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Abstract 

We present a finite difference method for solving 
the equations of combustion in the limit of zero Mach 
number. In this limit, acoustic waves are weak and do 
not contribute significantly to the fluid dynamics or 
energetics. For the equations describing this limit, we 
construct an efficient. high-resolution numerical method 
that allows for large temperature and density variations 
and correctly acCOl.ll1ts for expansion due to heat release. 
The method, a projection method, is a second order frac­
tional step scheme. In the first step, we compute the 
solution to advection-reaction-diffusion equations for 
the velocity, temperature, and species. In the second 
step, we impose the constraint on the divergence of the 
velocity field that represents the effect of bulk compres­
sion and expansion of the fluid due to heat release. We 
demonstrate our method on the problem of combustion 
in an enclosed container. 
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Nomenclature 

specific heat 
spatial indices 
reaction rate 
time index 
perturbational pressure 
heat release coefficient 
time 
velocity 
central difference divergence operator 
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central difference gradient operator 
identity operator 
discrete viscous operator 
Mach number 
pressure 

Po bulk thermod}llamic pressure 
P projection operator 
Pr Prandtl number 
R ideal gas constant 
Re Reynolds number 
Sc Schmidt number 
T temperature 
Uij = (uij,vij) discrete velocity 
Z mass fraction 
'D coefficient of species diffusion 
K coefficient of thermal diffusion 
p density 
'Y ratio of specific heats 
Jl absolute viscosity 
n spatial domain 
(j CFL number 
Lih standard five point Laplacian 

five pt variable coefficient operator 
mesh spacing in the x direction 
mesh spacing in the y direction 

Introduction 

In this paper we present a numerical method for 
solving a system of equations describing combustion in 
the zero Mach number limit. This limiting system was 
first developed for inviscid flow by Baum and Rehm[8] 
and later extended to viscc'lls flow by Majda and Set­
hian[7]. In this limit. the acoustic waves are fast and 
weak, and they do not contribute significantly to the 
fluid dynamies. 

The star.ing point for the derivation of the limiting 
~.et of equations i~ the following scaling behavior for 



pressure, 

P (x, t) = Po (t) + p (x, t) 

p(x,t) =O(M2) 
Po (t) 

(1.1) 

The two terms. Po and p, have physical significance: Po 
is the bulk thennodynamic pressure which varies in time 
only, while the gradient of p is the pressure gradient 
term in the momentum equati on. 

For simplicity, we make several assumptions about 
our system. We first assume that single step chemistry 
exists (that is, reactants go to products irreversibly.) We 
use an Arrhenius reaction rate model, and take all diffu­
sion coefficients to be constant. We also assume reac­
tants and products have the same molecular weight. All 
assumptions are made for ease of computation~ nothing 
inherent in the method prevents more complicated mod­
els from being used 

Given these simplifying assumptions, our system of 
equations for combustion in a closed container, based on 
those in [7], take the form 

Du 1 
p Dt = - V P + ~V . (2 (Vu + (Vu) T» (1.2) 

DZ 
p- = 1>(V' pVZ) -kpZ 

Dt 

p = Pol (RT) 

(1.3) 

(1.4) 

(1.5) 

dPo (y- 1) 
dt = vol (0) I(qokPZ+KAT)dn (1.6) 

(1.7) 
v. u = -dPo/dt+ (y-l) (qokpZ+KA T) 

where equations (1.2), (1.3) and (1.4) are conservation 
equations for momentum, energy, and species, respec­
tively, (1.5) is the ideal gas equation of state, (1.6) is the 
evolution equation for bulk thermodynamic pressure, 
and (1.7) is the divergence constraint on the velocity. Z, 
the mass fraction is defined as the ratio of unburned 
mass to total mass. 

Note that there is no explicit density equation to be 
solved. Instead, conservation of mass is used to derive 
the divergence constraint (L7)~ given that the energy 
equation (1.3), the equation of state (L5)~ and the ordi-
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nary differential equation for the thermodynamic pres­
sure is satisfied, The divergence equation (1.7) 
represents the extent to which the flow is compressible. 
Despite the fact that energy is released and the fluid 
expands only locally along the flame front, the time 
derivative of Po contributes a uniform background to the 
volume source representing the bulk compression of the 
fluid to compensate for the expansion along the flame 
front. 

We solve the system using a modified projection 
method. Projection methods were first introduced by 
Chorin[4] to solve the Navier-Stokes equations for 
incompressible flow. The fractional step method he pro­
posed involves first advancing the advection-diffusion 
equation in time to find an intermediate velocity field 
and then, in turn, projecting this field onto the space of 
divergence free vector fields. 

Chorin's original method was first order in time and 
second order in space. Various investigators have 
extended the projection method to full second order 
accuracy including Van Kan[9] , Bell, Colella, and 
Glaz[l] and Bell, Colella, and Howel1[2]. Bel1 and Mar­
cus[3] appJied the method to variable density flow. Here. 
we extend the approach in [1],[2] and [3] to solve the 
system of equations for reacting flow in the zero Mach 
number limit. The major difference is that the flow is no 
longer incompressible and our divergence constraint is 
no longer homogeneous. We are required to modify the 
projection to account for the non-zero right hand side of 
0.7), 

Specifically, the incompressible projection is based 
on the decomposition of an arbitrary vector field into its 
gradient and divergence-free parts 

W = Vd + Vq> 

V·vt=O 
(1.8) 

where the nonnal component of y<1 vanishes on the 
boundary of the domain. -yd is related to vortical 
motions while the scalar potential, V cp, is related to the 
pressure gradient. In the present case, we further split 
the gradient into two parts. 

W == yJ + Vq->+ V", (1.9) 

where v<i is still related to vorticity generation and V cp 
is still associated with the pressure, but we have an addi­
tional gradient, V"" which. accounts for the volume 
sources in (1.7) and is part of the velocity field: 

u = Vd + V'" (1.10) 

The procedure for solving the equations for low 
Mach number reacting flow is similar to that used for 
solving the equations for incompressible flow, modulo 



the required additions to solve the scalar equations for 
temperature, pressure, density and mass fraction. The 
first step is to calculate all non-linear advective tenns 
using a Godunov procedure. Thls procedure is second 
order accurate for smooth flow, stable at discontinuities, 
and has been shown to provide excellent resolution for 
flows with complex vortical structure. The Godunov 
method works by tracing backward along characteristics 
to determine the conservative flux that entered (or 
exited) each of the finite difference cell's surfaces. 
These fluxes are then used to construct the advective 
terms. We use this methcxi to calculate flux terms for 
velocity, energy, and species (mass fraction.) 

Next, we update tem-perature and mass fraction by 
using a Crank-Nicolson discretization where all source 
terms are approximated at time fl+ 1/2. We use these 
updated quantities to find bulk pressure by performing 
the integration indicated in (1.6), and use the result to 
update density using the equation of state (1.5). Once all 
these updates have been performed, we re-evaluate all 
volume sources at time fl+l12. 

We continue by finding an approximation to the 
updated velocity field by solving a Crank-Nicolson dis­
cretization of the momentum equation where the pres­
sure term is treated as a source and evaluated at time tn· 
1/2. Finally, we complete the velocity update by per­
forming the projections to enforce the compressibility 
constraint. At this time we also calculate the updated 
perturbational pressure. 

In the next section, we provide details on the 
Godunov procedure for computing the time centered 
approximations to the non-linear flux terms. We follow 
~s discussion with details on solving the scalar equa­
tIOn. Next. we outline our time-stepping strategy and 
discuss the projection. Finally, we present some results 
for the problem of combustion in a closed container. 

Treatment of Non-Linear Thrms 
This section discusses the steps taken to calculate 

the time-centered non-linear terms. The Godunov proce­
dure is a conservative, second-order accurate method 
similar to that used by [2]. It is a multistep method 
whereby we first predict values at cell edges at time 
tn + 1/2 using Taylor series extrapolation, upwind at cell 
edges. enforce the divergence constraint on the pre­
dicted velocities, and then use the predicted quantities to 
construct non-linear terms. Cell centers are located at 
(i,j), the right side of each cell is at i+ 1/2 and the top is 
at j+ 1/2. We define velocity, pressure, temperature. den­
sity, and mass fraction at cell centers. 

The algorithm for finding the velocity advective 
terms in two space dimensions is presented here in 
detail. The scalar advective terms for temperature and 
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mass fraction are calculated in an analogous manner. 

To extrapolate to each of the four cell edges, we use 
the Taylor series approximations 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

where the spatial derivatives are estimated by the 
fourth-order monotorucity limited slopes used by [2]. 
These slopes were selected in favor of the van Leer lim­
ited slopes used in [1] because they have slightly less 
damping. 

The differential equation is substituted into the 
expressions above to eliminate the temporal derivative, 
but the pressure terms are omitted. As in [2]. we will 
correct for the pressure using a separate pressure calcu­
lation. Thus (2.1) becomes 

TTn+ 1/2, L D 11 x /1 t 
Ui+U'" =U .. +(---U -)U . 

~l 1.] 2 I,) 2 X,IJ 

(2.5) 
I1t J.I. b 

--2 «vUy)' .--- (L U) . .) 
t.J Pi,) I,) 

Slopes in the nonnal directions are replaced by fourth­
order approximations, while slopes in the transverse 
direction are calculated by 

(vVy) i.j = 

(Uj,j - Ui,j-l) 
v···--,---

I,) /1y 

(Ui,j+ 1- Vi,j) 
v· .-----

I,J /1y 

(2.6) 

if (vi,j > 0) 

if (vi,j ~ 0) 

The next step in the method is to resolve the ambi­
guity at cell edges by selecting one of the two extrapo­
lated values. Recall that at each cell edge, two values 
have been extrap01ated. one from the left and one from 
the right (or one from the top and another from the bot­
tom) Selec~ing a single value from these two is done by 
&olvmg a Riemann problem. The solution is shown here 
!·or the velocity at the right cell edge. Dropping the time 
mdex, we find the normal component 

u ·+u· , if I,J 1+1,] ~ 0 
2 (2.7) 

otherwise 



Then we use the normal velocity to find the tangential 
component 

Vi + 1/2,j = 

if u i + 1I2.i > 0 

if ui + lI2.j < 0 

(2.8) 

We continue by enforcing the divergence constraint 
on these predicted velocities we've just calculated using 
a MAC type projection modified for variable density 
flow. The projection is based on the idea that the pre­
dicted velocities can be decomposed into two compo­
nents, one divergence-free and the other the gradient of 
a scalar. The gradient piece has two factors contributing 
to it: it encompasses both the pressure gradient and a 
second gradient associated with the heat released from 
combustion. Specifically, if we write the predicted 
velocities as 

If+ 112 = Uel + V fP + V", (2.9) 

we can take the divergence of (2.7) to form the Poisson 
equation 

(2.10) 

and solve it for the scalar field, q>. From q>. we can con­
struct V cp and recover both the pressure gradient and 
the velocities which satisfy the divergence constraint 
using (2.9), This is a particularly straightforward pro­
cess, since we are given the velocities at cell edges. This 
enables us to use the MAC centering (Harlow and 
Welch [6]) of velocities and pressures in discretizing 
(2.10), 

In detail, we calculate the MAC divergence at cel] 
centers 

( 
M 1 

D U) i,j = llX (Ui + 1I2,j -Ui - 1/2.j) 

(2.11) 

and approximate the volume source term at cell centers 
(2.12) 

1 dPo 
Si.J = -P (- -d + (y-1) (Kll T+qokpZ» 

y 0 t i,j 

where the solution is evaluated at time step n. and the 
derivative of the thermodynamic pressure is obtained by 
summing the remaining terms over the grid, and divid­
ing by the area. We subtract the source term from the 
MAC divergence, and use it as a right hand side in solv­
ing the Poisson equation with variable coefficients 
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below. Cell centered Neumann boundaries are used. 

+-;(Q)i,j+I_-Q)i,) _ (<Pi.j-CPi,j-I») 

!J..y Pi•j + 111 Pi, j - 1/2 

= (OMU) i.j - Si,J 
(2.13) 

Once we have obtained q:I, we compute the gradient 
to be used as a pressure correction and correct the pre­
dicted velocities 

(2.14) 

At (<Pi + 1• j -CPi,j) 

TPx,l+ 1/2,; = Ax 

At (Q)i+l,j+l + <4>i.j+1 - <4>i,j-l- CPi+l,j-J) 

2"PY,i+ll2.jj = 4~y 

(~t Px.i+l/2) 
un

+ 112 +- U
I1

+ 112 -l J i+ 112,j i+ 1/~,j ~t 

2"Py.i+1I2.j 

Thus if+ 112 satisfies a suitably accurate approximation 
to un+],2 = Ud + V", where ~'" = S and 
V . Ud = O. We also note that the choice of discrete 
approximation to dP 0/ dt guarantees that the equation 
(2.13) is solvable. since the appropriate discrete average 
of the right-hand side over the domain is zero. 

Finally, we use these U's to construct the non-linear 
terms [(U' V) U] n+1I2 using centered differencing 

(2.15) 

1 (Ui + ]12.j - U i - 1I2,j) 
uU,I; + vUy = "2 (ui + 112.1 - U1 - lJ2,j) A x 

1 (Ui- i • 112 - Ui,i-In) 
+"2 (Vi+lI2,j-VI-ll2) Ay 

We need to use a slightly modified version of the 
predictor in calculating the advection terms for mass 
fraction. We observed that using the algorithm above 
introduced a mild non-linear instability for CFL num­
bers greater than about .5 in the reacting flow case. 
Using the following alternative scheme alleviates the 
problem. 

First calculate 

- 6t- t 
Z = Z + (-2--) (1)llhZ - kZ) (2.16) 

where 1: = min (h2
/ (81». ~t) . Next, calculate 

- - 1: - 1:­
Z = Z+ -1)~hZ--kZ 

2 2 
(2.17) 



and use these intermediate values in the extrapolation 
step 

n+ll2,L _;:;n 4. x 4. t 4. t 
(2.18) 

ZI+lI2,j - Zi,j+ (2 -ui,f2-)Zs.,\j-T (vUY)i.j 

EssentiaIly~ what we are doing with this modified 
algorithm is smoothing the source terms that come from 
the chemical reaction by perfonning one point-Jacobi 
iteration. The smoothing is consistent with the govern­
ing differential equation and introduces no loss of accu­
racy. 

Since the Godunov scheme is explicit~ we need to 
satisfy a CFL condition on the time step to insure stabil­
ity. This constraint is 

(
Ax., ay,") 

At ~ (J min I u~I~I) I v~:( (2.19) 

(J~1 

Scalar Updates 

After the Godunov procedure, we are almost in a 
position to update mass fraction by solving a Crank­
Nicolson discretization of the species conservation 
equation (1.4). First, however, we require that all source 
terms be evaluated at tn+ Ill. All that is needed is a time­
centered approximation of T; we use a Taylor series to 
make the necessary guess. We then solve 

zU+l_zn 
pn+I/2 ( + [(D' V) Z] n+1I2) = 

At (3.1) 

ZO+1 +zn ZO+l +ZD 
1>D (pD+ l12G ( 2 » - (kp) 0+1/2 ( 2 ) 

for Zn+l using multigrid, and average mass fraction at 
the old and new times to get a good approximation for 
Zn+l!2. 

We perform a similar process for updating tempera­
ture by solving the discretized energy equation (1.3) 

Tn+l_r 
pn+l/2c ( + [(u' V) T] n+1I2) = 

PAt 

At, with mass fraction, we average temperature at the 
old and new times to obtain a good estimate for JO+lll, 

We continue by integrating the evolution equation 
for bulk thermodynamic pressure (1.6). We use the 
results of this integration to calculate a corrected value 
for (DPo/Dtf+l12 and pon+l which are used, in turn, to 
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update density and evaluate the volume source terms at 
time (n+l)At. 

Projection 

The projection step of the algorithm serves to 
enforce the divergence constraint (1.7) and enables us to 
find updates for velocity and perturbational pressure. 
The mechanics of this projection are identical to those 
of the MAC projection: we take the divergence of the 
vector field we're projecting; solve the Poisson equation 
for the scalar field, <p ~ and use the scalar field to find 
yJ + V"" the velocity update, and the pressure update, 

The two questions we address in this section are 

a) How do we enforce the divergence constraint as 
a function of time? 

b) What is the spatial discretization of the con­
straint? 

In response to the first question1 we use a second­
order predictor-corrector algorithm in [l] to intertwine 
the viscous operator and the constraint. We first com­
pute U*, an approximation to Un+ 1, by sol ving 

(4.1) 

and then use U* in our decomposition. This decomposi­
tion is based on the relationship 

which can be rewritten as 

(4.3) 

where 0 = pI! + 112 _ pn-1I2. 

As in the MAC case, we satisfy the divergence con­
straint by subtracting velocity source terms from the 
divergence of the right hand side. That is, we solve 

V . ~ V 6 = D ( U· - un) - S 
U pAt (4.4) 



where S = «OU) n+ 1_ (nU) Il) / (At) to be consis­
tent with the time centering of the projection. 

The question remains as to what spatial discretiza­
tion to use for (4.6), Unlike in the predictor step, the 
velocities are all centered at the same points on the grid, 
so that the choice is not straightforward. We use a 
hybrid formulation with an additional filter to remove 
modes that are left in by the projection. Specifically, in 
the primary projection, we solve 

~b& = D IV· -VI_ [sn+l_ SI 
p °L- At -J ~t-J (4.5) 

To update the perturbational pressure and calculate IT, 
an intennediate velocity field, we use 

- At 
U = un_pn+1I2GoB (4.6) 

Gopn+ 112 = GoB + GOpn- 1/2 (4.7) 

Next, we solve (4.8) 

1 dPo n+l 
Ah", = - (- - + (y- 1) (tcl T+ q kpZ» 

yPo dt 0 

and construct Go'" . To remove non-physical high-fre­
quency modes that persist after the primary projection, 
we construct a "filter" consisting of one point-Jacobi 
iteration of a diagonal - five point discretization of the 
Laplacian, and apply it to IT - Go'" [10]. Final1y, we 
update velocity by adding Go'" to the filtered field. 

Note that by using this approach we do not strictly 
enforce the divergence constraint in that Do Un+ 1 :i:- A h", . 

The algorithm does, however, appear to be numerically 
accurate and stable as demonstrated in the last section. 

Results 

Below some results of our calculations are shown 
and convergence is demonstrated for the method dis­
cussed in the previous sections. Initially, we define a 
smooth initial velocity profile inside a unit square with 
homogeneous Dirichlet boundary conditions. The initial 
~emperature profile consists of two smooth "hot spots" 
In the lower left and upper right corners, corresponding 
to areas where the fluid contains only products of com­
bustion. The remainder of the fluid consists of low tem­
perature reactants. The temperature in these hot areas is 
great enough to set off the ignition temperature kinetics. 
The Reynolds number is approximately 5000. Plots are 
shown are shown at both early and later times. 

We note especially the complex vortical structure 
that fonns in the burnt gas due to the baroclinic genera­
tion of vorticity at the flame front and the enhanced mix­
ing of the lower density gasses. 
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In addition, the low Mach number effects are appar­
ent in the temperature profiles. At late times, despite 
nearly complete combustion of the unburned gas which 
is releasing energy only locally at the flame front at the 
domain edges, the high temperature zone is located in 
the center of the domain. This effect is due to the uni­
form rise in bulk thermodynamic pressure; as the pres­
sure rises, the temperature rises highest in the center 
where combustion is completed and the density is low­
est. 

We establish convergence rate by solving the same 
problem with smooth initial data on coarse and fine 
grids, outputting the results at a fixed time, and compar­
ing the difference on adjacent grids. Our initial stream 
function is 

(5.1) 

while our initial temperature and mass fraction consists 
of two "hot spots!>, one at (.25 •. 25) and another at (.75. 
.75) defined by 

TO- 1 tanh«(r-0.125)32)+1} 1 1 
-T+ +(---) 

H TL Tn 

Zo = tanh « (r - 0.125) 32} + 1) (5.2) 

The results of the convergence study are summa­
rized in tables 1,2, and 3. 
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Thble 1: Velocity Convergence Results 

Norm Case 32-64 Rate 64-128 Rate 128-256 

Ll Euler 1.723e-02 2.17 3.66ge-03 1.95 9. 647e-04 

Re= 100 9. 59ge-03 2.07 2.255e-03 2.01 5.577e-04 

L2 Euler 2.507e-02 2.14 5.47ge-03 1.86 1.565e-03 

Re= 100 9.994e-03 2.07 2.236e-03 2.02 5.730e-04 

Table 2: Temperature Convergence Results 

Norm Case 32·64 Rate 64-128 Rate 128-256 

Ll Pr:::O 3.llIe-03 2.14 6. 832e-04 2.00 1.702e-04 

Pr= 1 2.221e-03 1.98 5.651e-04 1.98 1.442e-04 

L2 Pr=O 6.612e-03 2.24 1335e-03 2.06 3. 146e-04 

Pr= 1 4.535e-03 2.08 1.045e-03 2.01 2. 582e-04 

Table 3: Mass Fraction Convergence Results 

Norm Case 32·64 Rate 64-128 Rate 128-256 

Ll Sc=O 4.436e-03 2.11 6. 1 57e-04 1.94 1.626e-04 

Sc::: 1 1.786e-03 2.02 4.395e-04 2.01 1.441e·04 

L2 Sc=O 4. 793e-03 2.13 1.05ge-03 1.94 2.806e-04 

Sc = 1 2. 898e-03 2.06 6.858e-04 2.02 1.686e-04 
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