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Abstract 

\Ve present a numerical method for solving 
the multifluid equations of gas dynamics using 
an operator-split second-order Godunoy method 
for flow in complex geometries in t'\\'O and three 
dimensions, The multifluid system treats the 
fluid components as thermodynamically distinct 
entities and correctly models fluids with differ­
ent compressibilities, This treatment allows a 
general equation-of-state (EOS) specification and 
the method is implemented so that the EOS refer­
ences are minimized, The current method is com­
plementary to volume-of-fluid (YOF) methods in 
the sense that a VOF representation is used 1 but 
no interface reconstruction is performed. The 
Oodunm' integrator captures the interface dur­
ing the solution process. The basic multifluid in­
tegrator is coupled to a Cartesian grid algorithm 
that also uses a VOF representation of the fluid­
body interface. This representation of the fluid­
body interface allows the algorithm to easily ac­
commodate arbitrarily complex geometries. The 
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resulting single grid multifluid-Cartesian grid in­
tegration scheme is coupled to a local adaptive 
mesh refinement algorithm that dynamically re­
fines selectf'd regions of the computational grid 
to achie\"e a desired level of accuracy. The over­
all method is fully conserYatiyp with respect to 
the total mixture. The method will be used for 
a simple nozzle problem in two-dimensional ax­
isymmetric coordinates. 

Introduction and Overview 

Compressible flows in which the fluid is made 
up of a number of thermodynamically distinct 
species, an extreme system being liquid-gas, arise 
in a wide Yariety of engineering applications re­
quiring realistic geometries, In this paper we de­
scribe an algorithm for modeling inviscid com­
pressible multifluid flows containing complex ge­
ometries in two and three space dimensions. The 
basic algorithm is an operator split second-order 
Godunoy method used to solve the Euler equa­
tions for multiftuid flow. The algorithm cap­
tures rather than tracks the interfaces between 
distinct materials while maintaining a volume­
of-fluid (VOF) representation of the constituent 
materials. That is, the interface is obtained dur­
ing the coarse of the Oodunoy solution with­
out recourse to an interface reconstruction. As 
such. the present multifluid method provides a 
complementary approach to '"OF interface track­
ing algorithms. \Vhile there are numerous ap­
proaches to tracking interfaces: we shall only 
mention those in the class of "OF techniques. 
The simplest VOF interface reconstruction algo-



rithms are those based on the Simple Line Inter­
face Calculation (SLIC) method [12]. There are 
numerous other first -order variations on this such 
as the eenter of mass method [16], central differ­
ences [11], and Youngs' method [17]. To obtain 
a second-order reconstruction, there is an algo­
rithm based on a least squares fit to the local 
volume fractions profile [15]. In all of the inter­
face tracking methods. a sub-grid scale method of 
reconstructing the interface must be used to com­
pute t.he current location of the material interface 
and as a result the interface remains sharp. The 
primary disad,"antage to using these methods is 
the expense. Having to reconstruct the interface 
adds extra computation m"er simply advancing 
the flow in time. In addition, the reconstruction 
process is performed on a cell by eel ( basis hence 
requiring some coding sophistication so that vec­
toriza.tion can be achieved on modern supercom­
puters. However. if the number of cells occupied 
by the interface is small, then this cost may be 
minimized. \Vhen complex geometry is included, 
there are added difficulties in coupling a recon­
struction algorithm more complex than SLle. 

Another point of consideration is that interface 
tracking techniques may not be appropriate for 
all problems. If the interface is initially sharp and 
retains its integrity over time then tracking the 
interface is appropriate. However, if the fluids 
become mixed either by diffusion, by large-scale 
motions or are initially mixed, then treating the 
interface as a discontinuity gives a representation 
that is inconsistent and probably meaningless. 
This leads to consideration of the current method 
since it does not require tracking the interface~ 
yet has the ability to distinguish thermodynami­
cally distinct fluid components and compute mix­
ture properties using the VOF formulation. Fur­
thermore, the ability to describe such ftows in 
arbitrarily complex geometry provides a compu­
tational capability important for real world engi­
neering applications. \Ve refer to the methodol­
ogy for treating complex geometry as a Cartesian 
grid method [5], 

The basic multifluid method is coupled to a 
Cartesian grid algorithm which also uses a '"OF 
representation of the fluid-body interface. This 
representation of the fluid-body interface allows 
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the algorithm to easily accommodate arbitrarily 
complex geometries. The resulting single grid 
multifluid-Cartesian grid integration scheme is 
coupled to a local Adaptive ~Jesh Refinement 
(AMR) This is a code based on the original ideas 
found in [4] and later in [3]. The current ver­
sion [1], [10] is an object.-oriented (C++) code 
framework for managing a hierarchy of logically 
rectangular refined grids that is hybridized with 
Fortran routines that provide 10,,' level support 
and integrator instantiation. In regions where 
errors are deemed unacceptable, a grid is locally 
refined. This has the two-fold result of increas­
ing accuracy locally where it is required as well 
as concentrating the computational effort where 
it is needed. 

"'hat follows is a description of the multifluid 
VOF representation and the predictor-corrector 
Godunm" solution in one dimension. Then there 
is an oven"ie,," of the previously documented 
Cartesian grid method, followed by a discus­
sion of the modifications necessary to couple the 
multifluid-Cartesian grid method into A~IR. A 
simple nozzle problem in axisymmetric coordi­
nates illustrates the adaptive code results. 

M ultiftuid Algorithm 

VOF Representation 

The basic assumptions of the multifluid for­
mulation are that there is pressure equilibrium 
among all fluid components within a cell and 
there is a single velocity vector for each celL in­
dependent of the mixture. A rigorous deriva­
tion of this system is given elsewhere [8J and is 
not repeated here. The first assumption says 
that po. (x, t) = p(x, t), or that the ,"alue of the 
pressure is independent of the fluid component. 
This is physically reasonable since across a con­
tact discontinuity (material interface) there is no 
pressure jump and the partial pressures within a 
mixed cell must be equal. Under these assump­
tions, the Euler equations for a multifluid system 
are 

a tl" + v . (u r) = r :0 v . u (0.1) 

a 
- (fQpCl) + V'. (ufO pO:) = 0 (0.2) at 



8pu at + v· (uup) + \p= 0 (0.3) 

a t r fGpG 't"':" 0 +pf -v ·U+ -u' \lp= r G p 

where JO. pO. and EO are the "oIume fraction, 
density. and total energy density of fluid com­
ponent Q. The volume fraction is defined as 
r:. -\0/'\ where A is the "olume of the cell 
and Aa is the volume of the cell occupied by 
fluid Q. fa is the sound speed .... , for fluid Q:, and 
t = 1/ l.:a (p~/rQ) which represents the fraction 
weighted sound speed "f for the mixture. 

The pressure that. appears in the above system 
is defined to be a thermodynamically consistent 
pressure gi,-en as p = LG (japa L where pO is the 
partial pressure of component 0.. X ote that the 
formulation is sufficiently general to allow real 
gas EOS systems described by pressure given as 
a function of density and internal energy. 

Godunov hnplementation 

First rewrite the above system of equations in 
vector form, in one spatial dimension, in antici­
pation of an operator split implementation, and 
for two fluids Q: and /3. 

Here, the state vector is given as 

p;3 Fl, pd 1"3 Ed, jJ)t 

F(Q) is the flux vector given by 

F(Q) = (pO fG u, (pu)u, pO fa EGu, jGu , (0.7) 

pa 1'31£, pB f;3 E:3u , j3u )t 

and the source term on the right hand side is 
given b~· 

S(Q, x) (0, '\p. (0.8) 
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-(pfO: fa V . U + fO: -pu . vp), 0 1 0, 
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pr' rg V' u + f3L u . '\p,O)t r p 

~otice that the fluid components are treated 
in a symmetric fashion. In most tracking imple­
mentations, t,he total densities and energies are 
solved for along \vith partial densities, energies 
and volume fractions for onl~· one of the fluids. 
The state for the second fluid is obtained by sub­
traction of the partial values from the totals. In 
our formulation each component is treated sep­
arately. but the method is designed to have the 
multifluid results reduce upon summing over (1:, 

for the case of equal sound speed f' to the sin-
fluid algorithm. \Vith respect to equations 

0.5 through 0.8 given aboye, summing the partial 
energy equations, over both fiuids, gives conser­
vation of total energy for the mixture. 

The operator splitting has the following form 
in two-dimensions 

and in three-dimensions as 

(0.10) 

The operator is the sweep in the ( coordinate 
direction and at the end of the cycle, the solution 
is formally second-order accurate. 

The scheme used to integrate the above system 
of equations is a second-order Goduno\' method. 
The algorithm is based on the general higher­
order Godunov methodology described in [7J and 
[2]. In general terms it can be thought of as 
a predictor-corrector scheme "'here cell centered 
primitin' values are traced along characteristics 
to the half-time level at cell edges using a higher 
order slope approximation to the local state. The 
tracing procedure takes data defined at xj to 

X~:11!2'2 to define the left (L) state. The right 

(R) state is obtained by tracing data at xjl to 

X~~11!; . Then a local Riemann problem is ap­
proximated at each cell edge at the half-time level 
given the states Land R. The solution to the Rie­
mann problem is used to compute fluxes at the 



half-time level that are finally used to update the 
solution as written in conservative form. In gen­
eral, the consen-atiYe update can be written as 

(0.11) 

+ ~: S(Q* J+l/:.?' 

Note that the source term is time centered and 
depends on Q* ~ the approximation to the Rie­
mann problem. or Godunov state, which exists 
at t n+1/ 2 • The notation. [(]j t is the flux differ-
ence of ( over cell j. Le. [(]j (j+l/2 - (j-I/2 

The volume fraction equation and source terms 
due to differences in compressibilit;v are dis­
cretized in a special "'-ay following the general 
form given in [8] and are specified below. Also, 
the source terms due to sources are 
discretized in a straightforward way as above. 

To summarize. the solution procedure for a sin­
gle grid implementation has the following steps: 
(1) construct limited central difference approx­
imations to traced state slope, (2) trace along 
characteristics to half-time level at cell edges to 
obtain Land R states, (3) solve the local Rie­
mann problem approximately, at the cell edges 
(4) perform a conservative update of the solution 
using the results generated in the Riemann solu­
tion. 

Characteristic Analysis 

For the characteristic tracing step. we need 
to perform a characteristic analysis of the 
system of equations. To accomplish this. 
we rewrite the system in quasilinear form in 
terms of the primitive variables, q(x, t) = 
(pQ P\ 'U~p, pCi iQcQ ~ fo. I /3 f8, p!3 p3e3 ~ f3) t 
where ell is the internal energy per unit mass 
of fluid Q: and for an ideal gas is given by eO. = 
po. fol~o -1) and likewise for fluid It is written 
as 

oq + Aoq ( ) at ax s q,x (0.12) 

where A = of laq 
Note that the differential compressibility 

source terms are absorbed into the quasi-linear 
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form. The remammg sources contained in, 
s( q l x), are due to geometric factors if OIle is using 
general curvilinear coordinates. 

Tht' first step in the analysis requires determin­
ing the cigcIl\-alues and corresponding left and 
right cigem'ectors for the matrix A. TIlt' eigen­
values are given as 

(0.13) 

and 
.AOi = 'U,i = 1,2,3,4.5,6. (0.14) 

where mixture sOllnd speed is defined as c2 = 
['pi p. The former are the right and left propa­
gating acoustic \l\-aw~s moving with the local flow. 
The latter eigenvalue has multiplicity 6 instead 
of 2 for the single fluid Euler equation. All the 
eigenvalues are real so that the system above is 
classified as hyperbolic. 

The corresponding left eigenvectors~ Ii, and 
right eigenvectors, r i are computed for i 'U + 
C, U - c, nOl . _ ... U06 and orthonormalized so that 
l~ . r j 8ij. where J is the Kronecker delta func­
tiOll. 

Characteristic Tracing 

To compute the left state (L) for cell edge j + 
~ by characteristic tracing, we begin by Taylor 
series expanding the solution about the jth cell 
center. That is. 

n+~ = "! ~x (oq)1! .6.t (8q )'.l 
qj+!.l q) + 2 ax J + 2 at) (0.15) 

U sing the partial differential equation for q 

_ n 1 (/ .6.t A( n))( 8q )11 ~ (0.16) - q) + 2 - .:lx qj ax j x 

~t 
+Ts(qj, 

where (.) j denotes evaluation at (tll. x j ). 

The vector~ (~;}j £lx, is the slope of the local 
primitive \-ariables. A fourth order approxima­
tion to the slope at cell centers is constructed 
and then limited in a monotone fashion as given 
by [7]. Denote the limited slope as ~Ilmqj such 



an 
that &limqj1 ~ (7f;YJ~x. Kow we represent these 
slopes in an expansion in terms of the right­
eigem"ectors of the linearized system as 

&limqjl = L (liri (0.17) 
i:;;;:{ u+c,'Il-C;UOl .•... U06) 

The a I are t he expansion coefficients and are set 
according to Oi = Ii.' (&limqj). 

The current procedure of limiting the raw 
slopes and then defining the expansion coeffi­
cients is in contrast to the method used by [13] 
where the expansion coefficients are computed 
and then limited by the aboye procedure. 

Since the system is hyperbolic and has a com­
plete set of eigenvectors, one can construct a 
similarity transformation so that. A RAR- 1 ~ 
where .\ = [Ai] is a diagonal eigeIl\"alue matrix 
and R is the matrix with columns the right eigen­
vectors. Also, in order to limit the characteristic 
tracing to directions that contribute to the left 
(L) state at edge j + 1/2 from cell center j\ we 
introduce a projection operat.or as 

(Wj) = L (Ik .j · u·j)rk.j (0.18) 
k:Ak.j >0 

where the notation (k.j means the kth element. of 
( evaluated at cell j. 

N ow substitutin~ the limited ~lope appr~xim~­
tion, 6hm~ ~ (7!!)''J ~x and Its expanSlon m 
terms of right eigenvectors into equation (2.26) 
and applying the projection operator for left 
states gives 

(0.19) 

b..t (n ) +2S qj ~Xj 

The projection operator for the right state is 
given as 

PR(Wj) = L (lk,)' 'lL'j )rk.j 

k:).l<.j<O 

(0.20) 

and we obtain an expression for the right state 
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(R) as traced from cell j as 

11+1 1 L .3.t 
q f qJ~.l - -2 (I + AX )..I.. .• j )O:k,jrk.j 

j-r'2.1 .;,.,l 

k:Ak.) <0 

(0.21) 

.3.f (n ) +2S qj' Xj 

Riemann Solution 

GiYen the traced states. the predictor step is 
completed by solving the local Riemann prob­
lem to obtain the Godunoy states. Instead of a 
full Riemann solver ~ 've adopt an approximate 
solution that meets the design goal of avoiding 
EOS eyalua.tions when building the fluxes from 
the Godunov states necessary for the conserva­
tiYe update. The choice of primitiYe variables, q. 
facilitates this design point. The current approx­
imate solver is a simplified version of [9}, in the 
spirit of [2] and given in [8]. The resulting algo­
rithm requires no EOS calls and is nearly twice 
as fast as the one given in 1.9]. 

Conservative Update 

Having obtained the Godunm' states from the 
Riemann solution. we can construct the updated 
solution. \Ve begin with the update for the vol­
ume fractions. This algorithm is based on the 
formulation presented by [8]. The volume frac­
tion update is performed in two steps. The first 
satisfies the linear advection equation (neglecting 
the source term). The second takes into account 
these source terms. The first step is given as 

i], Fj'll - !;[F4 (Q*)L (0.22) 

-3 jt3.n _ D.t [Fr(Q*)] . (0.23) Jj J ~x J 

The subscript on the flux Yectors denotes that. 
component of it and Q* is the Godunov state. 

The next step is to calculate the effects of 
the differential compressibility source on fa and 
]3 in order to obtain Fl.·n+l and ft3·n+l. To 
this end, write the full update (advection plus 
sources) as 

(0.24) 



Summing this equation over the <l and 3 fluids 
gives an approximation for v . (u L which ,,'e de­
note as Du. Explicitly this is 

Du 1 ( ~ _.) - 1- L r 
~t i=(o,.3) 

(O.25 ) 

Therefore, we arrive at the final update a..':1 

(0.26) 

and likewise for jtn + 1
• ~ote that this approx­

imation has the property that it enforces the 
constraints that '"'. ji.Tl+l = 1 and 0 < ~ L.n=(a.3) -
ja.Tl+l ::; 1. 

The remainder of the fluid components are first 
updated using standard conservative differenc­
ing for the ad \'ective portion. The partial en­
ergy equations have source terms and the discrete 
form of these~ taken from [8], will be given below. 
The conservative update for the partial density is 

~t [FI (Q*)] . (0.27) ax ) 

and likewise for (f3 pd) ;+1. The momentum 
equation update is given as 

( )n+l ( )Tl at [ *)] pU j = pU j - F2 (Q j (0.28) 

+ ~t [P*]. 
~X J 

state to obtain a cell centered value at the half-
. ( 3 j 1) 11+1 tIme level. The update for f p E' j follows 

in a similar fashion from the abO\'e equation. It is 
worth noting that the above discretization upon 
summing O\'er t he two fluids reduces to the sin­
gle fluid total energy for the case of equal sound 
speed r. 

Cartesian Grid Overview 

The Cartesian grid method used is based on 
a VOF representation of the boundary. The 
present discussion will serve as an oyer\'iew~ the 
details are presented in [14]. \Yith respect to the 
Cartesian grid method, there are volume frac­
tions (not to be confused with the above mul­
tifluid volume fractions) that denote the volume 
of fluid that is outsidf' of a body. or equh'alently, 
inside the flO\dield region. These together 'with 
aperatures , or area fractions of cell faces that lie 
inside the ftow domain, complete the description 
of the geometry. In [14], the underlying Godunov 
integration scheme was an unsplit version. In this 
work, the Cartesian grid algorithm was cOllverted 
to an operator split one, which significantly in­
creased performance. Also, this facilitated incor­
poration of the multifluid integration algorithm. 

As a setup procedure for the method. extended 
states, Qext ~ must be defined in the body. These 
values, Qext, define sensible values for cells in the 
body near the body surface. This ensures that 
the finite difference stencil will compute reason­
able fluxes for the cells near the body surface. 

Now the above multifluid integrator is used to 
return the ft uxes and the discretized form of the 

Finally, the partial energy equation update~ with sources terms necessary to update the solution 
a similar expression for the second fluid. is one timestep. Away from the boundaries, these 

a fluxes are sufficient to determine the new solu-
(jQ.pQ. Eo.)jn+l (fa pa E a),,: - -' _t [F3(Q~)]' tion, but at this point no distinction is made be-

J ~x ) 

The source term S3 is given as 

(0.29) tween cells inside or outside of the body. These 
fluxes are used to update the extended states to 
yield, Qexi.TI+l. 

For mixed cells 1 cells containing both hody and 
fluid, a local modified Riemann solution is com-

t (fapo.)n+l puted. A local approximation to the body nor-
S8(ja, Q*) = japrQ. [u]+ pn+! u[P] (0.30) mal is determined and left and right states are 

specified by QTl. The Riemann solution yields a 
The term, is given by t 1/ ~i=a.3(t /ri) frontal flux across the body. The fluxes returned 
The overbar denotes averaging of the Godunov from the multifluid integration together with the 
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frontal flux determine a preliminary solution de­
noted as Q. 
~ow we define the effect of the bod~' as an in· 

cremental change from Qexf.TI+l by defining 

-Mijk _ \ Qp.xt,n+l \ Q-a - ~ ijJ.: ijk - - ijk ijk (0.31 ) 

Sufficiently far from the body, it is seen that 8M 
vanishes. So this leads to the update 

(0.32) 

For Cartesian grid mixed ('ells~ '\ijk can be ar­
bitraril~' small which would require an excessive 
timestep restriction for the method to remain st.a­
ble. 'Ye use the algebraic redistribution ideas of 
[6] to modif~' its discretization in mixed cell to be 
both stable and conservative. In particular, we 
perform a preliminary update of the form 

Q-.. _ Qcxt.n+1 + AMijk 
1)1.' - ijk U (0.33) 

which does not have a eFL restriction but vio­
lates discrete conservation. Then we redistribut.e 
(1- Aijk )8Mijk /A ijk onto the grid in neighboring 
cells inside the flow domain and regain conserva­
tion. ='iote that this simplified procedure is only 
correct for reflecting wall boundaQ' conditions. 

AMR Considerations 

\Vhen coupling any integration algorithm to 
A1IR, we must be concerned with retaining 
global conservation [3]. This is an important 
issue because as the problem domain is cov­
ered by a hierarchy of refined grid patches, there 
will be fluxes across coarse/fine grid boundaries. 
In addition~ the redistribution procedure out­
lined aboye provides an additional mechanism 
for moving state quantities across the bound­
aries. Also, the multifluid integrator has differ­
ential compressibility source terms which com­
municate across coarse/fine boundaries. All 
three of these sources of inter-grid-level commu­
nication across grid boundaries must be treated 
correctly to maintain conservation. 

The basic single fluid A:\lR implementation 
maintains global conservation by using a proce­
dure known as refluxing. Basically. the fluxes 
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generated in the Goduno\" solution are saved and 
accumulated for fine grid faces that border coarse 
grid cells that are not themselves refined. The 
difference between these accumulated fluxes and 
the coarse grid flux for the face is used to up­
date the coarse grid solution. In this \'lay. the 
fluxes into a coarse grid cell, bordering a fine 
grid. are consistently approximated, using fluxes 
taken from the underlying fine grid rather than 
the coarse grid flux. 

The refluxing procedure for the multifluid 
A:\'IR version is modified to account for the differ­
ential compressibility sources terms. Additional 
differential quantities are accumulated including 
the average Godull()\' velocity as represented on 
the fine grid. Note that this vclocit.r is normal 
to th(' cell face undergoing refluxing. In addition, 
we need access to the current state on the coarse 
grid cell so that r can be computed. In generaL 
this is only accessible through the EOS. This im­
plies an added computational expense, but the 
result is global conservation ,,,ith respect to the 
mixture. 

The additional terms needed to account for the 
source terms in the volume fraction, and partial 
energy equations are given as 

((,sF3) + (J(up) - UJp)f" ~C'C' + U(JP)P":") 

r'C = iface ::~ ((6F4) (Ju)f"-C' ~ ) 
(0.37) 

The second partial energy equations follows from 
above. The factor, 8((), is the increment of quan­
tity ( as computed by taking the difference be­
tween the value computed for the coarse grid and 



the sum over the underlying fine grid faces. C is 
the average GodunO\' normal velocity described 
above. The unit function iface is positiYe or 
negative depending on whether or not the flux 
is oriented in the positive or negative coordinate 
direction, respectively. 

The procedure to retain global eonserYation for 
the Adaptive Cartesian grid algorithm is called 
re-redistribution. In addition to the usual re­
fluxing that occurs at coarse/fine grid boundaries 
away from bodies. there is an additional step nec­
essary to account for state movement induced by 
the redistribution procedure. This procedure is 
documented in [1-1] and not repeated here. 

Test Problems 

\Ve consider a simple nozzle problem as a tesT 
of the algorithm. It can be considered as a simple 
model for an orifice issuing into free space. sim­
ilar in design to a rocket exhaust nozzle. This 
problem is run in two-dimensions with axisym­
metric geometry. There is a straight tube section 
followed by the nozzle section that opens into the 
ambient medium. The inlet boundary conditions 
are straight flow down the tube with inlet ~Iach 
number\ A/in 2.04. inlet densit,y to ambient 
density ratio, Pin = 0.66 1 and inlet pressure to 

Pee 
ambient pressure ratio, Ei.z!.. 2. The introduced 

, 'Poe 
fluid is pure fluid 0., issuing into ambient fluid 8. 
The nozzle is approximated by a parabola with 
exponent 3, Le. inlet is in the z direction and the 
nozzle is given as z ~ r3. In the figure, the quan­
tity pQ fQ is shown. The calculation is adaptive 
with two levels of refinement. Each level of re­
finement is a factor of two finer over the previous 
level. The refinement is set to tag the multifluid 
cells (multifluid mixed cells) as well as flow dis­
continuities such as shocks and contacts. ~ote 

the leading bow shock that is refined by not d­
sualized as it exists in the fluid ,8. 
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Figure 1: The eyolution of pO p:! in a model nozzle problem is shown at six times. The Cartesian 
grid body is shown in black. The overlayed grids represent the A\IR refined patches with t'\vo levels 
of refinement over the base grid. Each leyel is a factor of two finer than the previous level The 
inlet fiO\\- is supersonic with l\'lach number 2.04. The flow expands to accomodate the increased 
cross-sectional area of the nozzle. Shocks form in the jet core (l\Iach discs) as the fluid exits the 
nozzle. 
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