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To model entire microfluidic systems containing solvated polymers we argue that it is necessary to
have a numerical stability constraint governed only by the advective CFL condition. Advancements
in the treatment of Kramers bead-rod polymer models are presented to enable tightly-coupled fluid-
particle algorithms in the context of system-level modeling.
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1. INTRODUCTION

We are interested in modeling the fate of long polymer
molecules in macroscopic flows with nontrivial geometry.
Applications include predictive modeling of microfluidic
bio-sensor and bio-processing devices which are currently
being developed for medical, industrial, and defense appli-
cations. Our goal is to model such fluid systems in their
entirety, which necessitates an approach in which the dis-
cretized equations are subject to a stability condition which
differs little from the advective Courant-Friedrichs-Lewy
one (i.e., CFL ≈ 1 with CFL ≡�t�vfluid��/�x). For typical
microfluidic applications �x = ��10−6 m� and �vfluid�� =
��10−2 m/s� so �t = ��10−4 s�. This contrasts sharply
with approaches such as molecular dynamics which are
capable of faithfully modeling molecular-level interactions
at the cost of very small time steps �t = ��10−15 s�.

When faced with this large disparity in time scales, the
usual approach is to eliminate short time scale behavior
by freezing high frequency modes of the system. This
approach has been employed in the molecular dynam-
ics community for over 40 years, as in approximating
the water molecule (with 9 degrees of freedom) by a
symmetric rigid rotor (with 6 degrees of freedom).12 We
combine this approach with Kramers’ abstraction,11 which
represents long-chain molecules as a collection of point
beads connected by rigid rods—each point mass represent-
ing dozens or more atoms. This coarse-graining approach
has been shown to provide models which capture many
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essential mechanical features of molecules like DNA,9

while giving up resolution of chemical intra-molecule and
inter-molecule interactions. These interactions must them-
selves be coarse-grained if they are to be included without
affecting the stable time step. In the case of molecule-
solvent interactions, this is generally accomplished with
the stochastic Brownian motion model. Approaches to
coarse-graining the inter-polymer and intra-polymer inter-
actions were described in16 and will be further developed
here.

Our approach to system-level modeling has been to
incorporate simplified polymer models with continuum
models (Navier Stokes) for the fluid. Different approaches
are possible. For example, Symeonidis and Karniadakis15

use the dissipative particle dynamics (DPD) coarse-
graining approach8 to model solvated polymers. By itself,
DPD offers ��100�× speed-up relative to raw molecular
dynamics. Symeonidis and Karniadakis realized an addi-
tional 100× speed-up by applying different time steps to
solvent and polymer. This hybrid DPD approach could
be extended to a system-level model through the adaptive
mesh and algorithm refinement (AMAR) formalism,6 an
approach which would give molecular-scale attention to
the regions of space containing polymers while applying
a continuum Navier Stokes approach to the remainder of
the problem domain. In complex systems containing large
concentrations of polymer, however, this AMAR strat-
egy would require molecular-scale resolution essentially
everywhere, which would render the approach impracti-
cal. Thus, in our view, for system-level modeling a strat-
egy is required which captures the essential behavior of
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polymer molecules and their interactions with the solvent
without requiring molecular-scale treatment of the solvent.
This approach could be used even with AMAR to treat
some selective polymers or regions with molecular-scale
fidelity while using the coarser model in the majority of
the domain.

We presented a model with these general features in
Ref. [17]. There, we also developed a simple elastic
collision model for molecule-wall interaction to prevent
polymer molecules from exiting the fluid domain. This
elastic collision approach is itself a coarse-graining in the
same spirit as the one used to rigidly fix Kramers seg-
ment lengths. Chemical interactions between the wall and
the polymer have been ignored, which eliminates high-
frequency modes to enable long stable time steps.

Another important class of interactions concerns the col-
lision of a polymer with itself: an unbroken polymer has
the topology of a string, and cannot cross itself. This non-
crossing constraint occurs naturally in molecular dynam-
ics simulations by virtue of short-range repulsive forces.
The coarse-graining approach analogous to our polymer-
wall interaction is to treat polymer–polymer interactions
as elastic collisions. A preliminary treatment of this is
described in Ref. [16] where dynamics were observed
which were essentially identical to those obtained using
repulsive potentials.

In this report we present our current model for intra-
polymer collisions, which differs from previous ones by
incorporation of a Kramers bead velocity constraint, and
improvement of the polymer–polymer elastic collision
model. Together these improvements have increased the
time scale required for stable polymer modeling by a factor
of ≈100, which now places the stable polymer time step
on an equal footing with the fluid CFL timestep, enabling
system-level modeling.

2. ALGORITHMIC APPROACH

Our ultimate goal of system-level modeling is to combine
our 3D Navier Stokes continuum model with a solver for
particle dynamics. Our Navier Stokes method is described
briefly in Ref. [17], and will be described more fully in
Ref. [2]. Complex geometry is accommodated using the
so-called “embedded boundary” method,10�5 which com-
bines high-order Cartesian grid discretizations with cut-
cell representations of the geometry. Our polymer-fluid
coupling strategy is described in Ref. [17]. It tightly cou-
ples the momentum transfer between fluid and particles
in a self-consistent way. High-order accuracy is achieved
through a predictor-corrector approach.

Here, our polymer dynamics algorithm will be described
independently of the Navier Stokes application. The expo-
sition will begin by considering a single time step in which
the polymer bead trajectories, unchecked, allow for at most
one rod crossing event. Following this development the

modifications necessary to allow more complex interacts
will be described.

For each time step n, beginning with bead coordinates
xn and velocities vn:
(1) Calculate the unconstrained motion to obtain x∗ and
v∗—provisional values at time n+ 1. Our time-stepping
strategy is described in Ref. [17] including stochastic terms
in both coordinate and velocity equations.
(2) Correct the dynamics computed above to include rod
length and velocity constraints. The corrected quantities
will be labeled x† and v†. In Ref. [17] we employed the
Lagrange multiplier technique of Ref. [4] to enforce the
constraint ri� i+1 · ri� i+1 = a2, where a is the Kramers rod
length. The resulting method is similar to the SHAKE13

algorithm of molecular dynamics, appropriate to the
coordinate-only Verlet method. Differentiation of this con-
straint gives ri� i+1 ·vi� i+1 = 0, which constrains the velocity.
This was introduced as the RATTLE1 algorithm in the
molecular dynamics literature, appropriate to the so-called
velocity Verlet algorithm, and we adopt it here. Enforcing
this velocity constraint resulted in a significant (��100×�)
improvement in the time stability of our polymer model.
(3) Correct the dynamics computed above to incorporate
polymer–wall and polymer–polymer interactions. The cor-
rected quantities will be labeled x‡ and v‡. The details of
this step for polymer-polymer interactions are as follows:

Calculate v�t , the bead velocities over the current time
step

v�t = �x†−xn�/�t

so that the time-linear trajectory of each bead over the
current time step is

x= xn+ v�tt t ∈ �0��t� (1)

Repeatedly loop through all rod pairs until no more col-
lisions are detected. For each pair of rods i and j:
(3a) Calculate the triple product Vij at times 0 and �t
where

Vij = �xi−xj � · ��xi+1 −xi�× �xj+1 −xj �� (2)

The value of Vij will be zero if the infinite lines containing
the rods intersect or are parallel. Therefore, if the value
of Vij changes sign over the time step, a possible rod–rod
crossing has occurred. Otherwise, proceed to step 3h.
(3b) Calculate � , the time of crossing. One could sub-
stitute the time-linear trajectories of (1) into (2) to give
a third-order polynomial Vij�t�.

3�16 The smallest root
of this polynomial in �0��t� is �–a potential time of
impact. We have implemented an “exact” cubic equa-
tion solver and also a Newton’s method iterative solver.
The exact approach is subject to large numerical errors
(Ref. [14], §5.8) and often fails to compute a � ∈ �0��t�
even when Vij�0�Vij��t� < 0. The Newton solver is some-
what more costly, but robust. Even simple bisection is pre-
ferred to the analytical calculation.
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(3c) Calculate x� , the bead positions at time � :

x� = xn+ v�t�

(3d) Calculate �, the point of intersection at time � , by
solving the following set of equations:

� = x�i +�i�x
�
i+1 −x�i �= x�j +�j�x

�
j+1 −x�j �

where �i and �j define the point of intersection between
the lines containing rods i and j respectively. If �0 ≤
�i ≤ 1� and �0 ≤ �j ≤ 1� then the point of intersection
lies on both rods and a rod–rod crossing has occurred.
Otherwise, proceed to step 3h
(3e) Calculate n, the unit vector normal to the plane
formed by the two rods at time �

n = �x�i+1 −x�i �× �x�j+1 −x�j �

��x�i+1 −x�i �× �x�j+1 −x�j ��
(3f) Compute the change in velocity at time � that beads i,
i+1, j , and j+1 would experience in the perfectly elastic
collision of two “dumbbells.” This correction applies only
to the velocity components in direction n. Let vi = v�t ·n
prior to collision, and let v̂i be the corresponding quantity
after the collision. If J is the specific impulse (impulse per
bead mass) applied to rod i, i+ 1 in direction n, assum-
ing all beads have equal mass. By conservation of linear
momentum, −J is the specific impulse applied to rod j ,
j+1:

J +vi+vi+1 = v̂i+ v̂i+1

−J +vj +vj+1 = v̂j + v̂j+1

Conservation of angular momentum is expressed by

Ja

(
1
2
−�i

)
+ a2

2
�vi−vi+1�

a
= a2

2
�v̂i− v̂i+1�

a

−Ja

(
1
2
−�j

)
+ a2

2

�vj −vj+1�

a
= a2

2

�v̂j − v̂j+1�

a

where ±Ja�1/2 − �� is the specific angular impulse.
Finally, kinetic energy is conserved in a perfectly elastic
collision,

v2
i +v2

i+1 +v2
j +v2

j+1 = v̂2
i + v̂2

i+1 + v̂2
j + v̂2

j+1

The solution to these equations is

J = −vi�1−�i�−vi+1�i+vj�1−�j�+vj+1�j

1−�i�1−�i�−�j�1−�j�

vcol
i = v�ti + J �1−�i�n

vcol
i+1 = v�ti+1 + J�in

vcol
j = v�tj − J �1−�j�n

vcol
j+1 = v�tj+1 − J�jn

where vcol is the post-collision velocity.

(3g) Update positions for beads i, i+ 1, j , and j + 1 at
time �t, and adjust the final velocity to account for elastic
rebound:

x‡ = x� + ��t− ��vcol

v‡ = v†+ �vcol − v�t�

(3h) If no collision occurs, then for beads i, i+1, j , and
j+1

v‡ = v†

x‡ = x†

This 3D algorithm does not account for the vanishingly-
unlikely possibility of two co-planar rods colliding in their
initial plane.

Step 3f assumes the 4 participating beads exist as two
independent, rigid, dumbbells. Of course this is not the
case, in general, since the participating beads may each be
linked to another rod. The dumbbell approximation used
to calculate the the elastic collision is therefore somewhat
arbitrary. However, it at least has the merit of correctly
computing the result for two colliding Kramers dimers.
The bead-wall constraint described in Ref. [17] is similarly
approximated.

We note that the constraints are enforced hierarchically:
if the rod–rod crossing constraint calls for the correction
of a bead’s motion, then the rods connected to that bead
will no longer have the correct length, but the error is only
order �t2 and persists only for the affected time step. The
velocity constraint is similarly affected.

This hierarchical approach is employed because the
simultaneous enforcement of the nonlinear length con-
straint is not easily combined with the elastic impact
treatment of the crossing constraint. With respect to the
rod-length constrain, the same is true of the polymer–wall
constraint which says all beads must remain in the fluid
domain. In Ref. [17] that constraint was enforced by elas-
tically rebounding balls at their point of collision with a
wall. In complex geometries we represent the wall with
the zero value of a distance function level set. The discrete
level set is interpolated on the linearized trajectory of each
bead over the time step �t using (1).

The bead–wall and rod–rod collisions may be handled
simultaneously, however, with no hierarchical precedence
and in a manner which permits multiple such collisions in
a single time step. Briefly, the algorithm given above is
extended in the following way: for each time step,
(1) Initialize the reference time t0 = 0. Compute provi-
sional velocities v† and provisional coordinates x† at �t,
and compute the average velocity v�t . Initialize x∗ = xn

and v∗ = v�t .
(2) While t0 < �t:
(2a) Find the first time � ∈ �t0��t� at which a rod–rod
crossing or bead–wall crossing is predicted to occur. If
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no such collision is found, let x∗ �= x∗ + ��t− t0�v
�t , and

break to 3
(2b) For the predicted impact, compute the crossing coor-
dinates x� and post-impact velocities vcol.
(2c) For all beads involved in the collision, update coor-
dinates with

x∗ = x�

v∗ = vcol

v† �= v†+ �vcol −v�t�

v�t �= vcol

For all beads not involved in the collision let

x∗ �= x∗ + ��− t0�v
�t

and let t0 = � .
(2d) Loop to 2
(3) Continue to next time step with

xn+1 = x∗

vn+1 = v†

This multi-collision algorithm has the property that each
sub-step starts with coordinates in impact position, but
with corrected velocities. Some care is required to imple-
ment impact detection and crossing detections for subse-
quent sub-steps because, for example, Vij�t0� = 0 if the
previous sub-step found a rod–rod crossing. Therefore, the
criterion Vij��t�Vij�t0� < 0 will not be useful. A heuristic
fix to this problem is to “nudge” coordinates away from
the calculated impact point by some amount ���vcol where
� is small but sufficiently large that Vij �= 0 and with the
correct sign. We have had good success with this approach,
though it can fail as will be described in the next section.

In developing these algorithms we discovered some
interesting subtleties to the rod-length constraint methods
of Refs. [4, 13]. One way to express that method is to say
that one computes a set of multipliers � such that

x̃i �= xi+�i−1�r
c
i − rc

i−1�−�i�r
c
i+1 − rc

i �

with x̃ a coordinate satisfying �x̃i+1 − x̃i� = a. The coor-
dinates rc define the directions in which the constraining
adjustments may be made. In Refs. [4, 13] rc = xn, the vec-
tors defined by the bead positions at the start of the time
step. However, in Ref. [17] we found improved stability
using coordinates at the end of the time step. Whatever
the choice, the resulting system of equations approximates
a tridiagonal linear system A� = b (b has constants and
terms quadratic in � which are assumed negligible for the
purposes of analysis). One can analyze the iterative proper-
ties of the �N −1�×�N −1� matrix A, with N the number
of Kramers beads, whose elements may be written

Ai� i−1 = −2�rc
i−1 − rc

i � · �xi−xi+1�� i > 1

Ai� i = 4�rc
i − rc

i+1� · �xi−xi+1�

Ai� i+1 = −2�rc
i+1 − rc

i+2� · �xi−xi+1�� i < N −1

It is clear that whatever the choice of rc, this matrix is
not automatically diagonally dominant. In the limit �t →
0, one has rc → x for any centering coordinates rc interpo-
lated from bead positions in �0��t�. So, in this limit the
Jacobi matrix J associated with A has a spectral radius �
bounded by �≤ 1. The inequality is applicable if one fur-
ther assumes that no three consecutive rods are co-linear.
Qualitatively, therefore, one can see that reducing the time
step �t promotes stability of this constraint calculation
by the iterative approach recommended in Ref. [4]. In the
general case, however, the iterative convergence of this
linear system is not guaranteed (c.f. Ref. [13], p. 332).
By including the velocity constraint in our calculations,
�ri − ri+1� ≈ �xj − xj+1� ≈ a to higher order. This, with
the low probability of any three consecutive rods being
co-linear, promotes stability of the method and accounts
for the ��100�× improvement in stable time step that we
observe in Ref. [17].

3. RESULTS AND DISCUSSION

In Figure 1, a 400-bead polymer begins in the shape of
a cut trefoil knot. This shape was chosen to encourage
rod–rod crossing: the initial configuration is smooth for
convenience. As time progresses (clockwise in the figure)
the polymer contracts due to contraction of the rod-bead-
rod angles in response to Brownian bombardment. In this
figure the bead diameter is meant as a visual aid and has no
significance in the model. The polymer rapidly becomes
entangled, resulting in frequent rod–rod interactions which
are handled in a stable manner by the algorithms described
here.

We have also experimented with a configuration in
which the trefoil knot is not cut. For this closed-loop poly-
mer, the rod length constraint matrix, now N ×N , is a
so-called Laub matrix: one that differs from the tridiag-
onal form by addition of 1�N and N�1 entries which,
in this application, link the polymer’s ends. The veloc-
ity constraint matrix is modified similarly. For this special
case our numerical experiments fail because the polymer
becomes so twisted that successive sub-steps in the algo-
rithm approach � → 0. In this limit, any nudging factor
� > 0 can potentially cause rods to cross. We note that
this mode of failure, � → 0, is physically correct though
numerically inconvenient. Improvements to address this
behavior are in progress.

Also in progress is the merger of these contact algo-
rithms with our 3D embedded boundary Navier Stokes
method. A model is being constructed to study so-called
entropic trapping7 by which size-dependent DNA separa-
tion occurs in a simple microfluidic device.
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Fig. 1. A 400-bead polymer subject to Brownian motion only.
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