JFNK method
begins with a few Picard iterations, so the curves are identical to begin with, but the JFNK methods are ultimately quicker.
The Picard/MG and Picard/BiCGStab results are identical in (b).

4.3. Grounding line migration at Pine Island Glacier

We considered grounding line retreat due to ice shelf melting at Pine Island Glacier (PIG), West Antarc-
tica as a typical application of the model. We chose a 256 km × 384 km region surrounding PIG; its
bedrock topography is shown in figure 9(a) together with the present day grounding line and calving front.
The topography, and the ice thickness set at the start of our simulation, are derived from a number of
sources including airborne survey [51], satellite observation [52, 53] and submarine exploration [16, 54], and
then interpolated onto a 1 km grid following the approach of [55]. Recent measurements show ice streams
draining the region (figure 9(b)), converging in the deep central channel and crossing the grounding line at
speeds of around 2 km a−1, to be lost to the ocean at a rate of approximately 70 km3 a−1 [12, 18].

A series of simulations were carried out using the Schoof-Hindmarsh model and varying the finest mesh
spacing ∆xL from 4 km down to 125 m. Much as before, meshes were generated at each timestep by selecting
4 cells for refinement on either side of the grounding line at every level `, though cells close to the domain
boundaries were not chosen. In each calculation the flow law rate factor was A = 4.0 × 10−17 Pa−3 a−1,
the exponents in the flow and friction laws were n = 3 and m = 1 respectively, and a uniform rate of
accumulation Ms = 300 mm a−1 was imposed. The friction law coefficient C varies across the domain and
was chosen so that the initial velocity roughly matched the observations of [50] shown in figure 9(b) : it
is lowest, with values of around 50 Pa m−1a, in the central channel and up to 105 Pa m−1a elsewhere3.
Boundary conditions at all four of the domain edges are given by the divide condition (15), while the calving
front Γcf is kept constant throughout.

Before we turn to time-dependent calculations, we note that the performance of our multigrid Picard
and JFNK solvers remains adequate for this much more realistic problem. We will consider just the initial
velocity calculation, since performance is similar at subsequent time steps. Figure 10 plots the outer residual

3More sophisticated methods which can be used to match C to observations exist in the literature [17, 28, 29, 50, 56]
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Figure 11: (a) Sections through Pine Island Glacier as it retreats. The sections are parallel to the contour Γfl and are computed
at 10 year intervals. Later results are in the foreground. (b) Cumulative volume of ice loss V (0) − V (t) plotted against time
for simulations with finest resolution ∆xL, 0 ≤ L ≤ 5.

norm,
∣∣∣∣L[vk]vk − r

∣∣∣∣
∞ against the number of multigrid V-cycles taken for two cases, one with a coarsely

resolved grounding line having L = 1 and ∆xL = 2 km and one with a finely resolved grounding line with
L = 4 and ∆xL = 250 m. These start from the L = 0 and L = 3 solutions respectively. Just as in the
idealized problem of section 4.1, solver performance does not worsen with improving resolution, and here we
even see that the residual is reduced more quickly for the case ∆xL = 250 m than for ∆xL = 2 km. While the
Picard method needs only one or two multigrid V-cycles per outer iteration, they reduce the outer residual
slowly. In contrast, the JFNK solvers require more V-cycles per outer iteration, but the outer residual
is reduced more quickly overall. There is little advantage to BiCGStab over simple multigrid iterations
when using the Picard method; indeed, because it requires at least two V-cycles its overall performance is
sometimes worse, as in figure 10 (a), and is sometimes identical, as in figure 10 (b). On the other hand, it
can deliver significantly better JFNK performance.

If we run a simulation with just the parameters above the ice sheet tends to advance, so for it to retreat
(or even remain stationary) we need to specify some additional loss of ice. We drove the glacier into retreat
by specifying a simple melting rate under the floating ice shelf:

Mb =

 0 H < 50
(H − 50)/9 50 ≤ H ≤ 500
50 H > 500

ma−1, (46)

which results in the floating ice shelf thinning, eventually reaching 50 m at the calving front, so that the
lateral stresses which buttress the glacier against retreat are reduced. This thinning and subsequent retreat
is shown in cross-section in figure 11(a). We should point out that expression (46) was chosen because we
found that it led to the kind of calculations we wished to test: rapid and significant retreat of the grounding
line. It is not intended to be realistic, but does have some plausible features: melting is greatest near the
grounding line and at greater depth where one might expect warmer water and a melt rate of 50 ma−1 is
comparable to values in the literature [17, 19, 57]. However, we have no good reason to suggest that warm
water ought to follow the retreating glacier, as (46) implies.

Figures 11(b) and 12 illustrate some more detail of the glacier’s behavior over time and with mesh
resolution. In figure 11(b), we plot the net volume of grounded ice lost through the grounding line, V (t =
0)− V (t), where

V (t) =

∫
Ω

{
H s = r +H
0 s > r +H

}
dΩ. (47)

After an initial period of little change, the glacier retreats steadily, diminishing at a rate which varies with
resolution, from as little as 35 km3 each year when ∆xL = 4 km, to as much as 230 km3 each year when
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(a) Cell counts used to simulate 30 years of Pine Island Glacier evolution.

minimum mean maximum uniform mesh
L ∆xL

∑
N `

A(t)
∑
N `

S cell count

1 2 km 8,832 9,088 9,728 9,728 24,576
2 1 km 14,208 15,849 18,560 19,968 98,304
3 500 m 26,816 30,711 36,544 48,896 393,216
4 250 m 50,240 60,205 72,576 139,712 1,572,864
5 125 m 97,344 118,156 140,480 429,440 6,291,456

(b) Cell counts used to simulate 50 years of Pine Island Glacier evolution.

minimum mean maximum uniform mesh
L ∆xL

∑
N `

A(t)
∑
N `

S cell count

1 2 km 8,832 9,338 9,728 9,728 24,576
2 1 km 14,208 17,292 20,864 23,808 98,304
3 500 m 26,816 34,522 44,800 65,472 393,216
4 250 m 50,240 68,818 91,328 203,264 1,572,864
5 125 m 97,344 136,652 184,256 678,592 6,291,456

Table 3: Cell counts used to simulate 30 years (a) and 50 years (b) of Pine Island Glacier evolution. Our adaptive meshes
evolve in time, so the total cell count

∑
N`

A(t), summed over each level domain Ω`
A(t) varies with time; its minimum, mean,

and maximum values are given above. Compare these with the cell count
∑
N`

S on a mesh which could be used for all 30 (or

50) years, defined such that each Ω`
S is the union of all the appropriate Ω`

A(t) , and the cell count on a uniform grid with

spacing ∆xL.

∆xL = 125 m. Both the onset and rate of retreat converge with resolution, albeit slowly. The shape of
the grounding line itself, shown after 30 years of evolution in figure 12(b) and after 50 years in figure 12(c),
exhibits a similar, first-order rate of convergence, suggesting that a resolution near the grounding line of
∆xL < 500 m is necessary to achieve accuracy on the order of a few kilometers.

Evolving our meshes in time is computationally cheaper than defining a uniform mesh which is adequately
resolved to treat the grounding line migration. Figures 12(a),12(b) and 12(c) show ice velocity magnitudes,
at the beginning of a ∆xL = 500 m calculation, 30 years later, and 50 years later. During this period, the
grounding line has retreated by up to 100 km so that the most finely resolved portions of the mesh have
changed. If we denote the level domains used in the simulation by Ω`A(t) and the total number of cells in
these as

∑
N `

A(t), then we can regard the maximum value of
∑
N `

A(t) over a given time period as a measure
of the storage requirement of the calculation and the mean value as a measure of its cost in time. As in
the previous example, these measures are approximately doubled for every additional level of refinement,
as shown in table 3, and once again the cell count on AMR meshes with minimum mesh spacing ∆xL is
dwarfed by the cell count on a uniform mesh with mesh spacing ∆xL.

Few would consider a uniform mesh scheme to be suited to this problem, but an obvious alternative to a
time evolving mesh is a non-uniform mesh that is adequately resolved in the area swept out by the grounding
line. One such mesh has level domains Ω`S defined to be the union of every Ω`A(t) used over the appropriate
time period, and although we would not be able to determine this mesh a priori, we can regard it as close
to ideal. Since the ΩLS must cover the whole of the ice stream between the initial and final grounding lines,
rather than a region of finite width around the grounding line, we expect the cell count

∑
N `

S to grow more
quickly than the mean and maximum values of

∑
N `

A(t), and we show this in table 3 . Even if this mesh
could be identified and generated at the the start of the calculations, our choice of time-evolving meshes is
still more efficient. Provided that ∆xL < 500 m,

∑
N `

S is so much larger than the mean value of
∑
N `

A(t)
that we can afford to generate a new mesh (recall that this means computing an additional solution to the
stress-balance equations, potentially doubling the time required) at every timestep, while at ∆xL > 500 m,
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(c) Pine Island Glacier at t = 50 a

Figure 12: Pine Island Glacier velocity magnitude |~v|, grounding line Γ3
gl and mesh computed in the L = 3 simulations (with

finest resolution 500 m). (a) At t = 0 a. (b) At t = 30 a and (c) t = 50 a , together with the grounding lines ΓL
gl computed in

every simulation. The rectangular patches that make up Ω1 and Ω2 are shown with a dark cell at the bottom left to indicate
the mesh spacing. Ω3 is shaded to distinguish it from Ω2.
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30 years 50 years
L ∆xL Ntime Nmesh Cmesh Ntime Nmesh Cmesh

2 1 km 629 44 0.08 1,298 67 0.07
3 500 m 1,450 244 0.12 2,780 393 0.09
4 250 m 3,064 985 0.16 5,688 1,913 0.13
5 125 m 6,299 3,649 0.22 11,518 6,788 0.20

Table 4: The cost of evolving the mesh in time for 30 and 50 year simulations of Pine Island Glacier. As the number of levels
of refinement (L) increases we need to take more time steps, Ntime. We tag cells for refinement on every time-step, but only
need a new mesh on some, for a total of Nmesh new meshes generated. Finer meshes need to be replaced more often, and so the
proportion of CPU time spent on re-meshing operations, Cmesh, increases. Cmesh is dominated by the time spent re-solving
the stress balance equations.

we can afford to do so every few timesteps.
Although we tag cells for refinement on every timestep, the resulting mesh does not necessarily change

that often. Table 4 sets out the number of new meshes generated over the thirty and fifty year simulations,
together with the number of time-steps taken and the proportion of CPU time spent on mesh generation and
re-solving the stress balance equations. At low levels of refinement, new meshes are only rarely needed, and
so the associated CPU cost is tiny. As finer meshes are brought into play, the number of new meshes needed
rises rapidly, so for example at ∆xL = 125 m around a fifth of the CPU time is expended on re-meshing
operations. Nonetheless, the overall efficiency grows: for the 30 year runs, at ∆xL = 250 m our scheme
would seem to be around half as costly as the putative unchanging mesh, and at ∆xL = 125 m it is one
third as expensive.

5. Conclusions

We have developed a block-structured AMR treatment of isothermal marine ice sheets. The resulting
code 4 is built upon the Chombo5 framework, which implements MPI-based parallel computing in addition
to support for the AMR capabilities discussed in the paper. At each timestep, we must solve a nonlinear,
elliptic stress balance equation to find a cell-centered velocity field . To that end, we utilize a combination of
Picard and Jacobian-free Newton methods, solving the resulting linear systems with either a straightforward
multigrid method, or with multigrid-preconditioned BiCGStab iterations. In turn, the cell-centered ice
thickness is evolved conservatively using the piecewise parabolic method.

Our use of block structured AMR allows us to efficiently model ice sheets which feature a grounding line.
Grounding line problems are particularly difficult because they exhibit degraded convergence with mesh
spacing. In theory, and in our tests, both uniform mesh and AMR solutions to the stress balance equation
converge at second-order rates when all the ice is grounded. On the other hand, when we include a grounding
line we experience only first-order rates of convergence, and so require much higher resolution. If we evolve
the mesh over time such that the mesh spacing is smallest at the grounding line but increases quickly with
distance from it we can avoid much of the computational cost we might otherwise incur. We demonstrated
just such a saving in both an idealized case and in a simulation of the retreat of Pine Island Glacier, in
which use of AMR resulted in a more than forty-fold reduction in the number of unknowns compared to a
uniform mesh, and a three to five-fold reduction compared to a mesh with fine resolution in the fast-flowing
ice stream but coarse resolution elsewhere.

In future work, we will address vertical shearing (and the associated temporal stability issues), and
non-isothermal ice.

4Our ice sheet model is known as ‘BISICLES’ and is freely available at http://bisicles.lbl.gov
5Chombo is freely available at http://chombo.lbl.gov
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Appendix A. Multilevel Tensor Operator Discretization

The elliptic operator we employ for the basal velocity field in (12) may be generalized as the viscous
tensor operator L. L acts on a vector field to give

L

(
vx
vy

)
=

(
α(x, y)vx − ∂j(Fxj)
α(x, y)vy − ∂j(Fyj)

)
, (A.1)

where the viscous flux term is defined by

Fij = µ(x, y, z)(∂jvi + ∂ivj) + δijυ(x, y, z)∂kvk, (A.2)

and in our case α is the basal friction coefficient C, µ is the viscosity defined in (13), and υ = 2µ.
We discretize the divergence in (A.1) using the finite-volume formulation of eqn (22), which requires the

flux term (A.2) at cell faces, in turn requiring partial derivatives at cell faces except at the ice divides and
calving fronts, where the flux is provided directly by (15) or (18). We determine the face centered derivatives
using a centered-difference stencil in the normal direction, and the average of cell-centered derivatives in the
tangential direction:

(∂jφ)`,ip =

{
(φ`p − φ`p−ei

)/(∆x), if i = j
1
2

(
(∂jφ)`p + (∂jφ)`p−ei

)
, if i 6= j

(A.3)

and the cell-centered derivatives in the usual way,

(∂jφ)`p = (φ`p+ej
− φ`p−ej

)/(2∆x). (A.4)

At coarse-fine interfaces, we interpolate values for φ` into ghost cells using the quadratic interpolation
described in [39]. For example, figure A.13 illustrates how ghost-cell-centered values for the tangential y-
direction gradients are computed by computing an estimate for the coarse-level tangential gradient, and
then quadratically interpolating in the normal direction with the fine-level gradients to compute a ghost-
cell-centered value for the gradient, which is then used in (A.3).
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Figure A.13: Interpolating gradients tangential to coarse-fine interfaces. Compute fine-level centered gradient (using “X” values
to compute gradient at filled circle). Compute interpolated coarse-level gradient at crossed circle by passing a quadratic through
three coarse-level points (open circles). Then, compute tangential gradient in fine-level ghost cell (asterisk) by quadratically
interpolating coarse-level and fine-level tangential gradients.
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