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Abstract

The Eulerian second-order Godunov scheme is
extended to treat a mixture of nonequilibrium,
chemically reacting gases. We consider only the
case of high temperature air here, although the
scheme is more generally applicable. Several
planar oblique shock wave calculations are
discussed, including direct comparison with
experimental data. The new results are an
improvement over our previous gas dynamics
calculations for the same problems.

Introduction

Oblique shock wave reflection is a
benchmark problem both for more complex physical
and engineering problems and for Ia]idation of
compressible flow computer codes.* This problem
has proven amenable to accurate experimental
measurement in shock tubes and data is readily
available in the literature. Also, the compiex
wave structure in the Mach stem region of these
experiments closely resembles the flowfield
phenomenology of typical applications., Finally,
assuning inviscid gas dynamics, no length scale
is present in the problem which has made it
possible to propose analytical theories for
important iasues such as shock structure
transition.

The large shock tube temperatures and
pressures which are obtained for shock wave Mach
numbers (M.) greater than about five necessitate
low ambient density test gases (a few percent of
atmospheric) for such experiments.

Consequently, vibrational mode excitation can
occur and the associated relaxation length scale
is comparable to hydrodynamic scales, e.g., the
distance between the first and second triple
point in a double Mach reflection or the triple
point height above the wedge surface.
Additionally, if M, is somewhat larger, the
flowfield temperature is high enough (either
behind the incident or reflected shock, or both)
to introduce dissoctation-recombination
reactions in appropriate test gases; the
postshock relaxation of the gas to its
equilibrium value introduces other length
scales, also comparable to hydrodynamic
features.
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High resolution calculations of oblique
shock wave reflection flowfields using the
Eulerian second-order Godunov scheme fo{ ges
dynamics have been previously reported,*”

These studies were inviscid and used (imperfect)
equilibrium equations-of-state (E0S) to model
high temperature effects in the varfous gases.
The agreement between experimental and
computational results is excellent in these
papers; however, real gas Navier-Stokes
calculations are required to fully reproduce the
flowfield phenomenology resulting from
relaxation effects and the viscous boundary
layer, and ta obtain better quantitative
agreement.ls

The purpose of this paper is to report an
extension of our numerical approach to
nonequilibrium, reactive gas mixtures applicable
to multidimensional, high temperature air
flowfields. Our calculations are compared with
experimental results obtained by I. 1. Glass and
his colleagues using the shock tube facility at
the University of Toronto Institute for
Aerospace Studies (UTIAS)4. For the cases
studied here, the test gas is air and the shocks
are sufficiently strong to induce significant
vibrational nonequilibrium in critical regions
of the flowfield; we are also able to validate
substantial chemistry effects in some of the
cases.

The high temperature air model used here is
expected to be vaiid only to temperatures up to
8000 - 9000°K, since we only include vibrational
excitation and a dissociation-recombination
reaction mechanism, However, the algorithm
could be extended to include additional physical
effects such as ionization. In particular, we
expect that the mathematical structure supports
the physics needed for applications in reentry
aerodynamics,

Oblique Shock Wave Reflection

The configuration for oblique shock wave
reflection 1s il1lustrated in Figures 1 and 2.
In Figure 1, a planar shock wave of shock wave
Mach number M_ approaches, through quiescent
gas, the wedgz corner which is set at an angle
6 with respect to the incoming flow. For
ifviscid, equilibrium flow, there is no length
scale in the problem which implies that the



solution depends only on x/t and y/t (where the
wedge corner is taken as the origin of
coordinates), and the resulting flowfields are
called pseudostead{ or self-similar. The
possidle solutions¢ are i1lustrated in Figure 2;
they are functions of M., 6 , the EOS of the
gas, and, for a nYngoiyErop¥c EQS, the preshock
state of the gas.’»

The data obtained from the UTIAS facility
is in the form of infinite fringe interferograms
of the flowfield, obtained with a 23 cm djameter
field of view Mach-Zender interferometer.’ The
density jump, 2ap, between fringes in the
interferogram is a constant, thereby allcwin?v
for easy data reduction. However, the shock
jump conditions must be evaluated to obtain
states (1), (2), (3) at the triple point since
the fringes inside the shock waves cannot be
resolved. For a frozen or equilibrium jump,
this problem is straightforward given an
accgrstg Beasurement of the triple point angle,
X C#700s

Relaxation processes introduce two
characteristic signatures into the
interferograms. First, the relaxation zone
behind the incident shock is readily apparent.
Second, the fringes behind the reflected shock
are nearly tangentially incident at the shock.
Of course, the physical mechanisms responsible
for the relaxation effects cannot be discerned
from the interferograms alone and additional
analysis or computation is required. With
relaxation processes present, length scales are
introduced and the solution is no longer self-
similar. Among other effects, it becomes
possible for the triple point angle, x, to be
time-dependent. Also, it 1s possible that the
shock layers in the problem are only partially
frozen at scales resolvable in the
interferograms. As a consequence, the triple
point analysis using either frozen or
equilibrium jump conditions may introduce errors
into the data reduction,

If & represents a relaxation length scale
and L {see Figure 2) a hydrodynamic scale,
t> L, t ~L, 2t << L represent frozen,
nonequilibrium, and equilibrium flow,
respectively. A time-dependent experiment or
calculation runs through each of the three
regimes in succession as t + =, [t has been
convincingly shown that significant flowfield
features (e.g., x) differ substantially in the
two asymptotic regimes uhlcg San be studied by
gas dynamic computations.*»>»% The problems
studied here are all in the nonequilibrium
regime.

Equations of Motion

High temperature air is modelled as a
nonequilibrium, reacting mixture of gases. For
the conditions (i.e., temperature range) treated
in this paper, and ignoring ionization
reactions, the governiﬂg equations in
conservation form are'™:

gt“+ v . (pul_.l) = w? a= 1,...,N (1)

(i)y + 9+ (s +p) =0 (2)

(6E)y + V(puE + up) = =L, Wo(an()® (3)
(0%%), + v« (5%%) = 2% s a = L. N (4)

where o% = density of species a, p = mixture
density = Z°p°, u = velocity, p = pressure, E =

total energy per unit mass, q° = vibrational
energy per unit mass of species a, (ah3)® =
specific heat of formation at 0°K of sgecies a,
and K = total number of species present. The
source terms w and q represent the production
of species a through chemical reaction and the
relaxation of vibrational energy of species a to

its equilibrium value, respectively.

The pressure ts given by the equation-of-
state

p = RT (5)

where T = temperature, K = R/M, R = universal
gas constant, M = (Iup°/M°5'1’ M% = molecular
weight of species a, and ¢® = mass fraction of
species a = p*/p. The total specific energy is
E=e 4»#@92 (6)

where e = specific internal enerqgy of the
mnﬂm.i&..e=2§%°wnhe°=swdfn
internal enerqy of species a,

e = (y® - 1)"1 ROT 4+ g% (7)

Here, R® = R/M® and v° = polytropic index for
species a {= 7/5 for diatomic species and 5/3
for monatomic species). The first term on the
right-hand side of (7) represents the
contribution of translational and rotational
modes (which are assumed to be in equilibrium)
to the internal energy. It follows from (7)
that

' a_ a. e

Tete - LeVEL ST (8)

Substituting (8) in (5), one easily sees that
the pressure is a function of the conserved
quantities.

Conservation of mass implies that

bp + ¥+ (o) =0, (9)
i.e., Ia6° = 0. Equations (1) and (4) can be
recast for smooth flow into the characteristic
forms

CG

: 1go . g = 1,08 (10)

+u s %% =g

%%, +uew(e®® =% a0 N (1))

Note that Ecca = 1 and that only N of the N+}
equations (9), (10) are independent.



For high temperature air without
ionization, it is a reasonable approximatinnll
to take N=5 corresponding to the species 0,, NE'
NO, O, and N. Following Ref. 11, we assume that
the reaction mechanism consists of R elementary
reactions of the form

N kg,r N
* v H yeeesR
) ﬁeru k;,r azl a’rxc r=1 (12)

a=]

where X _ = molar concentration of species

a, v. *and ' _ are the stoichiometric
coefffefents fo?’gpecies a in reaction r, and
k¢ o and Ky py which are experimentally
determined éxplicit functions of T, are the
forward and backward reaction rates,
respectively. The production terms arell

Wia MM am LN (13)
where
i = E (Vu - )0
a rel a,r a,r (18)

N v
., (1) 1 x>k (1) m1x>"y.
f,r sal b,r gx] §

For the calculations presented in this paper,
the reaction mechanism and the functional form
of ke r Il('J r follow the data given by C.

Park.12,13

Finally, relaxation of vibraticnal energy
is modelled by

s & a

bt}
q = ; a=0,, Ny, NO (15)
*(p.T) 2r 2

where q** %T) = equilibrium vibrational energy
per unit mass of specfes a at temperature T and
T = relaxation time. The monatomic species 0,
N do not possess vibrational modes, so q% 5 0

fofla = 0, N. These terms are given explicitly -
by

a,a
varr RS
q ()s—_.__d.__—.anoz.nz’uo (16)
exp(eO/T) -1

where q: = yibrational temperature for species
a, and

e Ba [{ n!nl/3]
T (D»T) = p . (17)

The equation for ™ is an approximate form of
the Landau-Teller equation valid ip_ the
temperature ran%F considered here. The
constants 8% k® must be experimentally
determined; we are using the data from Ref. 11
with the additional approximation that the heat
bath molecule for species a is taken to be
species a (in general, the constants depend on
the collision partner).

Numerical Method

An operator splitting approach has been
implemented in which the gas dynamics with
frozen chemistry is solved for a, alternately
with the chemistry advanced At at constant
volume and ignoring spatial gradients. The time
step 4t is chosen to satisfy the CFL condition
for the gas dynamic scheme alone. For general
reactive flow problems, such a method
potentially introduces large errors due to the
ignored hydrodynamic-chemistry interactions over
a time step, unless the spatial mesh in reaction
regions 1s small enough to bring the two time
scales into balance. Our working hypothesis for
the present work is that, since both the
vibrational relaxation and dissociation-
recombination processes are tending to
equilibrium without large oscillations, the
method will be accurate on length scales greater
than a few mesh points, even on relatively
coarse meshes.

The hydrodynamic step is solved with a
version of the Eulerian second-order Godunov
scheme.” This scheme is directionally split, so
we discuss the method for solving one-
dimensional gas dynamics in Cartesian
coordinates. A brief summary of the method is
as follows: (1) characteristic variables are
selected and high-order, monotonized slopes are
constructed for them in each computational zone,
(2} Yeft and right states at each zone interface
are constructed by applying characteristic
projection operators to the profiles constructed
in the first step, (3) the zone interface
Riemann problems are solved, and (4) interface
fluxes are evaluated and a conservative
differencing step performed. The modifications
necessary to generalize the single phase method
to a gas mixture satisfying egns. (1) - (8) are
straightforward, as indfcated below (the ensuing
discussion assumes familiarity with Ref. 4),

There are several natural choices for
characteristic variables, e.g., v' =

(01....,pn,u.p,ql.....qN)T, v' = (r.pl.....

OﬂoloU,D;ql--a-.Qn)T. T= 9-1
present study, we have chosen

, etc. For the
y= (T.CI.--oCN.D’P-ql.u-.QN)T (18)

subject to the constraint Zuca = 1 everywhere;

the constraint allows us to both retain t and
not sfngle out any of the ¢ in the
characteristic transport step. For this choice,
t%e gparacteristic equations for the variables
€49 ,8*1,...,N (see egns. {10}, (11))
decouple from the rest of the system.
Consequently, the computation of the
characteristic projection operators is almost
exactly as described in Ref, 4, and they have
the same properties. The mixture Riemann
problem has essentially the same solution as
that for single flufd gas d%pamics. This is so
because the quantities c%,q" are advected along
streamiines and do not jump across the nonlinear
waves (shock waves and rarefaction waves) in the
Riemann problem solution. Thus, only t,u,and p
vary across the left and right waves and the



Rankine-ﬂugon1ot conditions are as in the single
fluid case. X is defined via
p = (»1l)p(e- I A%, 1t is easy to check that

vy also does not jump 2across nonlinear waves,
Also, I' = v !here the “sound speed gamma" is
defined by ¢“ = I'pr, ¢ = (frozen) sound speed.
Of course, the value of v is different tn the
left and right states defining the Riemann
problem. The end result is that the nonlinear
secant iteration and the sampling procedure to
obtain interface values is identical to that
described in Ref. 4, save for the additional
bookkeeping required to keep track of all of the
components of v.

The set of equations solved in the
chemistry step of the operator splitting
algorithm is

a
.ddf.; x p-lﬂui“ s ax1,...,N (19)
a s @
d(cdg“) c2aim -t Njs 0,0 NO (20)
T (PJ)
de . gl I %) M (21)

This is a system of N+4 coupled nonlinear
ordinary differential equations&note that T, p
are explicit functions of ¢, ¢ q°. a=1,...,N,
and e according to the relations (5) and (8).
They are in a form suitable for solution by
standard numerical methods. In our
calculations, we have used standard explicit
solvers such as 2nd and 4th order Runge-Kutta
methods or Euler's method. The chemistry time
step was taken small enough to insure

accuracy. In future work, we intend to explore
implicit methods, stiff solvers, and various
approximation schemes which take advantage of
the fact that, for much numerical work, accuracy
at levels higher than the hydrodynamic scheme
may not be useful.

Initial and Boundary Conditions

A square mesh aligned with the wedge
surface (Figure 1) is used. The ambient state,
U., is taken to consist of 79% N, and 212 0, at
Egnsity p and prsssure Po corresponding to the
experimen al data® for each caliculation, The
postshock state, Uy, is obtained by solving the
Rankine-Hugoniot c0nd1ttons with an additional
equation enforcing vibrational equilibrium. The
jump is then conservatively interpolated onto
the mesh, and the calculation runs to completion
without further intervention,

The structure of the one-dimensional
incident shock is an important issue in our
analysis of the results. The reactive flow
calculations exhibit an “overshoot” behind the
shock prior to downstream relaxation to
equilibrium (and this has been verified by long-
time calculations on a one-dimensional mesh);
this phenomenon may well be physical.
Nevertheless, a small amplitude disturbance is
introduced into the flow behind the reflected

shock at the second triple point by the
overshoot. The calculated incident shock is
partially reactive on scales of the order of a
few mesh points whereas the data reduction for
the experiment assumes a frozen jump; on the
fine meshes used here, the error introduced by
this difference 1s small and would be made
smaller by refining the mesh still further.
Both of these issues can be resoived by using
another version of the Godunov Scheme in which
the 1niident shock is treated as a tracked
front;*" this will be the subject of further
work, along with computing the exact steady
shock structure (for both frozean and partial
reaction jumps) by quadrature.

The only nontrivial boundary condition is
at the top. We have implemented a “Dirichlet"
condition in which a discontinuous jump is
imposed at the (known) intersection of the
incident shock with the top boundary. The
postshock state is chosen to be the currently
available value from the downstream edge of the
state {1) region (the reaction process continues
here throughout the calculation). The boundary
has been taken far enough away from the
reflected shock so that the error introduced by
this procedure {s negligible. Nevertheless, for
reasons of efficiency, we expect to implement a
true Dirichlet condition (see, e.g., the
treatment in Ref, 15) in future work.

For the meshes used in obtaining the
results, the length L (see Figure 2) corresponds
to 350-400 zones, and the vertical distance
between the wedge surface and the top of the
reflected shock contains between 60 and 100
zones. This is comparable, but somewhat
coarser, than the meshes used in Ref. 3, The
mesh interval, Ax = Ay, is chosen so that at the
end of the calculation, L corresponds closely to
the experiment,

Results

Results have been obtained for three cases:
(1) Mg = 7.19, 6, = 20°, {11) Ms = 8,70, 8,
27°, and (III) Ms =8, 86 6 20°. Two
calculations have been perfgrmed for each of the
cases--a vibrattonally relaxing, nonreactive
calculation and a vibrationally relaxing,
reactive calculation. A direct comparison of
the flowfield density contour levels of these
computations with experimental data and
previously reported calculations® with an
equilibrium EOS is made in Figures 3, 4, and §
for the three cases. The EOS use’ in the gas
dynamic calculaf&on is a modified’ version of
the Hansen EOS. The overall structure of the
configurations may be discerned by comparing the
triple point angles x, x' and § = corner
attachment angle (in degrees; all measurements
are by hand):
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X X s
I: exp. 11.5 32.0
Hansen 12.0 29.5
VR 12.4 31.5
CR+VR 11.6 31.0
I1: exp. 7.5 7.8 23.0
Hansen 9.6 9.0 33.5
VR 10.0 10.2 31.5
CR+VR 8.2 8.5 24,0
ITI. exp. 10.0 11,2 21-23
Hansen 12.2 12.5 21.0 )
VR 12.4 13.2 28.5 )

CR+VR 10.4 11.4 23.6

It is quite clear that the comparison improves
substantially as one moves down the page in
these figures; the degree of tangential
incidence of the contours at the reflected shock
improves and matches the interferogram in the
reactive case, and the table above shows that
wave structure fidelity requires reactive flow
caltculations (since the Hansen EOS includes
reaction effects, it can actually be better than
a relaxing, nonreactive model). For Cases Il
and (especially) IIl, a wave is introduced into
the disturbed flow at T' which is not present in
the experiment; this small amplitude disturbance
is caused either by an overshoot behind the
incident shock wave or the error in our top
boundary condition procedure. Quantitatively,
the contours are off by about two levels. It is
possible that this can be fully explained by the
assumption of a frozen triple point in the data
reduction for the interferogram. None of the
new calculations match this condition on scales
comparable with the mesh. Whether a substantial
mesh refinement (or a tracked incident shock) is
required for convergence, or whether the
experimental incident shock should be taken as
partially relaxed/reactive is not clear.

Wall density plots for the calculations are
presented in Figure 6. The “wall heating"
nunen‘cal &ayer, already present for gas dynamic
results,**” is intensified here (this is easily
seen in the contour plots, as well) and we have
sometimes used the results from the second row
of zones above the wedge surface. For Case I,
it may be noted that there is a mismatch
between the data points in state 1' and the
value computed for this state in the
calcutations. An additional computation was
made in which agreement for this value was
forced and these results are presented as
well. In light of these factors, the agreement
ts good overall and some of the remaining
discrepancies can be analyzed in terms of
boundary layer effects in the experiments.1»3

Details of the Mach stem region are
illustrated in Figure 7. These plots 1llustrate
the rich structure of the mixing processes
induced by ihe wall jet-vortex rollup
interaction® in this part of the flowfield.
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Figure 4. M_ = 8,70, 6 = 27°. (a) interferogram from experiment; density
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equi?ibwum E0S, (¢) nonequilibrium calculatton without reaction, and
{d) nonequilibrium, reactive flow calculation. (a), (b) are
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Figure 6. Plots of density vs. distance along the wedge surface for the three
cases., See Figures 1, 2 for definition of o , L. The extra plot for
Case I corresponds to the calculation with a forced match in state 1°,
Di amonds represent experimental data.
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Figure 7. Blowup plots of the Mach stem region for Case I11. These plots all
use thrity equally spaced contours.
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