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Abstract

We present an elliptic free space solver that offers vastly
improved performance over a previous variant of the algo-
rithm. We currently scale up to 1024 processors of an IBM
SP system, and we are planning to port the solver to Blue
Gene/L. The solver employs a method of local corrections
that avoids the need for costly communication, while retain-
ing parallel scalability of the method. Communication costs
are generally small: 25 percent of the total running time or
less for runs on up to 512 processors and 37 percent of the
total time on 1024 processors. The numerical overheads in-
curred are independent of the number of processors for a
wide range of problem sizes. The solver currently handles
infinite-domain (free space) boundary conditions, but may
be reformulated to accommodate other kinds of boundary
conditions as well.

1. Introduction

Elliptic solvers for free space problems often scale
poorly owing to the difficulty in treating the infinite-domain
boundary conditions. While some of the underlying com-
munication could be masked by overlapping it with useful
computation [3, 4, 5, 20, 21], the approach is ultimately
non-scalable, as the total cost of communication grows with
the size of the problem. We present an alternative approach
that algorithmically reformulates the solution, reducing the
amount of data communicated at the expense of additional
computation. This tradeoff is beneficial. The added com-
putational overheads are purely local work, and the resul-
tant algorithm employs a fixed number of communication
and computation steps. We use a local corrections strat-
egy that divides the solution into low and high resolution
∗author to whom correspondence should be sent

components. The low resolution component carries far-
field data, thereby reducing the amount of communication
required. Our algorithm exploits elliptic regularity, an ap-
proach which is also employed by the fast multipole method
[14], the method of local corrections for particle methods
[2], the finite element method of Bank and Holst [9], and the
two-dimensional method of local corrections for free space
problems [6, 8]. Results presented by Holst [16] include a
rigorous proof that these types of algorithms can produce
accurate results with little communication.

We have previously reported early results with our
solver, called Scallop. While that solver enabled us to avoid
high communication overheads, computation of the infinite-
domain boundary conditions became a bottleneck, and nu-
merical overheads hampered scalability beyond 512 proces-
sors of an IBM SP system with POWER3 processors. We
discuss algorithmic enhancements in our new version that
greatly reduce the computational overheads and diminish
the total running time required to reach a solution. Scal-
lop solves elliptic partial differential equations with infinite-
domain (free space) boundary conditions. Such boundary
conditions are useful for particle in cell calculations [15]
and for fast particle methods, particulary those which re-
quire the solution of the velocity field [1, 2]. While Scal-
lop can be altered to handle other boundary conditions, we
focus here on on the infinite-domain case. For purposes
of simplification, we restrict the discussion to the Poisson
equation.

Unlike domain decomposition methods such as [19]
which require multiple iterations between the local and non-
local descriptions, Scallop does not perform repeated itera-
tions between coarse and fine levels or several communica-
tion steps. Scallop reaches a solution to the Poisson equa-
tion in three steps and communicates data only twice. First,
coarse grid data are communicated to generate a global
coarse grid charge field. Second, coarse and fine boundary



condition data are communicated once among neighboring
regions. These communication costs are low in practice —
at most 25 per cent on up to 512 processors — and come
at the expense of computational (numerical) overhead. We
show that the extra computation involved is reasonable over
a wide range of problem sizes. As a result, we are currently
able to demonstrate scalability on up to 1024 processors of
an IBM SP system, and we plan future computations on
thousands of processors.

Our contribution to our prior work with Scallop comes in
two parts. First, we greatly improve the speed of our serial
infinite-domain solution by using the fast multipole method
to calculate the necessary boundary conditions. Second, we
now calculate coarse grid values necessary for the method
of local corrections simultaneously with the initial local so-
lutions, also using the fast multipole method. By calculat-
ing coarse grid values in the correction radius in this way,
we are able to scale up to a greater number of processors
with much lower computational overhead.

Scallop is representative of a class of algorithms that
employ sophisticated numerical techniques to reduce com-
munication costs. The techniques in turn require an ap-
propriate software infrastructure to manage the underlying
details, in particular the bookkeeping. To this end, Scal-
lop was prototyped [7] with KeLP [13], a rapid develop-
ment C++ framework for implementing scientific applica-
tions on distributed memory parallel computers. KeLP pro-
vides geometric and communication abstractions that facili-
tated the development of Scallop without sacrificing perfor-
mance. The Scallop prototype was subsequently ported to
the Chombo Structured Adaptive Mesh Refinement Infras-
tructure [11], which provides many of the same geometric
and communications abstractions as KeLP.

2. Preliminaries

The equation we solve is the Poisson equation in three
dimensions with a charge distributionρ with compact sup-
port, i.e. the charge is only nonzero in a finite region of
space. Specifically, we seek the solutionφ to

4φ =
∂2φ

∂x2
+
∂2φ

∂y2
+
∂2φ

∂z2
= ρ(x, y, z)

which has far-field behavior characterized by

φ = − R

4π|~x| + o

(
1
|~x|

)
, |~x| → ∞,

whereR is the total charge:

R =
∫

Ω

ρ(~x) d~x,

and the regionΩ contains the support of the chargeρ.

Many applications for which our method would be use-
ful, including particle in cell calculations [15] and low mach
number incompressible flow simulations [10], are limited to
O(h2) accuracy. We likewise seek a solution which is ac-
curate toO(h2).

To simplify our discussion, we will be solving problems
on a unit cube, discretized intoN cells (N + 1 points) in
each direction. We refer to this discretized computational
domain asΩh, and defineh = 1/N . This computational
domain corresponds to the index set of the discrete solution
φh, i.e. the indices of the underlying discrete mesh.

Since our goal is to solve the problem on parallel pro-
cessors, we partitionΩh into a set of disjoint subdomains
Ωh

k :

Ωh =
⋃

k

Ωh
k .

Our method entails solving local problems on each of the
Ωh

k in parallel, as well as on a single coarsened global mesh
ΩH . The spacing of this coarsened mesh isH = Ch, where
C is a specifiedcoarsening factor.

We choose the domainΩh to be a rectangular region,
Ωh = [~l, ~u], where~l and~u are the integer vectors corre-
sponding to the lower and upper corners of the region. The
coarsened domain is then defined as

C(Ωh, C) = ΩH = [b~l/Cc, d~u/Ce]
where the operatorsb·c and d·e represent thefloor and
ceiling operators, respectively.

Because our meshes are node-centered, the points ofΩH

map directly onto corresponding points inΩh, and no av-
eraging is required to coarsen the mesh data. Thus, we can
coarsen the mesh by sampling the mesh without having to
interpolate. In particular, we coarsen a fine grid represen-
tation using thesampleoperatorSH : for each point~xC ,
we can find the coarse grid valueψH(~xC) (whereψH has
grid spacingH) by finding the fine grid point~x at the cor-
responding position inψh (with grid spacingh = H/C):

ψH(~xC) = (SH(ψh))(~x/C) = (ψh)(~x)

For the discussion that follows, we also need one more
bit of notation. Thegrow operation extends or shrinks an
index domain by a uniform amount in each direction. If
Ωh = [~l, ~u] (where~l = (lx, ly, lz) and~u = (ux, uy, uz)),
we definegrowas

grow(Ωh, g) = [~l − (g, g, g), ~u+ (g, g, g)].

Wheng < 0, grow returns a shrunken domain.

3. The Method

Our domain decomposition method is built upon a
method for solving single-processor infinite-domain Pois-



son problems, as described previously in [7]. We will sum-
marize the single-grid algorithm first, and then describe the
domain decomposition algorithm.

3.1 A Serial Infinite-Domain Poisson Solver

Following the approach described in [17] and [18], we
are able to calculate a solution to the Poisson equation with
infinite-domain boundary conditions in four steps, using
two solution grids. Given a charge on a gridΩh, these are
the inner gridΩh,g and theouter gridΩh,G, defined as

Ωh,g = grow(Ωh, s1);
Ωh,G = grow(Ωh,g, s2).

The four steps required to calculate the solution are as fol-
lows.

1. Find the solution to the Poisson equation on the inner
grid, Ωh,g, using Dirichlet boundary conditions.

2. Calculate a charge,q, along the inner grid boundary
equal to the normal derivative of the solution from step
1 at the inner grid boundary.

3. Calculate boundary conditions at each point on the
outer grid boundary by numerically integrating the ef-
fect of the charge at the inner grid boundary:

g(~x) =
∫

∂Ωh,g

G(~x− ~y)q(~y)dA~y,

whereG is the Green’s function.

4. Find the solution to the Poisson equation on the outer
grid, Ωh,G, using the boundary conditions,g, just cal-
culated.

Our approach here is identical to the approach described
previously in [7] except in the way the integration is per-
formed in step 3. Previously, we integrated the charge from
the inner grid onto a coarsened version of the outer grid,
with mesh spacingH = h/O(

√
N), and interpolated from

the coarse grid to find necessary values on∂Ωh,G. Our
straightforward integration requiredO(N3) work but sig-
nificantly took more time to compute than the Dirichlet so-
lutions on the inner and outer grids.

In our current implementation, we perform the integra-
tion required for the boundary calculation using the fast
multipole method (FMM). Each face ofΩh,g is divided into
patches ofr × r points. We then calculate the multipole
moments of the charge up to orderM on each patch. On
each face ofΩh,G, for points on a mesh coarsened byr in
each dimension and expanded by a coarse layer of points of
widthP , we add up the evaluations of multipole expansions

due to all the faces ofΩh,g. Finally, we interpolate polyno-
mially, one dimension at a time from the coarse mesh values
to the remaining fine mesh points on the face. (See Figure
1.)

Choosingr =
√
N provides sufficient accuracy for the

solution and allows the integration step to be completed in
O((M2 +P )N2) work. The values ofM andP are chosen
with regard to accuracy requirements and are independent
from N , so for a given degree of accuracy, the integration
step requiresO(N2) work.

We should also note the constraints required ons1 and
s2, the spacing between the gridsΩh, Ωh,g, andΩh,G. We
have found that settings1 = 0 has only small effects on the
accuracy of our solutions and doing so allows us to mini-
mize the size of the solution grids. Convergence require-
ments of the multipole method force us to chooses2 with
more care, however. In order for the multipole expansions
from a patch to converge, the distance from a patch center
on ∂Ωh,g to the points on∂Ωh,G, on which the expansion
is evaluated, should be at least twice the radius of the patch.
Here we define the radius of a patch as the maximum dis-
tance from the patch center to any point on the patch. Recall
that we chose our patches to ber fine grid points square.
Thus our patches have a radius ofrh/

√
2, and the distance

requirement becomess2h ≥ 2(rh/
√

2). We also need the
number of cells along the length ofΩh,G to be divisible by
r. Combining these two requirements, we arrive at the fol-
lowing formula fors2:

s2 =
r

2
d2
√

2 +
N

r
e − N

2
. (1)

In order to demonstrate the effect of these requirements,
we show in Table 1 the necessary values ofs2 for grid sizes,
N , ranging from 16 to 2048 by powers of 2. Values ofr are
chosen to be close to the square root ofN but also multiple
of four. Note that the ratio ofNG (the length ofΩh,G) to
N decreases asN increases. For serial solutions, this im-
plies that overhead will be smaller for larger infinite-domain
problems.

3.2 Domain Decomposition

The domain decomposition algorithm described here is
a finite-difference analogue of Anderson’s method of local
corrections [2]. Our algorithm consists of three computa-
tional steps interspersed by two communication steps, as
described previously in [7].

1. INITIAL LOCAL SOLUTION. We calculate a local
infinite-domain solution on each local subdomain,k,
augmented with an overlap region:

419φ
h,initial
k = ρh

k ongrow(Ωh
k , s+ Cb).
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Figure 1. In step 3, multipole moments are calculated for each patch on ∂Ωh,g, such as the one shown
cross-hatched on the inner box. The multipole expansions are then evaluated at the coarse points of
∂Ωh,G, plus an additional layer of width P , indicated with gray circles for one face. These evaluations
are interpolated to the fine points of ∂Ωh,G, located at intersections of the black lines, using two
passes. The evaluation points of the first pass are shown as small gray diamonds.

N r s2 NG NG/N
32 8 12 56 1.75
64 8 12 88 1.38
128 12 20 168 1.31
256 16 24 304 1.19
512 24 44 600 1.17
1024 32 48 1120 1.09
2048 48 80 2208 1.08

Table 1. Values of the coarsening factor, r, an-
nulus thickness, s2, and resulting expanded
grid size, NG = N +2s2, for various input grid
sizes N . The ratio of NG/N decreases for
increasing N .

and construct a coarsened version of the solution,
φH,initial

k , by sampling:

φH,initial
k = SH(φh,initial

k ) ongrow(ΩH
k , s/C + b).

Heres is a correction radius,C is the coarsening fac-
tor, andb is the width of a layer for polynomial inter-
polation to be used in step 3. The419 operator rep-
resents the Laplacian calculated with a 19-point sten-
cil of nearest neighbor points. The error characteris-
tics of the 19-point stencil are essential for maintaining
O(h2) accuracy in the overall algorithm when combin-

ing the effects of coarse and fine grid data later on. (For
further discussion of discrete Laplacian operators, see
[12].)

2. GLOBAL COARSESOLUTION. We couple the individ-
ual local solutions by solving another Poisson equation
on a coarsened mesh covering the entire domain. We
first construct coarsened local charge fields:

RH
k =

{
419φ

H,initial
k ongrow(ΩH

k , s/C − 1),
0 otherwise

and then sum up these charge fields to form a global
coarse representation of the charge:

RH =
∑

k

RH
k .

Then we solve

419φ
H = RH ongrow(ΩH , s/C + b)

with infinite-domain boundary conditions.

3. FINAL LOCAL SOLUTION . Using the discrete Lapla-
cian 47 calculated with a 7-point stencil at nearest
neighbor points, we solve

47φ
h
k = ρh

k onΩh
k

with Dirichlet boundary conditions on∂Ωh
k :

φh
k(~x) =

∑

k′:~x∈grow(Ωh,initial

k′ ,s)

φh
k′(~x) + I(φH ,corr )



whereI is the same interpolation operator used in the
serial infinite-domain Poisson solver and

φH ,corr = φH(~x)−
∑

k′:~x∈grow(Ωh
k′ ,s)

φH,initial
k′ (~x).

Figure 2 depicts the regions from which data are taken
to set boundary conditions on a face.

Note that the algorithm does not require fine grid data at
all points ingrow(Ωh

k , s + rb). Specifically, the algorithm
does not need fine grid data outside ofgrow(ΩH

k , s/r + b).
In order to complete steps 2 and 3, we only need the follow-
ing data from step 1:

• the solution at coarse grid values,φH,initial
k , on

grow(ΩH
k , s/C + b), necessary for step 2, and

• the solution at fine grid values,φh,initial
k , on the faces

of grow(face, s) for each faceface of Ωh
k (heregrow

is a two-dimensional operator).

To ensure accuracy of the method, we needs = 2C and
b = 1.

As before, communication is only required in two
phases: first, in constructing the global coarse charge field,
and second, to set the boundary conditions for the final local
solution.

4. Performance Model

As mentioned previously, the principle behind Scallop is
to trade off communication against computation. We next
discuss these tradeoffs and show that they are reasonable.
We describe a performance model, and use it to show that
in theory the overheads are reasonable. In the following two
sections we reconcile our predictions with practice.

In determining the computational overhead in Scallop,
we will use the serial infinite-domain Poisson solver as a
baseline. We will first show that the cost of our initial fine
grid solutions is similar to the cost of a serial solution. The
computational overhead in Scallop can be described as the
sum of three costs: the extra computation required to calcu-
late solutions on expanded local grids, the cost of the coarse
grid solution, and the time required for the final local solu-
tions on fine grid data. We will discuss each of these costs,
and show that with the proper choice of a coarsening factor,
Scallop should be able to scale to thousands of processors.

4.1 Serial Infinite-Domain Poisson Solver

Scallop reuses many of the same components as the se-
rial infinite-domain Poisson solver. We will examine the
computational costs involved in the serial solver first and

Figure 2. Setting boundary values for a fi-
nal local solution in step 3 of MLC. For the
face outlined in bold in the top of the fig-
ure, in a layout of eight cubes, the lower di-
agrams depict the regions from which data
are copied from faces of different neighboring
boxes. Solid lines indicate the boundaries of
the boxes Ωh

k′ , dashed lines the boundaries
of the boxes grow(Ωh

k′ , s), and dotted lines
the boundaries of the boxes grow(Ωh

k′ , s+Cb).
Fine-grid data are copied to the bold face from
the nodes inside and on the edges of the re-
gions shaded dark gray. Coarse grid data are
copied from nodes inside and on the edges of
the regions shaded both dark and light gray,
and then interpolated to nodes on the bold
face that are inside and on the edges of the
regions shaded dark gray.



compare this cost with the cost of the initial solutions in
Scallop.

For simplicity, let us consider only cubical domains with
edge lengthN . The operation counts for each step of the
algorithm described in Section 3.1 are as follows.

1. Finding the solution to the Poisson equation on
the inner grid using a fast (FFT) Poisson solver:
O(N3 logN).

2. Calculate a charge,q, along the inner grid boundary:
O(N2).

3. Calculate boundary conditions at each point on the
outer grid using FMM:O(N2)

4. Find the solution to the Poisson equation on the outer
grid using a fast (FFT) Poisson solver:O(N3 logN).

Thus the serial infinite-domain solver operation count is
bounded by the Dirichlet Poisson solve, and the over-
all computational cost of an infinite-domain solution is
O(N3 logN).

4.2 Practical Work Estimates

Since the computation required by the Poisson solvers
used in our algorithm is nearly proportional to the number
of points for which a solution is being found (ignoring the
weakerlogN term in the previous work estimates), we pro-
pose the following work estimates on the basis of these grid
sizes. First, let us defineWDir as an estimate of the work
required for a Poisson solution with Dirichlet boundary con-
ditions on a meshΩh:

WDir = size(Ωh),

where thesize operator returns the total number of points
in the meshΩh. Similarly, let us refer toWDir

k as the work
required to compute a Dirichlet solution on a subdomain
Ωh

k .
Recall that the infinite-domain boundary calculation re-

quires the solution of a Dirichlet problem on an enlarged
domain, as defined by equation (1) and shown by example
in Table 1. After calculating the extents ofΩh,g andΩh,G

according to these requirements, we can define a work esti-
mate on an infinite-domain solution as

W id = size(Ωh,g) + size(Ωh,G),

and alsoW id
k as the corresponding estimate for the work

required to compute a local initial fine grid solution onΩh
k

within our MLC method.
Finally, as an estimate of the total work required for our

MLC method for a particular processorP ,

Wmlc
P = W id

coarse +
∑

k assigned toP

(W id
k +WDir

k )

whereW id
coarse is an estimate of the work required to calcu-

late the infinite-domain solution on the global coarse mesh.
Note that to allow for the possibility of overdecomposition,
multiple subdomainsk may be assigned to a single proces-
sorP .

4.3 Limiting the Cost of the Coarse Grid Solution

In comparing the computational cost of Scallop to a se-
rial infinite-domain solver, the cost of computing the solu-
tion on the global coarse grid is overhead. We want to deter-
mine what range of problems can be solved with only small
computational overhead due to the coarse grid calculation.

As before, letN be the length of a side, thus(N + 1)3

is the total number of points. Letq be the number of subdo-
mains on a side. Thenq3 is the total number of subdomains
(the maximum number of processors) andNf = N/q is the
length of a local fine subdomain.

Let C be the coarsening factor, as defined previously,
such that the size of coarse grid,Nc, is N/C. Since the
coarse grid solution is not parallelized, we wantNc < Nf

in order to reduce the overhead due to the coarse grid. Thus
we haveN/C < N/q, which reduces toq < C.

4.4 Limits of Parallelism for the Method

As in most numerical libraries, an important considera-
tion is how to optimize parameter settings that affect per-
formance. The performance of Scallop is most affected by
the choice of two parameters:q andC. However, various
factors constrain the choice of these parameters, as well as
the intrinsic parallelism, and these constraints limit perfor-
mance.

When choosing the coarsening factor,C, we may affect
both the size of the coarse grid solution and the size of the
initial local solutions. Recall that our MLC algorithm re-
quires us to find the initial local solutions on grids expanded
by 2C in each direction. Thus increasingC may lead to ex-
tra work for the initial local solutions. As we have just seen
in section 4.3, however,C needs to increase withq in order
to keep the cost of the coarse solution in line with the local
solutions.

Since the serial infinite-domain solver requires an annu-
lus itself, there is a range of problems for which our al-
gorithm is most suitable. We would like the coarsening
factor for our MLC solver to be less than or equal to half
the annulus size required by the infinite domain solver, i.e.
C ≤ s2/2. The coarsening factor must also evenly divide
the local grid sizeNf . The maximum number of processors
is then dependent on the choice of the ratio betweenq and
C.

Table 2 shows the limits of parallelism in terms of the
maximum number of processors,P , and maximum prob-



q/C Nf s2 q P N3

1/2 64 12 2 8 1283

1/2 128 20 4 64 5123

1/2 256 24 4 64 10243

1/2 512 44 8 512 40963

1 64 12 4 64 2563

1 128 20 8 512 10243

1 256 24 8 512 20483

1 512 44 16 4096 81923

2 64 12 8 512 5123

2 128 20 16 4096 20483

2 256 24 16 4096 40963

2 512 44 32 32768 163843

Table 2. Limits of parallelism for our MLC
method, showing maximum number of pro-
cessors, P , and problem size, N3, with fixed
q/C and fixed local problem size Nf . The max-
imum value for P is q3, the total number of
subdomains.

lem sizeN3 for various local problem sizes,Nf , and ratios
of q andC. If we assume, for instance, that1283 prob-
lems will easily fit in local memory, users willing to expend
twice the computational effort can reach problem sizes of
10243 using 512 processors. Users willing to expend eight
times the computational effort could reach a problem size
of 20483 on 4096 processors.

4.5 Future Improvements

The current implementation is limited by the relation-
ship between the coarsening factor,C, and the number of
subdomains per side,q. This restriction is due to computing
the global coarse grid solution in serial. By parallelizing
the global coarse solution, we can varyC andq indepen-
dently and extract significantly more parallelism from our
MLC method. Our current version of Scallop includes a
parallel implementation of the multipole calculation on the
coarse grid infinite-domain solution, and we are considering
alternatives for efficiently parallelizing the Dirichlet solves
on the coarse grid while keeping communication require-
ments low. If our efforts are successful, Scallop could effi-
ciently use thousands of processors without incurring addi-
tional computational overhead on the local solutions.

In generating the data shown in the following section,
we realized that the implementation of the Chombo library
function called to handle nearest neighbor boundary com-
munication performs far more communication than neces-
sary. Rather than communicating two-dimensional planes
of data, the function sends three-dimensional slabs of thick-

ness2C from processor to processor. Limiting the commu-
nication to only those planes required by the algorithm will
reduce the overall amount of communication for the bound-
ary condition phase of the method by a factor of betweenC
and2C.

5. Results

In this section we present computational results which
demonstrate the low communication overhead of Scallop on
up to 1024 processors. We also compare our performance
results with the estimates presented earlier in Section 4.

5.1 Hardware and System Environment

We ran on NERSC’s Seaborg IBM SP system, located
at the National Energy Research Scientific Computing Cen-
ter1. Seaborg contains POWER3 SMP High Nodes inter-
connected with a “Colony” switch. Each node is an 16-
way Symmetric Multiprocessor (SMP) based on 375 MHz
Power-3 processors2, sharing between 16 and 64 Gigabytes
of memory, and running AIX version 5.1.

Scallop version 2 is written in a mixture of C++ and For-
tran 77. We used the IBM C++ and Fortran 77 compil-
ers,mpCCandmpxlf . C++ code was compiled with the
IBM mpCCcompiler, using options-O2 -qarch=pwr3
-qtune=pwr3 . Fortran 77 was compiled withmpxlf
with -O2 optimization. We used the standard environment
variable settings, and we collected timings in batch mode
usingloadleveler. The timings reported are based on wall-
clock times, obtained withMPI Wtime() . Each calcu-
lation was performed 3 times. The times reported are for
the runs with the shortest total times. Timers were placed
around large function calls rather than inner loops to re-
duce the effects of noise in the timing results. The bulk-
synchronous nature of the algorithm allows us to fully sep-
arate computation times from communication times. Re-
ported running times do not include a preprocessing phase
for the serial Poisson solver that computes a matrix for ob-
taining outer-grid boundary conditions from multipole co-
efficients due to charges on the inner-grid boundary. This
matrix depends only on the problem size and accuracy pa-
rameters, and its computation is considered a fixed overhead
to be amortized over many calls to the solver.

5.2 Scalability

In order to measure performance, we scaled the work
with the number of processors. In order to have grid sizes

1http://www.nersc.gov/nusers/resources/SP
2http://www-1.ibm.com/servers/eserver/pseries/hardware/-

whitepapers/nighthawk.html



Input Parameters Times for Each Stage (seconds) Total Proc-time/pt. Percent
P q C N3 Local Red. Global GC Bnd. Final (sec) (µsec) Comm.

128 8 6 7683 36.92 6.39 15.73 2.55 9.61 4.95 73.83 20.78 25
256 8 8 10243 48.38 6.74 14.46 1.35 7.41 6.05 84.40 20.06 18
512 8 10 12803 49.23 4.90 16.35 3.31 7.66 7.63 86.16 20.99 18
1024 16 12 15363 49.07 6.44 15.99 2.88 30.72 4.96 107.33 30.27 37

Table 3. Input parameters and timing breakdowns for runs. The Local and Global solutions require an
infinite-domain solution, whereas the Final calculation solves a simpler Dirichlet problem. The time
for Reduction (Red.) includes everything necessary to accumulate the coarsened local solutions
into a single coarse grid for the Global solution. GC is the communication time within the Global
solution. The time for Boundary (Bnd.) includes everything required to assemble correct boundary
conditions for the calculation of the Final solution. P is the number of processors, q is the number of
subdomains on a side, and C is the coarsening factor. N is the number of cells in one dimension ( N+1
the number of grid points in one dimension). Proc-time/pt. is the total time over all P processors
divided by the number of solution points, (N + 1)3. Percent Comm. is the percent of time spent in
the communication phases, Red., Bnd., and GC.

with many small prime factors (important for the efficiency
of FFTW), however, we were not able to keep the work per
processor constant. The run parameters and timing results
for the performance tests are shown in Table 3.

Ideally, the total processor-time taken per solution point
would remain constant. In our results, the times per solution
point are fairly stable, at around 20 to 21µsec for problems
on up to 512 processors. On 1024 processors the boundary
communication becomes a significant cost and the time per
solution point is adversely affected as a result.

Communication overhead is relatively low in Scallop, no
more than 25% on up to 512 processors. Nearest neigh-
bor boundary condition communication, significant in all
the runs, increases substantially on 1024 processors. After
eliminating the extra communication performed in our cur-
rent implementation, as discussed in Section 4.5, we expect
the communication costs for the boundary conditions to be
reduced by a factor ofC, resulting in an overall communi-
cation cost in the range of 10–15%.

As can be seen in Table 3, time spent on the coarse grid
solutions is approximately one third the time spent on initial
fine grid solutions. Ideally, the time required for coarse grid
solutions would be negligible, but these results match our
expectations since we chose values ofC closer toq than2q.

In comparing our timing results to our work estimates,
we start from the simplest building block and work up. Let
us define thegrind timeof a phase as the ratio of the total
time spent over all processors divided by the work estimate
for that phase from Section 4.2. For the final Dirichlet Pois-
son solve, the grind time ranges from 1.36 to 1.83µsec.
We believe the variation in performance is largely due to
inefficiencies of the FFTW solver on meshes sizes that are
non-powers of 2.

Due to our choice of parameters, the global infinite do-
main solutions were performed on identical mesh sizes for
all our problem sizes. Our work estimate for this stage of
the computation,W id

coarse , is 7.18 × 106 mesh points. The
grind times for this phase of the computation vary from 2.01
to 2.28µsec. The variation in these grind times may be
due in part to the small amount of communication required
within the global solution in our current implementation.
Comparing these grind times with those for the Dirichlet
solutions, we infer that the fast multipole method for the
infinite-domain boundary calculation adds approximately
35% to the running time above what would be required for
the two Dirichlet solutions. This is a significant improve-
ment over our previous Scallop solver where the infinite-
domain boundary calculation, performed by rather straight-
forward numerical integration, dominated the entire solu-
tion.

Grind times for the initial local solutions vary from 2.83
to 3.70µsec. We suspect that the unusual grid sizes required
for these calculations and the resulting varying efficiency of
the FFTW solver may be contributing to the variation we
see here, but the connection is not as clear. The grind times
for this phase of the calculation are larger than those for
the global infinite domain calculation. In part, this may be
due to the extra work required during the infinite-domain
boundary calculation to find the extra coarse grid values re-
quired later for interpolation.

In summary, we are able to scale a problem up from 128
to 1024 processors with, at worst, a 51% increase in the
time per solution point. Running times for each phase of
our solver correlate fairly well with simple work estimates
based on the number of points updated, with the global and
local infinite-domain solutions taking slightly longer than



the final Dirichlet solutions due to the extra work required
for boundary condition calculations. Communication times
are reasonable for an elliptic partial differential equation
solver, generally staying within 25% of the total running
time but rising to 37% on 1024 processors. We expect the
communication time to drop significantly when our imple-
mentation of the boundary condition communication is cor-
rected.

5.3 Comparison to Other Methods

To our knowledge there are no other parallel finite-
difference infinite-domain solvers with which we can com-
pare our results. Recent related work on fast multipole
methods has been for two-dimensional problems. Three-
dimensional fast multipole methods, which would be rea-
sonable comparisons for Scallop, are not widely used be-
cause the overhead (the constant in front of theO(NlogN)
work estimates) is much larger in three dimensions than in
two dimensions. Our approach in Scallop reduces the po-
tential theory component of the problem to two dimensions,
leading to an algorithm where the bulk of the time is spent
in highly efficient serial fast Fourier transforms.

Our current results do show marked performance im-
provement over our previous Scallop prototype, however.
The performance results for a 128-processor run are shown
side by side in Table 4. The fast multipole method greatly
reduces the cost of the infinite-domain boundary calcula-
tion in both the initial local solution and the global coarse
grid solution. Communication times have increased some-
what, reaffirming that optimization is necessary within the
Chombo communication routines. Overall, our current ver-
sion of Scallop is more than three times as fast as the origi-
nal Scallop prototype.

6. Conclusions and Future Work

We have presented a scalable 3D Poisson solver for free
space problems that utilizes a method of local corrections
that, in practice, reduces communication overheads. The
method employs a philosophy for embracing technological
change that substitutes relatively inexpensive computation
for relatively expensive communication.

We described the design of the Scallop solver, which re-
alizes our strategy. In practice, the performance of Scallop
matches the expectations of our performance model quite
well. Communication costs are generally less than one
quarter of the total running time, and total computation time
is dominated by the time required for the initial fine grid
calculations. The benefit of little communication comes at
the expense of added computation, but this overhead is rea-
sonable, and it remains almost constant, independent of the
number of processors. We expect that reimplementing the

boundary condition communication, which currently trans-
fers roughly a factor of 10 more data than necessary, will
reduce communication costs to 10–15% of the total running
time.

We are currently investigating ways to parallelize the
global infinite-domain solution at the center of Scallop al-
gorithm. Even modest parallelism in this phase of the com-
putation would enable significantly increased parallelism
overall allowing us to scale performance to many thousands
of processors. At the same time, parallelizing the global
infinite-domain calculation would lift restrictions imposed
on the initial local solutions, further reducing the computa-
tional overhead incurred by the method.
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