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Abstract. We have developed a simulation capability to model multiscale flow and transport
in complex biological systems based on algorithms and software infrastructure developed under
the SciDAC APDEC CET. The foundation of this work is a new hybrid fluid-particle method for
modeling polymer fluids in irregular microscale geometries that enables long-time simulation of
validation experiments. Both continuum viscoelastic and discrete particle representations have
been used to model the constitutive behavior of polymer fluids. Complex flow environment
geometries are represented on Cartesian grids using an implicit function. Direct simulation
of flow in the irregular geometry is then possible using embedded boundary / volume-of-fluid
methods without loss of geometric detail. This capability has been used to simulate biological
flows in a variety of application geometries including biomedical microdevices, anatomical
structures and porous media.

1. Introduction
Biological flow is complex and not well-understood due to the presence of macromolecules in the
fluid whose molecular lengths are comparable to the flow geometries of microscale systems. This
is inherently a multi-scale problem as flow, transport, molecular recognition, and reaction in
these types of flows require description of multi-species processes in complex three-dimensional
geometries. For example, in a biomedical microdevice the length scales range from about 1
nanometer (the scale at which the surface of a small globular protein is discretized), to tens or
hundreds of microns for typical fluidic processors. The time scales range from tens of nanoseconds
(a characteristic time for protein reorientation) to a few minutes (a typical time for a complete
bioassay). Currently it is not possible to computationally resolve the phenomena of interest over
this range of length and time scales in a computational design or modeling tool. Additionally,
available software packages do not contain advanced numerical algorithms to physically model
such complex fluids.

Additional complexity arises from the need to represent realistic geometries in biological
flows. Geometric details in device or anatomical flow domains can affect system level behavior.
Therefore, it is necessary to work within a self-consistent framework that includes capabilities
from surface extraction of image data (e.g., CAD, MRI, CT) to compatible gridding and direct
simulation in the derived geometry without loss in geometric details. However, methods of
surface extraction are limited in their abilities to recover the geometry of complex objects in real
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time. Moreover, it is necessary to convert the surface extracted by image processing techniques
into a computational domain appropriate for the CFD solver, involving the construction of a
mesh on the surface and in the 3D domain that it encloses. Valuable information can be lost
during this construction due to limitations of the CFD solvers with respect to the properties
of the surface mesh. It is often the case, for example, that the surface needs to be smoothed
in order to build a finite-element mesh necessary to some CFD codes. Failing that, irregular
surfaces must be approximated by a large number of small mesh elements, pushing the limits of
computer memory. The result in this and other cases is a compromise in the level of accuracy
of the surface extraction method.

In this paper we discuss computational solutions to particle-laden flow problems which
leverage solver capabilities and infrastructure developed in An Algorithmic and Software

Framework for Applied Partial Differential Equations (APDEC), a SciDAC Center for Enabling
Technology. The fundamental CFD algorithm is based on a new fluid-particle coupling scheme
for polymer fluids. Irregular geometry is handled by the embedded boundary / volume-of-fluid
method.

2. Particle-laden Fluidic Systems
We use the Navier-Stokes equations to model the solvent as a continuum on domain Ω:

∂u

∂t
+ (u · ∇)u+

1

ρ
∇P = ν∆u+

1

ρ
F (1)

∇ · u = 0. (2)

These equations describe an incompressible fluid of density ρ, pressure P , velocity u, and
Newtonian viscosity ν, subject to an additional body force F. On the domain boundary δΩ
we have the no-slip boundary condition u = 0.

The polymer solute is represented as a collection of point masses each subject to Newton’s
second law of motion

mα
d2xα

dt2
= mα

dvα

dt
= fα. (3)

Here mα is the mass of the αth particle, xα is its coordinate, and vα is its velocity. The
particle is subject to a force fα which combines a Stokes drag term with a stochastic (Brownian)
perturbation,

fα = mαγ(u(xα)− vα) + FBα. (4)

Here, 1/γ is a phenomenological relaxation time (mγ = 6πµb for a Stokes sphere of radius b) ,
and FB is the stochastic force

〈FBα(t)〉 = 0 (5)
〈

FBα(t)FBα(t
′)
〉

= σ2αIδ(t− t′) (6)

σα =
√

2mαγkBT , (7)

with kB being Boltzmann’s constant and T the temperature.
The force F acting on the fluid is

F(x) = −
∑

α

fαδε(x− xα), (8)

where δε represents a smoothed Dirac delta function with length scale ε.
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Figure 1. Example of an irregular geometry on a Cartesian grid (left). Close-up view
of embedded boundaries “cutting” regular cells (middle). Single irregular cut cell showing
boundary fluxes (right). Shaded area represents volume of cells excluded from domain. Dots
represent cell-centers. X’s represent centroids.

In addition to the incompressibility condition (2) we have three additional constraints on the
particles: (i) interparticle spacing is constant

‖xα − xβ‖ = a (9)

if particles α and β represent adjacent nodes in a bead-rod polymer representation; (ii) particles
cannot pass through a physical boundary,

xα ∈ Ω; (10)

and (iii) rods cannot cross.

3. Embedded Boundary / Volume-of-Fluid Methods
We use a Cartesian grid embedded boundary method to discretize the fluid equations in the
presence of irregular boundaries. In this approach, the irregular domain is discretized as a
collection of control volumes formed by the intersection of the problem domain with the cubic
Cartesian grid cells as in a “cookie-cutter” (see Figure 1). The various operators – the discrete
divergence ∇·, discrete gradient ∇, and discrete Laplacian ∆ – are approximated using finite
volume differences on the irregular control volumes, with the fluxes computed using the primary
discretized dependent variables, which approximate the solution evaluated at the centers of the
original Cartesian cells.

For example, the Laplacian operator, ∆φ = ∇ · ∇φ, is a divergence of a flux and can be
calculated in a finite volume (such as the cut cell in Figure 1c) by applying the divergence
theorem which converts a volume integral to a surface integral so that fluxes can be simply
summed around the perimeter of the cut cell along normals:

∇ · ~F ≈
1

κhd

∫

Ω

∇ · ~FdΩ =
1

κh

∫

∂Ω

~F · ~ndS =
1

κh

∑

s

αs
~Fs + αb

~Fb, (11)

where κ is the volume fraction of the cell, α is the area fraction of a cell edge, h is the grid
spacing and subscripts s and b indicate cell edges and the embedded boundary, respectively.

To obtain a flux at an embedded boundary when only cell-centered data exists, which is the
case when a homogeneous Dirichlet boundary condition is needed for no-slip of the fluid velocity
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Figure 2. Direct simulation of flow in geometries obtained from implicit function on grid. (a)
Computed transverse pressure gradient in a 2D idealized pore geometry representation of a post-
array microchannel. Flow is left to right. Posts are 20µm in diameter. (b) Computed pressure
in 3D idealized pore geometry representation of a microtube randomly packed with glass beads
(packed bed). Spheres range in diameter from 10 to 30µm.

at solid walls, a special extrapolation procedure is needed. Instead of applying the advanced
stencil for Dirichlet boundary conditions described in [4] we assume a lower-order truncation
error stencil based on least squares [8, 7], but one that maintains second-order solution error,
to interpolate the flux ϕ at an irregular boundary, B. The gradient ∇ϕ is obtained from the
system:

A · ∇ϕ = δϕ, (12)

where

A = (δ~x1, δ~x2, ..., δ~xp)
T (13)

δϕ = (δϕ1, δϕ2, ..., δϕp)
T (14)

δ~xm = ~xm − ~xB (15)

δϕm = ϕm − ϕB. (16)

The stencil (m = 1, 2, ..., p) is determined by the normal of the embedded boundary. In 2D the
stencil includes up, side and corner cells (see Figure 1b), with p = 3; in 3D, the normal points
to an octant, where p = 7. In 2D, for example, there are two equations and three unknowns; a
least squares fit is applied to obtain the gradients ∇ϕ.

The embedded boundary approach to complex geometry is compatible with a fast and
accurate technique for surface extraction from CAD and image data [2, 9]. In this technique
fast marching level sets methods are used to obtain a surface rendering from the image. The
surface is then represented on a Cartesian grid with implicit functions, making possible direct
simulation in highly packed, irregular microscale geometries (e.g., porous media) with algorithms
based on embedded boundaries. We have demonstrated the implicit function technique for ideal
pore scale geometries in 2D and 3D. Figure 2a is an example of 2D flow in a microchannel
with a structured array of posts or cylinders. The transverse pressure gradient is shown which
is non-zero due to the geometry. Figure 2b is an example of 3D flow in a cylinder randomly
packed with microspheres resembling a packed bed column. The following implicit function is
used to represent these geometries on the grid for both the 2D and 3D examples:

φ(x) = min
k
(|~x− ~xk|

2 − r2k), (17)

where ~xk = center of kth sphere, rk = radius of kth sphere and ~x : φ(~x) = 0 on the boundary.
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4. Particle Interactions in Hybrid Fluid-Particle Systems
Our previous versions of the particle method have included varying degrees of fidelity in particle
interactions. In [12] we elastically bounced particles of surfaces but ignored the rod crossing
constraint which is common in other implementations [3]; the particle timestep was two orders
of magnitude less than the stable fluid timestep. In [10] we used a soft potential for rod-rod and
bead-surface interactions in 2D, and explained a hard constraint algorithm with fluid coupling in
[11]. Currently we use a hierarchical approach to enforce the constraints of the particle system
as in [5]:

(i) Calculate unconstrained particle motion due to Newton’s Second Law (3).

(ii) Calculate motion subject to rod length constraint (9).

(iii) Calculate motion subject to rod-rod crossing constraint (e.g., [10, 11]).

(iv) Calculate motion subject to bead-surface crossing constraint (10).

The rod length constraint, which is similar to the molecular dynamics SHAKE algorithm
[6], can be differentiated to obtain another constraint, on velocity, similar to molecular
dynamics RATTLE algorithm [1]. Also, the rod-rod and bead-surface crossing constraints can
be enforced simultaneously to obtain a larger timestep on the order of a stable fluid timestep
determined by advection alone (CFL condition), enabling system-level modeling through long-
time, experimental-scale simulation [5].

Acknowledgment
This work was performed under the auspices of the U.S. Department of Energy by the University
of California, Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

References
[1] H. C. Anderson. Rattle: A “velocity” version of the Shake algorithm for molecular dynamics calculations.

J. Comp. Phys., 52:24–34, 1983.
[2] T. Deschamps, P. Schwartz, D. Trebotich, P. Colella, D. Saloner, and R. Malladi. Vessel segmentation and

blood flow simulation using level-sets and embedded boundary methods. In International Congress Series,
volume 1268, pages 75–80, June 2004.

[3] J. S. Hur, E. S. G. Shaqfeh, H. P. Babcock, and S. Chu. Dynamics and configurational fluctuations of single
DNA molecules in linear mixed flows. Phys. Rev. E, 66, 2002.

[4] H. Johansen and P. Colella. A Cartesian grid embedded boundary method for Poisson’s equation on irregular
domains. J. Comp. Phys., 147(2):60–85, December 1998.

[5] G. H. Miller and D. Trebotich. Toward a mesoscale model for the dynamics of polymer solutions. J. Comput.

Theor. Nanosci., 4(4):797–801, 2007.
[6] J.-P. Ryckaert, G. Ciccotti, and H. J. C. Berendsen. Numerical integration of the Cartesian equations of

motion of a system with constraints: Molecular dynamics of n-alkanes. J. Comp. Phys., 23:327–341, 1977.
[7] P. O. Schwartz, M. Barad, P. Colella, and T. J. Ligocki. A Cartesian grid embedded boundary method for

the heat equation and Poisson’s equation in three dimensions. J. Comput. Phys., 211:531–550, 2006.
[8] D. Trebotich, P. Colella, G. H. Miller, A. Nonaka, T. Marshall, S. Gulati, and D. Liepmann. A numerical

algorithm for complex biological flow in irregular microdevice geometries. In Technical Proceedings of the

2004 Nanotechnology Conference and Trade Show, volume 2, pages 470–473, 2004.
[9] D. Trebotich, T. Deschamps, and P. Schwartz. Air-flow simulation in realistic models of the trachea. In

Technical Proceedings of the 26th Annual International Conference IEEE Engineering in Medicine and

Biology Society, pages 3933–3936, September 2004.
[10] D. Trebotich, G. H. Miller, and M. D. Bybee. A hard constraint algorithm to model particle interactions in

DNA-laden flows. Nano. Micro. Thermophys. Engr., 11(1-2):121–128, 2007.
[11] D. Trebotich, G. H. Miller, and M. D. Bybee. A penalty method to model particle interactions in DNA-

laden flows. J. Nanosci. Nanotech., 2007. accepted to appear. Also available as LLNL Technical Report
UCRL-JRNL-223318.

[12] D. Trebotich, G. H. Miller, P. Colella, D. T. Graves, D. F. Martin, and P. O. Schwartz. A tightly couple
particle-fluid model for DNA-laden flows in complex microscale geometries. Computational Fluid and

Solid Mechanics, pages 1018–1022, 2005.

SciDAC 2007 IOP Publishing
Journal of Physics: Conference Series 78 (2007) 012076 doi:10.1088/1742-6596/78/1/012076

5




