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Abstract 

We present an alghorithm for the solution 
of compressible, reacting flow problems in 
which burned and unburned fluids are ther
modynamically distinct and separated by a 
thin flame. We use a higher-order, adap
ti ve Godunov method for the fluid dynam
ics and the motion of the flame front normal 
to itself, and a thermodynamically consis
tent representation of burned and unburned 
components to represent the effect of burn
ing. Results of one-dimensional and two
dimensional calculations are presented. 

Introduction 

This paper is concerned with the solution 
of compressible, reacting flow prob1ems in 
which burned and unburned fluid are treated 
as thermodynamically distinct materials sep
arated by a thin reaction zone. The dynam
ics of the flame is specified by a flame speed 
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model which determines flame speed from 
the thermodyanmic state of the unburned 
fluid. The burned and unburned fluids are 
represented using a volume-of-fluid represen
tation for the thermodynamic quantities. In 
particular, for each zone in the computa
tional mesh we let pOI., eOl.) and JOt represent 
density, internal energy, and volume fraction 
occupied by fluid Q', where a B, U denotes 
burned and unburned, respectively. 

The fluid dynamical aspect of the Bow is 
modeled using a high-resolution upwind fi
nite difference method based on the formu
lation of Colella et aL [1]. In this approach 
the Buid is advanced under the assumption of 
local pressure equilibrium and a single veloc
ity in each celL The motion of the flame in 
this presentation takes the form of an eikonal 
equation for the volume fraction which is also 
solved using a higher-order upwind scheme. 
Consistent with the assumption of local pres
sure equilibrium, we restrict the algorithm 
to relatively low-Mach number Bow regimes. 
Even so, the pressure equilibrium assump
tion is sometimes violated. In these situa
tions, as in (1], we use a relaxation scheme 
to restore pressure equilibrium in multifluid 
cells. 

Governing equations 

A system of PDE's consistent with the above 
assumptions is the following: 



DU 1 
Dt + p'VP 0 

Deo. D 1 
Dt + P Dt ( po. ) o 

(2) on the right hand side of (7) is defined using 
jump relations combined with the constant 
pressure assumption. Thus, for the update 

(3) we use 

where 

pct =pCt(pa,eCt) 

pCt(x, t) = p(x, t) 

(4) 

(5) 

(6) 

In these equations Ma represents the trans
port of mass across the front, Equations (1) 
- (3) are conservation laws for mass, momen
tum, and energy. Equation (4) is an equa
tion of state for each component. Equation 
(5) represents our local pressure equilibrium 
assumption. 

The solution procedure is a fractional step 
scheme. It consists of a multi-fluid integra
tion step, alternated with a step to advance 
the flame front. In flame advancement step 
the flame is moved normal to itself by solving 
an eikonal equation with speed determined 
by the local flame speed (see below). An up
date to the burned and unburned fluid states 
is then specified from the volume of fluid that 
is "burned" during the flame advance. 

More precisely, at the flame front the 
eikonal solution determines fJ I B , the volume 
of fluid that is converted from unburned to 
burned in each cell. By relating fJ f B to the 
change in mass of burned material Ma in 
a thermodynamically consistent way, we ob
tain 

rB 
-B rB-I P 
p =-,;}3 

and 

where qo is the chemical energy in the un
burned fluid and hB is the enthalpy in the 
burned fluid given by 

hE = hU == eU + pI pU + qo 

By using these definition and noting that 
from conservation of mass MB -Mu, the 
thermodnamic updates for mass and energy 
of burned and unburned material are given 
by 

pB fB := pB fE + iltMB (8) 

pU jU := pU jU + iltMU (9) 

B B OB U·U jBpQ 
pB fBe E := p fBe +iltM (eB+-

2
-+---rB) 

(10) 

U . U U· U fUpQ 
pU jUeU := pU jUe +iltM (eU+-

2
-+---ru) 

(11) 
Note that the transfer of energy across the 
flame front is treated implicitly through the 
definition of pB and e,B. 

Results 

Eikonal equation 

In order to demonstrate the part of the al
(7) gorithm that consists of a solution to the 

eikonal equation 
where 

atP - + sl'V<b1 = 0 at 
we solve this equation for a simple test prob

This equation is used to determine MQ. lem. The initial conditions are q., = 1 inside 
To maintain thermodynamic consistency, the a square centered at the origin and <b = 0 
thermodynamic state of the burned material everywhere else. The speed s = 1, and the 
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resolution is 1002 zones. Figure 1 shows the 
calculation at t 0, t = 0.9, and t == 1.8. 
The front "burns out" as expected, smooth
ing the corners of the square. 

One-dimensional defiagration 

We next apply the full algorithm to a one
dimensional deflagration problem [2, 6]. The 
calculation is carried out on X E [0,1.6] with 
800 zones. The left boundary is a reflecting 
wall and the right boundary is open. The 
time step is determined by the CFL condi
tion. 

Unburned: (x < 0.75 and x > 0.81),p = 
LO, p = LO, u 0.0. 

Burned: (0.75 < x < 0.81);p 
lA072, P 0.2082, u = 0.0. 

The flame speed relative to the fluid is 
given by 

S = k(Po)q 
Po 

Here, Po and Po are taken from the unburned 
state, k 0.095, and q = 2.0. 

The results are shown in an x-t diagram 
in Figure 2. Only x E [0, 0.8] is shown. We 
see the shocks moving to the left and right, 
followed l;>y the deflagration. The left-moving 
shock reflects off the wall, decelerating the 
left-moving flame and overtaking and slightly 
acelerating the right-moving flame. 

Two dimensional defiagration 
with adaptive refinement 

Here we examine flame propagation in a 
closed duct. When initiated by a spark at 
one end of the duct, this configuration is ex
pected to evovle an inverted cusp, the char
acteristic "tulip" shape [7, 8]. 

We implement the flame capturing algo
rithm described above in conjunction with 
a multi-fluid adaptive mesh refinement code 
[5] that selectively refines regions of the grid 
that require high resolution. This procedure 
uses a hierachically nested sequence of logi
cally rectangular grids upon which the solu
tion is recursively calculated untuil the de
sired degree of acuracy is achieved. This 
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proceudre has been highly effective in shock 
physics calculations, where steep gradients 
move through the flow domain, and has been 
shown to be one to two orders of magnitude 
more efficient than equivalent calculations on 
a uniform grid [4, 3] 

We begin v.ith a base grid of 160 x 16 
zones, and alow a single level of refinement 
by a factor of two. A '!spark" of burned ma
terial is placed at the end of a closed tube 
according to the following conditions: 

Unburned: p = l.0, P = 1.0, U = 0.0. 
Burned: p = 0.9449, p = 0.1407, U 0.0. 
Figures 3-9 show the evolution of the flow; 

we plot pressure, volume fraction, energy 
density, and density of burned material, and 
density of unburned material. As the flame 
propagates down down the tube, the charac
teristic tulip shape is clearly evident. The 
pressure field exhibits a complex system of 
interacting wayes and a high-pressure region 
ahead of the flame front. 
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Figure 1. Numerical solution of eikonal equation 
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Figure 2. Pressure vs. time for one-dimensional defiagration. 
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Time = 0.004 
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Figure 3. Flame propagation down a closed duct; t = 0.004. 
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Time = 0.130 
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Figure 4. Flame propagation down a closed duct; t = 0.130. 



Time = 0.185 
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Figure 5. Flame propagation down a closed duct; t 0.185. 
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Time = 0.265 
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Figure 6. Flame propagation down a closed duct; t 0.265. 
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Time = 0.363 
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Figure 7. Flame propagation down a closed duct; t. = 0.363. 
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Time = 0.450 
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Figure 8. Flame propagation down a closed duct; t = 0.450. 
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Time = 0.530 
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Figure 9. Flame propagation down a closed duct; t 0.530. 
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