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Abstract

In this paper we describe some adaptive techniques suit-
able for modeling high Mach number reacting flows. Two
basic types of methods are considered: adaptive mesh tech-
niques and fromt tracking. Numerical results are described
using one of these methods, local mesh refinement, for a sim-
ple model for planar detonation The computational results
show the formation of Mach triple points in the detonation
fronts and provide an initial step toward understanding the fac-
tors influencing the spacing.

Introduction

Interest in high Mach number reacting flow has increased
dramatically in the past few years. In addition to the full
gamut of hydrodynamics phenomena, reacting flows also con-
tain small chemical length and time scales corresponding to
thin reaction zones in the fluid. The interplay of reactions and
hydrodynamic phenomena place far more stringent require-
ments on numerical methods than are needed for shock hydro-
dynamics. The numerical difficulties associated with reacting
flow are more subtle than just the addition of another sharp
front, Le. the reaction zone, to be represented on the finite
difference grid. When conventional shock capturing methods
are used 1 mode! reacting flow, the interplay between hydro-
dynamic shock waves and the chemical reactions can lead to
spurious, nonphysical waves. For example, it has been shown
by Colella, Majdz and Rotyburd! that if one uses a straightfor-
ward capturing method to compute detonations, rather stringent
conditions must be placed on the spatial and temporal discreti-
zations. In particular, the mesh spacing and the time step must
be chosen so that the internal structure of the detonation is
resolved over several time steps. If this conditions is not
satisfied, then one can observe unphysical results in the form of
spurious weak detonations whose structure and speed are deter-
mined purely by the numerical parameters, but which look per-
fectly reasonable, in that the transitions between the pre- and
post-wave states are relatively smooth. It is believed that this
phenomena is not peculiar to the particular differencing scheme
employed, but would be observed in any conservative finite
difference calculaton in which the discontinuities were aver-
aged onto a finite difference grid, and for which the time step
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was not sufficiently small to resolve the details of the interac-
tion of the energy release with the fluid dynamics.

In light of this example, it is clear that some sort of adap-
tive strategy will be necessary to calculate high-speed flows
with chemistry in more than one space dimension. Since the
chemical reaction length and time scales can differ by several
orders of magnitude from those of the hydrodynamics the cost
of using a uniform grid to resolve the chemical length scales is
prohibitive. In this work, we are pursuing two adaptive stra-
tegies for dealing with this problem: adaptive mesh techniques,
and front tracking.

In the next section we describe each of the adaptive tools
in more detail and discuss its role in the overall algorithm.
Section three contains the description of a simple, two-step
reaction model that we are using as an inilial test bed for
developing and testing algorithms. Finally, we describe com-
putational results using this model obtained using one of the
adaptivity tools; viz., local mesh refinement.

Adaptive methodologies

Local mesh refinement

The objective of local mesh refinement is to identify
regions within the computational domain where the resolution
of the difference scheme is inadequate and to refine the grid
within that region. This process can be recursively iterated,
defining a multilevel grid structure in which a level & grid
refines over some subset of the level k-1 grids. The hyper-
bolic character of the basic differential equations, as reflected
in the CFL stability restriction of the difference scheme, neces-
sitates a reduction in time step commensurate with the reduc-
tion in spatial grid spacing. The approach we are using is one
initially developed by Berger and Ofiger,2 and extended by
Berger and Colella? 10 the case of time-dependent conservation
laws.

Error estimation on a level £ grid is performed by using a
coarsened computation on that grid. More precisely, if we
denote by Ax; ,Ay,, and Ay, the grid spacing and time step size
on the level ¥ grid and we let uf represent the collection of
grid values on the level & gnd at (", we first take (wo time
steps on the level & gnid to compute uf*2. We then perform 2
single step on a coarsened gnid with 2Ax; ,2Ay, ,2A4, spacing
by averaging u] onto the coarser grid o obtain &% We then
let up:? represent the average of «f*2 onto the coarsened grid.
We then compute

e, = 1f @) - f @l

for each grid point i; in the coarsened grid where f is some
functional of the unknowns that defines quantities of interest 1o




provide the basis for refinement. The values of ¢; are propor-
tional 1o the local error at ij (with proportionality constant for-
mally related to the order of accuracy of the underlying numer-
ical method). By defining a target error range [eq.., . £m,] WE
can determine whether a given grid point is appropriately
resolved. If ¢;;>€,, then the solution is underresolved and cell
ij is "tagged” for refinement. Altematively, if ¢;;<e,.;, the solu-
tion is overresolved and the cell is "tagged" for derefinement
Once the determination of where refinement is required has
been completed, a set of heuristic procedures are then used to
define a reasonable collection of logically rectangular grids {o
be refined. Storage is then allocated for refinement of these
grids and initial data is provided for the refined grid from the
underlying coarse grid. Similar procedures are used to remove
refined grids when they are no longer required.

While local refinement has been described here in terms
of a fixed rectangular mesh, there is no reason why it cannot
be combined with other adaptive grid techniques, such as mov-
ing quadrilateral meshes and component grids. Indeed, these
techniques can serve a complementary purpose to the local
refinement approach. Quadrilateral and component techniques
can be used to adapt the underlying coarse meshes o the glo-
bal solution or boundary geometry; then these coarse meshes
can be refined locally for accuracy.

Front tracking

In front tracking, one attempis to treat discontiftuities as
intemal boundaries in the fluid at which the motion of the
front, as well as the jump relations across the front, ate
imposed explicily as boundary conditions. The specific
approach we are taking is that described in Chem and Colella®
in which a single distinguished front is tracked, while any other
fronts are captured by an underlying conservative finite
difference calculation. In addition, we allow the tracked front
to move through the finite difference grid, thus enabling us to
maintain regularity of the grid, even if the tracked front
develops kinks or other large distortions. Frort tracking also
offers a potential solution to the difficulties discussed in Colella
et al.! By tracking the front, we eliminate the averaging onto
the grid which caused the unphysical results to occur. We shall
see that there are some possible difficulties to this approach in
more than one space dimension, owing to the substantial
small-scale transverse structure generated in the solution by the
interaction of the reaction zone and the hydrodynamics. We
will discuss this further in the conclusions.

It is cerntainly possible, and in some circumstances, neces-
sary to combine the front tracking and adaptive mesh
approaches. In figure 1 we show an example of the use of such
a hybrid in the case of a pure gas-dynamic problem with no
chemical reaction. The problem is that of shock reflection from
an oblique surface; the combination of the incident shock and
Mach siem are tracked as a single cntity, with all other discon-
tinuities being captured. In addition, a rectangular region, of
fixed shape but moving with the tracked shock, is refined by a
factor of 4 in cach direction. The fact that the refinement is
present in the region of interest enables us to resolve features
at a fraction of the computational cost of doing so with a uni-
form grid everywhere. The tracking of the incident shock, as
well as adding 10 the overall accuracy of the calculation,
further improves its efficiency by cnabling us to cut off the
refincd region below the top of the grid. If we had not tracked
the incident shock, which is the strongest shock in this prob-
lem, considerable numerical noise would have been gencrated
at the peint where the incident shock crossed the discominuity
in the mesh, which would have contaminated the solution in
the refiecuon region.
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A Reaction Kinetics Model

The important features of reaction kinetics from a hydro-
dynamics perspective are discussed in detail in Strehlow” and
Shchelkin and Troshin® The basic characterization of the reac-
tlon as it affects hydrodynamics can be described in terms of
an induction-time model. Fluid passes through the initiating
shock wave where it is heated. There is then a delay, referred
to in the literature as the induction time, during which free rad-
lcals are liberated and intermediate compounds are formed, bus
which appear relatively quiescent hydrodynamically, At the
end of the induction time there is a reaction zone in which the
chemical energy associated with the reaction is released.

The induction times, which are experimentally measured
as functions of temperature and density, provide a good model
for reaction kinetics when actual rate data are unavailable or
when the specifics of a particular reaction are unimportant.
The induction time model we have used is given in the sim-
plest form possible. The induction time 1, which is 1 in the
undisturbed fluid, satisfies

dt

?=—G(T)

where

_ . T2T,
a= 0,T<T,

for a given critical temperature.

The other step of the kinetics model describes the energy
release associated with buming of a single species. If we let z
denote the fraction of unbumt fuel, then z satisfies

dz

Z = -K(1)z

where

co- .58

Taken collectively, this reaction model describes an induction
time of 1/& after the temperature reaches a specified critical
level. At the end of the induction time the energy is released
in a linear reaction,

If we combine the reaction kinetics model with the equa-
tions we obtain the full description of the model

U+F,+G,=H

where
p pu pv 0
gu pu-+p pzuv 8
- |pv - puv = | PV +p -
Us e F= lueE+p) |G = bioE + ] 7 =] 0
P2 puz pvz -pKz
T puT pvt -

The reaction is coupled to the flow through the definition of
total cnergy

2 2
E=etp* 2"+ g

Finally, to close the model we usc a y-law ideal gas equation
of state, p =(y~- Dpe with y=%. Although considcrably

simplificd. this model includes the majority of physical
phenomena needed 10 address the basic hydrodynamics of deto-
nation, and has been used extensively to mode!l multidimen-
sional detonations in large scale numerical simulations. (Sce,
for example. Guirgws et al. 7 )



Numerical results

In this section we describe sample results for the model
discussed in the previous section using local mesh refinement
in conjunction with a second-order Godunov method. All of
the computations discussed are directed toward analyzing the
cellular structures that arise when an initially one-dimensional
detonation profile is perturbed. Our problem geometry is that of
a two dimensional channel with planar geometry (figure 2). Ini-
tially, the solution consists of single jump discontinuity satisfy-
ing the Rankine - Hugoniot relations for a onc dimensional
detonation front 3

uy - ug=Wp, -
1 1
— — = W2 -
PR @ -pd
o —e (Pl*’Po)(_l_ ‘l)-%
! 2 o P

7,,2;=0,%,2,=1

Here the variables with subscript O give the state in front of the
detonation wave, and the variables with subscript 1 give the
state in back of the detonation wave. W, the Lagrangian wave
speed, is given as function of p; and (po.Po.gs) Dy solving the
Rarnkine - Hugoniot equations and the equation of state for W

((y+1)py + (¥-1)po)
W poboda)” = ——-mj

1
2(Po 1 -po)
We nondimensionalizc the pre-wave pressure and density to
po=1, po=— andchoaseuo=p—w so that the unperturbed

wave rcmalrs stationary on the grid. We also normalize our

energy release parameler go = C e, and the post-wave pressure
p1=C, pc;. Here pey is the Chapman - Jouguet pressure, ie.,
the unique pressure p, > pg such that

W (ocs Pododa) = Werpe)”

With these conventions, it suffices to specify C, and C, for
both states to be uniquely determined. The boundary conditions
for the problem are that the top and botiom of the channel are
reflecting walls; at the right end, we specify supersonic inflow
with the value of U for the inflow state; and at the left end we
specify subsonic outflow, with the Riemann invariant

R.=u-~ given as R®/'™ — R_(u,p,¢1).

2
oD

Our computational strategy is to use the adaptive mesh
refinement technique described above with two or three grid
levels, i.e. one or two levels of refinement. In all of the calcu-
lations described here, the ratio between coarse and fine grids
on successive levels is 1:4 in cach dircction. In addition to the
local truncation eror conditions for determining where (o
refine, we impose the additional constraint that any cells for
which the z<10™? may not be tagged as requiring refinement at
the finest level in the calculation. In this way, we concentrate
our computational rcsources in the region where the interaction
of the hydrodynamic waves and the reaction zone is taking
place.

The underlying integration scheme is a fractional step
version of the second order Godunov method discussed in
Colella? This scheme is essentially the same algorithm as that
described in Colella and Woodward!? | except that the para-
bolic interpolation is replaced by piccewise linear interpolation.
The integration of the fluid equations is broken up into three
fractional steps: L2 which advances the solution according to
oU | oF

o -é}-’o
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by time As; L, which advances the solution according to

U G _
ac+3y-0

by time As; and L2, which advances the solution

aUv

ot =H
by time Ar. The steps are combined in a second order Strang -
type splitting, with the complete evolution operator L** given

by
LiAl = LIM%ML‘NL‘NI',ML'N
The one dimensional gas dynamics steps are solved using the

second order Godunov algorithm; the zero-dimensional chemis-
try step is solved exactly.

If the above calculation is run as described, one obtains
after a short time a one - dimensional ZND wave structure :
the incoming fluid is shocked to a constant state U® via &
purely gas-dynamic shock; then at a distance -u’/a in back of
that initiating shock the energy release begins to take place,
with the solution approaching U, in back of the reaction zone
(figure 3). We refer to the region between the initiating shock
and the reaction zone as the induction zone. In order to obtain
multidimensional effects, this one dimensional solution must be
periurbed with a two-dimensional perturbation. We experi-
mented with several methods for introducing perturbations, and
found that the long time behavior of the solution was indepen-
dent of the method used. In the calculations presented here, the
perturbation was introduced via the boundary condition at the
supersonic inflow. For a time of length .5, the inflow value of ©
was increased to to 1.2, in the bottom fourth of the inflow
boundary. Afier time .5, the perturbation was tumed off. This
perarbation has the effect of increasing the distance between

the shock and the reaction zone by 20% in the lower quarter of
the channel.

In figure 4, we show a time sequence of results for the
channel width w=32, K =245, and C, = 3. In addition, for all
of the results presented here, C, = 2 and @=K/10. There is
only one level of refinement in |h:s calculation, with the grid
spacing for the coarsest grid Ax,,,, = .005. In these, and all of
the plots shown here, boxes are drawn around the fine grids.
The initiating shock front is clearly discerned on the right in
both the pressure and entropy contours, while the left boundary
of the reaction zone, where the energy release takes place, is
delineated by the sharp gradient in the entropy. Four periodic
cells can be seen spanning the channel; in addition, the solution
exhibits periodicity in time, with a period of about .6. Actually,
there are small deviations from periodicity in both space and
time, probably due to the fact that the channel width is not
exactly an integral number of cells wide.

In figure 5, we show a time sequence of results for the
same physical parameters, except that the channel width w is
.04. Since a single cell is approximately .08 wide, and is sym-
metric about its cemer and 1ts edge, we expect to sec the
dynamics of half of onc cell in this problem. In this case, we
use two levels of grid refinement. with Axy., = .01, so that the
gnd resolution is the same as i the previous calculation. At
lime .78, we seec a Mach triple point on the initiating shock.
The reflected shock extends at a shallow angle downward and
away from the triple point, and is reflected off the lower wall.
The contact discontinuity, seen as a discontinuity in the
entropy, extends up from the iriple point at a steep angle,
almost venically. The wiple point itselfl is moving down
towards the lower wall. By time .98, the triple point has
reflected off the botom wall, and is propagating up the initiat
ing shock towards the 1op of the channcl. This reflection of the



triple point by the wall corresponds in the multiple cell case to
the reflection of a triple point and its mirror image across one
of the symmetry lines. At the time when the triple point
reflected, the contact discontinuity which had been attached w
the triple point detaches from the initiating shock and is carried
away by the flow. We actually sec three distinct contact
discontinuities (one poorly resolved, since it is outside the level
3 grid) propagating downstrearn. Each of these was formed in
this fashion by the reflection of the triple point by one or the
other of the walls. At time 1.18, the triple point is again pro-
pagating downwards, having reflected from the top wall. At
time 1.38, the triple point is nearly at the bottom of the chan-
nel, and the configuration is that of time .78. Finally, we show
the solution two periods later, at time 2.58. We see that this
wave pattern sustains itself as a periodic structure over long
times, since the solution seen here is essentially the same wave
pattern as occurs at time .78.

On of the questions extensively investigated by experi-
mentalists is that of the dependence of the cellular structure on
parameters such as the reaction zone width and energy
released. Such parameter studies are easily performed computa-
tionally. In figure 6, we show results for the same parameter
values as the previous case, except that K = 490, i.e., the induc-
tion time is half that of the previous case. We see that the cell
size is reduced by half in both dimensions, so that a full cell
with two triple points fits exactly across the channel. The tem-
poral period remains unchanged at .6.

In figure 7, we show results for w = 04, K = 245, and
C, = 6, thus setting the chemical energy released to be double
that for figure 5, with the other parameters remaining the same.
The most obvious change in the solution is a substantial
increase in the speed of propagation of the triple point, so that
the temporal period is now slightly more than 2. Although the
mean width of the induction zone is the same, the variations
from that mean are much greater that in the previous cases,
with the large distortions in the reaction zone. These distortions
are a consequence of the fluid being differentially decelerated
by the various shocks in the reaction zone. The distance that a
fluid particle can travel in the length of time 1/ & before it
begins o release its chemical energy is a strongly varying
function of the number of shocks it encounters and their
strengths. For example, the boundary of the long thin tendril of
unbumed fiuid extending into the burmed fluid at time .78 coin-
cides on one side with one of the contact discontinuities shed
by a reflection of the triple point by the wall. The fluid on the
side of the contact discontinuity which has already bumed was
decelerated by the Mach stem side of the triple point and hence
experienced a greater deceleration than that experienced by the
the fluid which was decelerated by the the combination of the
incident and reflected shocks. Thus, the latter was able to travel
farther before it began to release its chemical energy.

Discussion and Conclusions

We have seen in the above calculations some of the pos-
sible advantages of using adaptive iechniques to compute
chemically reacting flows. However, they points up some pos-
sible problems in using these techniques. The cellular struc-
turcs in the detonation front generate variations in the flow
field, panicularly in the temperature and vorticity due to the
shedding of the contact discontinuities, which also camry slip,
with length scales on the order of the width of the induction
zone. In the calculations given above, we have not attempted to
resolve the details of those fluctuations once they leave the
reaction zone One question that needs to be resolved is to
what extent the detailed dynamics of these fluctuations effect
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the large-scale fluid dynamics. It appears from the computa-
tions presented here that the mean velocity of the detonation
front is not affected by the the cellular structures; otherwise,
the entire wave front would have moved off the computational
domain. Thus, one alternative is to ignore all the fine structure
completely. In that case, the detonation could easily be treated
as an infinitely thin front using the front tracking method.
However, it scems likely that there will be some circumstances
under which these high frequency fluctuations cannot be
ignored: high frequency fluctuations in the vorticity have the
potential for creating turbulence, and high frequency fluctua-
tions in the temperature can have further dynamic effects
through both the fiuid dynamics and the chemistry. In that
case, a possible route to representing these effects at a reason-
able cost would be to couple a front tracking method to a sub-
grid scale model. with the tracked front acting as a source of
fluctuation densities for the model.

From the point of view of studying the detailed multidi-
mensional structure of high-speed reacting flows, the above cal-
culations represent the most preliminary of efforts. One ques-
tion which we have not been able to study with our current
techniques is the process by which these cellular strucrures
come into existence. The reason for tRis is that the initial per-
turbation gencrates a slight curvafure in the initiating shock,
which is stationary, and nearly aligned with the grid; such a
shock is poorly represented by our capturing method. A natural
solution to this problem is to track the initating shock, and
capture the remaining structure with the conservative finite
difference method. A second question that is natural to study
with these techniques is the interaction of strong acoustic
waves with flames as a first step in understanding the transition
to detonation. Since flames are diffusively driven, it is neces-
sary to track them, while the acoustic waves can be captured
on the finite difference grid. Finally, we intend to expand our
capabilities in the area of adaptive grid techniques, particularly
in the direction of being able to handle more complicated
boundary geometries. This will require us to couple the local
refinement and front tracking methods to finite difference
methods on general quadrilateral grids. This is essential if we
are to be able 10 study phenomena such as supersonic combus-
tion, where the combustor geometry plays an important role.
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Figure 2: Geometry and initial conditons for the planar detonation problem.
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Figure 1: A shock reflection calculstion using local refinemeat and front tacking.
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Figure 3: Profile of the one - dimensional ZRD wave structare.
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