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Abstract 

In this paper we present a method for solving the 
time-dependent incompressible Euler equations on an 
adaptive grid. The method is based on a projec­
tion formulation in which we first solve convection 
equations to predict intermediate velocities, and then 
project these velocities onto a space of approximately 
divergence-free vector fields. Our treatment of the 
convection step uses a specialized second-order up­
wind method for differencing the nonlinear convec­
tion terms that provides a robust treatment of these 
terms suitable for inviscid flow. 

Our approach to adaptive refinement uses a nested 
hierarchy of grids with simultaneous refinement ofthe 
grids in both space and time. The integration algo­
rithm on the grid hierarchy is a recursive procedure 
in which a coarse grid is advanced, fine grids are ad­
vanced multiple steps to reach the same time as the 
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coarse grid and the grids are then synchronized. We 
will describe the integration algorithm in detail, with 
emphasis on the projection used to enforce the in­
compressibility constraint. Numerical examples are 
presented to demonstrate the convergence properties 
of the method and to illustrate the behavior of the 
method at the interface between coarse and fine grids. 
An additional example demonstrates the performance 
of the method on a more realistic problem. 

Introduction 

In this paper we develop a local adaptive mesh re­
finement algorithm for variable-density, inviscid, in­
compressible flow based on a second-order projection 
method. The equations governing this flow are: 

1 
Ut + (U . \1)U = --\1p+ F, (1.1) 

P 

Pt + (U . \1)p = 0, (1.2) 

\1 . U = ° (1.3) 

where U, p, and p represent the velocity, density, and 
pressure, respectively, and F represents any external 
forces. We denote the x and y components of ve­
locity by u and v, respectively. The development of 



the single grid second-order projection methodology 
for the incompressible N avier Stokes equations is dis­
cussed in a series of papers by Bell, Colella and Glaz 
[4], Bell, Colella and Howell [5], and Almgren, Bell 
and Szymczak [IJ. The method discussed here is an 
adaptive version of the algorithm presented by Alm­
gren et al [1], generalized to include finite amplitude 
density variation as discussed in Bell and Marcus [6]. 
The basic methodology uses a second-order upwind 
method for the treatment of the nonlinear convec­
tive terms in (1.1)-(1.2). The algorithms presented 
in those papers were motivated by a desire to apply 
higher-order upwind methods developed for gas dy­
namics to incompressible flow. In particular, they 
use a specialized version of the unsplit second-order 
upwind methodology introduced for gas dynamics by 
Colella [12]. The upwind methodology provides a ro­
bust discretization of the convective terms that avoids 
any stability restriction for inviscid flow. 

The focus of this paper is on incorporating a local 
adaptive mesh refinement algorithm (AMR) into the 
basic projection methodology. This algorithm uses a 
hierarchical grid approach first developed by Berger 
and Oliger [9] for hyperbolic partial differential equa­
tions. This approach has been demonstrated to be 
highly successful for high speed flow by Berger and 
Colella [8] in two dimensions and by Bell et al [3] in 
three dimensions. AMR is based on a sequence of 
nested grids with successively finer spacing in both 
time and space. These fine grids are recursively em­
bedded in coarser grids until the solution is suffi­
ciently resolved. An error estimation procedure au­
tomatically gauges the accuracy of the solution and 
grid generation procedures dynamically create or re­
move rectangular fine grid patches as resolution re­
quirements change. 

Before describing the adaptive algorithm we will 
review, in the next section, the basic fractional step 
scheme for a single grid. In the third section we de­
scribe the recursive time stepping procedure for the 
adaptive algorithm. Other aspects of the adaptive 
algorithm are also sketched. The fourth section de­
scribes in more detail the approximation of the pro­
jection and a multigrid algorithm for solving the asso­
ciated linear system of equations. In the fifth section 
we present computational results obtained with the 
method. 
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Single Grid Projection Algorithm 

In this section we review the basic fractional step 
scheme for the case of a single uniform grid. The 
reader is referred to [1], [4], and [7], for a more de­
tailed description. The algorithm uses a staggered 
grid scheme in which velocity and density are given 
at cell centers and are denoted by Uri and P0 respec­
tively. Pressure is specified at cell corners and is stag-

d ·· h . d d b n+~ gere In time; t us, pressure is enote y P·+.l '+.1' 
, 2,J 2 

The single grid algorithm for solving the system 
(1.1)-(1.3) is a fractional step scheme having two 
parts. First, we solve the advection equations (1.1)­
(1.2) for the updated density and an intermediate ve­
locity field without strictly enforcing the incompress­
ibility constraint. Then, we project this intermedi­
ate field onto the space of (approximately) discretely 
divergence-free vector fields. 

For the advection step we solve 

n+l n 
P - P + [(U . '1)pr+~ = 0 (2.1) 

Llt 

and 

U* ~ un +[(U.'1)u]n+~ = __ 1_, '1pn-!+F (2.2) 
t pn+'2 

for the intermediate velocity U* and the updated den­
sity pn+1. The method uses an unsplit second-order 
upwind predictor-corrector scheme for evaluating the 
advective derivatives in (2.1)-(2.2). For this step the 
pressure gradient is evaluated at t n - ~ and is treated 
as a source term in (2.2), with pn+~ = ~(pn + pn+l). 

In the predictor we extrapolate the velocity and 
density to the cell edges at tn+~ using a second­
order Taylor series expansion. We denote by W the 
vector (U, p) and define Sij to be the source vector 

(Fij - p"~! (Gp)~-~, 0) where Gp is a second-order 

approximation to V p at cell centers, computed from 
the corner values of p. With this notation, the pre­
dictor step for edge (i + ~,j) gives 

extrapolating from (i, j), and 

Wn+~,R _ Wn Llx Wn Lltw:n 
iH,j - ;+1,j - 2 31,i+1,j +"2 t,i+1,j 



extrapolating from (i + 1, j), with analogous formulae 
for the other edges. The differential equations (1.1) 
and (1.2) are then used to eliminate the time deriva­
tives to obtain 

(2.3) 

~t - ~t 
-T(VWy)i+l,j - T Si+1 ,j 

In evaluating these terms the first-order derivatives 
normal to the edge (in this case W",) are evaluated 
using a monotonicity-limited fourth-order centered­
difference slope approximation [11]. The limiting is 
done on the components of W individually. 

The transverse derivative terms (v~ in this case) 
are evaluated using an upwind difference. In partic­
ular, we define 

where Wy are limited slopes in the y direction, with 
similar formulae for edge (i, j - ~). A procedure anal­
ogous to the corrector described below is applied to 
the fiT states to evaluate a convective difference ap­
proximation to (v~). 

In the corrector step we first resolve the ambiguity 
in the edge values. The convective part of (1.1) corre­
sponding to the velocity normal to the edge is of the 
form Ut + UUx = source terms. This suggests the fol­
lowing upwind determination of the normal velocity 
component: 

if uL > 0, uL + uR > 0 
if uL ::; 0, uR ~ 0 
otherwise 

(We suppress the i + ~,j spatial indices on left and 
right states here and in the next equation.) We now 

upwind W based on ui+1,{ 

Finally, we use these upwind values to form an ap­
proximation to the convective derivatives in (1.1)-
(1.2) 

uWx +vWy ~ 

1 
-(u'+.l ' + U'_l ·)(W+.l . - W·_.l ,)+ 2 ' 2,J t 2,3 '2 ,J t 2 ,3 

1 
-2 (vi ;+.1. + Vi J'_.1.)(Wi ;+.1. - Wi )'_.1.) 

'J2 '2 JJ2 '2 

Using equations (2.1)-(2.2) we now compute the 
new approximations to p and U·. The velocity field 
U* computed in the first step is not, in general, 
divergence-free. The projection step approximately 
enforces the incompressibility constraint. A vector 
field decomposition is applied to U'~tun to obtain the 
new velocity field and an update for the pressure. In 
particular, if P represents the projection then 

Un+1 _ un = p (U' _ un ) 
~t ~t (2.5) 

1 + 1 1 1 (u* - un) 
--1 ~pn '2 = --1 ~pn-"j + (I - P) ., 
pn+2 pn+ 2 ~t 

, where pn+~ = ~(pn + pn+l ).(Note that the vector 
field we project is not U'; it is an approximation to 
Ut .) Discretely, the projection is computed by solving 
for the gradient component of 
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U' _un 
~t 

which we denote by ~ ifJ. We determine ifJ by solving 

V. (_1_, ~ifJ) = D U' - un (2.6) 
pn+"j, ~t 

where D is a second-order discrete divergence op­
erator that approximates divergence at cell corners 
from surrounding cell-centered velocities. This el­
liptic equation is discretized using a standard nine­
point finite difference method analogous to the finite 
element method with bilinear basis elements. (The 
discretization is described in greater detail in a later 
section.) We then define 

u' - un 1 
------GifJ 

~t pnH 



and 
pn+t = pn-t + <p 

We note that this is not a discrete orthogonal projec­
tion; in fact, DUn+1 ::f:. 0. However, the incompress­
ibility constraint is approximated to second-order ac­
curacy and the overall algorithm is stable. The reader 
is referred to Almgren et al [1] for a detailed discus­
sion of this approximation to the projection. 

We also note that the upwind method is an ex­
plicit difference scheme and, as such, requires a time­
step restriction. A linear, constant-coefficient analy­
sis shows that for stability we must require 

( IUijl~t IVijl~t) max --- --- = 0" < 1 
ij ~x' ~y - , 

where 0" is the CFL number. This time-step restric­
tion for the Godunov method is used to set the time 
step for the overall algorithm. 

Adaptive Mesh Refinement 

In this section we describe the local adaptive mesh 
algorithm based on the single grid projection algo­
rithm described in the previous section. The adap­
tive algorithm uses a hierarchy of nested rectangu­
lar grids on which the equations (1.1)-(1.3) are dis­
cretized. The grid hierarchy is defined logically by 
Dl, e = 0, ... ,£.max, where each Dl is a collection of 
points in Z2 and emax + 1 is the number of levels. 
Each Di is represented as the union of (potentially 
overlapping) rectangles in Z2; the calculations are or­
ganized around performing operations on each rect­
angular grid. However, the results obtained from the 
calculation are independent ofthe particular choice of 
decomposition. Each point in Dl indexes a finite dif­
ference cell with mesh spacing ~xi = ~yi = hi We 
identify cells at successive levels e, e + 1 by a map 
<p : Dl+1 ---t Dl , <p(i) = i/rl, where rl is an even inte­
ger, called the refinement ratio (usually 2 or 4). Thus 
Dl+1 corresponds to a grid refined by a factor of rl 
in each coordinate direction, hi+l = ht and 

rt 

<p-l(i) = {rli + p : p = (0,0), ... , (rl - 1, re - I)} 

is the set of cells in Dl+l contained in cell i in Dl. 
The grids are nested, in the sense that <p(Dl+l) C De, 
and <p-l(<p(Dl+d) = Dl+1 ' In addition, we require 
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them to be properly nested, i.e., for £. > 0, a one-cell 
wide buffer separates <p( Dl+l) from the boundary of 
Dl , except for those parts of the boundary coinciding 
with boundaries of the physical domain of the prob­
lem. Refinement is done in time as well as in space: if 
~tl is the time step at level e, then ~tl+l = ~tdrl' 
In particular, the time steps are chosen so that the 
explicit time step restriction for the single grid algo­
rithm is enforced throughout the grid hierarchy. 

Integration Step 

Integration of (1.1)-(1.3) on the adaptive hierarchy is 
a multistep recursive process. We will describe the 
algorithm in terms of the integration of grids at level 
£.. At time tl, we have Ul(tl), /(tl ) on all of the 
cells in Dl . In addition, we assume that pl(tl _ lltt) 

is defined at all corners of cells in Di that are ~ot 
located on interior boundaries between level e and 
level e - 1 cells. In the following, we will refer to 
this collection of points as level £. nodes. At the 
end of the time step, we will have performed the up­
dates Ue(tl) ---t Ui(ti + ~tl), /(tl) ---t /(ti + ~ti), 
l(tl lltt) l(l lltt) .. P - -2- ---t P t +""2 A complete mtegratlOn 

cycle on the entire grid hierarchy is given by invoking 
the algorithm for the coarsest level (£. = 0) grid. We 
note that at the beginning of the time step we as­
sume that the grids have been synchronized so that 
for each cell at level £. covered by level e + 1 grids the 
level e value is the average of the values in the level 
£. + 1 cells that cover it. 
Step 1. For each grid at level e we apply the up­
wind advection scheme described in the second sec­
tion to compute Ui ,* and pi(ti + ~l). When the 
advection calculation on each rectangular grid is per­
formed, data are provided on the grid to be integrated 
as well as on a border of cells sufficiently wide to ad­
vance the solution. Data are copied from other level 
£. grids wherever such d, are available' otherwise , , 
data interpolated in space and time from coarser grids 
are used. 
Step 2. We project Ui ,* onto its (approximately) 
divergence-free part to obtain a initial approximation 
to Ui(tl + ~l), by solving an equation analogous to 
(2.6). This is done using Dirichlet boundary condi­
tions for <p in the elliptic solve interpolated from the 
level e - 1 grids. We refer to this projection as a level 
projection, because it is used to update the velocities 
and pressure on all the grids at a single level; the data 



at every other level remains unchanged after a level 
projection. By itself, this projection is not sufficient 
to account properly for the coupling between levels 
in the elliptic equation defining the projection, inas­
much as it only forces matching of Dirichlet data at 
the coarse-fine interface, rather than both Dirichlet 
and Neumann data. This will be remedied by per­
forming a second projection in Step 3 below. 

We compute the scalar field ¢i. by solving the el­
liptic equation 

where Li.(.) is the discretization of the second-order 
elliptic operator 

(3.1) 

on the level £ nodes, and Di. is the associated di­
vergence operator. The values for p in (3.1) are the 
average of l(ti.) and l(tl +6.ti.). The boundary con­
ditions for ¢i. on the boundary between the level £ and 
level £ - 1 are given by interpolating the values of 

rl-l 

onto the fine grid boundary points using linear in­
terpolation in space. Here t l - 1 is the last time for 
which we have data at level £ - 1. Since ¢ is an esti­
mate of the correction to the pressure, this amounts 
to using a piecewise constant interpolation in time 
of that correction from the coarse grid onto the fine 
grid. At boundary points corresponding to the physi­
cal boundary, the usual physical boundary conditions 
for ¢ are used. These are the only boundary condi­
tions applied at level £ = O. The correction to the 
velocity field is then performed using the gradient of 
¢. 

consecutive time steps, the velocity and density data 
for all levels greater than or equal to £ have been ad­
vanced to time t l + 6.t i.. However, the corrections 
to the pressure field l', £' > R were computed us­
ing boundary conditions that had been interpolated 
from the level R solution, with no correction of the 
level £ solution due to the presence of the finer grids. 
This is analogous to solving Poisson's equation on 
a locally refined mesh by first solving on the coarse 
mesh, then interpolating Dirichlet boundary condi­
tions for the fine mesh solution. In that case, it is 
well-known that the accuracy on both the coarse and 
fine meshes is limited to the accuracy on the coarse 
mesh alone, i.e., all benefit from refinement is lost. 
The error is caused by a jump in the normal deriva­
tive at the coarse-fine boundary that is on the order 
of the truncation error in the coarse grid. To elimi­
nate this error, one must iterate between the coarse 
and fine grids. We perform the analogous procedure 
in the present setting by performing a projection step 
on the velocity field on all levels £' ~ R. We call this 
projection a sync projection, since it synchronizes the 
solution at all levels. 

The sync projection is defined as follows. We solve 
the following system of equations for ¢/', V £' ~ £ : 

Ll',l'+l(¢/'+1, ¢/', q}'-l) = Dl',l'+l(Ui.', Ul'+l). 

(3.2) 
Here, Dl ',i.'+1(Ui.',Ul '+1) is the discrete divergence 
operator defined on level £' nodes. Away from the 
nodes that lie on the level £' + 1 boundary, IJl',i.'+l is 
just the usual single !1rid divergence operator. On the 
boundary nodes, Dl ,l'+1 uses a special stencil that 
involves adjacent level £'+1 velocity values. Similarly, 
Ll',l'+l is the discretization of the operator (3.1) on 
the level £' nodes. It is linear in each of its arguments, 
and uses l' (t l + 6.tl ). Away from the level £' + 1, £' 
boundaries, it is the uniform grid discretization; near 
those boundaries, it uses values from the both levels 
to ensure continuity of ¢ and its normal derivative 

Ui.(tl + 6.tl) _ Ui.(ti.) 

6.tl 

across level boundaries. The equations (3.2) form a 
G¢/ linear system for the ¢i.' s; we solve this linear system 

l(tl + 16.ti.) using a hierarchical mesh multigrid algorithm similar 
p 2 to those developed by Almgren, Buttke and Colella 

and 

Step 3. If there are grids at level £ + 1 then the inte­
gration step is called recursively to advance the level 
£ + 1 grids. After the level £ + 1 grids complete ri. 
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[2] and by Howell [13]. We then· compute corrected 
values for the velocities: 

This step corrects the failure of the velocities on the 



finer grids to satisfy the divergence-free condition at 
coarse-fine boundaries (most noticeably on the level 
£, £ + 1 boundary since the other levels have been 
matched within the recursive calls to the integration 
step at the finer levels). Finally, we correct the pres-
sures: 

l' (tl + ll.t'. - ~ll.l') := 
2 

l' (l + ll.l - ~ll.tl') - if/' 
2 

Note that for a three level calculation at the end of 
a level 0 time step we actually perform two sync pro­
jections. The first synchronizes levels 1 and 2. The 
second synchronizes levels 0, 1, and 2. The reason 
for this is that the projection step of the algorithm 
as defined in the previous section occurs at half time 
levels. In the adaptive algorithm the sync projection 
at level £ is a correction to the approximation to Ut 

at t l + ll.te /2. Thus, the two sync projections rep~ 
resent corrections at different times. Once we have 
completed the sync projection and updated the ve­
locities and pressure, we average the solution from 
the level £' grids recursively onto the coarser grids, 
down to level C. 

Creating the Grid Hierarchy 

The initial creation of the grid hierarchy and the sub­
sequent regridding operations in which the grids are 
dynamically changed to reflect changing flow condi­
tions use the same procedures as were used by Bell et 
al [3] for the hyperbolic case. The grid hierarchy is 
constructed using an error estimation criterion to de­
termine where additional resolution is required. (For 
the examples shown in the last section we have used 
simple error estimation methods based on the magni­
tude of the vorticity or the density gradient; however, 
more precise approaches such as using Richardson ex­
trapolation to estimate error can be used.) Given 
grids at levell we use the error estimation procedure 
to tag cells where the error is.above a given tolerance. 
The tagged cells are grouped into rectangular patches 
using the clustering algorithm given in Berger et al 
[10]. These rectangular patches are refined to form 
the grids at the next level. The process is repeated 
until either an error tolerance criterion is satisfied or 
a specified maximum level is reached. The proper 
nesting requirement is imposed at this stage, namely 
that the union of level l + 1 grids be properly con­
tained within the union of level C grids (except at 

6 

the boundary of the physical domain where all levels 
can be refined up to the edge). This ensures that all 
coarse-fine interfaces are between successive levels; a 
level l + 2 grid never directly interacts with a level C 
grid. 

As the computation proceeds a regridding algo­
rithm is periodically used to adjust the placement 
of the grids automatically. Every k/ steps we regrid 
at level C, which modifies grids at levels C + 1 to lmax. 
As in the initialization, error estimation and cluster­
ing are used to determine the new grids. Data for 
the new fine grids are copied from the previous grids 
at the same level if possible, otherwise the data are 
defined by interpolation from the underlying coarser 
grids. 

Discretization of the projection 

In this section we describe the numerical approxi­
mation to the projection. The projection is used to 
decompose a vector field V into an approximately 
divergence-free component V d , and a component of 
the form i V ¢. In the adaptive algorithm there are 
two distinct projections. The level projection oper­
ates on De, the union of grids at level C. The sync 
projection operates on two or more levels of the com­
posite grid hierarchy. The basic approach in both 
cases is to solve for ¢; in 

1 
V·-V¢=V·V. 

p 
(4.1) 

We will first describe the discrete approximations 
used for the elliptic operator and for V· V in (4.1). 
The projection is derived from a finite element vari­
ational formulation. Specifically, we consider the 
scalar pressure field to be a CO function that is a 
bilinear function over each cell. For a detailed devel­
opment of this approach the reader is referred to Alm­
gren et al [1]. The discretization of (4.1) is obtained 
by solving the difference equations derived from the 
variational form 

J ;V¢(x). V1/Ji+~,H~ (x) dx = 

J V· V1/Ji+!,H~(x) dx, 

(4.2) . 



where the 1/J's are the standard bilinear basis ele­
ments. The node values of ¢ obtained from solv­
ing (4.2) are used to update p and to determine the 
divergence-free component of V using 

where 

1 
V d = V - -G¢, 

p 
(4.3) 

(G¢)ij = (2l., (¢i+1/2,j+l/2 + ¢i+l/2,j-l/2 

-</;i-l/2,j+1/2 - </;i-l/2,j-1/2), 

2ly (</;i+1/2,j+1/2 + ¢i-1/2,j+1/2 

-</;i+l/2,j-l/2 - ¢i-l/2,j-l/2) ). 

The key issue in applying the weak formulation de­
fined by (4.2) for both the level projection and the 
sync projection is the specification of what happens 
at internal boundaries between coarse and fine grids. 
Our approach has been to retain the notion that pres­
sure is viewed as a continuous function that is bilinear 
on each cell, corresponding to a conforming finite el­
ement basis. At the coarse-fine boundary continuity 
requires that the fine grid values along the edge of 
a coarse cell be linearly interpolated from the coarse 
grid. Thus, the only unknowns at the coarse-fine 
boundaries are those corresponding to the nodes of 
coarse grid cells. The basis element 1/Jc-f in (4.2) 
that is associated with a coarse-fine boundary node 
is therefore the piecewise bilinear function that is zero 
on all interior fine grid nodes and zero on all other 
coarse grid nodes but decreases linearly to zero along 
the fine grid nodes between the coarse node where it 
is one and adjacent coarse nodes where it is zero. 

Before discussing the multigrid algorithm for solv­
ing (4.2), it will be helpful to reformulate the equa­
tion using the multilevel notation introduced in the 
previous section. For the level projection at level £ 
the values of ¢ on internal boundaries of the fine grid 
are given as Dirichlet conditions determined by </;£-1, 
the values of ¢ on the next coarser grid. In this case 
values of </; at level £ + 1 or higher do not playa role; 
the projection is performed as if higher level grids did 
not exist. For this case, we express (4.2) as 

(4.4) 

Here the operator Ll is a density-weighted nine­
point finite difference approximation to the continu­
ous elliptic operator. The operator DI. given by the 
right hand side of (4.2) defines a suitably scaled dis­
crete divergence. 
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For the sync projection the values of ¢ at level £ 
depend not only on the values of ¢l-1 for boundary 
values at internal boundaries of the level .e grids but 
also on values of </;£+1 on the interior of grids at level 
i + 1. There is also an analogous dependence of the 
weak divergence on values of VHl. In both cases 
these dependencies arise because the basis element 
1/Jc- f defined at the coarse-fine interface has support 
in the fine grid. We express (4.2) in this case as 

L£,£+1(¢Hl ,¢i,</;I.-l) = Di ,i+1(Vi, V i +1 ). (4.5) 

We note that this equation is defined only at loca­
tions in level £ grids that are not covered by interior 
nodes of level £ + 1 grids. 

The linear system associated with the solution of 
(4.2) is the standard bilinear finite element stiffness 
matrix for a self-adjoint second-order elliptic opera­
tor. We solve this system using standard multigrid 
methods (see [14]) modified for use within the adap­
tive grid hierarchy. The multigrid algorithm for the 
level projection is straightforward since it only in­
volves grids at a single level. 

The sync projection involves multiple levels and so 
is more complex. The algorithm used here is similar 
to those developed by Almgren et al [2] and by Howell 
[13]. We will sketch the algorithm oniy for a two level 
sync projection for levels £ and .e + 1; extension to 
additional levels is straightforward. If the refinement 
ratio is greater than 2, for the multigrid solve we 
introduce additional temporary levels between levels 
i and i + 1. The basic multilevel relaxation cycle for 
the sync projection is: . 
1. Compute residual D i +1 - L£+1 (</;Hl, q/) on level 
£ + 1. 
2. Relax on level i + 1. If there are intermediate 
multigrid levels between levels £ and £ + 1, this relax­
ation takes the form of a "short" V-cycle, extending 
down to the coarsest intermediate level above level .e. 
Update ¢Hl. 
3. Evaluate composite grid residuals on both levels 
using (4.5) and restrict residuals on level i+ 1 to level 
.e. 
4. Perform V-cycle on grids at level .e to obtain cor­
rection to </;i. 
5. Interpolate correction to level i + 1 and relax at 
level i + 1 (again using a short V-cycle if necessary) 
to obtain correction to ¢l+l. 

This overall cycle is repeated until a desired level 
of reduction in the composite residual is obtained. 



Table 1: Convergence rates for velocity on refined 
grids. The top numbers refer to the grid size of the 
coarse grid in each calculation. 

Typically, each cycle reduces the composite residual 
by almost an order of magnitude. 

Numerical Results 

In this section we present three sets of results. The 
first set demonstrates second-order convergence of 
the adaptive projection method. For the convergence 
study we use the same initial velocity profile as was 
used in [4]: 

u( x, y) = - sin2 (u) sin(27rY) 

v(x,y) = sin2(7ry)sin(27rx) 

in the unit square. The velocity satisfies homoge­
neous Dirichlet boundary conditions. 

A single patch, centered in the domain and occu­
pying one quarter of the area of the domain, is refined 
by a factor of two. We have turned off the error es­
timation routines and fixed the location of the patch 
for this study. Calculations were run to t = 0.5 with 
a = 0.5 for a sequence of increasingly fine base grids. 
The difference in the solution between grids of ad­
jacent resolution is proportional to the error on the 
coarser grid. The convergence rate is defined by find­
ing the L2 norm of the difference between the solution 
obtained on the refined patch for several pairs of base 
grids and then taking the log2 of the ratio of these 
norms. The convergence rates for velocity are given 
in Table 1. 

The second computational example was designed 
to illustrate the robustness of the algorithm for han­
dling the interface between coarse and fine grids. The 
initial conditions consist of a pair of counter-rotating 
vortices centered in a fine grid patch, which is re­
fined by a factor of four over the base grid of 32x32. 
The ':egridding algorithm is turned off so the refined 
patch remains fixed. In Figure 1 we show the results 
as the pair crosses from the fine patch into the coarse 

domain. Note that no spurIOUS vorticity is gener­
ated at the coarse-fine interface. In the last frame 
we see only the contours of the original vortices, now 
on the coarse grid. Although the vortices are some­
what smeared because the coarse grid is inadequate 
to resolve them, there is no vorticity created or left 
behind on the interface. 

In Figure 2 we present results from the calculation 
of a helium-in-air bubble rise. This calculation was 
done using r-z coordinates, with the bubble initially 
spherical and centered along the r = 0 axis (on the 
left in the figures shown). Gravity is the only external 
force. The base grid here is 16x32; there are two finer 
levels, each refined by a factor of four. 

The initial conditions are zero velocity everywhere, 
and a density profile per, z) = a(1.225x10- 3) + 
(1 - a)(1.75x10- 4 ) kg/cm3 , where a = ~(1 + 
tanh( v'(r2 + (z - zo)2) - Ro)/W). In this problem, 
the physical domain is 4km x 8km, Zo = 1.4km, 
Ro = 1km, and W = .04km. Density contours are 
shown at times t = 1.7, 11.6, 22.9 and 41.4 seconds. 

Note here that the hierarchical grid structure 
evolves with the flow, generating for this problem one 
grid at the middle level and anywhere from one to five 
grids at the finest level. Regridding occurred every 

. two time steps. 
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The timings for the bubble rise problem indicate 
that the calculation took approximately 70 p-seconds 
per cell on one processor of a Cray Y-MP 8/64. The 
finest calculation used in the convergence study av­
eraged under 50 p-seconds per cell. 

Conclusions 

We have developed a new adaptive projection 
method for time-dependent incompressible variable 
density flow. The levels in the adaptive mesh hierar­
chy are refined in both space and time. The advection 
step takes place on individual grids in an approach 
similar to that of the single grid method. The pro­
jection at each level is similar to the uniform grid 
projection, but must now incorporate multiple grids 
per level. In addition, we introduce a sync projection, 
which is needed to synchronize the solution at each 
levell with the data at the levels above it at the end 
of each level l time step. This adaptive projection 
method is second-order accurate and provides an ac­
curate and efficient tool for modeling variable density 
flows. In future work, we plan to extend the method 
to three dimensions and include viscous transport. 
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Figure 1: Counter-rotating vortex pair passing through a fixed coarse-fine grid interface with a refinement 
ratio of 4. Vorticity contours are shown after 0, 59, 76 and 121 coarse time steps. 

Figure 2: Helium bubble rising in air, modeled in r-z coordinates with two levels of mesh refinement-each 
by a factor of 4. Contours of density are shown. 


