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I. INTRODUCTION 

This appendix is concerned with the following question: If 

denotes the Gaussian probability measure on 
. 2 

S'QR ) with mean zero 

110 

and covariance «_l'.+l)-lf ,g), what are the properties of "typical" / 

distributions with respect to 1l0? A first result in this direction 

is given in the final paragraphs of Professor Reed's lectures; he 

shows that, if a > 0, then for almost all T ESt ([R2) , 

( -d~ + I)-aT is a locally square-integrable function. 
dX l 

For ease of reference, we will summarize our results here In 

something less than their full generality: 

Theorem 1.1. (a) The set of distributions T having the property 

that there exists a non-empty open set UT on ~hich T is equal to 

a signed measure is a set of llo-measure zero. 

)': 
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b. Let 
1 o < a < 2' The set of distributi~ns T such that 

(-d~ + l)-a/2T 
dX l 

is a locally Holder continuous function with all 

exponents a' < a* is a set of ~o-measure one. 

that 

c. Again let 
1 o < a < 2 

lim sup 

-a/2 

(-d~ + ~) T(x) 
dX l 

x+oo Vlog Ixl 

is a set of ~o-measure one. 

The set of distributions 

= 1 
TI 

T such 

Result a) lS a negative one; it says that a typical distribu-

tion is nowhere sufficiently regular to be a locally integrable 

function or even a signed measure. Result b) on the other hand says 

that typical distributions fail to be functions only very slightly. 

That is, if we regularize so as to add an arbitrarily small fraction 

of a derivative, typical distributions become Holder continuous 

functions. Moreover, it is only necessary to add this fraction of a 

derivative in one direction, so a typical distribution may be regard-

ed as a continuous function of with values in the space of dis-

tributions in Thus, although a typical distribution is not a 

function, it still makes sense to restrict it to a line x 2 = const. 

* We say that a function T(x) is 10calJy Holder continuous with 
exponent a' if, for each bounded open set A CF2, there is a 
constant Q(A) such that 

IT(x) - T(y)1 < Q(A)lx-yl 
a' 

for all X,y E A. 



Result c) gives rather detailed information about the behavior of a 

typical distribution at infinity. It says in particular that, for 

almost every T, 

:n. T(x) )
-a/2 

can be maj orized by const. x .jlog Ix I for large ,x but not by any 

less rapidly growing function of x. Moreover, we will prove that, 

if p is any non-zero element of 2 S OR );, then, for almost every T, 

T*p(x) can be majorized by const x .jlog Ixl but not by any less 

rapidly growing function. Thus, we may say that a typical T grows 

like .jlog Ixl at infinity. It should be understood, however, that 
- ." 

a typical T does not "behave like ..jlog Ixl for large x; 

instead, it is usually much smaller than .jlog Ixl and only occaSlon-

ally takes values which are this large. Indeed, a typical T be-

haves in some respects as if it were bounded; for example, if f(x) 

is any square-integrable function, the set of distributions T such 

that 

1 T(x) f(x) )
-a I 2 

is square-integrable is a set of ~O-measure one. 
, n 

Since S (R ) is not a locally compact space, measure theory on 

it is not quite standard. We will not give a systematic investiga-

tion of the subject, but there are a few simple remarks which should 
, 

make it seem less strange. To begin with, S ORn ) comes equipped 

with three a-algebras which might in principle be distinct: 

IO: the a-algebra generated by' the continuous linear 

functionals 

Iw: the a-algebra generated by the weakly closed sets 



Evidently, 

L: the a-algebra generated by the closed sets. s 

L: C L C L: • o w s Gaussian measures are defined on L: O' 

but it is frequently easier to verify that sets we are interested In 

belong to L: • s Fortunately, we have in fact There 

are general theorems which imply this equality, but. In the case at 

hand it is easy to give a direct elementary proof: By using Hermite 

expanslons, we can identify S(~n) with the space s of rapidly 
• , . 

decreasing sequences and S (Rn ) with the space s' of polynomially 

bounded sequences. Let 

, 
K = {(a.) E s : 

n ] 
for all j} . 

It is easy to check that K 
n 

is compact and metrizable In the strong 

topology on Sl, that Kn E LO' and that S' 

B of S' belongs to LO(L: S ) if and only if 

= n~lKn. A subset 

B n K belongs to 
n 

L:o(L: s ) for all n. 

topOlogies agree on 

Since each K is compact, the strong and weak 
n 

agree on K . 
n 

K , 
n 

Hence, L 
s 

and since K 
n 

is metrizable, 

and LO agree on K 
n 

for all 

and 

n so 

L w 

L: • 
s We will from now on denote this a-algebra simply by 

L, and when we say that a subset of S'ORn ) lS measurable, we mean 

that it belongs to L. We will usually leave the problem of verifying 

the measurability of the sets we consider to the reader. The fact 

that StORn ) is a countable union of compact metrizable subsets is 

frequently useful; to a large extent, it makes possible the reduction 
I n 

of measure theory on S (R ) to measure theory on compact metric 

spaces. 

We will make one small change in the notation used lD the Reed 
I n 

lectures. If ~ is a Gaussian measure of mean zero on S OR ), the 

covariance of was defined to be the positive semi-definite bi-

linear form (. ,.)~ on SaRn ) glven by 



By the nuclear theorem, we can write 

where X (x,y) = X (y,x) is a tempered distribution on ~n x mn. We 
11 11 

will also refer to the distribution X11(x,y) as the covarlance of 

* 11. Furthermore, if 11 is translation-fnvariant, we can write 

~ 

X (x,y) = X (x-y), 
1111 

where X 
11 

lS a distribution of positive type on mn. We will drop 

the A and w'ri te, for example, 

X (x,y) = X (x-y), 
11 11 

agaln referring to X (~) as the covarlance of 11' In the reverse 
11 

direction, if we start with a distribution X of positive type, 

there is a uniquely determined translation-invariant Gaussian measure 

with mean zero and covariance X(x-y). 

We make very limited claims to novelty for the results presented 

here. Although we have not been able to find these results in the 

literature, the ideas involved in proving them are quite standard 

and, indeed, old-fashioned. The general theory of Gaussian stochastic 

processes has undergone vigorous development in recent years--for a 

good list of references, see the reviewer's remark in MR 42#4994 

* He are using "translation invariant" as a synonym for the probabil-
ists' term "stationary", i. e., a measure 11 on S' (IRn) is said to 
be tr~nslation invariant if it is invariant under the natural action 
on S (IRn) of the group of translations in ~n. 



(1973)--but recent general results do not seem to be directly appli-

cable to the questions investigated here. In any case, our principal 

objective in writing this appendix was to provide a reasonably self-

contained discussion of the answers to these questions in a language 

acce"ssible to mathematical physicists. 

II. REGULARITY . 

. . 
Let a > O. The mapplng 

T 1-+ (-d~ + JL)-a/2T 
dX l . 

lS a continuous linear mapping of S'CR2) onto itself. We tempor-

arily denote this mapping by ~. Schematically, what we want to 

prove is that 

where X is some appropriate space of locally Holder continuous 

functions, regarded as a subspace of S'oQR2). This suggests that we 

investigate the "support properties" of the measure. 

-1 
11 = 110 0 ~ • 

It lS easy to see that 11 lS agaln Gaussian with mean zero but has 

covarlance 

x Cx-y) = 
11 

1 (2.1 ) 



The Fourier transformation can be understood l~terally, rather than 

" . "b" " ( 2 .., )-l( 2+ 1 )-0. ln the sense of dlstrl utlons, Slnce p +~ PI is inte-

grable. This also implies that is a continuous function. In 

fact: 

Prop-osition 2.1 (a). For 

Ix (0) - X (x)1 ~ const x Ixl20. 
~ ~ 

(b) For 1 
a. = 2" 

We will return later to the proof of this proposition; assume it for 

the moment. We are now in the following situation: We have a 

Gaussian measure ~ on S'OR2 ) with mean zero and with a covariance 

which is H;lder continuous at zero. We want to conclude that ~ 

assigns measure one to the set of locally Holder continuous functions. 

We can in fact prove quite a general and preclse theorem in this 

direction; we do not need to assume that the measure is translation 

invariant, nor are we restricted to a two-dimensional index set. To 

formulate our result efficiently, we need some notation. Let o.,S 

be real numbers, with a. > O. For 0 < £ < 1, define 

( 2 • 2 ) 

1 
(Note the 2 ln the exponent of the logarithm; it is put there for 

convenience later on.) For any real-valued function T defined on 

JRn , define 



and let 

n TD a , S = sup 1 IIT<X) - TCy)1 I 
o<lx-yl<; 0 Q<lx-yl )[log(lxl+2)]2 

* a,S 

a,f-l 

= {T: HTn Q < oo}. 
a,IJ 

Then ~a,S may be identified with a subspace of S'ORn ) by 

<f,T> = ffCX)T(X)dX, 

Our principal regularity result 1S the following: 

C 2.3) 

Theorem 2.2. Let ~ be a Gaussian measure on StORn ) with mean 

zero and covariance X(x,y). Assume X(x,y) is continuous and that 

for some a > 0, S, and c 

1 

IX(x,x)+X(y,y)-2XCx,y)1 2 < clx-Yla[10g(I~_YI1J-S 

for aZZ x,y with 
1 I x-y I < '2 . Then 

~(* S) = 1. a , 

Note that, by combining Theorem 2.2 with Proposition 2.1 we obtain a 

sharper version of statement b) of Theorem 1.1, i.e., we show that, 

for 1 o < a < 2' ~O-almost every T has the property that 



(
_d2 )-0./2 

'--2+1 T 
dX l 

belongs to for 

Belonging to if is a slightly weaker local prop'erty than Holder 
0.,0 

continuity with exponent a but is stronger than Holder continuity 

with all exponents a' < a. 

In outline, the proof of the theorem goes as follows. Let Dn 

denote the set of points in ~n with dyadic rational co-ordinates, 

and let X denote n ~,the space of all real-valued functions 
xEDn 

on We will again denote elements of X by T, and we will 

define II T II Q , 
0.,1-' 

for T E X, by the right-hand side of (2.3) with 

x,y restricted to belong to Dn. Let ~ be the Gaussian measure on 

X with mean zero and covariance X(x,y). By this we mean that ~ 

is the uniquely determined probability measure on X such that, 

for any n 
xl, ... ,xm ED, the random variables 

are jointly Gaussian, and such that 
'. 

J T(x)~ (dT) = 0; J T(x)T(y)~ CdT) = X (x,y) for all 

Lemma 2.3. Then 

~(X) = 1. 

Assuming the lemma, we can easily prove the theorem: 

n x,y ED. 

Since ~(X) = 1, we can restrict the random variables T(x) to X 

without changing their Gaussian character or their covariance. Also, 

there is a natural norm-preserving bijection 1 of onto X 



i(T) = TI . 
Dn 

'" A 

probability Let 1l be the measure on *a S which is the image of 
) "-

" .-1 
1l under ~ The random variables 

T f+ T(x) 

on (* ... I,G) given by 
a,B-'2 

are, by the definition of jointly Gaussian with mean zero and 

covariance X(x,y). If x E~n\Dn, and if we take a sequence 

in Dn converging to x, we have 

T(x) = lim 
j-+oo 

T(x. ) 
J. 

(x. ) 
J 

for all T E *"a,S . This, together with the continuity of X(x,y), 

implies that the mappings T 1+ T(x) are 
A 
A 

ll-measurable for all 
---

x, 

and are jointly Gaussian with mean zero and covariance X(x,y). For 

f E S(Rn ), the mapping 

" "-

T -+ <f,T> = ff(X)T(X)dX 

is aga~n ll-rneasurable, Gaussian, and of mean zero, and 

(approximate the integral defining <f,T> by Riemann sums). Hence, 

if we regard as a measure on by putting 



is a Gaussian measure with mean zero and cov~riance X(x,y). 

Since a Gaussian measure is uniquely determined by its mean and 

covariance, 

and the theorem is proved, once we have proved Lemma 2.3. 

Now let !J. = [O,lJn II Dn , and define II Til " Q on X by the 
u,CL'fJ 

right-hand side of (2.3) with x,y res~icted to lie in /J.. We next 

reduce Lemma 2.3 to the following local regularity statement: 

Lemma 2.4. There exist strictly positive co~stants cl~ c 2 depend-

such that3 for all positive A 

'" ~{T: UTII" D > A} 
u,CL'fJ 

To prove Lemma 2.3, it suffices to show that 

lim ~{T: 
A400 

where 

1· 

sup {ITa/2 "/J.,a,S [log(lal+2~J-2):;;:a. A} = 0, 

aan 

T a/2 (x) = T(x-a/2). 

(2.4) 

By Lemma 2.4 and the translation invariance of the hypotheses of 

Theorem 2.2 

1 

[log(l a l+2)]2} ~ 

for any a E Zn. Hence, the left-hand side of (2.4) lS no larger than 



lim 
A+CO 

-c 1. 2 
(l a l+2) 2· = O. 

We now come to the essential and most difficult step--the proof 

of Lemma 2.4. The argument we will give is a straightforward modi-

fication of the argument used by Ito and McKean to construct Wiener 

measure. (See K. Ito and H.P. McKean, Jr., Diffusion Processes and 

Their Sample Paths, Springer-Verlag (1965)pp. 12-15.) 

For fixed x,y E~, T(x) - T(y) 1S a Gaussian random variable 

on (X,~) with mean zero and variance 

X(x,x) + X(y,y) - 2X(x,y). 

By the hypotheses of Theorem 2.2, this var1ance is no larger than 

provided that Ix-yl Hence, again 

" 
~{T: IT(x)-T(y) I (2. 5) 

for all positive y. Here, c 3 ' c 4 are_strictly positive constants 

depending only on c. This inequality is the only property of ~ we 

will need to complete the proof. 

We now proceed by constructing, for each positive y, a set 

X(y) C X and proving 

a) for all positive y 

b) There exists a constant such that for all y, all 

T f1. X(y), and all x,y with 
. 1 

I x-y I ~ 2' 

ITex)-TCy)1 ~ c 6 y 6a ,SClx-y l) . 



The lemma then follows immediately, with 

For notational simplicity, we consider only n = 2 for the 

remainder of the argument; the extension to arbitrary n is immedi-

ate. We will say that a pair x,y of elements of ~ lS an element-

ary palr (of order j) if 

1) the components of x are integral multiples of 2 
-] 

2) each component of y differs from the corresponding 

component of x either by zero or by -j-l ±2 . 

We now define X(Y) to be the set of T E X such that, for some 

j = 1,2, ... and some elementary pair (x,y) of order ], 

ITex)-T(y) I > 2yo a(2- j - l ). In other words: 
a,1J 

If T ~ XCy), then IT(x)-T(y) I ~ 2yo a(2- j - l ). for all 
a,1J 

elementary pairs x,y of order j = 1,2, .... 
(2.6) 

To prove a), we pick an elementary pair x,y (order j) and define 

z = (xl 'Y2)' Then Ix-zl lS 0 or 2- j - l , and similarly for 

I y-z I. Thus 

~{IT(x)-T(Y)1 > 2YOa,S(2-j-l)} ~ ~{IT(x)-T(z)1 > YO a ,S(2- j - l )} 

~ 2 c 2 
3 

" 

( 2 . 7 ) 

+ g{ITCz)-T(Y)1 > YOa,~C2-j-l)} 

-c4y 2 (j+l) 

by (2.5). To estimate ~(X(y», we sum the right-hand side of (2.7) 

over all elementary pairs. For a given ], the number of elementary 

pairs of order J 

CIO 

~(X(y»~ I 8 
j=l 

iss rna 11 e r than 8 x (2 j + 1 ) 2 , so 

2 
-c Y 

= 0(4 4 ) as 



A 

Since ~(X(y» < 1 for all y, this proves a~. 

Turning now to the proof of b), we let x,y be two distinct 

points of ~ with 
1 

Ix-yl < 2' Let 

There exist 
-j 

of 2 0, 

J o = m1n {j: max I x, -y, I 
'-I 2 1 1 1- , 

x(O) y(O), . whose components are integral multiples 

such that 

-j 
~ 2 0 (i=1,2). 

What we want to show is that, for T ~ X(y), 

-, 
Since 

-'0 
Ix-yl ~ 2 , and since 0a SeE) is increasing 1n E for 

small E, it suffices to show 

(2. 8) 

By the triangle inequality 

It follows readily from (2.6) that, if T ~ X(y), 

(Put z(O) = !x(O) + !yCO). then 
2 2' 

( (0) (0» 
x ,z and ( (0) (0» 

y ,Z are 

elementary pairs of order jO') The estimates of IT(x)-T(x(O)1 

and IT(Y)-T(y(O»1 are identical; we will give only the first of 



them. Recall that 
-j 

Ix. _x~O) I < 2 O. It is eAsy to see that we 
). ). 

can construct inductively a sequence 
(1) (2) 

x ,x , ••• such that 

i) 
(k) 

x 
(k+l) 

x is an elementary pair of order jO+k 

(k=0,l,2, ... ) 

- ii) 
. -j -k 

Ix~k)_x.1 < 2 0 (i=1,2). 
). ). 

It follows from ii) (and the fact that each x. is a dyadic 
). 

rational) that x (k) 
= x for sufficiently large k and from 

T ~ X(y) 
, 

that, if 

for all k, 

so 

I (0)' 00 -j -k-l 
T(x )-T(x)1 ~ 2y· I 0 0(2 0 ). 

k=O a,1J 

Hence, for T ~ X(y), 

Since lim o(2- j - l )/o(2- j ) = 2-a < 1, 
j+oo. 

i) 

the estimate (2.8) follows, completing the proof of Lemma 2.4 and 

hence of Theorem 2.2. 

We note in the following proposition some subsidiary results 

which follow from the above considerations. 

Proposition 2.5 a). Let A be a bounded set in ]Rn. There exist 

constants c8~ c g (depending on A) such that 



{ .-n. II .c. 

_ b) In addition to the hypotheses of Theorem 2.2~assume X(x 3 x) 

is bounded. Then for ll-almost every T 

< ex) 

To prove a), we combine Lemma 2.4 with the argument deriving Theorem 

2.2 from Lemma 2.3. To prove b), we note that a) and the fact that 

X(x,x) is bounded imply the existence of clO,cll such that 

ll{T: sup ·{ITaex)i}~. A}< 
XE[O,lJ n 

for all a E Zn; we then argue as ln the proof of Lemma 2.3 from 

Lemma 2.4. 

It remalns to prove Proposition 2.1. We will consider only 

1 1 
a < 2; the proof for a = 2 is similar but slightly messier. We 

want to estimate: 

X(O)-X(x) 

Using the fact that the remainder of the integrand is even ln PI 

and separately, we can replace the term in braces by 



We give the argument for estimating the contribution from the second 

of the terms on the right; the first is easier. For w > 0 define 

~(w) 
1+2a foo 2 2 -1 2 -a 

= w _oodP1 (P1+ w ) (Pl+1) 

4>(w) is continuous for' w > 0 and approaches a finite limit as w 

approaches 00 . , hence, it is bounded on [1,00). 

JdP1dP2(pi+p~+1)-1(pi+1)-a{1-COS(P2X2)~ = 

1 

Now: 

= 2JdP2(P;+1)-~a~(J P~+l) sin2 (P2 X2/2 ) 

1 

< 2-sup ~(w) _x;a-Joo_~dT(T2+X~)-~~in2(T/2) . 
w~l ~ 

Since 

approaches a finite limit as approaches zero, we have the 

desired estimate. 

III. NON-REGULARITY. 

We will prove in this section an abstract version of statement 

a) of Theorem 1.1. 

Proposition 3.1. Let x be a distribution of positive type on 
n JR. 

Assume that the -Fourier transform of X (which must be a positive 

measure) has infinite total mass; equivalently~ assume X is not a 
, 

. . S (IRn) cont~nuous funct~on. Let ~ denote the Gaussian measure on 

with mean zero and covariance X. Then ~-almost every distpibution 



T has the property that there exists no non-em~ty open set U C F n 

such that TIU is a signed measure. 

Proof. We will need: 

Lemma 3.2. Let Ul~ U2 be bounded open sets in llin with Ul C U2. 

Let v be a signed measure of finite total variation on U2 ' and 

let (tp n) be a sequence of continuous functions on llin with 

support contained in the open ball of radius d(Ul ;Rn\U2 ) about 0, 

and with 

Then 

lim for almost all 
m-+oo 

where "almost all" ~s to be understood in the sense of Lebesgue 

measure. 

Proof: 

Iu dx /JV(dY)(f\n(X-Y)I ~ ·lvl(U2)fl~m(x)l·dX 
1 

where I vi denotes the total variation of v. By (3.1) and the 

Monotone Convergence Theorem, 

l!JV(dY) Cfm(X-Y)I < 00 a.e. on Ul ' 

which implies (3.2). 

(3.1) 

( 3 • 2 ) 



Now let f(x) be a COO function of compapt support on ~n 

with ff(X)dX # 0 and, for each positive .\, define 

f.\(x) 
n = A fCAx) • 

For each fixed x, the mapping 

, 
is a Gaussian random variable on S (Rn ), with mean zero and varlance 

-(where X is the Fourier transform of X and f the Fourier trans-

form of f)~ Since ~ is a positive measure of infinite total mass, 

this varlance goes to infinity with A. Choose a sequence of POSl-

tive numbers a with m 

then a sequence 

and put 

I a < 00; 
m 

m 

A gOlng to infinity so rapidly that 
m 

( 3 . 3) 

(3.4) 

It follows from (3.3) and Lemma 3.2 that, if the restriction of T to 

some non-empty open set is a signed measure, there is a set of posi

tive Lebesgue measure in ~n on which 



lim 
m-+oo 

T*<f (x) = O. m 

We will complete the proof of the proposition by showing 

For almost all 
, 

T E S ORn ), lim sup 
m-+oo 

(3.5) 

To prove this, we note first that the mapping (T,x)>> T*fn(x) is 
, 

continuous and hence Borel from S ORn ) 'x Rn to ~. Hence, 

, 
Y _ {(T,x) E S ORn ) x :Rn : lim sup IT~¥ (x) I < co} 

m m-+co 

, 
1S a Borel subset of S (Rn) x "JD n . N f f' d th d - ~ ow or any 1xe x, e ran om 

variables T -+ T*~ (x) (m=I,2,3, .•. ) are Gaussian with variance .m 

going to infinity (by (3.4», so 

m-+oo 

lim sup IT*~ (x) I = co m for almost all T. 

In other words, for each x, 

. {T: (T,x) E y} 

1S a set of ~-measure zero. By Fubini's Theorem* ,Y is a set of 

~ 0 dx measure zero. 

that, for almost all 

Applying Fubini's Theorem again, we conclude 
, n 

T E S OR ), {x: (T,x) E Y} 1S a set of Lebes-

gue measure zero. This is exactly the desired statement (3.5). 

* There is a slight subtlety at this point. To apply Fubini's Theorem, 
we need to know that Y belongs to the product a-algebra, which 
may in principle by strictly smaller than the a-algebra of Borel 
sets in the product space. It is, however, not hard to show, using 
the fact that S'(:Rn ) is a countable union of compact metrizable 
spaces, that in this case the product a-algebra and the Borel 
a-algebra on the product space actually coincide. 



IV. BEHAVIOR AT INFINIT~. 

Proposition 2.5b implies that the set of distributions which 

(in some sense) grow no more rapidly than Jlog IxJ at infinity is a 

set of ~O-measure one. In this section, we prove that ~O-almost 

every T does in fact grow as fast as Jlog Ixl. It is certainly 

reasonable to say that a function T(x) grows as fast as Jlog Ixl 

at infinity if 

1 

lim sup T(x)[log(Jxl]-2 > o. 
I xl ~CXJ 

The meanlng of the corresponding statement for a distribution is a 

* little more problematical , but the following two propositions would 

seem to cover any reasonable interpretation. 

Proposition 4.1. Let a > O. Then ~o-aZmost every T satisfies. 

lim sup[(-d~ + I xl ~oo dx 
1 

Proposition 4.2. Let P E SClR 2 ). Then 110-aZmost every T satisfies 

lim sup 
I xl ~oo 

1 
-"2 

[ T .'; Ql (x ) [ log ( I x I ) ] 
1 

-1 "2 = 2[«-6+ l) p,p)] 

We will prove these propositions by provlng the following more 

'general result. 

Theorem 4.3. Let ~ be a transZation-invariant Gaussian measure of 
, 

mean zero on S (En) with covariance X(x-y) which is HoZder 

continuous at zero and satisfies 

* Note that 
sin (x 2 ) • 

2x cos(x 2 ) is the derivative of the bounded function 
Is the distribution 2x cos(x 2) bounded? 



a. X(O) = 1 

b. X(x-y) Ix-yin is bounded as lx-yl + 00 • 

Then 

ll{T: lim sup 
Ixl+oo 

1 
-"2 

T(x) [logClxl)] = V2i1} = 1. 

To derive the propositions, we apply the theorem to measures of 
4 

the form 

-1 
II = llO 0 q> 

where for Proposition 4.1 we take 

q>(T) = const x (-d ~ 
dX l 

and for Proposition 4.2 we take 

q>(T) = const x T;':p 

~-a/2 
+ liJ T 

the constants are chosen to satisfy the normalization condition a. 

in Theorem 4.3. 

Lemma 4.4. Let A be any bounded set in :Rn 
" 

and let 

There exists a constant Kl such that 

2 
1l{T: sup IT(x) I ;> A} < Kl exp[-K 2A] for all positive A . 

XE!\ 

Lemma 4.5. For any 0 > 0" 



1 

ll{T: lim sup IT(x)I[log(lxl)J-2 > :.J2nCl+o)'} = o. 
x-+'OO 

Lemma 4.6. For any 0 > O~ there exists a sequence xi going to 00 

in ~n such that 

1 

~{T: lim sup TCx.)[logClx.I)]-2 <.J2n(l-o)'} = a 
ill 

(4.1) 

The theorem follows at once by applying Lemmas 4.5 and 4.6 to 
• 

a sequence of positive 6's converging to zero. 

Proof of Lemma 4.4. Let 

X(O) = 1 implies 

n 
x E JR • The normalization condition 

Hence, for any xl'··· ,xk ' 

By Proposition 2.5a, there exist a > 0 and such that 

a 2 
ll{T: ITCx)-T(y)! <; Alx-y! for all x,y E A} ~ l-c S exp[-cgA J.(4.2) 

Define £ by 

and put 11 = Then it follows from (4.2) that 

ll{T: ITCx)-T(y)! <; £1.. for all x,y with 



If we now choose Xl'" "xk such that each point of A 1S within 

a distance n of some xi' we get 

~{T: sup IT(x)1 ~ (I+E)A} 
xEA 

or (replacing (I+E)A by A and recalling the definition of E) 

~{T: supIT(x) I ~ 
xEA 

4 

Proof of Lemma 4.5. Now let A = [O,IJ n . Then 

1 

~{T: lim sup (ITeX) I [loge Ixl )J-2 ) >y'2n(I+0) = 
Ixl+CXl 

I 

ll{T: lim sup (sup { IT(x-a) I Hlog( lal )]-2) > "hn (1+0)} 
lal+oo xEA 
a E:z.:;n 

< lim L idT: sup{IT(x-a)j'} ~J2n(I+0)log(lal)\} . 
A+oo lal~A xEA 

aEZn 

Now choose I 
K2 <"2 so that and apply Lemma 4.4, 

(and translation invariance) to get 

~{T: sup {ITex-a)l} ~.j2n(1+0)log(lal)'} < 
xEA 

where n' = 2K2 Cl+o)n > n. Hence 

lim L ~{T: sup {IT(x-a)l} ~ j2nCl+o)log(lal)'} = 0 
A+oo lal~A "/.EA 

provlng the lemma. 



"1 
I 

Proof of Lemma 4.6. Let R be a large number (to be chosen later) I 

and let (x.) be a enumeration of the vectors 
1 

I . 10/2 n 
a -a, a E Z; , lal ~ R. 

We choose the enumeration 1n such a way that 

in 1, 

variable 

and we" write 

TI-+- T(x.). 
1 

lim sup 
1+00 

R, . for loge IXi I) and 1 

By Lemma 4.5 

IXil is incr·eas ing 

T. for the random 
1 

for almost all T, so to prove (4.1) it suffices to prove 

I 

o = jJ{T: -v'3fi"T. ~ T. ~ V2n(1-0)R,'. for all but finitely many i} ,i 
1 1 1 

l.e., for each I 

o = jJ{T: - V3nR,. ~ T. ~ V2n(l-o )R,'. 
1 1 1 

for all i ~ I}. 

We will in fact only prove this equation for I = I and obtain the 

result for general I be observing that our argument works for all 

sufficiently large values of R. 

For each k = 1,2,3, ... define 

What we want to show 1S that 

lim 1Tk = O. 
k-HO 

for I ~ 1 ~ k} . 



We estimate the TIkS recursively, uS1ng the irlequality 

Here, ~{. I .. } denotes conditional probability and the essential 

supremum is taken over all tl, ... ,tk _ l such that Itil~~k for 

I ~ i ~ k-l. (vIe could, of course, take the essential supremum over 

a smaller set of t's.) Since the measure ~ is Gaussian, it 1S 
« 

easy to check that the conditional distribution of Tk given 

Tl = tl,···,Tk _1 = t k _l may be chosen to be Gaussian with mean 

where 

t. 
1 

and var1ance 

A = (a .. ) 
1J 

is the k x k matrix with inverse 

(b .. ) = (X(x.-x.)). 
1J 1 J 

By condition a) in Theorem 4.3, 

b .. = I for all i; 
11 

also, by condition b) and the fact that the 
n 

tributed 1n :R., we can make 

k 
I Ib··1 

j =1 1J 
j;li 

X. 
1 

small, uniformly 1n i,k, by making R large. 

are sparsely dis-

Now if C = (c .. ) 1S any k x k matrix, the operator norm of 
1J 



e corresponding to the ~oo vector norm on ~k ~s g~ven by 

nell = 
00 

Thus, if R is large, 

k 
sup Ilc .. 1 
l~i~k j=l ~J 

is small, so II B-JLII 
00 

k 
(since A = B-·l ) ,IIA-.] . ..II 

CIO 

is also small, so .Iakk-ll ahd .~ lakil are small. We can there-
1-1 a kk 

fore choose R large enough so that, for all k, 

when .1 ti I ~ v'3n~~ 

the fact that the 

for 1 ~ i ~ k-l. If we do this, and if we use 

~'s 
k 

are an enumeration of the numbers 

(1+0/2) 10g(lal), with a E Zn and lal ~ R, we obtain from (4.3) 

lim 
k+CIO 

CIO 

~k ~ IT {1-exp[-~kn(1-0/2)]} = 
k=l 

2 
1T {1-1a.1 (1-0 14)n} = 0, 

lal~R 
aEZn 

completing the proof of the lemma and hence of the theorem. 


