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A Fast Adaptive Vortex Method using Local Corrections 

by 

Ann S. Almgren 

Abstract 

Vortex methods are particle methods for solving time-dependent incompressible 

fiow problems by discretizing the vorticity into vortex elements and following these 

elements in thne. The main difficulty with vorte..x methods as originally formulated 

is that the cost of the evaluation of the velocity field induced by _N' vortices is O( N'2). 

Tlus is expellsive. particularly in three dimensions where the number of eleillents 

can increa.se rapidly in time due to vortex stretching. Several lllethods have been 

developed for reducing this cost by exploiting the fact that the velocity induced by 

a. vortex elelnellt is harmonic; the method of local corrections (~ILC) is one such 

method. 

The 1-ILC is a particle-particle particle-mesh nlethod~ in which the calcula.tion 

of the velocity field induced by a collection of vortices is split into two parts: (i) a 

finite difference velocity field calculation using a fast Poisson solver on a unifornl 

grid superimposed on the vorticity field, and interpolation of tha,t velocity frolll the 

grid points to the vortices; (li) a local corrections step in which local interactions are 

computed directly. 'Ve present a fast adaptive vortex method which a.dds adaptive 

mesh refinement to the ~1LC. 
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In many calculations the vorticity is concentrated in subregions of the domain. 

By adding adaptive mesh refinement, which allows for finer grids in regions of con

centrated vorticity, we reduce the number of local corrections where the savillgs 

are largest without introducing unnecessary additional grid points in regions of few 

vortices. Among the achievements of this work are the development of an efficient 

multigrid Poisson solver on an adaptive1y refined mesh, a. hierarchical version of 

the local corrections algorithm, and an optimal refinement algorithm for adaptively 

choosing the local mesh density so as to minimize the cost of the algorithm for a. 

given distribution of vorticity. This MLC with A~1R has been implell1ented in two 

and three spa.ce dimensions. Calculations with a vortex ring in three dimensions 

show the breakevell point between the MLC with AMR and the direct method is 

~V ~ 3000; for l'" == 64,000 MLC with Al\1:R is approximately twelve times faster 

tha.n the direct method. 
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Introduction 

Vortex methods are used to approximate time· dependent incompressible flows. 

They are particle methods based on the Lagrangian formulation of the flow equa

tions, in which the quantity carried by the flow is vorticity. The configuration of 

vortex: elements a.t a given time determines the velocity field via the Biot-Savart law; 

the velocity is then used to update the positions of the vortices. In three dimensions, 

the vorticity itself must be updated as well. Vortex methods are especially useful 

for flows which are dominated by the presence of vorticity, e.g., shear ftows, wakes 

and jets. In these flows most of the vorticity is confined to a relatively small portion 

of the How, and then a method based on the vorticity can be very economical. 

Point vortex methods were first introduced by Rosenhead in 1935 [50]. A general 

vortex: method for simulating high Reynolds number flow was developed for two 

dimensions by Chorin [22], and for three dimensions by Chorin [23] and Leonard 

[40]. Convergence of these methods has been extensively studied, and proven for a 

variety of cases [5, 8, 9, 10, 28, 29, 31, 34, 35, 47]. 

The usefulness of vorte..x methods has been seriously limited in the past by their 

cost. The accuracy of the methods and their ability to resolve small scales increase 

with the number of particles, N, as does the time and expense. The cost of standard 

vortex: methods is O( N2), making them prohibitively expensive for relatively few 

vortices (on the order of thousands). Fast vortex methods have been developed 

to try to maintain the accuracy and adaptivity of the standard vortex method 

while increasing their speed. These fast methods approximate the O( lV2) velocity 

calculation with a fast calculation whose cost is O( N log" N) for large J.V. 
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This thesis presents an extension of a fast vortex method known as the Method of 

Local Corrections (MLC). In the MLC, developed by Anderson [1] in two dimensions 

and extended to three dimensions by Buttke and Colella, one introduces a uniform 

grid that covers the computational domain enclosing the vortices, and calculates the 

velocity field due to the vortices on that grid. A corrected form of this velocity is 

then interpolated onto the vortices, and local interactions are calculated directly. 

While the MLC is faster than the standard vortex methods for N greater than 

several thousa.nd, there is further efficiency to be gained by introducing adaptive 

mesh refinement (AMR) [11, 12] to the grid. This thesis implements the addition of 

AMR to the MLC, and shows that, especially in three dimensions, there is significant 

reduction of cost with no loss of accuracy. For example, for a vorte.."'\: ring in three 

dimensions with N ~ 64,000, the speedup of the MLC with AMR over the uniform 

MLC is a.pproximately three, the speedup of MLC with AMR over the standa.rd 

vortex method is approximately twelve. 

The thesis is divided into six chapters. In Chapter 1 we present the equations 

governing incompressible fluid flow and their formulation for use in vortex methods. 

We then introduce the standard vortex method, in two and three space dimensions. 

Chapter 2 contains a review of past work. The first section presents the history 

of the standard vortex method, the second section introduces several different fast 

vortex methods. 

Chapter 3 introduces the method of local corrections in two and three dimen

sions, and presents an analysis of the parameters affecting the accuracy of the 

method. A comparison is ma.de with the fast vortex methods introduced in Chap

ter 2. In Chapter 4 we introduce the concept' of adaptive mesh refinement for 
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finite difference calcula.tions, and then discuss the application of this technique to 

the method of local corrections. Error and timing results for MLC with A!vfR are 

presented here. 

Chapter 5 describes the grid.related details of the final algorithm, including the 

stencils for the discrete Laplacian and for interpolation in two and three dimensions, 

standard multigrid, and multigrid with mesh refinement. Boundary conditions are 

discussed here. 

In Chapter 6 we present the results from calculations of a three dimensional 

vortex ring. First we validate the new algorithm by comparison with calculations 

done using the direct method, next we investigate the stability of the ring using 

different discretizations and numbers of vortices. A discussion of the findings and 

suggestions for future work conclude this chapter. 
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CHAPTER 1 

Standard Vortex Method 

1.1 The Navier-Stokes Equations 

Incompressible fluid flow is governed by the equations 

1 
--'\lP + l/~U, 

P 

vr . u = o. 

These equa.tions describe the velocity u and pressure p of a general incompressible 

fluid with kinematic viscosity 11 = J.L/ p, where J.L is the viscosity and p the density_ 

We nondimensionalize these equations by setting 

u' = u/U 

t ' = (U/ L) t 

x' = :t/L 

p' = p/pU2 

where L is a length scale of the problem to be considered, and U is a typical velocity 

scale. We then get the non-dimensional equations (now removing the primes): 

au at + (u . vr)u = 

4 

1 
-'\lP+ -6.u 

Re 
(1.1) 



'V'll = 0 (1.2) 

where Re = U L/1I is the Reynolds number, the ratio of the inertial to viscous forces 

in the flow. The Reynolds number measures the significance of the viscous term in 

the equation; equivalently, the importance of viscosity in the physical flow. 

The first term in the Navier-Stokes equations is the time derivative of velocity, 

measuring the rate of change of velocity at a fixed position x. The second term is 

the advection term, and describes the change of u at x resulting from the fact that 

the particles of the fluid are moving past x. The first two terms together define the 

material derivative Du/ Dt, and represent the change in u at a fixed particle moving 

in the flow. 

1.2 Vorticity,. Stream Function Formulation 

In the rest of this work we consider only inviscid flow, defined by Re = 00, so that 

the viscous term ~e~u makes no contribution. Equations (1.1) and (1.2) are four 

equations for four unknowns, the pressure and three velocity components. These 

equations can be rewritten in terms of vorticity w = 'V X u, by taking the curl of 

both sides of the equation (1.1): 

aw - + (u . 'V)w - (w . 'V) II = 0 at (1.3) 

Note that the pressure term is removed because the curl of a gradient is identically 

5 



zero. To complete the set of equations we include the definition of w, 

w = V x u. (1.4) 

This is now a system of six equations and six unknowns, u and w. Recalling D / Dt = 

8/8t + (u . V), we can write (1.3) as 

Dw 
- - (w· V)u = 0 
Dt 

( 1.5) 

The first term here is the ma.terial derivative of the vorticity; the second is known 

as the stretching term. This formulation is the basis of the three-dimensional vortex 

method, as will be seen in Section 1.3. 

The incompressibility of u allows us to write u = V' x 'II, where 'II is uniquely 

determined by u to within the gradient of a scalar (. The curl of a gradient is 

identically zero, so ( never enters into the equation for u; thus we are free to choose 

( so that V' . 'Ii = O. 

Equations (1.4) and (1.5) define w in terms of u and describe the evolution of w 

in time; we also need an expression for u in terms of w . The inversion of w = V' x u 

can be achieved by expanding w in terms of 'Ii , 

w = V' x u = V' x (V' x 'Ii) = V'(V' . 'i) - a'll. 

Since we are free to set \7 . \)! = 0, we see that -~ 'Ii = w. Thus, knowing w, one 

can solve this Poisson equation for'll (with appropriate boundary conditions on'll), 

and find u as the curl of qi. The existence of ~ and t~~ equations relating'll, w, 

and u, allow us to work with velocity or vorticity fields interchangeably. 

6 



Now consider a. velocity field lying in the x-y plane and dependent only on x and 

y, Le., u(x) = u(x, y) and u . e z = O. The curl of this field is everywhere parallel 

to the z-axis, thus we write w = wez, and we may in this case think of vorticity 

as the scalar value w. "Ve can immediately see tha.t the term w . \7u must be zero, 

since w' Vu = wez· Vu = W~, and ~ = 0 by construction. The equations for two 

dimensional flows red nce to 

Dw aw 
Dt = at + (u . \7)w = 0 (1.6) 

w = au au ---ax ay (1.7) 

In two dimensions the vector stream function q, reduces to a scalar stream 

function 1/1. The equations 

aw o1/; 
u= - v=--ay' ax' 

ow ow ow 
-+u-+v-=o ot ax oy , 

-tl1/; = w 

define the vorticity-stream function formulation in two dimensions. Note that the 

boundary conditions for this problem will most likely be given as the normal velocity, 

or the tangential derivative of 1/J, hence 1/J itself, at the boundary. This vorticity-

stream function formulation is the basis for several different fast vortex methods, as 

will be discussed in chapter 2. 
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1.3 The Standard Vortex Method 

1.S.1 Two Dimensions 

We first consider the standard vortex method in two dimensions. Recall equation 

( 1.6), 

Dw 
-=0, 
Dt 

i.e., the material derivative of the vorticity is zero. Thus vorticity is a scalar quan-

tity carried along particle paths, which suggests a computational method based 

on tracking particles and thereby evolving the vorticity field associated with those 

particles. 

Define the flow map x : ~2 X [0, T] --+ R2, so that x( 0, t) is the position at time 

t of the fluid particle which at time t = 0 was at position Q. Then x satisfies 

dx 
di(a, t) = u(x(a, t), t). (1.8) 

To find the velocity given the vorticity, recall that in two dimensions 

o1j; 81j; 
u=- V=--

ay' ax' 

-~1/J = w. 

The infinite-domain Green's function of the two-dimensional Laplacian is 

so the stream function at x = (x, y) due to a point vortex of strength Wo at Xo = 

8 



(xo, YO) is 

1JJ(x) = - Wo log J( x - xO)2 + (y - yo)2, 
27r 

and the velocity field is 

u(x, Y) = 81/J = _~ (y - Yo) 
8y 2r (x - xo)2 + (y - yo)2 

v( x, y) = _ 81/J = Wo (x - xo) . 
ax 27r (x - XO)2 + (y - YO)2 

More generally, the solution to -Ll1/J = W for any w(x) is 1/J = G * w, where * is the 

convolution operator, i.e., 

1/J(x) = f G(x - x') w(x')dx/. 
J~2 

We define the kernel K(x) as the vector with components (~~, - ~~) so that we can 

wri te u = K * w, or 

u(x) = r K(x - x') w(x')dx'. 
J~2 

Consider now an initial vorticity field w( lr, 0). Since the vorticity moves with the 

fluid, we can write 

dw 
Tt(x( 0:, t), t) = 0, (1.9) 

The original vortex method as developed in 1935 [50] discretized the vorticity 

field as: 

N 

w(x,t) = '2:Wi(t) 6(x - Xi(t)), ( 1.10) 
i=l 
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where x.(t) and Wi are the position at time t and circulation, respectively, of the i tJa 

vortex, and 6(x) is the Dira.c delta function. Substitution of (1.10) into equations 

(1.8) and (1.9) yields equations describing the evolution of Wi and Xi: 

dx. N 
-d '(t) = u(x.,t) = E K(x,(t) - Xj(t» Wj(t) 

t . 1 '..j.' 
J= ,Jr' 

and 

dw' 
dt' (t) = O. 

Both G(x) and K(x) as presented above are singular at Ixi = 0, which leads 

to an ill-conditioned numerical method [38]. Various techniques have been used to 

desingularize the kernel; we describe here the "vortex: blob" introduced by Chorin 

[22]. The smoothing is a.chieved by replacing the Dirac delta. function in the initial 

discretization by Is(r), where 16(r) is the core shape function. Thus we write 

N 

w(x, t) = E Wi(t) Is(lx - x,(t)l). 
_=1 

The equation governing x.(t) then becomes 

where K6 = K * 16. The evolution of Wi is unaffected. 

In Chorin's method 

{ 

1/21r6r for r < 6 
Is(r) = 

o for, r 2: 6 

10 



where r = J z~ + y~. We require that the integral of the core function over the 

region of its support be unity; this explains the 211'0 above. With this core function 

the velocity field a.t x due to a single vortex blob of circulation Wo at Xo is 

Wo 
u(z, y) = - 211" (y - yo)h(r), 

Wo 
v(z,y) = 211"(% - zo)h(r), 

where r = J(z - zO)2 + (y - YO)2 and 

{ 
1/ r2 for T ~ 6 

her) = 
l/or for r < 6 

(1.11) 

(1.12) 

Thus in two dimensions the vortex method is composed simply of an initial 

discretization of the vorticity field, and a discrete time-stepping procedure to solve 

the evolution equa.tion for Xi, 

There are several choices to make in discretizing the initial vorticity field. The 

first is how many vortices N to use, Le., what the intervortex spacing hv should be. 

The second is what core ra.dius 0 to choose; some calculations define 0 = h~, 0 < q < 

1, others let 0 = Ahv for some constant A,l < A. It has been well-established in 

two dimensions tha.t the core radius should be larger than the intervortex spacing, 

but there are no definitive guidelines for choosing an optimal core ra.dius. 

There are several choices for how to determine the values of Wi given w(x,O), 

once one has chosen N and 6; the two most common are: 

1) Wi = w(xi(O»)dAi, where dA. is the area. represented by the itA vortex element; 

2) Wi = fdAi w(x, O)dx. 

Knio and Ghoniem [39] use a third approach, which is discussed further in Chapter 6. 
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Note that the Wi carry the circulation of a. patch of vorticity, not the vorticity itseH. 

To solve for the positions x,(t) of the vortices, in our computations we use the 

following second-order time-stepping scheme: 

xi = xi + u(xi)~t (1.13) 

Xf+l = xi + .5( u(xi) + u(x;))~t, 

where xi ~ x.(ndt), xi+1 ~ xi«n + l)dt), and xi is an intermediate value. 

1.0.1 Three Dimensions 

Recall from section 1.2 the three dimensional evolution equation for vorticity: 

Dw 
Dt = (w . V')u. (1.14) 

In three dimensions vorticity is a. vector, and is not preserved along particle trajec-

toties. Thus we can no longer track constant-strength vortex blobs; there must be 

some mechanism for correctly evolving the vortex strengths. 

As in two dimensions we discretize the original vorticity field into N nonsingular 

computa.tional. elements: 

N 

w(x, t) = LWi(t) i6(lx - Xi(t)l). (1.15 ) 
i=l 

Here Wi and Xi(t) are the vector strength and location, respectively, of the it}" vortex 
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element, 16(r) is the core function used in [4], 

{ 
4;6' for r < 6 

16(r) = . 
o for r ~ !J 

We again require that the integral of the core function over the region of its support 

be unity; this accounts for the 4;63 seen in the expression. 

Several different forms of this discretization have been developed to represent 

vorticity in three dimensions. One is the most obvious extension from two dimen-

sions; a.gain let the vortex element be a. blob, but now with a vector strength. We 

can ad vect the positions of these blobs according to 

dx' N 
-d • (t) = u(x,:, t) = I: K6{xt(t) - Xj(t» Wj(t), 

t . 1 
1= 

and we then need an expression for the evolution of Wi{t). Anderson and Greengard 

[5] present two alternatives for the evolution of the vortex strengths: 

dw· 
dt' = Wi(t) . VU(Xi) 

and 

where (V c.x) is the deforma.tion matrix of the fluid, the derivatives of the present 

position with respect to the original position. The convergence of both methods has 

been shown as long as the :ftow is regular. The first of these is simply a result of the 

substitution of (1.15) into (1.14); for a derivation of the second see [26). 

We choose a. third a.pproach: the representa.tion of vorticity along line segments 
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rather than in spherically symmetric blobs: 

N 

w(X, t) = L ri(t) li(t) f6(lx - xf (t)l), 
i=1 

where r i, ii and xf are now the circulation, vector length, and location of the center, 

respectively, of the ith. segment, and Wi = rili. This representation was developed 

by Chorin [23, 24, 25], and is similar to the vortex filament method developed by 

Leonard [40, 41]. In [40, 41], the vorticity is defined along space curves which 

are referred to as vorte..x filaments, and the geometry of these curves is evolved in 

time. In [23, 24, 25], the filaments are discretized into short, connected segments. 

This greatly simplifies the computational element, since each segment is assumed to 

stay un curved (although it can certainly be reoriented), and the core undergoes no 

deformation. The effect of curvature of filaments is handled implicitly by allowing 

vorte.."{ segments to change orientation relative to each other while staying connected. 

This segment method was used in calculations in the works cited, and has been 

shown to converge in [31]. 

Initially, segment midpoints xf are placed on a Lagrangian mesh on the support 

of the vorticity; each segment is then aligned along the direction of the vorticity at 

that point. The length of the segment is determined by the desired resolution of the 

calculation; the top and bottom of the segment, x[ and xf, are determined by 

xT(o) - xf(O) = l.(O), 

The circulation r i of each segment is found as in two dimensions, as a product 
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of pointwise vorticity and cross-sectional area represented by the segment, or the 

integral of initial vorticity across that area. Thus these segments are pieces of vorte."( 

lines in the flow (vortex lines are simply defined as curves tangent to the vorticity). 

By the Kelvin Circulation Theorem we know that circulation around vortex lines 

is constant in time, and so the circulation of these computational elements can be 

held constant in time, 

However, the lengths ii of the segments change as the endpoints move, and so the 

strength of each vortex evolves as well. This method differs from the two methods 

mentioned above in that the stretching is incorporated implicitly by the relative 

motion of the endpoints of each segment. 

Since the divergence of the curl of a flow field is identically zero, we know that 

vorte."{ lines cannot end in a flow, they must extend to infinity or end on a boundary 

in inviscid fiow. In order to approximate this numerically, for our computations 

without boundaries (using infinite domain or periodic boundary conditions) we ini-

tiaJize the vorticity into segments connected in closed loops; for segments i-I, i 

located on the same filament, xf = xt-l' Vortex segments, once connected, remain 

connected for all time, thus for N vortex segments there are only 1'[ rather than 2JV 

independent endpoints. 

One consequence of the variable lengths of the segments is that as the vorticity in 

a region of flow increases, the lengths of the segments may become disproportionately 

large. Thus, as a part of the algorithm, one must check at each time step whether 

the segment lengths have exceeded a preset critical length. If they have, we divide 

the long segments in half, giving each new vortex the same circulation as the original 
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vortex. This can result in the number of vortices growing rapidly as the calculation 

proceeds, and underscores the need for adaptive (in time) algorithms. 

vVe find the velocity field induced by a single vorte.."( element in the same manner 

as in the previous section. We know w = 'V x u, and we can invert this expression 

using the stream function q" to find u from w. The infinite domain Green '8 function 

for the three dimensional Laplacian is 

where T = ';x2 + y2 + z2. 

1 
G(x} = --

411"T 

The kernel K ( x) = 'V X G satisfying 'V X (G * w) = K * w is now the ma.trix 

o Z -y 

-z 0 x 

y -x 0 

Again we desingularize the kernel, replacing K by Ks = K * Is ( T), Then the veloci ty 

u is defined by u = Ks * w. The velocity field at x due to a single vortex segment 

with center at Xo, circulation r and length l = (lx, ly, lz) is 

r 
u = -(ly(z - zo) -lz(y - Yo)) h(r) 

411" 
r 

v = -(lz(x - xo) -lx(z - zo)) her) 
411" 
r 

w = -(lx(y - Yo) -ly(x - xo) her) 
411" 
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where 

for r > g 

for r ~ g 

In these calculations we evaluate the velocity at the endpoints, but the vorticity is 

assumed to be centered at the segment midpoints. The positions of the endpoints 

are evolved according to 

~r T ~~ B d; (t) = u(xi (t), t), d; (t) = u(xi (t), t), 

where 
N 

u(x, t) = L: rj(t) (Kc5(X - xf (t»lj{t). 
j=l 

The locations of the center points are updated by 

1 xf = -(xf + xf)· 
2 

We use the same time-stepping procedure (1.13) as in two dimensions. 

We should note here that this vortex segment method is not really so different 

from the first blob method presented above. Both change the strength of the vortex 

using the gradient of the velocity; the segment method defines the endpoints of the 

segments as material points in the flow, and thus the difference in U between the 

endpoints of a given vortex segment is just f(w . \7)u. In the blob method there 

is actually more freedom in how to evaluate the velocity gradient, and one can use 
.. 

a higher-order finite difference operator if one chooses. However, the blob method 
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requires computa.tion of additional information about the velocity field. 
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CHAPTER 2 

Review of Previous Work 

2.1 History of the Standard Vortex Method 

The standard vortex method in two dimensions was first developed in 1935 by 

Rosenhead [50], who approximated the motion of a two-dimensional vortex sheet 

by evolving in time the positions of point vortices. Point vortices have since been 

replaced as the computational element, since the system of point vortices is too 

singular to accuarately represent the physical vorticity field. 

In the past twenty years, more sophisticated two-dimensional core functions have 

been substituted for the original point vortex. Chorin [22] was the first to introduce 

the two dimensional vortex blob method; present calculations all use vortex elements 

with nonsingular core functions. 

Different algorithms have been suggested for handling the stretching term in 

the vorticity formulation of the three-dimensional Euler equations. Chorin first 

proposed the vortex segment method [23, 24, 25]; Leonard [40, 41) introduced an 

alternate method; Beale and Majda [8, 9] and Anderson and Greengard [5] present 

further formula.tions and comparisons with the previously suggested methods. 

The convergence of vortex methods has been rigorously established in two a.nd 

three dimensions for inviscid flow without boundaries. Proofs show higher order 

convergence depending on the smoothness of the core function. The first conver-
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gence proof was given by Rald [34] who showed convergence to second order in the 

intervortex spacing for two-dimensional flow. Numerical experiments by Hald and 

del Prete [35] verified second-order convergence. Beale and Majda [8, 9] improved 

Hald's results by showing that the vortex method can converge with arbitrarily 

high-order accuracy, provided that the initial vorticity distribution is sufficiently 

smooth and that the core function satisfies certain moment conditions. They also 

extended a proof to three dimensions. Later, Beale and Majda [10] suggested a class 

of infinitely differentiable core functions which in theory provide higher order accu

racy. Greengard [31] proved convergence of the three-dimensional filament method 

we use. Further contributions to the theory have been made by Cottet and Raviart 

[29], Cottet [28], a.nd Anderson and Greengard [5]. A useful discussion of vortex 

methods is given in Leonard [40, 41], and in Anderson and Greengard [5]. 

Perlman [47] presents a study of the observed (as opposed to theoretical) ac

curacy of the two dimensional vortex method with different core functions. She 

concludes that, for radially symmetric vorticity with compa.ct support, high-order 

core functions improve the accuracy of the vortex method as long as the flow re

mains smooth. See [47] for further details of the dependence of accuracy on the core 

function. 

In choosing the core function we use, we keep in mind the comments of Anderson 

and Greengard [51, " ... the improvement in accuracy in using a high order method 

over a lower order one becomes extremely small after the initial configuration of the 

particles has been sufficiently distorted." 

Perlman also investigates the difference in methods of assigning vorticity to the 

blob, and concludes that Hald's choice [34] of assigning tG each vortex element the 
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vorticity contained in the blob around it leads to second order accuracy for any core 

function; the a.pproa.ch chosen by Beale and Majda [8, 9] of assigning the value of 

the vorticity at the location of the blob times the area of the blob can provide higher 

order accuracy. 

2.2 Fast Vortex Methods 

Several fast vortex methods have been developed, relying on different formu

lations of the governing equations. These types of methods are not restricted to 

incompressible flow; they are in fact much more general techniques, used, for ex

ample, for galaxy simulations and in plasma physics. The goal of the fast vortex 

methods is to reduce the cost of the velocity calculation in the vortex method; this 

is done by exploiting local regularity in the elliptic differential equation solved to 

find the velocity from the vorticity. This local regularity can be used in two ways: 

first, it enables one to use fast methods to solve the Poisson equation; second, it 

allows one to represent the field away from the support of the right-hand side with 

a small number of computa.tional degrees of freedom. 

2.2.1 Cloud-in-Cell Method 

One of the earliest fast techniques is known as cloud-in-cell, or vortex-in-cell 

when applied to vortex methods. We describe it here in terms of the vorticity 

equations. 

Recall the vorticity-stream function formulatIon from Chapter 1: 

21 



u = V' x 'it, w = V' x u, 

and thus 

w = -a~. 

With the vortex-in-cell method, one begins by discretizing the vorticity iuto 

La.grangian elements, as is standard in vortex methods. Then, however, the vorticity 

itself is averaged onto an Eulerian grid placed in the domain. The equation ~ 'it = 

-w is solved on the grid, u = V' x W is calculated at the grid points, and then u 

is interpolated from the grid points onto the vortices. Boundary conditions for the 

Poisson equation are most likely given in the form of the normal velocity, hence the 

stream function at the boundary. 

The accuracy of vortex methods has been shown to depend on the order of the 

core function used in the discretization of the vorticity, but with the vortex-in-cell 

technique there is no obvious way to incorporate the effects of the core function. 

The inability to separate the near-field and far-field effects is a serious limitation fOf 

the vortex-in-cell technique. 

2.2.2 PPPM Method 

PPPM (Particle-Particle Particle·Mesh) methods address the limitations of daud

in-cell techniques by incorporating near-field effects directly. The basic idea behind 

PPPM methods is that there are two types of interactions- between particles: neaf-
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field and far-field forces. The far-field forces are smooth and can be a.ccurately 

represented on a. grid, and these comprise the Particle-Mesh part of the calculation, 

which is essentially cloud-in-cell. The near-field forces, as described in the original 

method, affect only nearby particles, and so can be calculated directly (Particle-

Particle). The idea of having part of the velocity field represented on the grid and 

part calculated directly between particles is fundamental to the Method of Local 

Corrections. However, in the MLC it is not a separate force which is calculated 

between particles, rather it is the cOfTection to the velocity field which is local, and 

is therefore computed directly. See [361 for a more complete description of Cloud-

in-Cell and PPPM. 

2.2.3 Method of Multipoles 

More recently a fast summation method based on multipole expansion was de-

veloped by Greengard and Rokhlin [21, 32J. This method again uses the vorticity~ 

stream function formulation, representing the velocity field in terms of ~ originally, 

then taking derivatives to find the velocity components. 

In the multipole method in two dimensions, use is made of a theorem ill complex 

variable theory that allows us to e..'"<pand the stream function due to a collection of 

point vortices with strengths Wi at locations Zi = :r: i + i Yi, as 

ex;; 

'" ak ¢(z) = Re(n logz + L -;f) 
k=1 -

if the vortices lie within a disk of radius T around the origin and Izi > T. This 
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expansion can be truncated at p terms with analytically known error. Here 

Consider the calculation of the potential at a set of n points Yj, IYil > r, due to a 

collection of m vortices at locations Xi, IXil < r. The cost of the direct calculation is 

O( n· m). Alternatively, the cost of evaluating the coefficients of a p-term multipole 

expansion of the potentials due to m vortices, and then evaluating the expansion 

at the n points Y j, is 0 (n . p + m . p). For p fi.:'(ed by choice of accuracy, t he cos t 

is O(n + m), a substantial reduction from O(n· m) for nand m sufficiently larger 

than p. 

Note that the two collections of points must be "well-separated", so a sorting of 

the vortices is necessary, and the vortices must be grouped into collections which 

can each generate a single p-term multipole expansion. Theorems describing how to 

shift and combine expansions are used to reduce the number of computations. The 

interactions of vortices which are not "well-separated" from each other are calculated 

directly. 

The original version of this method [32] was non·adaptive (Le., constant "bin" 

size) and for two dimensions. Since the original work, the method has been made 

fully adaptive, so that the grouping of the vortices for expansions is dependent on 

the local vorte..x spacing, and has been extended to three dimensions [21J. In two 

dimensions the expansion is a. complex power series; in three dimensions spherical 

harmonic expansions are used. 

The ideas developed in the method of multipoles have been extended recently. 
. -' 

Anderson' [2] has developed an "implementation of the fast multipole method with-
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out multipoles," based on the same principles as the fast adaptive multipole method, 

but using a. representation by Poisson integrals rather than multipoles. The two 

common ingredients, as noted by Anderson, are that a large number of particles 

are combined into a single computational element and that particles are sorted and 

combined in an efficient manner. 

In Anderson's variant in two dimensions, the computational element is a ring 

with p points rather than a p-term multipole expansion. The streanl function in

duced by the vortices inside the ring is first calculated at these p points on the ring. 

Poisson integrals aloe then used to find the field outside the ring, using only the val

ues at the points on the ring. Again, for m vortices inside the ring and n evaluation 

points outside the ring, the work is of Oem"~ p + n· p), rather than O(n· m) for the 

direct method. 

In three dimensions, harmonic functions have a more complicated form, COll

taining Legendre polynomials in the cosine of the azimuthal angle. However, once 

Poisson's formula is written in terms of these functions, the rest of the method is 

very similar to the two dimensional case. 

One last fast adaptive summation method is presented by van Dommelen and 

Rundensteiner [54]. This method is most simBar to the adaptive multipole method~ 

the differences are that La.urent series rather than Taylor series are used, and that 

the sorting and collecting of vortices, followed by their correct combination into 

multipole expansions, is done by a numbering of the groups based on a binary 

representa.tion of the bin locations, gaining efficiency in the adaptivity. The authors 

note that their contribution is "primarily a programming technique which allows an 

easily addressable adaptive description of irregular distrib~tions of points." 
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CHAPTER 3 

Method of Local Corrections (MLC) 

3.1 Description of the Algorithm 

The Method of Local Corrections, developed by Anderson [1] in two dimensions, 

and extended to three dimensions by Buttke and Colella, is a method which re

duces the cost of calculating the velocity at the vortices. We describe below how 

this velocity evaluation is done; the initial discretization and time-stepping are as 

described in Section 1.3. 

The goal of the MLC is to replace the full 0(.;."12) velocity calculation with a 

fast calculation whose cost varies as O(N log N) for large lv. This is achieved by 

separating the velocity calculation into two parts: calculation of the far-field velocity 

on a grid and interpolation of a corrected velocity from the grid onto the vortices, 

and local interactions calculated between nearby vortices. The algorithm can be 

expressed as follows. 

(1) Find at every grid point i a field gOO which satisfies 

Here D.. h is the discrete Laplacian operator with mesh spacing h; uj'h is defined as 

the exact velocity field induced by the vortices at the grid points, calculated without 
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core function effects, 

N 

ui,h = uexact(ih) = L K(ih) - Xn) wn · 

n=l 

(II) Solve 

for the velocity u on the grid with appropriate boundary conditions. 

(III) For each vortex p, define 

U(Xp) = I( ii; xp) + L K6(Xp - Xk)Wk, 

k near 

where 

Uj = iii - L K(xp - Xk)Wk, 

k near 

and I is the interpolation function. 

Note that if gOO were defined exactly as the discrete Laplacian of the velocity 

due to every vortex at every grid point, and the boundary conditions were specified 

exactly, then iii = ui,h at every grid point. However, this is greater accuracy than 

is needed (since other errors in the method would swamp this error), and so in 

the method of local corrections we approximate the discrete La.placian rather than 

computing it at every point. We define the contribution of each vortex to gOO as 

e.."(actly 8 hue,h on grid points near the vorte.."(, but set gOO = 0 at grid points far 

from the vortex, thereby approximating the value of the discrete Laplacian with 

the value of the e..xact Laplacian, which is zero since the velocity due to a point 

vortex is harmonic. The error of the approximat'ion is Jtfst the error of the discrete 
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Laplacian for a harmonic function, which is proportional to the higher derivatives 

of ueract . Near the vortex these derivatives are large, but it is only away from the 

vortex, where the derivatives are small and hence the error is small, that we make 

the approximation. 

IT in step (III) we were to interpolate the full velocity field from the grid onto 

the vortices, the dominant error in the method would come not from the error in 

approximating the discrete Laplacian of a. harmonic field, but from the interpolation. 

The velocity field due to vortices near to the evaluation point is singular. Putting 

the velocity on a grid and then interpolating it back to the vortex locations is not 

sufficiently accurate, since the interpolation error is large where the derivatives of 

the velocity are large, i.e near the singularity. Also, in calculating the velocity on 

the grid we represent each vortex as a point vorte.."<, and we now want to incorporate 

higher. order core function effects for a more accurate calculation. Therefore, the 

velocity which is interpolated from the grid onto the vortices is only the eor'reeted 

velocity, i.e., that due to vortices sufficiently far away. So, in the interpolation step, 

we subtract the velocity due to near vortices from the velocity on the grid, and 

interpolate this corrected velocity onto the vortices. The corrected velocity only 

represents the influence of far vortices, and is a discrete harmonic function. The 

local interactions are then added directly, incorporating the core function effects. 

In the above algorithm we need a mechanism for distinguishing between near 

and far vortices. Since the cost of calculating the distance between each pair of 

vortices is O(N2), all vortices are sorted into bins at the beginning of each time 

step; this sorting is based on the locations of the vortex centers. The centers of the 

bins are placed at the grid points, and each bin is defin~d as the box of width h 
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around its center. All sorting of near and far vortices is done using the bin indices, 

Let nO = [0,1]d be the physical domain of the problem in d space dimensions; 

place a uniform [0, MJd mesh with mesh spacing h = it over the domain. Define Bi 

as the bin centered on the point ih, and define the I·IB norm such that Ii - mlB is 

the minimum distance (in units of the mesh spa.cing) between any point in Bi and 

any point in Em. Around every grid point now define Ri and R~ as: 

Ri= U Bm , 
m:lm-ils S(D+l) 

~= U Bm
, 

m:lm-iIBSD 

where D is called the sprea.ding distance, and typically is in the range 1 ,::; D ~ 4. 

The right-hand side for the Poisson equation, gOO, is found as follows. See Figure 

3.1 for a pictUl"e of the two dimensional case. 

(1) For each i in the interior of n° 
( a) compute by direct interaction the exact velocity a.t every grid point m 

in Ri due to every vortex n in Bi such that IXn - mhl > e, e slightly larger than 

machine precision, with no core function effects: 

U emth. = '"" K(mh x) I.t L..J - n -no 

n!x .. EBi 

(b) Calculate the Laplacian of this velocity field at every point in R~. The 

stencils for the discrete La.placian are presented in Cha.pter 5. Define 

• { ~ It. ue
•
h inside m 

y/= 
o in interior ( nO) - m,. 
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Note tha.t r! is defined a.t every point in the interior of no, but carries informa.tion 

only about the vortices in Bi. 

(2) Superimpose these fields ,} to form 

gOO = E gi. 
ie interior(OO) 

(3) The velocity is then found by 

- _ (A h)-l no u- "'" g. 

The work to represent the velocity field on the entire grid due to all the vortices is 

broken down as follows: for each vortex, evalua.te the exa.ct velocity in a. subset of 

the grid; for each bin of vortices, evalua.te the La.placian in an even smaller subset 

of the grid; for the whole domain (Le., only once) solve the equation ~hii = gOo. 

The details of how we solve the Poisson equation are described in Chapter 5. 

For the local corrections part of the algorithm, around each grid point i define 

u Bm , 
m:lm-jlB~C 

where C is called the correction radius, and typically falls in the range 1 :5 C $ 4. 

If the correction radius C and spreading radius D are the same then Si = Ri. A 

vortex p in bin Bi is defined as near to a vortex k in bin Bk if Bi is in Sk. Note 

that p is near to k implies k is near to p (this is not necessarily true when AMR 

is a.dded to the MLC). The local corrections step is performed one bin at a time; 

see Figure 3.2 for a picture of the two dimensional case. _For ea.ch i such that Bi 

contains vortices: 
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(4) Define the interpolation stencil {Xa},a = 1 ... ,5 where 5 is the number 

of interpola.tion points. Compute by direct interaction the exact velocity at each 

point Xa due to every vortex n in Si such tha.t Ixn. - Xal > E, without core function 

effects, and subtract this field from the existing velocity at these grid points: 

u(Xa) := u(Xa) - L: K(Xa - xn) W n · 

n:XnESj 

Note that if C = D then this corrected field u sa.tisfies .6.J'ii = 0, Le., the field to be 

interpolated is discretely harmonic. 

( 5) Interpolate this corrected field u from the interpolation points Xa onto each 

U(Xp) := I(u(Xt}, ... , u(Xs); xI') 

After this interpolation, the velocity of every vortex in Bj is due only to the vortices 

outside Si. 

(6) Now add the velocity due to every vortex n in Sj to the existing velocity of 

every vortex p in Bi using Ks rather than K: 

U(Xp) := u(xp) + E Ks(xp - x"J Wn • 
n:xnESj 

In two dimensions velocities are evaluated at the locations Xi of the vortices; in three 

dimensions recall that the vorticity is centered at the segment midpoints, but the 

velocity is evaluated at the segment endpoints. Thus in three dimensions the final 
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two steps would be written: 

U(Xi/B) ;= J(ii(Xd, ... , U(XS);X;/B) + E Ks(X;;/B - x~) W n , 

n:x"eSi 

where 

ii(Xa) ~= il(Xa) - E K(Xa - x~) Wn • 

n:XnESi 

Although conceptually the algorithm is similar in two and three dimensions, 

numerically it is more complicated in three dimensions. Rather than a 9-point 

Laplacian we use a 27-point Laplacian; rather than a 5-point interpolation scheme 

in two dimensions we require a 19-point interpolation stencil in three dimensions. 

The stencils of the discrete Laplacian and the interpolation functions are presented 

in Chapter 5. 

3.2 Parameter Analysis 

There are a number of parameters which affect the accuracy and cost of the 

method of local corrections. We distinguish here between the error inherent in using 

a vortex method to approximate the solution to the Euler equations and the error 

which results from appro."<.imating the standard vorta~ method with the method of 

local corrections. 

The first type of error, that of the vortex method itself, depends on three param-

eters: 1) hv, the intervortex spacing (in two dimensions this is only one quantity; in 

three dimensions, one may differentiate between the illtervortex spacing in the plane 

normal to the direction of vorticity, and the length of the- vortex segments), 2) Is, 
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the core function, a.nd 3) ~t, the time step. The standard approach to choosing the 

parameters tends to he that one first chooses as many vortex elements as compu

tationally possible. One then selects a core function to give the desired theoretical 

order of accuracy. 

Since there is no grid in the standard vortex method, there is no CFL (Courant

Friedrichs-Levy) condition, hence no limit on the time step due to stability consid

erations. There is certainly a. limit due to accuracy considerations; in practice the 

procedure is to justify the choice of a time step by repeating the calculation at a 

smaller time step and showing that the results do not change. There are other ways 

to choose, such as requiring that a vorte."'{ not move farther than some fraction of 

the intervortex spacing (in two dimensions), or that a vortex not rotate through an 

arc more than some fraction of its length (in three dimensions). 

The second type of error is that of approximating the standard vortex method 

with the method of local corrections. This error can be separated into two parts: (a) 

the error in representing the velocity on the grid, and (b) the error in interpolating 

the corrected velocity from the grid onto the vortices. The first error results from 

approximating the value of the discrete Laplacian of the velocity due to a vortex 

element by zero away from that elementj this error depends on the spreading distance 

D. As D increases for constant grid spacing h, we make this approximation on fewer 

points farther away from the vortex element, and thus in the limit as D for each 

vortex covers the entire domain this error goes to Zero. The second error results 

from interpolation. For a constant grid spacing, h, as we increase the correction 

radius C we are interpolating not only a smaller fraction of the total velocity field 

(since the velocity we are interpolating is due to fewer vortices), but also a smoother 
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function, since the corrected velocity is due only to vortices outside the correction 

radius. Thus as C increases the interpolation error goes to zero, and in the limit C 

= M, for a [0, M]d grid, the method of local corrections effectively reduces to the 

standard vortex method. 

We present several parameter studies in two dimensions. Consider first the error 

in finding the velocity field on the grid. In Tables 3.1 and 3.2 we see the error 

in the x-component of velocity on the grid for varying spreading distance D and 

mesh spacing h. Table 3.1 shows the relative error in the x·compollent of velocity 

at the point (.75, .75) (in a domain [0,1]2) due to a single vortex of unit strength 

at (.505, .505). Table 3.2 shows the discrete relative L2 norm of the error in the 

velocity. 

There are several conclusions we can draw from these tables. First, we see that 

D = 1 does not give sufficient accuracy, but D need be no larger than 2 or 3 for 

good accuracy. Recall that we need not seek accuracy in the MLC greater than that 

of the vortex method itself. 

Second, note that the error in both ta.bles varies inversely with the mesh spacing, 

so that the greatest accuracy in velocity is found on the coarsest grid. In the cases 

of h = l, D = 3 and D = 4, we see that the error is especially small; this we would 

expect since the exact velocity is put on all points of the grid, the discrete Laplacian 

is applied and then inverted, and the exact velocity field is regained to the specified 

precision of the solver, which is 10-10 in this calculation. 

In Ta.bles 3.3 a.nd 3.4 are the relative point and L2 norm of the error in velocity 

due to a smoother distribution of vorticity, a circular patch of vorticity of radius .2 
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D = 1 D =2 D=3 D=4 

h=i 3.02 X 10-3 4.51 X 10-5 9.88 X 10-10 9.88 X 10-10 

h - 1 - is 3.54 X 10-3 6.01 X 10-5 4.05 X 10-6 6.30 X 10-6 

h= ~ 2.47 X 10-2 1.02 X 10-4 5.82 X 10-6 2.39 X 10-6 

h = .h 2.93 X 10-1 6.51 X 10-4 8.20 X 10-6 3.70 X 10-6 

Table 3.1: Relative point error in u at (.75, .75) due to a single vortex of unit strength 
at (.505, .505) as a. function of spreading distance D and mesh spacing h. 

D = 1 D = 2 D=3 D=4 

h=l 9.94 X 10-4 2.43 X 10-5 1.16 X 10-10 1.16 X 10-10 

h - 1 -"1"6 2.41 X 10-3 5.01 X 10-5 5.31 X 10-6 1.09 X 10-6 

h - 1 -3"2 1.40 X 10-2 9.34 X 10-5 8.80 X 10-6 1.94 X 10-6 

h = t. 2.08 X 10-1 4.41 X 10-4 1.30 X 10-6 2.89 X 10-6 

Table 3.2: Relative L2 norm of error in u due to a single vortex of unit strength at 
(.505, .505) as a function of spreading distance D and mesh spacing h. 
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centered at (.5, .5). The original vorticity was given by 

{ 

411"(1 - 4R2)7 for R S 0.5 
w(x,y,O) = , 

° for R ~ 0.5 

where R2 = (x - .5)2 + (y - .5)2. We see here a slightly weaker dependence of the 

error on h than for the single vortex. We do not include data for D = 3 or D = 4 

when h = ~ because the grid is too small to accommodate that large a spreading 

distance around a patch of radius .2. 

Note also from Tables 3.1 through 3.4 that for D ~ 2 the relative error is in 

places an order of magnitude or more smaller for the smooth distribution than for 

the point vortex. 

Consider now the error due to interpolating the velocity field from the grid onto 

the vortex locations. In the calculations for Table 3.5 we put the exact velocity 

onto the grid points, and then measure the L2 norm of the error in velocity at the 

vortices, thus capturing the error due entirely to interpolation. The parameters for 

the results in Table 3.5 are the same as for Tables 3.3 and 3.4, except that the 

velocity is exact now on the grid, so D is effectively infinite. 

In comparing Tables 3.4 and 3.5, both for smooth distributions of vorticity, we 

draw two conclusions: (1) the error due to approximating the Laplacian of the ve-

locity on the grid is of the same order of magnitude as the error due to interpolation; 

(2) the error depends more strongly on the correction radius C and the spreading 

distance D than it does on the mesh spacing h. 

In Table 3.6 we present results from [1], which show the relative error in vortex 

locations after a finite time two-dimensional calculatioIt. with the method of local 

corrections using different core functions, due to Chorln [22J and to Beale and lvla-
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D = 1 D =2 D==3 D=4 

h=~ 2.53 X 10-3 5.59 X 10-5 

h - 1 -TB 2.57 X 10-4 4.82 X 10-5 7.58 X 10-6 1.05 X 10-6 

II h= ~ 7.47 X 10-4 3.24 X 10-5 4.68 X 10-6 1.53 X 10-6 

II h = i. 1.12 X 10-3 3.22 X 10-5 4.21 X 10-
a '0-6 

Table 3.3: Relative point error in tI. at (.75, .75) due to a patch of vorticity centered 
at (.5, .5), radius .2, as a function of spreading distance D and mesh spacing h. The 
intervortex spacing is .01, the core radius is (.01),15, and there are 125i vortices. 

D = 1 D == 2 D=3 D=4 

h=* 8.76 X 10-4 2.47 X 10-5 

. 1 2.67 X 10-4 2.10 X 10-5 2.36 X 10-6 1.12 X 10-6 '. lfl 

h = :b 7.04 X 10-4 3.08 X 10-5 3.59 X 10-6 1.55 X 10-6 

h == -k 1.39 X 10-3 3.57 X 10-5 4.40 X 10-6 1.71 X 10-6 

Table 3.4: Relative L2 norm of error in u due to a patch of vorticity centered at 
(.5, .5), radius .2, as a function of spreading distance D and mesh spacing h. The 
intervortex spacing is .01, the core radius is (.01),75, and there are 1257 vortices. 

C=1 C = 2 C=3 

h - 1 -R 9.14 X 10-4 4.45 X 10-5 

h = -&. 2.68 X 10-4 5.50 X 10-5 1.44 X 10-5 

h - 1 6.79 X 10-5 1.19 X 10-5 5.04 r 

.~ 

-.u-

h = it 3.99 X 10-6 1.43 X 10-6 

Table 3.5: Relative L2 norm of error in velocity at the VOTtex locations. Parameters 
are as in Table 3.3. 

37 



DIRECT C=D = 1 C= D=2 C=D=3 

Chorin core 8.36 X 10-3 8.59 X 10-3 8.35 X 10-3 8.36 X 10-3 

Beale-Majda. core 4.15 X 10-3 4.32 X 10-3 4.14 X 10-3 4.14 X 10-3 

Ta.ble 3.6: L2 norm of error in vortex locations at time t = 1 using two different 
core functions. Anderson [1]. 

jda [91. The calculations are done first using the direct method, then with the :NILe, 

varying C = D. The core functions are: 

Chorin: 

Beale-Nlajda: 

{ 

IJ(2trr6) 
f~(r) = 

o 

for r < 6 

for r ~ 8 

where r is the distance from the vorte..'C. Here the original vorticity was as for 

Tables 3.3 and 3.4, 8 = h·9s , the time-stepping procedure was 4th order Runge-

Kutta, and the time t = 1 corresponded to a maximal rotation of one revolution. 

We present this here to verify that the higher-order accuracy of the second 

core function is in fact preserved by the method of local corrections for a fini te 

time calculation. In addition we see from Table 3.6 that the error of the solution as 

calculated using the MLC does not vary with C = D here, and is essentially the error 

of the solution as calculated using the direct method. ~Ve conclude from this that 

the error inherent in the vortex method in fact swamps the error in approximating 

the standard vortex method by the MLC for finite time calculations. 

Baden [6] performed parameter studies of the method of local corrections in 

two dimensions, varying the number of vortices, the -ID:esh spacing, and the time 
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N h .o.t = 0.1 .o.t = 0.05 ~t = 0.025 ~t = 0.0125 .o.t = 0.00625 
1005 1/30 9.09 X 10-3 4.57 X 10-3 3.50 X 10-3 3.24 X 10 ·3 3.18 X 10-3 

1/60 9.08 X 10-3 4.56 X 10-3 3.49 X 10-3 3.23 X 10-3 3.17 X 10-3 

4020 1/30 7.66 X 10-3 3.65 X 10-3 1.48 X 10-3 1.22 X 10-J -
1/60 7.66 X 10-3 3.65 X 10-3 1.48 X 10-3 1.22 X 10-3 -

direct 7.66 X 10-3 3.65 X 10-3 1.47 X 10-3 1.21 ~ 10-3 -
16043 1/30 7.17x10-3 1.97 X 10-3 7.48 X 10-4 4.83 X 10-4 4.22 X 10-4 

1/60 7.17 X 10-3 1.97 X 10-3 7.50 X 10-4 4.85 X 10-4 4.24 X 10-4 

1/120 7.17 X 10-3 1.97 X 10-3 7.51 X 10-4 4.86 X 10-4 4.25 X 10-4 

Table 3.7: L2 norm of error in vortex locations after finite time as a function of 
number of vortices N, mesh spacing h, and time step tlt .Baden [6]. 

step. The core radius was 8 = h·7s , and the correction and spreading distances were 

C = D = 2. The initial distribution of vorticity was the same as used by Anderson 

in the above calculation, and Chorin '8 core function was used. The results are 

displayed in Table 3.7. Baden's results show: 

(1) The time step tlt should vary proportionally with the intervortex spacing. 

We define the optimal time step as the largest time step for which reducing the time 

step does not significantly lower the accuracy. The choice of appropriate time step 

can be inferred from the table by moving across a row and noting when decreasing 

the time step does not appreciably decrease the error. 

(2) Accuracy improves with decreasing intervortex spacing. Note that the im-

provement here is not large, because the original vorticity distribution is so smooth. 

(3) Given a fi..xed number of vortices, the error is independellt of mesh spacing. 

Again we see by comparing the direct and MLC calculations 'with lV = 4020 

that the error inherent in the vortex method swamps the error due to the MLC. 
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3.3 Comparison of Fast Vortex Methods 

In this and the previous chapter we have discussed several different types of 

fast vortex methods: cloud-in-cell, PPPM, multipole method, and the method of 

local corrections (MLC). These methods ha.ve several fundamental similarities and 

differences. 

The first distinction we make is between grid-based and non-grid-based methods. 

Cloud-in-cell, PPPM, and MLC nse a grid to represent the velocity field before it 

is interpolated onto the vortices. The different multipole methods have no grid 

representation of data; they only use a grid for sorting purposes. 

The essential similarity between all the above methods is their reliance on the 

regula.rity of harmonic functions. This regularity ensures that the solution to Pois

son's equation is very smooth a.way from the support of the right-hand side, and 

therefore one can approximate the far-field effects with a small number of compu

ta.tional degrees of freedom with little loss of accura.cy. The solution to Poisson's 

equa.tion with a rapidly varying right-hand side may be rapidly varying near the 

support of the right-hand side, but far away the solution is smooth regardless of the 

singularities in the right-hand side or its derivatives. 

All of these methods rely on this regularity to represent the field due to a collec

tion of grouped "charges" by a smaller number of computational degrees of freedom 

with good accuracy. In c1oud-in-cell, PPPM, and MLC, the representation of the 

field, whether stream-function qt as in cloud-in-cell, or u as in MLC, is on a grid. 

In the multipole algorithm, it is the coefficients in the multipole expansions that 
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determine the field; in Anderson's Poisson integral method, it is the values of the 

stream function at points on a circular ring. 

It is interesting to consider a comparison with Fourier transforms and multigrid 

as well. In using Fourier transforms, one is also representing physical da.ta in another 

space, here the spectral representation. If the data is sufficiently smooth, then one 

need only keep the lower-frequency coefficients, and one has the same conceptual 

representation as with the multipole expansion. To find the field due to a collection 

of charges, one could find the first p terms of the Fourier series of the field due 

to these charges, then evaluate that series at points in physical space. Since the 

interaction of close vortices would need to be represented with higher frequencies, 

one would need a wa.y of correctly separating the near-field and far-field effects, just 

as with all the fast methods. See Strain [52, 53] for a discussion of how to implement 

a. method based on Ewald summation and fast transforms of Gaussians and Fourier 

series. 

Multigrid also uses the concept that a smooth field can be represented accurately 

in a. coarser way than a rapidly varying field. The coarse grid transmits information 

across the grid much more rapidly than a fine grid, since in this iterative method 

information is only transmitted one grid point per rela.''Cation. Multigrid can be 

used to solve a Poisson equation with a rapidly varying right-hand side, but the 

work is apportioned to make the solution as efficient as possible-rela.."(ation on the 

coarser grids captures the smoother components of the field, and the finer detail of 

the solution is found on the fine grid. 

The programming structure of multigrid and of the adaptive multipole-type ex

pansion methods is virtually the same [2, 37]. In ·the adaptive multipole-type rneth-
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ods one sweeps from finer to coarser levels, creating nested boxes to use as computa

tional elements. In multigrid, one descends from fine grid to coarse grid and relaxes 

on the grid at every step. Forming an element at one level by combining elements 

from a finer level is equivalent to the restriction operator in multigrid. Creating an 

inner approximation from potential values induced by an inner ring approximation 

associated with a parent box in the multipole method is similar to the prolongation 

operator in multigrid. There are two sweeps necessary in the multipole-type method; 

first the creation of the outer ring approximations, then the evaluation of the inner 

ring approximations; these we liken to the two sides of the multigl'id V-cycle, first 

going from fine to coarse grid, then returning from coarse to fine grid. 

We will also see in later chapters that the MLC with adaptive mesh refinement 

(A~IR) fits very easily into the multi grid structure. The original MLC algorithm 

represents all the information on a single grid, but with AMR we introduce multiple 

levels, and keep the least smooth information on the finest grids, the smoother 

components on the coarser grids. 

The differences between multipole-type methods were mentioned in Chapter 2; 

here we contrast a grid-based and a. non-grid based method, i.e. the method of 

local corrections and the multipole method. Note that the appropriate comparisons 

are between the original multipole method and the original MLC, or between the 

adaptive multipole method and MLC with AMR. Both of the latter have the same 

degree of adaptivity, in that the data structure used to represent the field values 

varies in fineness with the vorte.."( spa.cing. In both cases the goal is to represent 

as much of the field as possible in the "fast" way (by multipole expansion, or on 

the MLC grid) within certain limits of accuracy, 'and thea_to capture the remaining 
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fine-detail structure of the field by direct interaction. The direct intera.ctions are 

done identically, the difference lies in how the smooth far field is represented. 

Boundary conditions can be handled much more easily in a grid-based method. 

We will discuss in Chapter 5 how to calculate the different types of boundary con

ditions; here we want mainly to point out that with a. grid representa.tion it is fairly 

straightforward to satisfy various boundary conditions (infinite domain, periodic, 

or no-flow wall). To impose no-flow wall boundary conditions for a non-grid based 

method requires conformal mapping, or solving Lapla.ce's equation on a grid and 

interpolating the solution from the grid to the vortices. The elliptic solver and the 

interpolation are already incorporated in the MLC, so no-flow wall conditions are 

in fact trivial to impose. The same applies to periodic boundary conditions; on a 

grid it is simple to "wrap" the values around the periodic direction, but without a 

grid one must crea.te image vortices in the periodic direction, requiring additional 

computational effort. 
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Figure 3.1: Grid showing B i , Ri , R~ for creation of t! in two dimensions. Small dots 
are vortices. 
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Figure 3.2: Grid showing Bi , Si for local corrections in tw~ dimensions. Small dots 
are vortices, large dots are the grid points in the interpolation stencil. 



CHAPTER 4 

MLC with Adaptive Mesh Refinement 

4.1 Adaptive Mesh Refinement 

Adaptive mesh refinement (AMR) is a technique for selectively refining the Inesh 

in a grid. based calculation. Using AMR, a base grid is maintained for all time and 

new finer grids are added adaptively in time, overlaying regions of the base grid. 

The motivation for adaptive mesh refinement is that for most problems the level 

of refinement needed to capture important features of the solution can vary widely 

throughout the problem domain. Certain areas in the domaill where there is little 

activity need only a coarse grid; other areas may need a very fine grid. In finite 

difference calculations the penalty for using a single coarse grid is loss of accuracy; 

the penalty for using a single fine grid is time--the cost of a single time step of a 

three-dimensional finite-difference calculation will grow by a factor of eight for every 

factor of two refinement. 

A~IR has been implemented in finite-difference codes [12], but never in the 

method of local corrections. The automatic, adaptive mesh refinement strategy that 

we use in this work was developed by Berger and Oliger [11] for hyperbolic equations 

on rectangular grids. Earlier work was done by Bolstad [17] in one dimension. 

and Gropp [33] for scalar problems in two dimensions. The algorithm has been 

extended to three dimensions [IS] and mapped' grids [14, 16]. Here we consider 
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only rectangular grids in two and three dimensions. For our algorithm, we use a 

modified version of the code discussed in [12, 15), a. robust and efficient version 

of the algorithm for time-dependent shock hydrodynamics. There has also been 

considerable effort to use adaptive mesh ideas for solving elliptic equations using 

finite difference or finite element approaches; for a review, see [43]-

Adaptive mesh refinement is simple in concept, but nontrivial to implement. In 

the simplest form of AMR, the base grid is defined as the original uniform rectangular 

mesh with mesh spacing h, and one first determines in what regions of the base grid 

a finer mesh is needed. A grid with mesh spacing !, m typically 2, is created in 

these regions. One then determines what regions of the refined grid need refining, 

and a new finer grid is created if needed. This process of refinement can be repeated 

many times in an iterative fashion. The questions whether to refine by more than a 

factor of two at each level, how to properly nest the grids, and whether grids must 

be rectangular, depend on the application. 

Note that AMR does not adapt the grid by moving grid points into one region, 

thereby leaving a coarser mesh elsewhere. With AMR, a refined grid is placed on 

top of a region of the coarse grid, but the resolution in all regions never becomes 

coarser than that of the original base grid. 

The refinement criterion in finite difference calculations is an error measure based 

on Richardson extrapolation. For these calculations one computes the solution on 

a coarse grid and on a fine grid. If the difference between the solutions is above 

a certain tolerance, (max, the region is refined, and the solution is computed on a 

new finer level. If once again the difference between the fine and finer solutions is 

greater than (max, the region is again refined. Regions are-refined until the difference 
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between the solution at that level and at the next level of refinement is below the 

tolerance. For AMR with the ~ILC, the refinement criterion is based on the number 

of vortices per bin. We discuss this further in Section 4.4. 

For A~lfR as used with the MLC, grid regions at each level must be rectangular. 

vVe allow multiple rectangles per level, and in general, we allow these rectangles to 

overlap. vVe define level l points or grids as those with mesh spacing hi = ho/21!. 

The set of all rectangles generated by the grid creation procedure at level l defines 

c l , and we call 
l 

CO: l = U G' 
i=O 

the composite grid at level l. See Figure 4.1 for a sample composite grid at level 

2. Certain computations are performed on each rectangle separately; the Poisson 

equation is solved on the composite grid for each level above and at the base grid 

leveL Note that "above" refers to a finer level, "below" denotes a coarser leveL 

Initially, the regions of a levell mesh needing refinement are represented by a set 

of flagged points at levell + 1; this set contains the points which must be included 

in the grids generated at level l + 1. The creation of the individual rectangles given 

a list of flagged points is achieved using a modified bisection algorithm presented 

in [13]. This algorithm aims to create as few rectangles as possible at each level~ 

to reduce the computational overhead and allow the longest possible vector lengths 

for the Poisson solver, but each with at least a minimum efficiency, measured as 

number of flagged points divided by number of total points within the rectangle. 

The required efficiency is an input parameter, and in our cases has been in the range 

50% to 80%. 

The process of grid creation is described below in more detaiL Assume that we 
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have a list of fiagged points for each level l. up to a ma.."<imum level of refinement. 

Starting with the finest level, 

(1) Ensure proper nesting of the grids by flagging at the present level all points 

lying under a grid at a level finer than the present level. (This does not apply at 

the finest level.) 

(2) Add buffer points around the currently flagged points at this level. The pur

pose of the buffer zone in finite difference calculations of hyperbolic problems is to 

ensure that discontinuities or other regions of high error do not propagate out from 

a fine grid into coarser regions before the next regridding. In the 1tILC with ANIR, 

buffer points are necessary so that the full representation of the right-hand side due 

to a vortex in a. flagged bin can fit on the interior of the grid at that level, and 

that local corrections can be done properly. This buffering step is actually done in 

a slightly different manner for AMR with MLC than for ANIR in a finite difference 

calculation; this is discussed further in the ne..xt section. 

(3) Define a cluster as the minimum rectangular box containing all the flagged 

points (including the buffer points) at this level. 

(4) Check the efficiency of each cluster at this level. If it is greater than the mini

mum efficiency, check the next cluster. If this is the only duster and it satisfies the 

efficiency requirement, or if all of the clusters have at least minimum efficiency, go 

to step (6). 
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(5) Create new clusters. For each cluster which does not satisfy the efficiency re

quirement, calculate the number of points in a cross-section of the duster for each 

coordinate direction. Then calculate an approximation of the second derivative of 

this data, and loca.te the lowest value of the derivative, indicating a local mini

mum in width of the rectangle. Repeat in each coordinate direction, and choose 

the lowest value of this derivative over all directions. Bisect the rectangle along 

the cross-section with the lowest value of the derivative. Two new clusters are now 

created by taking the minimum rectangle containing all flagged points on each side 

of the bisection. Return to step (4) to check these llew clusters. 

(6) Store each cluster as a part of the level l grid in the data structure. Note 

that these rectangles do not overlap but may share common boundaries. If cur

rently at level e > 1, return to step (1) for the points at the next coa.rsest level. 

The bisection procedure in step (5) above is constrained not to create new clus

ters with less than a minimum prescribed thickness. Also, if the procedure cannot 

decide where to bisect, the cluster is bisected at the midpoint of its longest directioll. 

The data structures for AMR adapt in time with the evolution of the grids. 

They allocate spa.ce for the solution vector in each rectangle independently, using 

only the necessary amount of space. A pointer vector is also maintained, indexed 

by the number of the rectangle it describes, containing the grid indices defining the 

rectangle, and the pointers to the locations in memory where the solution and other 

necessary values are stored. 

49 



4.2 MLC with AMR 

The accuracy of the method of lac a! corrections has very weak dependence on the 

mesh spacing of the grid used to calculate the far-field velocity, as long as the mesh 

spacing is sufficiently larger than the interparticle spacing. Thus, we can choose the 

mesh spacing within limits by timing considerations; just how to do this is discussed 

further in Section 4.4. The goal of AMR with MLC is to reduce the cost of the local 

corrections by creating smaller bins in regions where the vortices are concentrated 

while increasing as little as possible the cost of solving of the Poisson equation. 

Adaptive mesh refinement introduces a hierarchy of grids, C i , e = 0, "" (max, 

with mesh spacing hi = hO /2l. CO is the base grid and Clmaz is the finest grid. Only 

GO covers an of no, the full computational domain. 

Initially, the regions at level l to be refined are defined as the bins at level e 

(those centered on level e grid points and with width he) containing more than 

JVma:r: vortices; if a bin on a levell grid contains more than N'ma;;; vortices, then all 

level e + 1 grid points which lie within or on the boundary of that bin are flagged. 

In two dimensions, a single level e bin needing refinelnent results in 9 flagged points 

at level l + 1; in three dimensions a level e bin needing refinement requires 27 level 

e + 1 points to be flagged. This ensures that the bin at level e will be completely 

covered by the bins that are created at level e + 1 . since the boundaries of bins at 

level e and at level e + 1 do not coincide, How to determine .fV max is discussed in 

Section 4.4. 

Once the grids GI. are created for every level f, 0 < l ~ f max , using the procedure 

described in Section 4.1, we sort all vortices int'o sets Vi" A vortex p is a level e 
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vortex, and hence a member of Vi, if p is contained in a level e bin which is in the 

interior of Gt and centered on a grid point more than b+ llevell grid points from all 

boundaries of Gl , where b = max( C, D) . Note that not all level e bins contain level e 

vortices. The velocity due to alevell vortex is represented on GO:l ; this containment 

criterion ensures tha.t the method of local corrections can properly represent the 

right-hand side of the Poisson equation and perform the local corrections correctly 

for the level e vortex on the level i grid. 

The method of local corrections is performed once on GO: l for each level f. For 

the level e calculation, the right-hand side for the Poisson equation is defined using 

vortices in Vi ouly, and boundary conditions due to vortices in Vi only are defilled 

on the base level grid. The Poisson equation is then solved on GO: l 
I generating 

a velocity field iii:m on each Gm, 0 ::; m ~ l, of the composite grid GO: l , Note 

that because the Poisson equation is solved separately for each group of vortices 

Vi, the right-hand side is only nonzero on Gl ; elsewhere on GO:!. it is set to .zero. 

The velocity is then interpolated onto all vortices, with local corrections required 

only on G i . This procedure is repeated for all levels, l, 0 ~ l ~ lmax, adding the 

contributions from each set of vortices Vi until the velocity of every vortex p due 

to vortices at all levels has been calculated. We can express the full algorithm as 

I.m o.:z 

u(xp) = I: ul(xp ), 

i=O 

where 

if m < e 
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and 

The level m at which the interpolation is done is the finest level such that m ::;; e 

and xp is in the interior of Gm. The interpolation stencil 1m is composed of points in 

Gm with spacing hm . Note that p need not be in Vl for the interpolation stencil for 

Xp to be It; vortices in V t- 1 which lie interior to and near (but not on) the boundary 

of Gi will use Ii . Note also that the vortices in V t correct only the velocity ii(:t' all 

Gt ; grid points in Gt are the only points within distance Chi of the vortices in Vi. 

vVe discuss here the difference in the buffering step of the grid creation algorithm 

between A.~IR for the MLC and AMR for finite difference calculations. For AMR 

,vith the }VILC, rather than adding buffer points around individual flagged points, 

we add buffer regions around rectangles already created at each leveL There are two 

approaches to this buffering depending on whether we. want overlapping rectangles. 

In the first approach, which will generate nonoverlapping rectangles, at each level 

e we begin by performing steps (1) and (3)-(5) once, generating feasible rectangles 

around the originally flagged bins. Next we add a buffer of b+ 1 level e points in each 

coordinate direction from the boundary of the rectangle, and flag all the points now 

contained in all the rectangles, including the new points. We perform steps (1) and 

(3)-(6) now with this new list of points. The new rectangles will not overlap, but nlay 

share boundaries. We repeat the process for sequentially coarser levels until grids 

at all levels e > 1 are defined. The advantage of nonoverlap ping rectangles is that 

in the multigrid rela..xation, we need not worry about transmission of information 

between rectangles at the finest level of the composite grid. The disadvantage is 

that the bisection algorithm may create a division in the middle of an originally 
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flagged region, and thus vortices which would for overlapping recta.ngles be level l 

vortices are instead levell - 1 vortices. This will not worsen the accuracy, but will 

reduce the savings of the mesh refinement. 

The second approach is: starting at the top level l = lma.:r, perform steps (1) 

and (3)-(5) once at levell, then add a buffer of b+ 1 level l points in each coordinate 

direction from the boundary of the rectangle once it is created by the algorithm. 

After the buffer is added, define each newly enlarged rectangle as a grid, and repeat 

at level l- 1, untill = o. This will potentially create overlapping grids. The dis ad-

vantage is that solving the Poisson equation takes more iterations; the advantage is 

that every vortex is represented at the highest level appropriate. 

There is one exception to the buffering procedure: we allow the fine grid bound-

aries to e..xist at physical boundaries, without being buffered by intermediate grids. 

This is necessary for the problems in which the vorticity extends to the boundaries. 

The ~ILC with AMR is outlined in greater detail below, using the same num-

bering of steps as in Chapter 3. Once the grid hiera.rchy is created and the vortices 

are sorted, for each level l, l = 0, .. " lma.x: 

(1) For each level l bin Bi:t containing vortices in Vi, define 

Ri:l = U Bm :l , 

m:mEGt,lm-iIB :5(D+l) 

Ri:t -o - U 
m:mEGl,lm-ilB:5,D 

where the I·IB norm is defined such that li- mlB is the minimum distance (in units 

of the mesh spacing hi) between any point in B i:l and any point in Bm:l. 

53 



(a) Compute by direct interaction the exact velocity at every level e grid 

point m in Rtl due to every level l vortex n in Bi :l with no core function effects: 

U
e.,h t _ 
m -

(b) Calculate the discrete Laplacian on the levell grid of this velocity field 

at every point in R~l. Define 

inside Ri:l 
° 

in interior( e l ) - R~:(. 

(2) Superimpose these fields gil to form 

Gt • 

g = 2:g1
:
t
. 

(3) Solve the Poisson equation on the composite grid GO:!', with gGl as the right-

hand side, for the velocity iil:m on Gm in GO:!.. :Nlultigrid rela..xation on a hierarchical 

mesh is described in Chapter 5. 

Define for every level l bin Bi:l , 

Si:i = u 
m:meGt.lm-iIB:5 C 

Then for each level j bin Bi:j at each level j, j = lmax, ... ,0, define m as the 

finest level at which Bi:j is fully contained in the interior of em. Note that m, = j 

only if Bi:j is in the interior of Gj and not contained in the interior of any finer grid. 

If Bi:j is on the boundary of Gj and not contained in any nner grid then m = j - 1. 
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(4) Compute 

if j < e 

if j = e 

at the interpolation points {Xo} on Gm
• 

(5) Interpolate ut :m from the interpolation points Xo onto each vortex p in Bi 

which does not lie in a finer level bin in the interior of a finer level grid: 

Note that it is possible for two vortices in the same level j bin not to have the salne 

interpolation stencil, since one may lie in a level j + 1 bin in the interior of Gj+l 

while the other lies in a level j + 1 bin on the boundary of Gj+l. The first would 

use the interpolation stencil Ij+1, while the second would use IJ. 

(6) For only those vortices p in Bi:l using the interpolation stencil Ii, add the 

velocity due to every levele vortex n in Si:i to the existing velocity using K6 rather 

than K: 

n:nEvt,XnESi:1 

There is a certain asymmetry in the local corrections calculation, because the 

statement that vortex k is near to vortex p no longer implies that vortex p is near 

to vortex k, since the definition of near depends on the level at which the vortex is 

located. Thus it is possible that vortex k can be 'used to'locally correct the velocity 
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of p, but vortex p is not used to correct the velocity k. This is in fact the correct 

way to define the local corrections, since this asymmetry is present in the original 

far-field calculation, and an asymmetric correction is appropriate. The correction 

must be consistent with the construction of the initial velocity field: if the right· 

hand side in the first step above is computed out to D level e grid points, then the 

local corrections should extend out C level e bins. 

The algorithm as described above applies in two or three space dimensions. The 

savings gained by adding AMR to MLC is greater in three than two dimensions, 

however, because the vorticity typically is concentrated in a smaller fractiol1 of the 

domain. 

4.3 Error and Timing Results 

\Vhen A1-IR is added to the method of local corrections, we see substantial 

savings at large .tv. For few vortices, the direct method is more cost-effective than 

h/ILC or NILC with ANIR because of the overhead due to the presence of a grid, but 

for many vortices NILC with AMR requires considerably less computational effort 

than the direct method. 

Table 4.1 shows the relative L2 norm of the error in the velocity field at the 

vortices in a three-dimensional vortex ring calculation as compared to the direct 

method. The core function used here is that presented in Chapter 1, and 6 = h~75. 

vVe see very little variation in the error as the base grid a.nd the maximum level of 

refinement vary. The exceptions are: (a) on a uniform 8 X 8 X 8 grid the correction 

radius encloses all the vortices, thus the error of the NILC relative to the direct 
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Relati ve L2 Error 
LEVEL 2 vortices SO 11 vortices 

8 1.6e-5 1.6e-4 
8-16 Lge·3 2.2e-3 
8-32 L8e-3 2.0e-3 
8-64 7.ge-4 8.8e-4 

7.1e-4 7.Se-4 
6.ge- 7.7e-4 
7.Se-4 8.2e-4 

16-128 7.6e-4 

32 7.1e-4 7.8e-4 
32-64 7.5e-4 

32-128 i.6e-4 

Table 4.1: Relative L2 norm of the error for different levels of mesh refinement. 
Calculations for a three-dimensional vortex ring of radius .1 around the z-axis and 
cross-sectional radius .02. 

method is very low, and (b) For a base grid of 8 x 8 x 8 with lma:; > 0, the error 

is higher than for a base grid of 16 x 16 X 16 or 32 x 32 X 32 because there is some 

loss of accuracy in the boundary conditions for the coarser grid, and this error is 

transmitted to the velocity at interior points through the solution of the Poisson 

equation. 

The first column in this table specifies the level of refinement; ;48" refers to a 

uniform 8 X 8 x 8 grid, "8-32" refers to a 8 x 8 X 8 base grid with two levels of 

refinement above that (so that the finest level has h = 1/32). The second column 

is the relative L2 norm of the error for a ring with 8011 vortices, the third column 

is the relative L2 norm of the error for a ring with 16232 vortices. The ring has a 

radius of .1 around the z-a.."Cis and cross-sectional radius .02. 

Table 4.2 displays results of timing comparisons for a single velocity evaluation 

at lV endpoints between the direct method, the ~rLC with a uniform grid, and 

NILC with AMR. We see that at Iv ~ 3000 the NILC becomes faster than the 

57 



Time (CPU seconds) (Grid) 
N Direct MLC MLC with A~IR 

1023 .34 .69 (8) .69 (8) 
2016 1.48 1.83 (8) 1.83 (8) 
3940 4.92 4.61 (8) 4.39 (8-16) 
8766 24.2 15.8 (16) 11.1 (8-16) 
17641 98.0 49.5 (32) 24.5 (8-64) 
31988 322.6 105.7 (32) 49.3 (8-64) 
63759 1281. 314.5 (64) 104.3 (8-128) 

Table 4.2: Timings for a single velocity evaluation using the direct method, 1'1LC 
and lvILC with AMR, for calculations of a three-dimensional vortex ring. Timings 
are on a Cray Y-lvfP with the cft77 compiler. 

direct method, and at lv ~ 64000 the MLC with AMR is approximately three times 

faster than the lvILC on a uniform grid, and over twelve tinles faster than the direct 

method. All NILC with AlvIR calculations have a base grid of 8 X 8 X 8. The uniform 

grid calculations use grids ranging from 8 x 8 x 8 for lv ~ 4000 to 64 x 64 x 64 for 

~V ~ 64000; the MLC with AftIR has refinement varying from lmax = 0 for lV < 4000 

to lmax = 4 for N ~ 64000; these timings are for the optimal grid for each method. 

Again these results are from vortex ring calculations; here the ring has a radius of .1 

around the z-a...xis and cross-sectional radius .0275. All the calculations ill Tables 4.1 

and 4.2 have C = D :::: 1.5, a value found to give sufficient accuracy with this core 

function in a variety of calculations. 

All timings were done on a Cray Y-MP with the cft7i compiler. Note that we 

would expect a vector machine to improve the performance of the direct method 

relative to the TYILC, since the direct calculation is simple and can be completely 

vectarized. Thus, the savings from using MLC or ~ILC with AlvIR would be expected 

to be even greater on a scalar machine. See Baden [7J far a discussion of how 

vectorizatian affects the timings of the ?vILC in two dimensions. 
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4.4 Optimal Refinement Criteria 

The issue of where and by how many levels to refine the mesh in MLC with A:NIR 

is an important one, because it is the correct choice of refinement which allows such 

drama.tic savings in cost and time. We saw in Table 4.1 above that the error in the 

velocity evaluation is independent of mesh spacing within certain limits. As \ve ,viti 

see in Chapter 6, for a fixed C = D, using too fine a mesh relative to the effective 

radius of the core function results in a loss of accuracy. The accuracy of the MLC 

algorithm relies Oll the radius for local corrections being sufficiently larger than the 

effective radius of the core function. 

Ideally, we would like to have a very simple criterion for refinement, e.g., refine 

whenever the number of vortices per bin is above ~Vmar' where J.Vmax is the sanle for 

different levels and different distributions. Unfortunately, this is not a sophisticated 

enough criterion when adaptive refinement is allowed. As can be seen in Table 4.3, 

which presents the timings on a Cray Y-MP for different levels of possible refinement 

in calculations of a three dimensional ring with lV = 17641, refining naively can make 

the algorithm much more costly. 

The first step in developing an algorithm for choosing the optimal mesh refine

ment is determining which operations in the algorithm vary in cost as the mesh 

spacing varies. Table 4.4 shows the dependencies for a velocity evaluation in the 

yILC with a uniform mesh in d dimensions, assuming a uniform distribution of vor

tices in a fi..."{ed region of the domain, as a function of number of vortices JV, total 

number of grid points, ,Af, and number of bins containing vortices, lv!v-

Table 4.5 shows the CPU time for the dlfferent stages of the velocity evaluation 
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LEVEL Time (CPU sees) 
8 71.4 

8-16 52.7 
8-32 29.1 
8-64 24.5 

S-th 31.8 
49.5 

16-32 31.9 
16-64 27.7 
16-128 33.0 

32 53.0 
32-64 49.4 

32-128 40.7 

Table 4.3: Timings for a single velocity evaluation with different possible refinenlents 
of the grid for calculations of a three-dimensional vortex ring with lV = 17641. Note 
that 8-64 is the optimal refinement here; this was the timing seen in Table 4.2. The 
time for the direct evaluation is 98.02 seconds. Timings are on a Cray Y-}.lP with 
the cft77 compiler. 

Operation Cost is proportional to 

Calculation of gOU N,lvIv 

Direct calculation of boundary conditions lVAl~d'J:. 

Solution of Poisson equation ]v! log iV! 
Correction and interpolation of velocity field J.V 

Direct local interactions N"/. 
M .. 

Table 4.4: Operation count for the MLC on a uniform grid with Ai total grid points, 
lvIv bins containing vortices, and N vortices. 

Tilne (CPU sees) 
Operation 8-32 8-64 8-128 32 

Calculation of gOt
m4z 

1.4 1.8 3.9 1A 

Direct calculation of boundary conditions 3.2 3.2 3.2 10.3 

Solution of Poisson equation 1.4 ~10.4 11.7 

Correction and interpolation of velocity field 6.0 8.6 10.7 6.8 
Direct local interactions 17.6 7.2 3.3 19.5 

Total time for full velocity evaluation :!4.6 31.7 .-t9.5 

Table 4.5: Time per operation in the 1tfLC, with' three different levels of A::VfR and 
for optimal uniform grid case. Timings are on a Cray Y-1tlP with the cfti7 compiler. 
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for three calculations using MLC with AMR and the fastest uniform grid calculation. 

The initial data is a. vortex ring with N = 17641, as for Table 4.3. In each case the 

base grid is 8 x 8 x 8 (hence the cost of boundary conditions does not change), and 

lma.:z: varies from 2 to 4. 

The "8·64" calcula.tion is the fastest of the four, and we see that the savings 

relative to the uniform grid calculation are mostly in solving the Poisson equation 

(even though the top level of the refined mesh is finer than the uniform mesh), in 

the local corrections, and in the boundary conditions. vVe expect the cost of the 

boundary conditions to be proportional to the number of points on the boundary of 

the base grid, but here the cost of the boundary conditions increases by less than a 

. factor of 4 for a I6-fold increase in number of boundary points. TIlls is due to the 

fact that the vector lengths in this calculation are longer for the larger calculation. 

Thus the time for the calculation is not a simple linear function of the total number 

of operations. 

The cost of calculating boundary conditions for the MLC can be reduced in two 

ways: (1) by adding AMR so that the base grid, on which the boundary conditions 

are calculated, can be kept relatively coarse, and (2) by implementing fast bound .. 

ary methods as discussed in Chapter 5. We defer further discussion of boundary 

conditions to Chapter 5, except to note that the cost of boundary couditions is not 

a strong consideration in the choice of i max because the boundary couditions are 

only computed on the base level grid. The boundary conditions must be computed 

for every level containing vortices, but each vortex enters the boundary calculation 

onlyouce. 

\Ve now consider the cost of solving the Poisson equatIon and the cost of the local 
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corrections. Assume a uniform distribution of vortices on a fixed region of a single 

uniform mesh, with N, M and Mv = f M as defined above, with f the fraction of bins 

containing vortices. vVe show below that the optimal mesh spacing is that for which 

the time for solving the Poisson equation and the time for computing the direct 

interactions are equal. Alternately, maintaining the optimal level of refinement 

requires keeping N / M constant. 

The claim follows directly from writing the time to solve the Poisson equation as 

Tl = el":'-'! log .. .'l{, and the time for the local interactions as T2 = C2 J.V2 / (11\1), where 

C1 and C2 are constants. vVe approximate lv[ log M by lv[, and then the combined 

time for both operations is T = Tl + T2 = Cl.\1 + c2N2 /(1 !v!). The minimum of 

T with respect to M occurs at Nf = N JC21 fCl. The values of Tl and T2 at this 

minimum is are Tl = T2 = N J(CtC2)/ f. Thus the minimum combined time occurs 

when Tl = T2 , and the value of 1'vf such that T is a minimum is proportional to lV. 

In most cases it is not possible to find a mesh spacing such that the times to 

solve the Poisson equation and to compute the local interactions are approximately 

equal, but this analysis can serve as a general guide in choosing the optimal level of 

refinement. Unfortunately, it is not in a very useful form, since we seek a value for 

J.V ma.% to use in refining individual bins. 

The cost of solving Poisson's equation using multigrid is proportional to the total 

number of points P at all the levels of the multigrid V·cycle: P = L~:on(.!\fside/2J!)d 

where lmin = log2 Maid/! for a grid in d dimensions with lvIside points per side. This 

can be approximated by the number of points on the finest level grid for uniform grid 

rela..xation, since the sum is dominated by the lvI~de term in that case. However, 

when we evaluate the cost of using multigrid on a hierarchical refined grid, the 
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approxima.tion may no longer be valid, since the finer levels will not necessarily 

have many more grid points than the base level. For example, the cost of multigrid 

on a uniform 16 x 16 x 16 grid is 8 times the cost of multigrid on a uniform 8 X 8 X 8 

grid; however, if only half of the grid in each coordinate direction is refined above 

a base grid of 8 x 8 x 8, then the cost of multigrid with the partial refinement is 

approximately twice the cost of multigrid on the uniform 8 x 8 x 8 grid. 

It is possible to derive a. formula. expressing the time needed to solve the Poisson 

equation as a function of number of levels and sizes of regions of refinement at each 

level, using the fact that the cost of multigrid is proportional to the total lluluber 

of points at which relaxation is being done. To evaluate the actual CPU time on 

a. specific machine, we must first perform sample calculations in a test problem to 

find the values of the constants of proportionality which relate actual CPU time to 

number of levels and number of points per level. 

The earlier discussion of timings assumed a uniform distribution of vortices in 

a region of the domain, and used this assumption to show that the time for local 

corrections is proportional to N2 / Mv' For problems of interest, however, the distri

bution is often very nonuniform, and not easily classified geometrically. For these 

distributions we cannot express the time for local corrections before we know the 

exact geometry of the distribution. However, given the locations of the vortices 

at each time step, we can count the number of local interactions which would be 

calculated, and thus at the time of execution get an estimate of the time needed for 

local corrections at any given level of refinement. 

The algorithm we propose is: at the beginning of a time step, for each possible 

level of refinement evaluate the time needed to solve the Poisson equation and the 
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time to do the local corrections, using the operation counts and timings from the 

machine on which we are computing. Find the lowest of these times, and choose the 

associated level of refinement for the actual calculation. This process need not be 

repeated every time step, since the geometry does not change significantly in a few 

time steps, and the choice of optimal refinement is not sensitive to small changes in 

geometry. See [2] for further discussion of this type of algorithm. 

The difficulty with this method is figuring out which combinations of rectangles 

to evaluate. The easiest option is to first count the ma..ximum number of vortices 

per bin at each level of refinement up to the ma.."cimum level allowed. Divide this 

ma.."cimum into, say, four increments, and let N max sequentially take the value of each 

of these four numbers. For e..xample, if we find for a given mesh spacing that there 

are at most 120 vortices per bin, we would evaluate the cost of the algorithm with 

lVmar = 0, Nmar = 30, N mar = 60, N maz = 90 at that leveL For each case generate 

a grid hierarchy, and find the operation count associated with the composite grid. 

Then evaluate the times for these operations using the proportionality constants 

established earlier, and compare the total times to find lV mar which yields the fastest 

calculation. In practice, we would not refine more than four or five levels above the 

base grid, so the number of cases to be evaluated is limited. 

The reason we choose to compare timings as described in the above paragraph 

is that the alternative, trying to decide whether to refine each bin on a bin-by

bin basis, is too complica.ted. Since the regions of refinement must be rectangles~ 

refining anyone bin may have as a consequence the refinement of many other bins, 

or alternatively it may ha.ve no consequence at all, since this bin would have been 

refined anyway as one of the "unfiagged" bins in it rectangle. Thus it is not practical 
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to use a bin-by-bin refinement criterion, and the method we use should be sufficient. 

Figure 4.1: Sample composite grid at level 2. 
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CHAPTER 5 

Grid-Related Topics 

The standard vortex method is a grid-free method; the method of local correc-

tions introduces a grid overlaying the vortices. Adaptive mesh refinement introduces 

new complexity to the grid. related parts of the algorithm. In this chapter we de-

scribe in detail the parts of the algorithm which are defined on the grid: the two- and 

three-dimensional discrete Laplacians; the two- and three-dimensional interpolation 

stencils; the solution of the Poisson equation using multigrid, with and without 

, AlvfR; and a variety of boundary conditions. 

5.1 Finite Difference Stencils 

5.1.1 Discrete Laplacian 

In two dimensions, we use a nine-point stencil for the discrete Laplacian, which 

is O( h4) for general u, O( h6 ) for harmonic functions: 

'Ui-l,j-l + Ui+l,j-l + 'Ui-l,j+l + Ui+l,j+d 

In three dimensions, consider the cube of points (i + s) = (i + 81, j + 82, k + 83), 

l.si lSI, immediately surrounding the point i. Define face points all the cube such 

let corner points be those satisfying jSll + [821 + 1831 = 3. 
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Then the 27-point La.placian can be written 

These formulae for the discrete Laplacians can be found in [27]. 

5.1.2 Interpolation Stencils 

In the two dimensional NiLe, Anderson [1] exploits the fact that the velocity 

induced by a point vortex is a potential flow field away from the vortex to construct 

an interpolation function with a highly compact stencil relative to its accuracy. 

Since the flow field is potential, the velocity components u and v are the real and 

imaginary parts, respectively, of a complex analytic function, and thus we can use 

a complex version of Lagrange's formula for polynomial interpolation [30]. 

The complex interpolation stencil around the point (k, l) that we use for t'wo 

dimensional calculations has five points, Zm = (k + if) + 8 m , where 81 = 0 + Oi 1 

82 = 1 + Oi, 83 = 1 + ai, 84 = a + Ii, and 85 = a - Ii. The interpolation algorithm 

is 
5 

(u - iv)(z) = L amUm , 

m=l 

where Urn = (u - iv)( zm) and 

In three dimensions, the velocity field induced by a single vortex element is no 

longer a potential flow field away from the support of the vorticity. However, the 
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velocity is divergence-free, and the Laplacian of each of its components vanishes. 

Buttke and Colella take advantage of these features to construct an accurate inter-

polation function with a compact stencil, and we present it below. 

Consider that we want to interpolate a scalar function U onto position (xo, Yo~ =0) 

from an interpolation stencil centered at grid point (i,j, k) of a uniform grid with 

mesh spacing h. Assume that (XO,yo,zo) lies closer to (ih,jh,kh) than to any 

other grid point. Define x = Xo - ih, y = Yo - jh, z = Zo - kh. vVe see that 

Ixl S ~, Iyl s ~,Iz/ s ~. Using a Taylor expansion, we can write 

u ( x 0, Yo, zo) = u Ci h , j h, k h) 

+XUr + YU y + ZU z 

I( 2 2 2 2 2.,. 2) +2' x YUrry + xy Uryy + X ZUrrz + XZ u rzz + Y _U yyz + yz U yzz 

where U - au u _ a2 u 
r - ax' xy - axay' u xyz = a:;;8z' and so on. .All derivatives here are 

evaluated at (ih, j h, kh). 

To create a fourth-order interpolation scheme, we must approximate the first 

derivatives to O(h3 ), the second derivatives to O(h2), and the third derivatives to 

O(h), since x, y, and Z are of O(h). 

Define 
s+ = u· . + U· . + u· . + u· , x ~+l.J,k+l 1+1,J,k-l l+l,J-l,k t+I,)+l,k 

s; = Ui-l,j,k+l + Ui-l,i,k-l + Ui-l,j-l,k t Ui-l,j+l,k 

Ix = (8; - s; + 2(Ui+l,i,k - Ui-l,i,k))/(12h), 
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and 

S; = Ui,i+l,k+l + Ui,i+l,k-I + Ui+l.i+l,k + Ui-l,i+l,k 

S; = Ui.j-l,k+l + Ui,i-l,k-l + Ui+l.j-l.k + Ui-l,j-l,k 

fy = (8; - s; + 2(Ui,i+l,k - Ui,i-1.k»/(12h), 

8t = Ui,i+l,k+l + Ui,j-l,k+l + Ui+l,j,k+l + Ui-l,j,k+l 

S; = Ui,j+l,k-l + Ui.i-l,k-l + Ui+l,j,k-l + Ui-l.i,k-l 

Iz = (st - S; + 2(Ui,i,k+l - Ui,j,k-d)/(12h). 

If we Taylor expand each term in the above expressions for fx, fYl fz about 

(ih, j h, kh), we see by cancellation of the zeroth and all the first and second order 

terms that these are third-order approximations to the first derivatives. 

Now define 
frr == (Ui+l,j,k + Ui-l,j,k - 2Ui,i,k)/h2 

/yy = (ui,i+l,k + ui.i-l,k - 2Ui,j,k)/ h
2 

in = (ui,i,k+l + Ui,j,k-l - 2Ui,i,k)/h2 

fry = «( Ui+l,i+l,k - 'Ui-l,j+l,k) - (Ui+l,j-l.k - Ui-l ,j-l.k)) / (4h'2) 

Irz = «Ui+l,i,k+l - Ui-l,i,k+d - (Ui+l,j,k-l - Ui-l.],k-l ))/(4h
2

) 

/yz = « Ui,i+l,k+l - ui,i-l,k+d - (ui,i+l.k:-l - Ui,J-l.k-t))/( 4h
2

) 

These are the standard second-order centered-difference expressions for the sec-

ond derivatives of a function. 

Now, since we only need the third derivatives to be first order in h. we approxi-

mate urry by a centered difference in y of the above expression for fxx. The above 

expression was second-order; by approximating the first derivative of that we lose 

an order of accuracy, but first order is an we n~ed. Si~larly for the other third 

derivatives. Thus 
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fxxy = ( (Ui+l,j+l,/c - 2Ui,j+l,k +Ui-l,i+l,k )-( Ui+l,i-l.k- 2Ui,j-l,/c +Ui-l,i-l,/c) )/(2h3
) 

fxyz = « (Ui+l,j+l,k+l - Ui-l,i+l,k+d - (Ui+l,J-l,k+l - Ui-l ,)-1,k+ d) 

-«Ui+1.j+l,k-l - Ui-l,j+l.k-d - (Ui+l,j-l.k-l - Ui_l,j_l,k_d))/(8h3
) 

In order to maintain a compact stencil (i.e.~ one contained in the 3 x 3 x 3 cube 

surrounding the center point), instead of approximating U xxx by the first derivative 

in x of U rx , we use the fact that U is harmonic to write 

U xxr = (uxx)r = ( -Uyy - uzz)x = -Uxyy - U xzz ~ 

U yyy = (uyy)y = (-urx - uzz)y = -uxxy - uyzz , 

Uzzz = (uzz)z = (-uxx - Uyy)z = -uxxz - Uyyz . 

Then the Taylor expansion becomes: 
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+~((3X2 - y2)yuXXY + (3x2 - Z2)ZUxxz + (3y2 - X2)XUyyx + (3y2 - Z2)ZUyyz 

+(3z2 - X2)XUzzx + (3z2 - y2)yuZZY )' + XYZUxyz + O(h4), 

and the interpolation scheme, in terms of the above defined terms, can be written 

u( xo, Yo, Zo) = u( ih, jh, kh) 

+xlx + Yly + zlz 

+~(X2 Ixx + y2111Y + Z2 fzz) + xyjXY + yzfyz + xzfxz 

+i((3x2 - y2)yfxxy + (3x2 - z2)zfxxz + (3y2 - x 2)xfyyx + (3y2 - Z2)Z/yyz 

+(3z2 - x 2)xfzzx + (3z2 - y2)yfzzy) + xyz/xyz + O(h4). 

5.2 Multigrid 

The method of local corrections requires the solution of the Poisson equation, 

~ hii = gOO on the domain n°. We use multigrid [18] with Gauss-Seidel relaxation, 

red-black ordering, and V-cycles to do this inversion. See (19] for an introduction 

to and further description of multigrid techniques. 

Consider the equation, Au = p, where A is a linear operator. In our problem, 

A = Ll h, P = gOo. Define 11. as the exact solution to Au = p, and v as the numerical 

approximation to u. Multigrid is a multilevel rela.'\:ation method, i.e., it solves this 

equation by iterating on t he equation vm + 1 = V m + A ( ..4. u m - p), \v here A is the 

rela..xation parameter and m is the rela..xation counter, until v is sufficiently close 

to the exact solution u. We define A so that th'e terril vi does not appear in the 
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right-hand side of the equation for vi+1
, i.e. A = -Co, where Co is the coefficient 

of the Vj term in the definition of (6hv)i' 

Define e = u - v. Since u is an unknown, e must also be unknown; however, 

e = 0 implies v = u, Le., convergence of the numerical solution to the exact solution 

of the original equation. Define the residual R = p - Av. Substituting u = v + e into 

~4u = p gives A( v + e) = p, and using the definition of the residual gives .4..e = Rj 

this is the residual equation. Solving the residual equation is equivalent to solving 

the original equation A.u = p. vVe will relax. on the residual equation rather than 

the original equation. 

Two common rela.xation methods are Gauss-Seidel and Jacobi rela.xatioll; Gauss-

Seidel rela.xation differs from Jacobi rela.xation in that new values of v m +1 are used 

as soon as they are created. In the Ja.cobi method, all values of v m +1 depend only on 

values of v rn
; in the Gauss-Seidel method, values of v rn+1 depend on values of v m +1 

as well as values of v rn
• Red-black ordering refers to the order in which the 11i are 

updated. Thinking of the grid in two dimensions as a checkerboard, we first update 

all the red squares, then using the new values we update ·all the black squares. For 

the standard 5-point La.pla.cian in two dimensions, using ;\ as defined above, the 

"red" points and "black" points decouple from each other, in that the values at the 

red points depend only on the values at the black points, and reciprocally. For the 

9-point stencil of the discrete Laplacian in two dimensions and the 2T-point stencil 

in three dimensions, the alternate grid points do not decouple. 

The problem with single-level rela.xation is that while high frequencies are damped 

efficiently, low frequencies persist for many iterations. Nfultigrid was developed to 

speed up the iteration process, and relies on the fact th-at what is a low-frequency 



mode on a. fine grid is a higher-frequency mode on a. coarser grid. Thus in a sin-

gle V-cycle of multigrid, residual equations are successively coarsened onto lower 

levels, until .4.e = R is solved e."Cactly at the lowest leveL Corrections e a.re then 

interpola.ted back up to the finest level, where they are added to the solution v. 

Boundary conditions for the relaxation at coarse levels are homogeneous Dirichlet 

if the original boundary conditions are Dirichlet; they are periodic if the original 

boundary conditions are periodic. 

In two dimensions, we define the coa.rsening operator Ie, such that Rcoarse 

Ie RJine, for i, j even: 

( RJine RJine Rfine Rfine)) + i+l,J+l + i+l,j-l + i-l,i+l + i-l,j-l 

In three dimensions, recall the definition of face points, edge points, and corner 

points from Section S.L Then we define the coarsening operator, Ie, such that 

RcoaT.!e = Ie RJine , for i all even, by 

RfoaTtJe = ~(8R!ine + "" Rfine + 2 "" Rfine + 4 "" Rfine) 
1/2 64 1 ~ , ~ ~ 

corn.er pomt" edge point.! J ace point! 

The coarsening operator, Ie, is used for the residuals, but to coars~n the correction 

or velocity we use a point-wise coarsening, P, such that 

vVe define the interpolation operator IF in the interior of a grid as simple bilinear 
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interpola.tion in two dimensions, trilinear interpola.tion in three dimensions. 

Consider now a computational grid in d dimensions, [0,2VJ d; define imin 

log2 N, and let ho = 1/ N. In keeping with the notation of Chapter 3, we de· 

fine Ol, 0 2: l 2: 'min as the eth. level grid. Initialize vO = 0 in the interior of nO; on 

ano it ca.rries the boundary conditions. The solution of ~ ho vO = p is then found as 

follows. 

RO := p _ ~hovO 

While (IRol < e) 

eO := MGRelax(O, RO, ho ) 

v O := v O + eO 

RO := p _ ~h.°VO 

End While 

Procedure MGRelax(l, Rll he) 

ei := 0 

el := Relax( Rl, el , hi) 

If (i > i min ) then 

hl - 1 := 2he 

Rl-l := Ie (Rl _ ~ h.tei). 

el - 1 := MGRelax( e - 1, Rl-t, ht-d 

el := et + IF el - 1 . 

el := Relax(Rl, el , hi) 

Endif 

Return el 
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Procedure Relax ( Rl, el , hl) 

Repeat v times: 

If ((L~=l in) mod 2 = 0) then 

ef := ef + ~((~hlel)i - Rf) 

Else 

e! := e! 
1 1 

Endif 

If ((L~=l in) mod 2 = 1) then 

ef := ef + A((~htel)i - RD 
Else 

e! := e! 
1 1 

Endif 

5.3 Multigrid with AMR 

vVhen A1'IR is added to the MLC, we need to solve the Poisson equation on a 

composite grid CO:ltop , 0 :::; !.top :::; !.max. The correct equations to satisfy on CO:ltop 

are (recalling the grid notation from Chapter 4): 

in interior( C ltop
), 
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Note that we do not attempt to satisfy any equation with ,6 h t in the interior 

of Gl+l; only the finest level equation possible is satisfied at any given point in the 

domain. The equation containing ,6ht is satisfied on the boundary of nl +1 , e ~ O~ 

however, and this gives the appropriate matching condition. 

Since the Gt do not cover the entire domain n°, we need to interpolate values 

onto the boundaries of the Gt , l > 0 during each multigrid V-cycle. vVe use a 

fourth-order interpolation function, ]a, on these boundaries. 

A single V-cycle of the modified multigrid procedure is presented below, starting 

from the finest level l = [top of the composite grid GO:ltop on which \Ve are solving. 

This procedure is initialized by setting vi, pI. = 0 for 0 ::; l ::; ltop, except that 1.'0 is 

set equal to the Dirichlet boundary conditions on aGO, and pltop is the right·halld 

side induced by the vortices on the finest grid. 

vVe note here that the multigrid procedure with A1-1R is very similar to that 

starting with a uniform grid~ with the exception that the solution vi is updated at 

each rela.,'xation on the boundaries aGl as well as in the interior of G~ for e > O. and 

the correction el is nonzero on aGt« The corrections themselves carry the boundary 

conditions for rela.xation at the finer levels. This is in contrast to the levels l < 0 in 

multigrid, for which the boundary conditions are homogeneous Dirichlet. 

\tVhile (I Rltop I < e) 

l = lto'P 

Rl := pi _ ~htvl 

While (l > 0) 

76 



et := Relax(Rl, el, ht) 

v l - 1 := P( vi + el ) 

R
l

-
1 

:= {]G(Rl - ilhte
l

) in interior(Gl) 

-.6. ht-l V l - 1 in interior( G l - 1 ) - interior( G l ) 

i:= i - 1 

EndWhile 

£=1 

While ('-- ~ '--top) 

el := el + IF el - 1 in interior( G l ) 

el := el + ]8 el-l on 8Gl 

'--:= £ + 1 

EndvVhile 

EndWhile 

Although this is written above in nonrecursive form for clarity, in the actual 

implementation relaxation at successively finer grids is performed recursively. 

5.4 Boundary Conditions 

For this section on boundary conditions, unless stated otherwise we assume that 

all vortices in the domain are D + 1 or more bins from the boundaries, where D is 
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the spreading distance. It is possible to compute boundary conditions for vortices 

near boundaries, but there are additional complications with the method of local 

corrections for such vortices, since there are not enough grid points to adequately 

represent the right-hand side of the Poisson equation. For a nonperiodic calculation 

requiring vortices near boundaries we could calculate the velocities due to those 

vortices using the direct method, and use the NILe for the remaining vortices. 

5.4.1 Infinite Domain 

The first boundary conditions we consider are infinite domain conditions, i.e. the 

boundary conditions corresponding to How with no physical boundary. \Ve present 

here two types of methods for computing these: direct and fast methods. 

Direct Method 

The direct method of computing the infinite domain boundary conditions is the 

most straightforward. Simply evaluate the exact velocity at every boundary point 

due to every vortex, using the velocity expression for the desingularized vortex. If 

there are J.V vortices and the numerical domain has edges of }J points. then the cost 

of this method is O( J.V lvld - 1 ) for a problem in d space diInensiolls. 

A simple way to speed up the velocity calculation at the boundaries is to evaluate 

the velocity directly at every other grid point, and interpolate the velocity onto the 

remaining points using a sufficiently accurate interpolation scheme. However, this 

calculation is still proportional to the number of vortices; below we present nlethods 

which do not rely on the direct O( 1V lvld-l) calculation. 
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Fast Methods 

With the direct method we use the infinite domain Green '5 function for each 

vortex to define the infinite domain boundary values; for the fast method, we use 

a different potential theory approach. Consider the computational domain n with 

boundary an, on which we want to find infinite domain boundary conditions. The 

fast method can be summarized as follows: ( a) solve the original Poisson equation on 

a domain nT), Of} = n or n'1 contained in n, with homogeneous Dirichlet boundary 

conditions on an"; (b) define a surface S equal to or interior to anT} and interpolate 

the values of the solution onto 5 if S # nT}; (c) extend the solution harmonkaily 

exterior to 5; (d) compute the jump in the normal derivative of this extended 

solution on 5, and define this jump as the surface "charge"; and (e) evalua.te the 

field exterior to the surface due to the surface charge. 

Note that the boundary conditions for the initial solution of the Poisson equation 

need not be homogeneous; they may take any value. The key to this method is that 

the jump in the normal deriv-ative of the solution to the original Poisson equation, 

extended harmonicaily, is equal to the surface potential induced by the inlposi

tion of Dirichlet boundary conditions which were not the infinite domain boundary 

conditions. If the ol'igina.l Dirichlet boundary conditions were in fact the correct 

infinite domain boundary conditions, then the jump in the normal derivative for the 

harmonic extension of the solution would be zero. The field due to this single-layer 

potential exterior to S is exactly the field due to the original "charges" (the vortices) 

in the interior. Thus, knowing just the surface potential we can compute values of 

the field due to the vortices at any point exterior to this surface. 

vVe present two ways of implementing this method: --first, for n'1 :j: nand S = 
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an", second for n" = 0 and S -:f. n11. Let G be the grid in n with spacing h. In the 

first approach: 

(1) Create a grid G" centered in n with mesh spacing h" = T}h, TJ in the range 

.9 to .95. 

(2) Create the right-hand side g0t1 ~ uhf'/tce in G" using the procedure described 

in Chapter 3. 

(3) Solve ~ii = g0'1 on G'T1 with ii = 0 on BG". 

(4) Extend ii to be zero outside 0", and compute p = oiijon!outer - aiijanlinnen 

the jump in the normal derivative, at all points on aCT!. Note that the constant 

function with value zero is the harmonic extension of the solution, and since u = 0 

on and exterior to an, oiij onlouter = o. 

(5) Approximate numerically the integral 

UCC(x) = ?l ( p(x')G(x - x')dx', 
_1r laof'/ 

where G is the infinite domain Green's function of the Laplacian, x is on an, Xl is 

on anT!. The values of \icc are the correct infinite domain boundary conditions 011 

n. 

This method requires creating an additional right-hand side, solving the Pois-

son equation on Gn, and numerical integration of O( 4JI2(d-l» work, where 1.11 is 

the number of grid points per edge. The second implementation not require 

creation of a.n additional right-hand side, but does require additional interpolation. 

In this approach, which uses only the original grid G, we create gO on the original 

grid once for both the boundary calculation and,the final velocity calculation, then 

(1) Solve .6.ii = gO on G with \i = 0 on aGo 
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(2) Interpolate values of ii from interior points of G onto a surface 5 (circle in 

two dimensions, sphere in three dimensions) defined in the interior of f!. 

(3) Use Poisson integrals in two dimensions, spherical harmonics in three dimen-

sions, to e.."{tend the field harmonically outside S. Define F as ii interior to and on 

S, and as the harmonic extension of ii exterior to S. Define p as the jump in the 

normal derivative of F : p = 8F / 8nlO'Uter - 8F / 8nlinn.er on S. 

( 4) Approximate numerically the integral 

UOC(x) = 2. f p(x')G(x - x')dx', 
21(' is 

where G is the infinite domain Green's function of the Laplacian, x is on of!, x' is 

on S. 

What makes the fast method faster than the direct method is the fact that one 

substitutes a calculation whose cost is proportional to the number of vortices for a 

calculation whose cost is proportional to the number of grid points on the boundary. 

For 1V much larger than J.Vi the savings can be substantiaL 

5.4.2 Solid Wall (No Flow) on Regular Domain 

Solid wall boundary conditions are straightforward to implement; the procedure 

is as follows. 

(1) Compute the infinite domain boundary conditions, u oc
, by any of the meth-

ods above. 
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(2) Solve 6.</> = 0 with Neumann boundary conditions, 

84> 00 - = -u ·n an 

where a/an is the normal derivative, n is the unit normal facing in the positive 

coordinate direction. 

(3) Compute uNF = "V</> on the boundaries, using one-sided derivatives since ¢> 

is defined only on the interior and the boundary, then define 

u wall == U
OO + uNF

. 

Note that uwall satisfies uwall . n = 0 at each boundary, and the tangential COffi-

ponents correctly represent the sum of the vortex-induced velocity and the potential 

flow. 

5.4.3 Fully Periodic 

Fully periodic boundary conditions are perhaps the simplest to implement, be-

cause we effectively need no boundary conditions, just a wrap-around rule. On a 

[0, .N]d grid, we keep only iV independent values in each direction, and require the 

values at i = lV to equal the values at i == 0, and similarly in the other coordinate 

direction(s). Thus, for the rela."{ation at every level of the multigrid V-cycle, we use 

the above substitutions when the boundary values are needed. \Ve also modify the 

relaxation procedure to rela."{ on the residual equation on the boundary points as 

well as in the interior, since for periodic boundary conditions we allow vortices in 
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all bins, including boundary bins. 

Local corrections are done with wrap-around as well; for example, a vortex in 

the (N,j) bin (in two dimensions) is within the correction distance of vortices in 

bins close to the (0, j) bin as well as vortices in bins close to the (N, j) bin, since bins 

centered at (0, j) and (lV',j) are physically equivalent. Finally~ we allow vortices to 

leave the domain through a boundary and reenter it through the opposing boundary. 

5.4.4 Walls with Periodic 

Consider now mixed no-flow and periodic boundary conditions. Let there be 

walls at x = 0 and x = 1, and let the domain be periodic in the other coordinate 

direction(s). We consider the three-dimensional case for most generality. Again, the 

walls induce a potential flow, as does the periodicity, but in this case we need not 

solve for the potential directly, rather we are able to alter the boundary conditions 

to incorporate it implicitly. The steps are as follows, for u = (u, v, w). 

(1) Solve Llu = 9u, where 9u is the component of gO in the x-direction, with 

periodic wrap-around in the y- and z- directions, and u = 0 on the x=constant 

boundaries. This satisfies the no-flow condition at the wall. 

(2) The vorticity at the wall must be zero since the flow is inviscid, so substituting 

u(O,y,z) = u(l,y,z) = 0 into the definitions Wx = ow/ox - Bu/&z and W z = 

Bu/oy - au/ax, we get av/ax = 0 and ow/ox:: 0 at x = 0 and x = 1 since 

au/By:: 8u/8z = 0 there. Thus, simply solve ~v = 9t1 and ~w gw, with periodic 

wrap-around in the y- and z- directions and Neumann conditions 8v/&x = aw/ax = 

o at x = 0 and x = 1. 
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\Ve trea.t vortices near the periodic boundaries as described in the previous sec-

tion; we do not allow vortices near the walls. 

5.4.5 Mixed Periodic .. Infinite Domain Conditions 

vVhile it is straightforward to implement mixed wall-periodic boundary condi-

tions, it is much more difficult to find the correct wall-infinite domain and periodic-

infinite domain conditions. 

The approach most commonly used to generate fully periodic or semi-periodic 

boundary conditions is to actually place particles, in this case vortices, outside the 

original computa.tional domain and include the effect of these particles directly. Of-

ten three or fewer additional domains are added. This approach does model the 

local part of the periodicity, but does not capture the full far-field effect. The phys-

ical problem effectively has an infinite number of images, and the sum is not rapidly 

convergent. Methods using Ewald summation and Fourier series can accurately rep-

resent the field from a true periodic distribution of vorticity, but the method as 

developed by Strain [52, 53] works only for distributions periodic in all space dimen-

sions. Below we present methods for deriving the correct boundary conditions, in 

two then three spatial dimensions, for a vorticity distribution which is periodic in 

only one dimension. 

Two Dimensions 

For mi"{ed periodic-infini te domain boundary conditions in two dimensions we 

use a slightly different approach than that used for the fast method in Section 5.4.1. 
-, 

In the fast method for infinite domain boundary conditions, we found the single-
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layer potential on a surface surrounding the vortices which was used to represent 

the field exterior to the surface due to the vortices. \Ve used the harmonic extension 

of the original solution to calculate this surface potential. Here, we also extend the 

original solution harmonically, but rather than computing a line charge as a jUlnp in 

the normal derivative of the extended solution, we use matching conditions to find 

the correct harmonic -functions so that there is no jump in the normal derh-ative. 

The sum of the original function and these harmonic functions is then the correct 

solution of the original equation with infinite domain boundary conditions. ThIs is 

a variation of the method presented in [3]. 

Consider the domain n [0,1]2; we seek the solution to ~'U = f with periodic 

boundary conditions in the y-direction and infinite domain boundary conditions in 

the x-direction. For the !vILC, u and f would be ii and gO, respectively. 

In a two dimensional domain, given values of a function q> on a single line x = a 

which is periodic in y, we cana define harmonic functions for x > a and x < a such 

that the values of the harmonic functions on x = a are equal to the values of ~ all 

x = a: 

00 

,.;...R( ) '"'"" .ike2-:rikYe-21tlkl(r-ll) '+' x,Y = L.- 'J! 

k=-oo 

for x ~ a and 
00 

cpL(x,y) = L 4>ke211'ikYe2~lkl(r-a) 

k=-oo 

for x ~ a, where 

Computationally we work with finite sums, so we redefine the limits in the above 
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sums as k = -M to k = M. To capture M Fourier modes we need J = 2Af + 1 

physical points. 

The procedure for finding the boundary conditions is as follows. Given a right-

hand side f, we first solve i:l u = f with homogeneous Dirichlet boundary conditions 

in the x-direction and periodic boundary conditions in the y-direction. \Ve then 

interpolate u to define gJ+ = u(~x,j~y), gJ- = u(l - ~x,j~y), ~x a slnail 

parameter, i:ly = 1/ J. 

Next, we construct four functions as follows: 

M 

¢>~(x, y) = L J>fOe21rlkYe-21rlklx for x ~ 0 

k=-A1 

M 
<l>k(x, Y) = L ¢toe21rikYe21rlklx for x ~ 0; 

k=-M 

iW 
• ¢f(x, y) = L J>fle21rikYe-21rlkl(x-l) for x ~ 1; 

k=-l."f 

M 
<l>f (x, y) = 2: ¢fl e21rikYe21rjk!(x-l) for x ~ 1, 

k=-M 

with ¢fO, ¢fO, ¢fl and ¢fl to be defined by the matching conditions. Define 

J 
g~+ = L gJ+ e21rikj:ly 1 

j=l 

J 

Uk(X) = L u(x,j~y)e21r1k)a.y, 
j=l ' 
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Now define F(x, y) = 

f: Fk ( x )e2,,;ky = e 2,,;ky 4>fo e - 2"lkIx + 4>f1 e2"lk 1 (x-I) + it k ( x ) for 0 < x < 1 . 

1 
<pfOe21!'lklx + <pf1e21!' jk l(x-l) for x ~ 0 

k=-M 
<pfOe-21rlktx + <prle-21rjk[(x-l) for x ~ 1 

The matching conditions for infinite domain boundary conditions require that 

the function F and its normal derivative be continuous at the boundaries. "Ve can 

impose these matching conditions on the Fourier coefficients Fk( x) independently 

since all functions have the same y-dependence. The conditions are as follows (re-

calling that u and therefore Uk are zero at x = 0 and at x = 1): 

i) continuity at x = 0 

ii) continuity at x = 1 

J,LO _ J,RO. 
1.1-'1. - I.I-'k , 

iii) continuity in normal derivative at x = 0 

iv) continuity in normal derivative at x = 1 

Solving this system of four equations in four unknowns and defining the derivatives 
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as 

we find 

At x = 0 and at x = 1, the correct boundary conditions are 

M 
Umi:red(O,y) = L (4)fo + 4>fle-21rlkl)e211"iky, 

k=-M 

M 
u mixed( 1, Y) = L (Jfo e - 21r!kj + Jf 1 )e211"iky , 

k=-M 

and the final solution is 

1\1 
u mixed( x, Y) = L (4)fOe-21rlkl:r: + ¢fl e-21rlkl(1-z) + Uk( X) )e21riky, 

k=-,\tf 

for 0 :5 x :5 1. 

Three Dimensions 

Consider the equation ~ hu = 9 in three dimensions on a domain n with bound-

aryan. We use an extension of the fast methods presented in Section 5.4.1 to find 

boundary conditions on an which are periodic in the z-direction, infinite domain 

in the x- and y- directions. Here, we perform the same initial steps (a)-(d) as in 

that method, to the point of finding the charges on a surface 5 in the interior of n 

as the jump in the normal derivative, with the exceptiori- that we solve the Poisson 

equation on !1t1 using boundary conditions which are periodic in the z-direction and 
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homogeneous Dirichlet on the other boundaries, rather than homogeneous Dirichlet 

on all boundaries. Again we can use either of two approaches: define OfJ interior to 

n and let 5 = aOfJ , or define 11'1 = 11 and let S be a right circular cylinder interior 

to n. 

Once we know the surfa.ce potential p on S we want to find the field due to a 

periodic extension of p in the z-direction. For simplicity, first consider a charge p at 

Xo only, where Xo = (xo, Yo, zo) lies on S. The field due to this charge and all of its 

periodic ima.ges in the z-direction is the infinite sum, 

00 

u(x, y, z) = L L 1/T3j' 
471" . 1 

J= 

where T3j = J(x - xo)2 + (y - YO)2 + (z - Zo - j)2. 

This function u( x, y, z) is periodic in z; its Fourier transform in z is 

where !{o( T2k) is the modified Bessel function of order 0 and parameter T2, T2 = 
J(x - xo)2 + (y - Yo)2. Then the field due to the periodic charges can be approxi-

mated by the finite sum 

J J 

u(x, y, z) = L it(x, y)eikz = L !(O(T2k)eikz
, 

k=-J k=-J 

where J is the number of Fourier modes, Mz = 2J + 1 is the number of grid 

points on an in the z-direction. Thus, for a line of ]v[z sources of strength Pj at 

Xj = (xo, Yo, Zo + j~z), j = 1, ... , M z , on S, the' velocity induced by those sources 

and all of their periodic images can be expressed in terms of .. "11z sums of modified 
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Bessel functions: 

with T'2n = J(x - xn )2 + (y - YrJ 2. Thus, rather than numerically calculating the 

convolution of the charges on S with the infinite domain Green's function, we nu-

merically calculate the convolution of the charges on S with this periodic Green's 

function, the sum of modified Bessel functions. 

Because the location of all of the points on anTJ and S are constant for all time, 

these Bessel functions need only be evaluated once at the beginlling of a calcula-

tion and then stored, rather than evaluated at every time step. Also note that by 

reflection symmetry in the x - y plane, we need only do (~J12)( 4J!2) evalua.tions 

rather than the full (4.i.\{2)2 evaluations, where AI = J.'4x = J.vly = Jlz , i.e. Jl is the 

number of grid points in each coordinate direction. 

5.4.6 Mixed Wall-Infinite Domain Conditions 

Mixed wall-infinite domain boundary conditions are a special case of periodic-

infinite domain boundary conditions. Consider a physical domain [o! 1] x [0, 1] in 

two dimensions; we want to find boundary conditions which are no-flow in the y-

direction and infinite domain in the x-direction. Let the domain contain vortices 

Wi, i = 1, ... , 1'1 located at Xi. Define new vortices Wj in the domain [0,1] X [1,21, 

(Xj-N,2 - YJ-N), j = iV + I, .... 2.N Define 

n = [0, 1J X [0,2]' and compute periodic-infinite domain boundary conditions on n 

using techniques from the previolls section. The boundary conditions 011 [0,1] X [0, 1] 

are now infinite domain in the x-direction and no-flow in the y-direction. Once the 
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boundary conditions are found, the rest of the velocity calculation may be com

pleted considering only the original vortices. The extension to three dimensions is 

straightforward. 
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CHAPTER 6 

Three Dimensional Results 

Vortex Ring 

6.1 Vortex Rings 

• • Stability of a 

The vortex ring has been studied analytically, experimentally, and numerically. 

Analytically, linear stability theories indicate that a thin vortex ring is unstable to 

certain azimuthal bending waves around its perimeter [56, 57, 58, 51]. Experimental 

observations support this prediction [44, 45, 46, 42, 55]. The most complete numer

ical study of this problem using vortex methods is by Knio and Ghoniem [39]' and 

we directed our initial studies for comparison with theirs. Knio and Ghoniem study 

a ring using the direct D( N 2 ) vort€.."'( method for vortex segments with third-order 

exponential core functions. They do a study of the thin tube approximation, repre-

senting the vortex ring as a single filament of finite radius, as well as discretize the 

ring with multiple filaments. 

Consider a vortex ring of radius Ro, symmetric about the z-a.."cis. The intersection 

of this torus with the y-z plane is two disks of radius (1, centered at x = ±Ro (see 

Figure 6.la). The ring is discretized by first placing points at different radial stations 

within the cross-section centered at x = Ro; the positions of these points for the 

different discretizations are shown in Figure 6.1b. (The meshes are labeled in Figure 

6.1h according to the labeling in [39]; Mesh KG:II and '"KG:III are, respectively, 
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Meshes II and III in [39].) Then a circular filament whose center lies on the z-

a.xis is passed through each of these points, and each filament is discretized using 

a finite number of segments. We define our computational domain as [0, 1]3; in all 

our calculations Ro = 0.1 and 0,/ Ro = 0.275. The base grid in all ca.lculations using 

MLC is 8 X 8 X 8, and C = D = 1.5, unless otherwise noted. The other parameters 

for all the calculations are shown in Table 6.1. 

We examine the time evolution of perturbed vorte..x rings. The unperturbed core 

has an exponential distribution of vorticity, n( r). In all calcula.tions the perturbation 

is imposed as a displacement of the vortex segment endpoints in the radial direc-

tion (radial from the z-axis, not the center of the cross-section), sinusoidal in the 

azimuthal angle with wavenumber n. The amplitude of the perturbation is .02Ro, 

and is coplanar with the original unperturbed filament. 

Rather than the core function presented in Chapter 1 we use the core shape 

function proposed by Leonard [41J and shown to be second-order by Beale a.nd 

Majda [10], which was used in [39]: 

where 6 is the core radius of the segment. vVe again require that the integral of the 

core function over the region of its support be unity; this accounts ~or the 4:6;) seen 

in the expression. The velocity field u = K6 * w at x due to a single vortex segllleut 

with center at Xo, circulation r and length i == (lx, i y, lz) is then 
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In order to compare our results directly with [39], we define the remaining pa-

rameters appropriately, so that the dimensionless quantities (J / Ro, Ar / Ro (for the 

first calculations presented), e/ Ro, and O(T)~t are the same in our calculations as 

in (39]. In fact, we use the same values of llt (~t = 0.1 for ... ¥ ~ 2000 calculations) 

and O( r), so that the results can be more easily compared. The initial analytic 

vortici ty is 

where a = (16007r /3)-/(2/3) ~ 2268.85; the total circulation in [39] is 2 and ill our 

calculations is 2/1600, since the circulation is proportional to the cross-sectional 

area~ and Ro = 4, (J = 1.1 in [39] while in our calculations Ro = .1, (J 0.0275. 

In setting the circulation of the individual filaments, we first sought to compare 

directly with [39], so we followed their approach. The circulation of each filanlent 

was found by solving the linear system of equations, 

N 

w(x, 0) = L rilifs(x - Xi(O» (6.1 ) 
i=l 

at each vortex midpoint x Xj,j = 1, ... , .IV. This discretization will be discussed 

further in the next section. 

The dynamics of a steady unperturbed vortex ring are relatively simple. The 

ring translates along the z-a.."cis (in the positive z·direction for f!(r) > 0) with a self-

induced velocity proportional to the circulation of the ring. In addition, the core 

rotates about its center; a filament initially at 4> = 0 with total length 211"( Ro + r), 
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is a.t some later time at rp = 1r with length 27r(Ro - r); still later it \vill return 

to its original position and length. Similarly, all filaments move about the center 

of the core, but maintain their relative radial positions. A vortex ring translating 

at constant velocity and with a. constant shape is a steady solution of the Euler 

equations. 

To accommodate the translation of the ring numerically, at every time step in 

our calcula.tions we calculated the a.verage value of the z-coordinates of a.ll vortex 

segment midpoints, then subtracted this value from the z*coordinate of every end~ 

point and midpoint. Thus the vortex ring stayed centered in the [0,1]3 domain. 

This meant that the ring did not translate relative to the computational mesh; in 

future we will instead recenter the ring once it has moved a full mesh spacing. 

vVhen the ring is perturbed in the radial direction with a sinusoidal perturbation 

of a stable wave number, the perturbation moves around the ring but does not grow 

in amplitude. The frequency of the rotation of the perturbation around the z-a.xis 

is low at small wavenumber n, grows to a ma..ximum, then decreases again as n 

approaches the neutrally stable wavenumber, nn' These modes n ~ nn are linearly 

stable. At n = nn, the perturbation neither grows nor rotates. \-Vhen a perturbation 

of an unstable wave number is imposed, the perturbation is a standing \\'ave and 

grows in amplitude. 

6.2 Presentation of Data 

In this chapter we present the data in four different fornlats. The first is three

dimensional pictures of the vortex filaments. \Vhile these -give a good sense of the 
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overall dynamics, they are not quantitatively useful. 

The second format is histogram plots of the amplitudes of the Fourier modes in 

fJ of the ra.dial displa.cements of the centers of the vortex segments. The histograms 

represent the unweighted averages of the amplitudes of the modes over all filaments. 

Initially the vortex segments were evenly spaced in the 8-direction; at later times 

the segments have moved and some have split. After vortex splitting had occurred, 

we measured only the radial displacement of the centers of the original segments, 

trying to maintain data. points as evenly spaced as possible in the B-direction. The 

amplitude of the kth mode was defined as: 

where Pi is the distance of the center of segment i from the z-a.x:.is, lV iii is the 

number of filaments, and lVaeg is the original number of segments per filament. \Ve 

see in the long time calculations, using ~ILC or the direct method, that this method 

of representing the data generates misleading plots aftel' repeated vortex splitting 

has occurred. The late-time histograms show all other modes being introduced at 

close to the same amplitude as the n = 12 mode, yet in the three-dinlellsional views 

a 12-fold symmetry is still present. These additional modes are seen at the saIne 

amplitudes when the transform is taken using segment bottoms rather than centers. 

Looking more closely at the histogram data, we see that the unweighted averaging of 

the data over the filaments cloaks the symmetry that is in fact present in most of the 

filaments. In the N = 2280 calculation, for example, 13 of the 19 filaments exhibit 

only the n = 12 mode, yet the remaining 6 filaments~ all ,at the outer radius, exhibit 

all modes. By taking the unweighted average we lose this information. The presence 
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of the additional "noise" correlates with the stretching undergone by each filament: 

the 13 filaments with the n = 12 mode only all have fewer than 270 segments per 

filament at t = 120, the other 6 filaments all have more than 320 filaments, some as 

many as 480 segments per filament. Each filament began with 120 segments. 

Thus we observe that although these histograms represent useful information for 

early times, after repeated vortex splitting they oversimplify the results, obscuring 

the significant features. A more sophisticated analysis of this data is required. 

In order to follow the time evolution more easily, we also present plots of am

plitude vs. time for the single most unstable mode in the calculations. These plots 

are based on the same data as the histogram plots. 

The fourth type of plot is of the intersection of the vortex filaments with the 

fJ = 0 plane. Although this does not represent the full dynamics of the ring-for that 

one would need many cross-sections-it does give an idea of the distortion of the 

originally smooth Lagrangian mesh. In these plots the vertices of each polygon are 

the filaments, and filaments which began at the same radial station are connected 

by line segments. Note that these lines are not the vortex segments. 

6.3 Summary of Results 

In this section we present a summary of overall results from our calculations; in 

the next section we give the details and data from the individual calculations. 

(1) The MLC, with and without AMR, is accurate enough to reproduce stability 

results for a perturbed vortex ring found using the direct luethod. Figures 6.2 

through 6.7 show data. from studies repeating the calculations of Knio and Ghoniern 
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using the MLC instead of the direct method. 

(2) The N ::::: 2000 calculations do agree with linear stability analysis, but as we 

see from the plots of the cross-sections of the core, the original Lagrangian mesh 

becomes very tangled and crosses over itself at finite time. This occurs for 1'1 ~ 14000 

calculations as well, but in the more refined calculations we see the development of 

additional features of the core distortion which were not seen for ~V ~ 2000. Thus 

we capture features of the core distortion at N ~ 14000 which are not seen for 

N ~ 2000, but the phenomena are not yet fully resolved. Figures 6.i, 6.15 and 6.18 

show these results. 

(3) At the higher resolution (N ::::: 14000) the MLC excites the n = 4 mode, 

but this mode and its multiples do not detract from the overall stability results: the 

amplitudes of these modes grow from round-off error to a finite percentage of the 

n = 12 amplitude, but seem to level off there, and do not interfere with the growth 

or oscillation of the amplitude of the originally perturbed mode. In the histograul 

plots we see all multiples of the n = 4 mode; this results from mode-mode coupling 

of the n = 4 and n = 12 modes. It is the MLC itself, rather than the addition of 

AMR, which induces these modes. They appear only for the higher resolution, and 

are not strongly affected by changing C = D from 1.5 to 2.5. Figure 6.15 shows that 

these additional modes do not detract from the stability results; Figure 6.10 shows 

that the modes are not due to AMR, and Figure 6.11 shows that they aTe not due 

to insufficiently resolved boundary conditions. 

(4) Using a later discretization, we see better agreement between the lV ~ 2000 

and the N ~ 14000 calculations, and these differ from the earlier calculations in 

that they show an initial decline in amplitude rather thin growth at all time. We 
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suggest that this may be due to the fact the initial J.V :::::: 2000 calculations studied a 

ring with a different vorticity distribution, due to the method used in [39] to assign 

the circulation of the filaments. 

vVe also mention in the next section the attempts we made to verify the accuracy 

of our calculations. At several points we checked the time step to ascertain that it 

was in fact small enough so that further reduction did not change the results. In 

addition we show the results from a calculation (Figure 6.12) using a correction 

radius on a fine grid which was too small relative to the effective radius of the core 

function; we see in all other calculations that this behavior has been eliminated. 

6.4 Individual Calculations 

Our goal in the first numerical experiments was to show that the method of 

local corrections, with or without adaptive mesh refinement, is accurate enough to 

reproduce the stability results found using the direct method. Figures 6.2 through 

6.6 show results from calculations of rings with N = 2040, Mesh KG:II, ~1Vc = 17 

discretization, and circulation calculated by solving the linear system of equations 

(6.1). Killo and Ghoniem present contrasting results for rings perturbed with n = 9 

and n = 12; n = 9 is a stable wave number for a ring of these dimensions, n = 12 is 

the most unstable wave number. 

Figure 6.2 shows the vortex ring perturbed with n = 9 at times t 10,40, 70, 100, 

the same times shown in [39]. This calculation was done using ~ILC on a uniform 

8 X 8 x 8 grid; since there is no increase in the number of vortices and the geolnetry 

remains stable, there was 110 need in this case for A:NIR. These results look identical 
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to the results in [39]. We see from the pictures in Figure 6.2 and the time profiles 

of the amplitude of the modes (Figure 6.3) that the ring perturbed with n = 9 is 

stable; the amplitude of the perturbation decreases rapidly at first, then rises and 

falls again in an oscillatory pattern. \Ve see also from Figure 6.3a that an initial 

perturbation of n = 9 triggers the first harmonic, n = 18, although at a llluch 

smaller amplitude. This is again what is seen in [39], and agrees with the linear 

stability theory. 

Figure 6.4 shows the ring with an initial n = 12 perturbation at times t = 

30,60, 90, 120, also the times chosen in [39}. Here we see that the initial pertur

bation of the same magnitude as the perturbation in the n = 9 calculation grows 

steadily in amplitude. This distortion of the core increases the number of vortex el

ements needed; recall that a. vortex segment is automatically split into two segments 

whenever its length exceeds a critical length, which is defined as twice the largest 

initial length. As the number of vortex elements increases, the optimal level of grid 

refinement changes, and although the calculation starts on a uniform 83 grid, when 

the number of vortices exceeds 4000 the grid is refined one level. 

In Figure 6.5 we show three different views of the calculation at t = 140, again 

for comparison with [39]. Since the calculations in [39} were done with the direct 

method, they were stopped after t = 140, since the number of vortices had by 

then grown from lV = 2040 to N = 6936. At t = 140 we had 6352 vortices, but 

qualita.tively there is very little difference seen between our results and those in [39). 

vVe do observe in Figure 6.6a the onset of all modes at late time; these additional 

modes are also found in the direct calculation (see Figure 6.13)~ We see from Figure 

6.13 and th'? discussion in the previous section that these additional modes are 
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associated with the vortex splitting rather than any grid-induced distortion. In 

Figure 6.6b we see the growth of the n = 12 amplitude only as a function of time. 

Note the difference in scale between Figure 6.6b( n = 12) and Figure 6.3b( n = 9). 

In order to check the sensitivity to time step: we also ran the n = 12 calculation 

with a time step of At = 0.4, four times larger than in the previous calculation. All 

other parameters were kept the same. The results were qualitatively indistinguish. 

able; the only numerical difference observed was that at t = 140 there were 6352 

vortices for At = 0.1, and 6380 vortices for At = 0.4. 

In Figure 6.7 we show the intersection of the 17 filaments with the plane at 

(} = 0 for the n = 12 calculation for times t = a to t = 80. These plots show that 

by t = 80 the original Lagrangian mesh has crossed over itself, and the accuracy of 

this representation is questionable after that time. 

Based on these observations, we refined the initial discretization to explore the 

effects of higher resolution on the results of the calculation. Again we sought to 

compare our results to those in [39], but before refining the mesh we switched to an 

alternate discretization (Mesh KG:III) than that used in the previous calculations. 

Rather than having equal numbers of filaments at each radial station in the core, we 

let the number of filaments increase linearly with the radius r from the center of the 

core, so that the intersegment spacing was more nearly constant in the CIoss-section. 

This was found by Ghoniem and Knio to yield the most accurate discretization. 

Again we found the circulation of the filaments by solving the system of linear 

equations (6.1) at the vortex locations. In this case we had ~r = .1080Ro, 8 = 

.155Ro, the values from [39]. 

To test the effect of the different discretizations at JoV :::::: 2000, we first ran the 
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calculation for .tV = 2280 (Mesh KG:III, Ne = 19) to t = 40, with the n = 12 

perturbation of the same magnitude as before, The results are indistinguishable 

from those found in the earlier N = 2040 calculation; Knio and Ghoniem had also 

found this. 

Having established similar results with N ~ 2000 using Mesh KG:III, we then 

increased the number of radial positions of the filaments from two to four, increasing 

the number of filaments from 19 to 61 (Mesh KG:III, Nc = 61). For this LV = 
61 x 120 = 7320 calculation, we first used a base grid of 8 x 8 x 8 with two levels of 

refinement. Again we computed circulation of the filaments by solving the system 

of equations (6.1). This calculation, as for all later calculations with four radial 

stations, used D-.t = .05, half the time step used for the calculations with two radial 

stations. The fact that ~t = 0.4 was sufficiently small for the N ~ 2000 calculation 

might indicate that At = 0.1 should be sufficient for the more refined calculations, 

but this was not observed. An early calculation was run with ~t = 0.1 for iV = 

15600, and it was not consistent with the same calculation run with ~t = 0.05, 

Thus all later calculations used the smaller time step. 

Figure 6.8 shows a picture of the 17 filaments (J.V = 2040) and the 61 filanlents 

(.li = 7320) at t = 40, in order to give an idea of the increased resolution of the 

refined discretization. Figure 6.9a shows the time profile of the amplitude of the 

n == 12 mode; contrast this to Figure 6.6b. We see a marked difference in behavior: 

in Figure 6.6b there is steady growth, while in Figure 6.9a, for the higher resolution, 

we see oscillatory behavior for t ~ 40 and no overall increase in amplitude. 

In order to understand the difference in behavior between the J.V ~ 2000 and 

N = 7320 results, we performed the 1'1 == 7320 calcuration to t = 40 using the 
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direct O(J.V2) method; these results are shown in Figure 6.9b. Both curves exhibit 

a negative slope for 10 :;s;; t :;s;; 20, then the slope becomes positive; since these 

calculations were not run to later time it was unclear whether the amplitude would 

continue to grow or would level off. This is in contrast to the N = 2040 calculations. 

Knio and Ghoniem in fact observed this effect in their calculations, as can be 

seen in Figure 14 in [39}, where they plot the log of the amplitudes of the n = 12 

mode vs. time for different initial discretizations. The only result they present from 

a calculation with four radial stations is for 33 filaments, and they also observe 

oscillatory behavior rather than growth of this mode. This is in contrast to the 

results with fewer radial stations, but no further discussion in [39J pursues the 

possible inference that the coarser calculations are underresolved. 

Figure 6.10 shows the difference between calculations using the NILC and those 

using the direct method. Figure 6.l0a shows the amplitudes for the calculations 

with .1.V = 7320 using a 8 - 32 grid; we see here the n = 4 mode and its multiples. 

Figure 6.10b shows calculations done with the direct method and we see no growth 

in these other modes; we conclude that it is the fourfold symmetry of the grid in the 

NILe which induces these modes. Since these modes were not seen in the lV ~ 2000 

calculations on a uniform 83 grid, we next sought to determine whether it is the 

MLC itself or the addition of ANIR which produces the n = 4 disturbance. Figure 

6.10c shows the results of a calculation done on a uniform 323 grid for short tilne. In 

this figure we see already the introduction of these additional modes, and conclude 

that it is the presence of the grid in MLC which produces these modes. rather than 

the addition of ANIR to NILC. 

We next investigated whether the additional modes .... vere induced by insufficiently 
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resolved boundary conditions. Figure 6.11 shows calculations for n = 12, N = 
65 X 240 = 15600 (Mesh KG:II, Nt! = 65), with circulation computed for each 

filament as the product of the point value of the vorticity at the location of the 

filament and the area represented by that filament, 

( 6.2) 

Calculations were done with MLC on grids of 8-32 (Figure 6.1Ia), 16-32 (Figure 

6.11b) and with the direct method (Figure 6.llc); all results are for time t = 10. 

vVe see again that is the 1'ILC which induces the additional modes, but there is no 

detectable difference between Figures 6.lla and 6.llb, which indicates the boundary 

conditions are sufficiently well resolved. We see from all three calculations that the 

amplitude of the n = 12 mode, initially at .02, has decreased markedly. 

vVe present in Figure 6.12a the results of an early run dOlle with lV = 15600 as 

above, using a grid of 8-64, which was the grid indicated by timing results done \vith 

C = D = 1.5 to give the optimal speed of the algorithm. This choice of correction 

radius and grid was appropriate for the core function presented in Chapter 1, since 

the kernel Ks(r) = K(r) for r 2: 6. The exponential core function we use in this 

chapter, however, effectively extends out to ~ 36, since Ko- differs visibly from K out 

to that point. Thus for calculations using this core function the physical radius of 

local corrections must be extended to accommodate the larger effective core radius, 

either by increasing C or using a coarser grid. In Figure 6.12b we present the results 

from the same calculation using a grid of 8 - 32; here the radius of local corrections 

is large enough relative to the effective core radi~s to obtain good accuracy. 

In the calculations presented above we have used discretizations used by Knio 
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and Ghoniem in [39]. However, those discretizations are not consistent with standard 

convergence studies, which allow the core radius 8 to decrease as the intersegment 

spacing ~r decreases; as they refine from two to four radial stations ~r decreases 

from .1080Ro to .0705Ro, yet 8 decreases only from .155Ro to .150Ro- The reason 

they must keep b so large is that solving the system of linear equations (6.1) to 

determine the circulation of each filament is reasonable for 8 » .6.r, and once 

the intervortex spacing is specified, the value of 8 is entirely determined in [39] by 

matching the numerical circulation (the sum of the circulations of the filaments) 

with the analytically specified circulation (the integral of f2( r) over space). 

There is another subtlety hidden in this discretization. The size of the ring is 

defined by (1', the scaling in the exponential function f2( r) which defines the vorticity 

in the cross-section. The analytic circulation of the ring in [39] is 2~ but this value 

is equal to the integral of f2( r) over all area from r = 0 to r = 00; the integral 

of f2C r) over the area enclosed by T = (1' has the value 1.55. For the IV ~ 2000 

calculations in (39], the outer segments are at 2~T = .218Ro- Assunling that each 

radial station at r carries the vorticity from r Dz.T/2 to r + ~r/2, these filaments 

should only represent the core out to r = .2725Ro, and thus carry a total circulation 

of approximately 1.55. However, the method of assigning circulation by solving the 

system of linear equations, and choosing C so that the total numerical circulation is 

2, means that the vorticity is more concentrated than is indicated by Q( r). Thus we 

would expect the ring to be more unstable. 

The final three calculations we present are of rings discretized in a way that 

pernlits a more customary convergence study. Figures 6.13 and 6.14 show the re· 

sults from a ring discretized with two radial stations, Llr = .150Ro, 8 = .200Ro, 
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and a total circulation of 1.92/1600. \Ve use a larger ~r here to capture 95% of 

the circulation without having to assign the vorticity at r > 2.5~r to any of the 

filaments. The circulation of each filament is found as the integral of vorticity over 

the area. represented by each filament, 

jr:ro+.S.6.T 

rilro = 211" n(r)rdr. 
r::ro-·5.6.r 

(6.3 ) 

Figure 6.13a. shows the amplitudes of the modes for this calculation using ~{LC 

on a uniform 8 x 8 x 8 grid and using the direct method. In this figure we see only one 

curve; this is because the data from the calculation using ~ILC is indistinguishable 

from the data found using the direct method. Figure 6.13b shows the time evolution 

of the n = 12 mode for both calculations from tOto t = 140; again we see only 

one curve because the data. are virtually identical. However, these calculations do 

differ from the earlier lV ~ 2000 calculations in that they now capture the initial 

decline in amplitude. We suggest this may be due to our discretization (6.3), since 

we have not required that the full circulation of the ring be concentrated in too 

small a core. Figure 6.14 shows the intersection of the 19 filaments with the f) = 0 

plane for the ~ILC calculation. Notice the increased resolution of the movement of 

the outer filaments relative to Figure 6.7; for these calculations we have 12 rather 

than 8 outer filaments. 

Figures 6.15 and 6.16 show the results from a calculation done with ;.V = 61 x 

240 = 14640; the discretization of the previous experiment was refined by a factor 

of two in each coordinate direction. In this discretization there were four radial 

stations, twice as many filaments as previously.at each. radius, and 240 segments 

per filament. In this calculation we also increased the correction and spreading 
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distances used in the MLC with AMR to be consistent with the effective radius 

of the core function. All previous calculations had C = D = 1.5, here we used 

C = D = 2.5. 

Figure 6.1530 shows the modes of the previous N = 2280 calculation using ~ILC 

and the present N = 14640 calculation using MLC with AMR at times t = 0 through 

t = 70. Figure 6.1Sb shows the time evolution of the n = 12 mode for these two 

calculations from t = 0 to t = 70. We see in Figure 6.15a that the n = 4 modes 

and its multiples are still present, though at smaller amplitude than than in Figure 

6.1030. The modes that are not multiples of 4 remain at machine precision until 

t = 60, as can be seen by a log plot of the same data (not shown). The onset of 

the new modes which are not multiples of n = 4 occurs at the same tilne that the 

creation of new vortex segments becomes significant. We see the new modes first at 

t = 60 in Figure 6.1530; from t = 0 to t = 40 only 12 segments were created, fro111 

t = 40 to t = 50 220 segments were created, and from t = 50 to t = 60 1022 new 

vortices were created. See the discussion in the previous section about these nlodes. 

\Ve checked the convergence of the N = 14640 calculation here by redoing the 

calculation between t = 45 and t = 55 using a time step of ;j.t = .025, half of the 

previous time step. The results were indistinguishable from those with the full tinle 

step, indicating that the time step we had been using was sufficiently small. 

In Figure 6.15 we see the results from the calculations wi th ~V = 14640 and 

N = 2280. In both cases the amplitude of the perturbation decreases from its initial 

value, and then at later time (t = 30 in the coarse calculation, t = 20 in the finer 

calculation) the amplitude begins to rise. vVe see, however, that the finer calculation 

shows a greater decline; this is indicative that further refinement studies are required. 
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For the N = 14640 calculation we see the onset of the additional modes luuch 

earlier than for the N = 2280 calculation. This is consistent with our previous 

explanation of these modes; by t = 70 the N = 2280 calculation has added only 72 

new vortex segments because of stretching, the N = 14640 calculation has added 

2175 new segments, indicating its greater sensitivity to the stretching of the ring. 

Figure 6.16 shows the intersection of the 61 filaments for this calculation with 

the 8 = 0 plane. Contrast this with Figure 6.14 to see the increase in resolution of 

the deformation of the core for t = 0 to t = 70. We see that the original Lagrangian 

mesh crosses over itself at finite time, even at this higher resolution. \Ve also see, 

however, how much better resolved the calculation is. Note the fine development of 

the outer ~'arm" which begins at t ;::.: 30 and the beginning of the second outer arm 

at t = 50; the N ;::.: 2000 calculations miss the first arm completely and resolve the 

second arm with much less definition. We can see clearly at times t = 50 and t = 55 

that the filaments at different radial stations are each creating arms, yet are out of 

phase with each other in ¢>. Thus we see again the need for the higher resolution of 

the radial modes; there is no indication yet that we have resolved correctly the full 

distortion of the core. 

6.5 Discussion and Conclusions 

From the results presented in the previous section we conclude that: 

(1) The MLC, with and without AMR, is accurate enough to reproduce stability 

results for a perturbed vortex ring found using the direct method. 

(2) \Vhlle we do resolve more of the features (e.g., the 'arms) of the core distortion 
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in the more refined calculations, we believe the dynamics of the core are still not 

fully resolved, since i) the mesh still crosses itself at finite time with 61 filaments; 

ii) the filaments at different initial radii move markedly out of phase with each 

other, so we do not yet know whether we have captured all of the radial modes; iii) 

many more new vortex segments are created for the finer calculations, indicating its 

increased sensitivity to the stretching taking place. However, we do not know what 

calculations with increased refinement will show. 

(3) At the higher resolution (N ~ 14000) the MLC excites the n = 4 mode, but 

this mode and its multiples do not detract from the overall stability results. 

( 4) Using the the integral of vorticity to define the circulation of the filaments 

(Equation 6.3), we see better agreement between the lv ~ 2000 and the Iv ~ 14000 

calculations, and these differ from the earlier calculations in that they show an initial 

decline in amplitude rather than growth at all time. We suggest that this may be 

due to the fact that the initial N ~ 2000 calculations effectively studied a ring with 

a more concentrated distribution of vorticity, due to the method used in [39] to 

assign the circulation of the filaments. 

We plan to conduct a more thorough study of the vortex rings, studying the effect 

of different numerical and physical parameters on the core deformation and stability 

of the vortex ring. We also plan to implement several diagnostics to int'estigate the 

accuracy of our calculations. A recent study [49] discusses appropriate numerical 

diagnostics for the three-dimensional vortex filament method. The invariants of the 

Euler equations-total vorticity n = J wdV, linear impulse I = ! J x x wdV, and the 

kinetic energy E = ~ J u· udV -are presented as the relevant quantities to evaluate 

numerically; a convergent calculation should conserve tlies-e quantities. 
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The kinetic energy of a. vortex filament system can be separated into two parts: 

h ·· E" rirj li·lj h . h d' b t e InteractIon energy, ii::: L...,;i;i#:i 81f' rij' were Tij IS t e Istance etween 

the ith and jth. segment, and the self-energy Eii. To correctly measure conservation 

of energy in a calculation one must evaluate both parts of the energy. Chorill'S 

derivation of the correct method for calculating Eii is presented in [49]. 

In this thesis we have developed a two- and three-dimensional fast adaptive 

vortex method. Error and timing results show that the method of local corrections 

with adaptive mesh refinement greatly reduces the cost of calculations with many 

vortices while maintaining the accuracy of the direct vortex lllethod. The cost of 

the direct method is O( N 2
); the cost of the rvlLC with AMR is O( lV) for large ~v. 

Calculations of a three-dimensional vortex ring show that while additional fea· 

tures are captured using N ~ 14000 rather than ,.Tv ~ 2000, further work is necessary 

to increase our understanding of the role of the deformation of the core and of the 

different radial modes in determining the stability of the vortex ring; this highlights 

the need for fast vortex methods, so that we can study problems of this nature with 

sufficient resolution. 
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Parameter Figure 
2,3 4-7,8a 8b,9a,10a 9b,10b 10c lla,12b 

Initial number of vortices 2040 2040 7320 7320 7320 15600 

Ar/Ro .109 .109 .0705 .0705 .0705 .0545 

8/Ro .155 .155 .150 .150 .150 .0Tj 5 

N umber of radial stations 2 2 4 4 4 4 I 

Vortices per cross-section 17 17 61 61 61 65 I 
Initial segments per filament 120 120 120 120 120 240 I 
Wavenumber of perturbation 9 12 12 12 12 12 

tiRo .02 .02 .02 .02 .02 .02 

At .1 .1 .05 .05 .05 .05 

C=D 1.5 1.5 1.5 1.5 1.5 1.5 I 

Method (Grid) 8-8 8-8 8-32 Direct 32-32 8-32 l 
Method of Assigning Circulation (6.1) (6.1) (6.1 ) (6.1) (6.1 ) (6.2 } I 

~fa.ximum Time 100. 140. 40. 40. 10. 40. 1 

Parameter Figure 
lIb lIe 12a 13,14 15,16 

Initial number of vortices 15600 15600 15600 2280 14640 

t:..r / Ro .0545 .0545 .0545 .150 .0833 

8/Ro .0775 .0775 .0775 .200 .111 
N umber of radial sta.tions 4 4 4 4 4 
Vortices per cross-section 65 65 65 19 61 

Initial segments per filament 240 240 240 120 240 
\Vavenumber of perturbation 12 12 12 12 12 

e/Ro .02 .02 .02 .02 .02 
Llt .05 .05 .05 .1 .05 

C=D 1.5 1.5 1.5 1.5 ') ~ _ • .:> 

Method/ Grid 16-32 Direct 8-64 8-8/Direct 8-6-1 
Method of Assigning Circulation (6.2) ( 6.2) (6.2) ( 6.3) ( 6.3) 

:Nf a."<.im um Time 20. 10. 40. 140. 70. 

Table 6.1: Parameters used in vortex ring calculations. 
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(a.) 

(b) KG:n 

• • • • • • • •• 

Nc = 17 

KG:m 

Nc = 19 

Ne = 61 

Figure 6.1: (a) Vortex ring and a..xes. (b) Locations of vortex filaments in the core 
for discretizations KG:II and KG:III. 
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c -----------

Figure,6.2: Ring with lV = 2040 (Mesh KG:II), n = 9 perturbation at times t = 
0,10,40, 70,100, circulation calculated by solving the system of linear equations 
(6.1); calculation done using MLC. Shown at angle 7r /3 from the z-a.:os. Note that 
the initial perturbation does not grow in amplitude; 9 is a stable wavenumber. 
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Figure 6.3: (a) Amplitude vs. wavenumber for n = 9 ring at t = 0,10,40, 70, 100; 
(b) time evolution of n = 9 mode from t = 0 to t = 100. Discretiza.tion as in Figure 
6.2. The amplitude of the perturbation oscillates rather than grows in time. 
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Figure 6.4: Ring with N = 2040 (Mesh KG:II), n = 12 perturbation, circulation 
calculated by solving the system of linear equation's (6.1), at times t 30,60,90,120, 
calculation done using MLC. Shown at angle 1r /3 from the z-a..xis. Note that the 
amplitude of the initial perturbation grows markedly; 12 is an unstable wavenumber. 
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Figure 6.5: Ring from Figure 6.4 at time t = 140 shown "at angles 0, 1r /3, 1r /2 from 
the z-axis. 
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Figure 6.6: (a) Amplitude vs. wavenumber at t = .0, 30, 6Q" 90,120,140 for ring with 
N = 2040, n = 12 perturbation; (b) time evolution of n = 12 mode. Discretization 
as in Figure 6.4. Note the difference in scale between these plots and Figure 6.3; 
here the amplitude of the n = 12 mode reaches six times its initial value. 
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Figure 6.7: Intersection of 17 filaments with the (), = 0 pla!le for ring with LV = 2040, 
n = 12 perturbation at times t = 0,10,20,30,40,50,60, 70,80; discretization as in 
Figure 6.4. Note that the Lagrangian mesh crosses over itself by t = TO. 
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( a) 

(b) 

Figure 6.8: (a) Ring with 17 filaments, N = 2040 (Mesh KG:II) at t = 40. Cal· 
culatio~ done using MLC. (b) Ring with 61 filaments, N-= 7320 (1tlesh KG:III) at 
t = 40. Calculation done using MLC with AMR. Both have n = 12 perturbation, 
circulation calculated by solving the system of linear equa.tions (6.1). 

119 



(a) 
.'2' 
n. 
13. 
A2 

.A' ., . .. .. ,. 
~ 'tC 
J ."2 ., . 
•• ... 
lIN 

.tea 

• • I t' t' • » .1 
TI .. 

.121 
(b) 

,a' 
.124 
.122 ... 
. '1' • 1 0'" 

: .• u 
j.13 .. , . ... ... 

,lIN 

•• • • I l' 'I • 4' 
T ... 

Figure 6.9: Time evolution of n = 12 mode for £alculations using (a) MLC with 
AMR, (b ) direct method; discretization as in Figure 6.8b. Note that tlle amplitude 
shows a slight decline in each case, reaching a minimum a.t t = 20. 
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Figure 6.10: ( a) Amplitude vs. wavenumber for calculations of N = 7320 ring, 
n = 12 perturbation, at times t = 0,5,10,15,20,25,30,35,40, using MLC with 
AMR. Discretization as in Figure 6.8b. Note the n = 4 mode and its multiples 
in (a) and (c); these are present for calculations using MLC and NILC with A:NIR, 
but not for calculations with the direct method. This verifies that NILC, not the 
addition of AMR to MLC, is responsible for the 'additional modes. Note also that 
the amplitudes of the additional modes do not keep growing; they seem to level off 
by t = 30. 
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Figure 6.10: (b) Amplitude vs. wavenumber for calculations of N = 7320 ring, 
n = 12 perturba.tion, at times t = 0,5, 10,15,'20,25,30-; 35,40, using the direct 
method. Discretization as in Figure 6.Bb. Note that with the direct method we do 
not see the n = 4 mode and its multiples. 
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Figure 6.10: (C) Amplitude vs. wavenumber for calculations of N = 7320 ring, n = 
12 perturbation, at times t = 0,5,10 using MLC on a uniform grid. Discretization 
as in Figure 6.8b. Note the n = 4 mode and its multiples in (a) and (c); these are 
present for calculations using MLC and MLC with AMR, but not for calculations 
with the direct method. This verifies that MLC, not the addition of AMR to MLC, 
is responsible for the additional modes. 
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Figure 6.11: Amplitude vs. wavenumber for calculations of ring with N = 15600 
(Mesh KG:II), n = 12 perturbation, circulation of each filament calculated as the 
product of the point value of vorticity at the location of the filament and the area 
represented by that filament, at time t = 0, and (a) at t = 10 for MLC with AMR on 
8-32 grid, (b) at t = 10 for MLC with AMR on 16-32 grid, and (c) at t :: 10 for the 
direct method. Note that the extra n = 4 mode and its multiples appear for MLC 
with AMR on a 8-32 grid and on a 16-32 grid, but not for .the direct method. This 
verifies that the boundary conditions on the 8 x 8 x 8 grid are sufficiently resolved, 
since we see no difference with the base grid of 8 x 8 x 8 and 16 x 16 x 16. 
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Figure ~.12: (a) Amplitude vs. wavenumber for calculations of ring with ,l'v = 15600 
(Mesh KG:II), n = 12 perturbation, at times t =' 0,10,20,30,40, using MLC with 
AMR on an 8-64 grid. We show this to demonstrate that the correction radius must 
be large enough relative to the core radius of the vortices to ensure accuracy. 
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Figure 6.12: (b) Amplitude vs. wavenumber for .calcula~~ons of lV = 15600 (Mesh 
KG:II) ring, n = 12 perturbation, a.t times t = 0, 10,20;30,40, using MLC w~th 
AMR on an 8-32 grid. Contrast with Figure 6.12a. 
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Figure 6.13: (a) Amplitude vs. wavenumber for calculations with N = 2280 
(Mesh KG:III), n = 12 perturbation, circulation calculated by integrating the 
vorticity over the area represented by ea.ch filament tEqua.tion 6.3), at times 
t = 0,30,60,90, 120, 140, using MLC and the direct method. (b) Time evolution 
of n = 12 mode for caIculations using MLC and the direct method. Both curves are 
plotted; they are indistinguishable. 
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Figure 6.14: Intersection of 19 filaments with the 8 = 0 plane 
for ring with N = 2280, n = 12 perturbation, at times t = 
0,5,10,15,20,25,30,35,40,45,50,55,60,65,70, 75; data ~)n Figure 6.13. Calcula
tion done using lYILe; discretization as in Figure 6.13. We see that the Lagrangian 
mesh crosses itself by t = 65, similarly to the calculations shown in Figure 6.7 
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Figure 6.15: ( a) Amplitude vs. wavenumber for calcula.tions of ring with N = 
14640 (Mesh III), n = 12 perturba.tion, circulation calculated by integrating the 
vorticity over the area represented by each filament (Equation 6.3), at times t = 
0, 10,20,30,40,50,60, 70, using MLC with AMR (8-64) with C = D = 2.5 (solid). 
This is contrasted with the N = 2280 calculatio~ (da.sh~9.). (b) Time evolution of 
n = 12 mode for the calculation with .. Y = 14640 using ML-C with AMR (solid) and 
the calculation with N = 2280 using MLC (dashed). 
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Figure 6.16: Intersection of 61 filaments with the () = 0 plane 
for ring with N = 14640, n = 12 perturbation, at times t = 
0,5,10, 15,20,25,30,35,40,45,50,55,60,65, 70. Calculatio~ done using MLC with 
AMR; discretization as ill Figure 6.15. The Lagrangian mesh crosses itself by t = 55, 
but note the new features of the core distortion not seen in Figure 6.14. 
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