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Abstract 

In this paper we describe a front-ncking algo-
rithm for modeling the propagation of discontinuous 
waves in two space dimensions. The algorithm uses a 
volume-of-fluid representation of the front in which the 
local frontal geometry is reconstructed from the state 
information on either side of the discontinuity and the 
Rankine·Hugoniot relations. The algorithm is coupled 
co an unsplit second-order Godunov algorithm and is 
fully conservative, maintaining conservation at the 
fronL The combination of a volume-of-fluid representa
tion of the front and a fully conservative algorithm 
leads to a robust high resolution method that easily 
acomodates changes in the topology of the front as well 
as kinks arising when a tracked front interacts with a 
captured discontinuity. The Godunov/ll'2.Cking integra
tion scheme is coupled to a local adaptive mesh 
refinement algorithm that selectively refines regions of 
the computational grid to achieve a desired level of 
accuracy. An example showing the combination of 
tracking and local refinement is presented. 
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A broad range of phenomena in unsteady super
sonic flow are dominated by the propagation and 
interaction of discontinuous nonlinear waves. There are 
two basic approaches to treating discontinuous waves 
associated with hyperbolic conservation laws. One 
approach is high-resolution finite difference methods 
that resolve discontinuities on a grid by addition of a 
suitable dissipation while preserving high accuracy in 
smooth regions. The other approach is front tracking 
where the discontinuity is treated as a free boundary 
whose dynamics are described in terms of Rankine
Hugoniot relations and appropriate entropy considera
tions. The ILerature associated with both of these 
approaches is vast and a comprehensive SUldy is beyond 
the scope of this paper. The interested reader is 
referred to Chern and Colella [1], Chern et al [2]. and 
Woodward and Colella [3J for a survey of the literature 
associated with these areas. 

In this paper we present a new algoothm. which 
generalizes earlier work on Chern and Colella [11. that 
combines a conservative front-tracking scheme with an 
unsplit second-order Godunov difference method used 
in conjunction with local adaptive mesh refinement. 
The basic strategy is to explicitly model the propagation 
of some distinguished discontinuity through a fixed 
finite difference mesh and rely on the difference tech
nique to caPblre other waves. The tracked discontinuity 
is represented using a volume of fluid description that is 
insensitive to complexity of the front. changes in front 
topology. and is readily extendable to three space 
dimensions. 

The key :dea of Chern and Colella is the use of 
an algebraic redistribution teclmique to alleviate CFL 
time step resttictions arising when a finite difference 
cell is split mILl two pieces, one of which can be ami
trarily small. The use of the redistribution technique 
provides a method that is globally conservative without 
encurring a penalty in time step size. The principal 



innovations discussed in this paper are the use of a 
finite difference approximation to an effective advection 
equation for moving the front and the use of the redis
tribution technique to couple the tracking method to a 
local mesh refinement scheme where the tracked front 
can cross different levels of refinement. 

In the next section we provide an overview of the 
basic tracking integration method. The details of the 
tracking algorithm of discuss in section 3. In section 4~ 
we describe the coupling of tracking to the local adap
tive mesh refinement algorithm of Berger and Colella 
[4]. The last section of the paper presents a numerical 
example. 

Overview or the loteeration A 120ritbm 

In this section we describe the basic second-order 
Godunov algorithm with front tracking in a summary 
form. Details of the various components are described 
in the next section. We will describe the method in a 
fairly general form; however. the emphasis in this paper 
will be on tracking a gas-dynamic shock.. In particular. 
that components of the algorithm that are specific to the 
type of discontinuity being tracked will be discussed 
only in the context of a gas-dynamic shock. Further
more~ special simplifications of the algorithm for this 
case will be indicated. Thus, we want to solve 

iJV + iJF:': + iJF' = 0 (2.1) 
at ax ay 

where, in the case of gas dynamics. 

u= [::] F:r.(v)=[p~pl F'(U)=[p~~pl· 
pE puB +uP I'vE +vp 

The representation uses a distinct state V on each side 
of the ttacked front. We will refer to one of the states 
as "inside" the front and the other as "outside" the front 
which we will denote as VI and V 2, respectively. 
Thus. for each cellt ~j. through which the front passes. 
we define both states. Vi) and Vi;' For these "mixed" 
cell through which the front passes we also define 
A~. 1=1,2 to denote the volume fraction of the cell 
inside and outside the fronl respectively. 
(Ai} + Ai1 = 1.) Cells fully inside or outside the front 
require omy a single state vector. For the special case 
of a gas-dynamic shocky the post-shock state will be 
correspond to 1=1 and the pre-shock state to 1=2. 

The basic algorithm is, essentially. a three-step 
process. In the first two steps, which are actually 
independent. we compute fluxes in for V I and U 2 

"ignoring" the presence of the tracked front and we 
advance the location of the front. To perform these 
first two steps. it is necessary to extrapolate Slates to the 
opposite side of the front; e.g .• for cells within two 
zones of the front we must define V 1 in cells where 

Al = 0 and U 2 in cells where A 2 = 0 Using these extra
polated values, whose exact specification is given 
below. we define states utt J. 1= 1,2 that extend the 
definitions of VI and V 2• The constructions used in the 
first two steps of the algorithm use these extended 
states. 

In the first step of the algorithm. we use an 
unsplit second-order Godunov integration algorithm 
developed by Colella [5] to compute fluxes for the pre
and post-shock states. This scheme has the form 

Vl'J1 = Ul'j + !: (Fi~-'hJ-Fl~) 
At 

+ Ay (F1J-4'? -FIJ-Ph)' (2.2) 

Here. Ff+VaJ. Flj+Vt. approximate time averaged fluxes 
at the cell edges. and are assumed to be explicit fune· 
tions of V" of the form 

Fl+'hJ = F:JI.(V;"J_tt ...• Ui.lj+l; (D;V)i-rJ-r. 

(D;V)i-rj-r ••..• (Dz-V)i+t'j.,.(D,-V)'+rJ") 

Flj+'h = F'(Vr:"lJ.···,Ul'+lj+l; (D;U)i-rJ....,t 

(D'-V)i....,J...., ••..• {D1l-U)i+t'j+t'.(D,-U)i.,J.,) 

where 

(Dx-U)ij = Ul"J -Vl'-lj. (D,-V);J-l = VrJ -Vtj-l 

In other words. Ff+Yl.,jF1J"-h. on V" depends on the 6 
cells nearest t.ile cell edge where the flux is defined. 
plus a possible dependence on values of V" farther 
away which appear only as one sided differences in V" . 
In addition, the scheme has the property that setting any 
of the D;I-U ,D,-U to zero adds dissipation to the 
scheme and when they are all set to zero the resulting 
scheme is a first-order version of Godunov's method 
that has comer coupling so that it is stable for CFL's up 
to 1.0. Here, t::le fluxes for V 1 and U2 are computed 
independentl y, ignoring the presence of the tracked 
front, using the extended values to fill the required sten
cil of the difference scheme. The only modification 
made to the integration module is to zero D:r.-V and 
D,-V when these differences involve cells that are fully 
on the other side of the front; i.e .• difference contribu
tions for computing V'·fluxes that attempt to use V'· 
values in cells where A L = 0 are set to zero. 

In the second step, we reconstruct the front shape 
from the volume fractions and solve an advection equa· 
tion to advance the front The reconstruction assumes 
that a normal to the front ~ and a front speed Sij can 
be computed from local information and that this infor
mation can be extended to a neighborhood around the 
mixed cells containing zones that can participate in the 
front movement, e.g., cells that are within one zone of a 
mixed cell. This phase of the algorithm depends on the 
specific type \)f discontinuity that is being tracked; its 
fonn for a shock is discussed in the next section. Using 
the normal and the volume fraction we can determine a 



linear reconstruction of the front inside each mixed cell. 
An effective equation for the volume fraction is then 
used to advance the front by computing volume frac
tions at the new lime level. In particular, we integrate 

A, + V·(:rA) = -A v·r (2.3) 

where r = s1t using a piecewise linear reconstruction of 
the front inside each cell to compute the volume frac· 
tion flux. 

The final step of the algorithm uses the fluxes 
computed in the second step and the frontal dynamics 
from the first step to update the cells near the tracked 
front. This pnxedure is based on ideas developed by 
Chern and Colella. The fluxes are combined with aper
tures that specify the area (in space-time along each 
edge) where that flux is applicable to compute a conset· 
vative update for both U l and V 2• for each cell 
through with the front passes during a time step_ Since 
cells intersected by the front at the new time have a 
reduced volume, fully updating the cell would lead to a 
violation of CfL conditions and would potentially lead 
to an instability. Thus. each cell receives a fraction of 
its specified conservative update that is consistent with 
stability. To preserve conservation the remainder of the 
update is redistributed to neighboring cells in a 
volume-weighted manner that is consistent with the 
characteristic structure of the equations. 

Intefllltion Scheme with Tracking 

In this section we describe the integration scheme 
with tracldng in more detail. We denote the grid cells 
by Ai; where i =ilo JIM and j =jlb jAi. Before beginning 
either the front advancement or the flux computation we 
must first define the extended states. The extension is 
done in a two step process. First, we identify a grid 
cells as potentially participating in the front motion if it 
is either a rnixed cell, o<Alj < 1. or it is adjacent to a 
mixed cell. These are the cells through which a ponion 
of the front rnay pass during the time step. For later 
reference. we define a marker, Pij such that Pij=l for 
cells that can participate in front motion and 0 other· 
wise. In the first stage of the extension. we define an 
extended state 

[ 

L AIt.,tU·,1 1 u!. = _ab_"..;..,<i;;.oJ );",.-__ 

IJ L A" ,I 
.(i J) 

(3.1) 

for each cell where A'={). and Pij=l, where nbh(i j) 
represents the 8 neighboring ceUs. We are guaranteed 
that at least one cell in nbh(i J) has nonzero A' so that 
(3.1) is defined. We must now extend an additional cell 
beyond the cells defined by (3.1). For this purpose, for 
each cell that does not participate in front motion but 
borders a participating cell and satisfies A!. = 0 we 

-, I ~ 
define V ij to be the average of the iJ values defined by 
(3.1) lying in nbh(i j). (A VOlume weighted averaged 

does not make sense here because the baITed states are 
associateAi with these cells have A' = 0.) These addi
tional states are required to complete the stencil of the 
difference scheme for each cell that participates in front 
motion. We then define the extended states Utt",J to 
be Vl;) if A~>O, illj for cells that participate in front 
motion but for which Ah={), and U Ii for neighboring 
cells that are not otherwise defined. 

In the first step of the algorithm, we use the 
extend sr.ates defined above to compute ftuxes for the 
edges of cells using the second-order Godunov pr0-

cedure described in the previous section. The use of 
extended states and the modification to the integration 
a1gorithm allows fluxes Fl.kj and Flj+lh to be defined 
for all edges of cell where Ah>o or where Ali = 0 and 
Pij = 1. 

In the next step of the algorithm we reconstruct 
and move the front. To accomplish this step we need 
to define a normal to the front, it and a front speed s t 
for each cell that participates in front motion. In the 
case of a shock wave. the Rankine-Hugoniot relations 
determine the nonnal In particular. 

1 
(3.2) 

~(u.~.i_u~J)2 + (\I~.l_\l~Il)~ 
'J -'J 'J 'J 

which reflects tl~ fact that the change in velocity aaoss 
a shock occurr in a direction nonnal to the shock. 
Once the normal has been computed the shock speed Sij 

is detennined by projecting the pre- and post-shock 
states (l =2 and 1=1. respectively) onto the normal 
direction and solving the associated Riemann problem 
to detennine the resulting shock speed. 

These normals and shock speeds can now be used 
to solve (2.3) to advance the front. We have used an 
operator split approach in which we solve 

and 

A,t + (s, A 1>, = _AI sn, (3.3b) 

alternating whi·;h is perfonned first between successive 
time steps. Here, S% and s, are the x and y com
ponents of sit. ':Ne are using A l to advance the front; 
we will derive A 2 from the constraint that the A's sum 
to 1. To discretize the x -sweep. we first define edge
centered speeds using 

P;j sfJ + Pi+1J Sl+lJ 
Si.+'1aJ = 

P;j + P j +1j 

for each edge 'oordering a cell where Pij=1. These 
edge velocities are then used to compute volume
fraction fluxes across each cell edge. In computing 
these fluxes we need to utilize the local structure of the 
front. Using Aij and 1f;j we can uniquely construct the 



front in cell tJ.ij • In particular I for each cell we can find 
a unique value of (J such that 

S;j !E{re 4;j s.t.W·Y-tJ <O) 

satisfies 

~ _ Area(Sij) 
At} - Ax fly 

The volumetric flux of A though edge i+1hj is the area 
of the intersection of S in the upwind cell with the poe .. 
tion of that cell sweep out by the edge velocity. More 
precisely. if Si+'h.J~O then 

F.ihJ = Area(S;jn[Ax-si+'AJAt Axlx[O.tJ.y]) 

where the rectangle is defined with respect to a local 
coordinate system on tJ.ij where the lower-left comer of 
the cell is the origin. Similarly. if Si+'hJ<.O then 

A -
F,+'hJ = -Area(S;+lJ n(O.si+'h.j ru 1x[OAy]) 

where the rectangle is defined with respect to analogous 
cell i+lJ coordinates. With this volwnetric flux 
definition. 

[ 
F·~ ;-F·~J. l ] A .~.t I-,-,AV ......, 

'J Ax !J.y 
A~~l=~ ____________ ~ 

'J [1-~ Si~;i~ ] (3.4) 

The y -sweep is defined analogously and defines A ,,+1 
from A"+'h. 

The final step in the integration algorithm merges 
the results of the first two steps. Although we will not 
make any distinction at this point in the discussion. for 
cells that are sufficiently far from the tracked front the 
algorithm discussed below collapses to the update for· 
mula (2.2) using appropriate fluxes. To incorporate the 
effects of the front into the update for U' we must con
struct an approximation to the motion of the front dur
ing the time step. For cells that are mixed (O<A<l), 
given A1j·l, Aij+l,l t and the front speed Sij. we can find 
a plane So in (:t J) space of the form 
So = «:t,t): Y'n - st + a =0] that locally represents 
the trajectory of the tracked front through the finite 
difference cell ~j. If we define 

SI = {(r.t): -ron-s t+a <OJ, 

then s and a can be chosen so that 

Ai) = area of SI naijx{t") 

A~+l = area of SI "tJ. .. x{t Jl+1} v v' 

In the case that O<Aij·l,Aij+l.1<l, So will be uniquely 
determined from the A·s and 1f with using the front 
speed Sij' In the case when one of the A's is zero, then 
the speed s is used to define s in determining So. 

We will use So are S 1 to determine the areas of 
the surfaces in space-time on which fluxes of each of 

the componen:.s are imposed. We define apertures 
AflYaJ •1 10 be the area of (S 1 "Li:.IMJX[tll J"+ru]), and 
apertures Af/~l to be the area of 
(S1 nLij±l",x[t" ,1"+At]), where the Li±Yl.J,J..jj~ are the 
sides of ~j' We also define 

A6 = area of Sona.jx[t" .1"+&1]. 

The calculation of AfthJ,t. Af/~l. AI is a sttaightfor. 
ward exercise in trigonometry. Theses' apertures 
represent the portion of the edge on which fluxes for VI 
are applied. The U2 apertures are defined using by the 
compatibility condition 

Ai J:.t'ho.l + Ai Jt:Ya:l = Ax At 

and 

A i :l:'hJ.1 +Ai±'h,j.2=~yAt 

We mention that AI is easily ca1culated from the 
Ai:.tYiJ"s. Ai",'::t:IJ!a·S and A's using the divergence 
theorem. Away from the front. the appropriate aper
tures are defined to be !J.t x the length of the cell edge 
and A' =0. 

We now apply the divergence theorem to each 
ceD to obtain an initial approximation vij) to U' at t lll+1 

and 

A~+lU~.J = A~U~·1 -
IJ IJ IJ IJ 

-.L(A! u. ;F~.&. ;-A'.J.f, IF''.l,,,. !J.xty ,+~.., .-.-,...., I-,....,·'AV 

+AJ j~I:l+Ya -AI J41j-Y1 +(_1)' AtF t) (3.5) 

Here Al+¥l.jt AfJ+V1 are given by 

A! . -1.(Af~.I+A#+N) 
t+lhJ - 2'.) 1+1.) 

I 1 O'~~l •• ~ 
AiJ+Ya = '2(At:J+1 +Al:J . J 

In the general case, F f is the flux across the tracked 
front in the c~ll. given by 

I 7t..... -+ 
F'i = F (Ulj)-SijUi'j, 

where U1I is the value of the solution to the Riemann 
problem for the system (2.1) projected in the ~j direc
tion along Ule ray ;It = Sij , with left and right stales 
Ujj .2fU,~ .1. In the case of a shock wave a simpler 
approximation can be used, namely, 

FI = F1f(U~"'j.)- ro •• U~j ",.2 
IJ 'J ~'J' f 

(3.6) 

We want to now reexpress (3.5) the update of U 
in terms of the change in U caused by the tracked 
front To accomplish this we first define update that 
ignore the front 

Up!.,.+lJ = Up!,IIJ + ~(F~·IJ.' -F"'L..) 
',J 'J Ax .-. ...., 1+,..., 

+ !~ (Flj-'h. - FlJ~'1.J. (3.7a) 



where the fluxes are computed from the t-xtended states 
UUI.I&. Then we rewrite (3.5) as 

where 

A ,,+lU·J. - A~+lU~.I&+1J. + I:II!, 
ij ii - IJ 'I .. um 'J 

liM!, = A!'.U~ - A!'.+lUfDlI,' .I&+1J._ 
'J 'J" t.J , 

1 ('A I F,J; I A I FzJ + 
lu Ay ~i~ ;+V&J-~i~ i~ 

(3.7b) 

A! . ·t:,J.u.-A'J .. r::1·tl.L+(-I)'A'FI. (3.7c) • J+¥I:' 'JT77I '-W 'J-n ') '} 

We note that with this definition of 8M t sufficiently far 
away from the tracked front EM = 0 to that (3.7) is 
simply a re-expression of (2.2). If we divide (3.7b) by 
At;+l) we would have 8 conservative update for U'. 
namely, 

&1 . .1 
U!'.+1J - U~ .1&+1.1 + __ '1_ 

IJ - I.J A~+l.' . 
IJ 

However, because the A's can be arbitra.."'ily small, this 
update can require an excessive time step restriction to 
remain stable. (This update is, of course, stable for 
cells where A=l.) To avoid this type of time--step limi· 
tation we will use the redistribution ideas of Chern and 
Colella [1). Their basic idea is to define a preliminary 
update that adds a fraction of the update that will be 
stable at the time step determined CFL criteria on the 
regular grid This gives a preliminary evolution in 
time, given by 

(3.8) 

This update does not preserve discrete conservation 
fonn. In order to have conservation, we must distribute 
( l-A!'·+t.h£Mr onto the grid In the general case we 

I} JU 'J • 
do this by decomposing these increments into charac-
teristic variables and distributing them to nearby cells in 
a volume-weighted fashion. If we expand 

(1-A!'.+l.hI:II!. = "r'I'¥J,! 
'I . JUlnj) t* iii 

where r.(U), 1 = 1, ... ,N are the linearized right eigen
vectors of the system (2.1) projected in the 1fij direc
tion, with r1 = 'i(~~)' then we can defin~ 

EM+·1 = "Lalrl 
l<p 

8M-.I = "La~'l 
i>p 

SMO) = a;'~ 

()M'tld.l = 8M+.1+SM+.2+SMo.1 

()M'MI..2 = &I-.1+oM-.2+()M0.2 

A~J = 'lit" AA+l.1 
') .L" 

JtbI&(i. J) 

(3.9) 

Then we define the final values of Ulj+U to be 

W,ttd,l 
U~+lJ = U!,:+lJ + 'lit" (3.10) 

'J 'J .L" A ,.d ,I • 
111M (i J) i.j 

Again. in the epecial case of a gas dynamic shock. the 
redistribution step can be simplified by setting 

&lNtI ,1 = (l_AA+l.1)&l1 + AA+l,l&\l2 

and 

SMrt.tl.2 = O. 

Finally t we note that in the shock wave case, 
several minor modifications were made to the metho
dology to deal with degenerate situations. First. when 
the jump in velocity in (3.2) across the front is small 
compared to the jump in pressme, the computation of 
the normal from the velocity jump is not reliable. This 
can occur, for example. when pieces of the front col· 
lide. When the jump is judged to be small we convert 
the pre-shock fluid in the zone 10 post-shock and adjust 
the volume fractions to reflect this change. These 
modifications are accumulated into the SM's in the 
redistribution step to that the method remains conserva
tive. The other type of degeneracy that is encountered 
occurs when there are extremely sharp comers in the 
fronL In this case it is possible for isola1ed fragments 
of pre-shock material to be entrained into the post
shock regior.. When this fragmentation occurs the frag
ments are absorbed into the post-shock states and the 
vo]ume fractions are adjusted. 

CQUpiine to AMR 

In this section we describe how the basic conser
vative trackin~; methodology is coupled to a local adap
tive mesh n.fir.ement algorithm based on the approach 
of Berger and Colella [2]. We will briefly review the 
basic adapth'e refinement algorithm before describing 
the modificatirns needed to incorporate tracking. The 
algorithm is ha.c-ed on a hierarchical grid structure com
posed of grids cf varying resolution. The grid hierarchy 
is constructed using an error estimation procedure to 
identify cells having unacceptable errors that are then 
clustered into logically-rectangular grids that are subdi
vided to form finer cells where more resolution is 
required. Integration of the differential equations on 
this hierarchical grid structure is a three-step procedure. 
First. the coarse grid is integrated to supply boundary 
data for finer grids. The fine grids are then integrated. 
subcycling in time. to catch up to the coarse grid. 
Finally, the coarse grids are corrected to reflect the 
improved res~lution of the finer grids. 

The bulk of the tracking methodology appears in 
the integration module of the code which is cleanly 
separated from the adaptive mesh shen. There are two 
modifications that are required to combine tracking with 
adaptive refinement First. interpolation from coarse 
grids to finer grids is no longer a simple interpolation 
procedure; iristead the front must be constructed on the 
coarse grid h.~d the relation of the fine grid cells to the 
front must be used in the interpolation. This occurs in 
interpolating boundary conditions for the fine grids and 



in initializing fine grids from coarse grids when the 
error estimation criteria call for finer grids in a particu
lar region. Similarly. in averaging fine grid cells to 
define values on an underJying coarse grid cell. the 
averaging must be weighted by the volume fractions in 
the fine cells to ensme conservation. 

The second modification represents a more sub
stantial change. Without tracking the correction to the 
coarse grid to reflect the improved resolution of the fine 
grid is to replace underlying coarse grid values with the 
average of the covering fine grid values and to add a 
flux correction 8F to coarse grid cells that border fine 
grids. More precisely. we set 

(4.1) 

where 

8F = L(L/ !JJ/ F/) - Lt:!JJt! Fe: 

with the sum taken over the fine grid edges that cover 
the coarse edge and over the number of time steps the 
fine grid is subcycled. for a coarse step. Here. A t: is the 
area of the coarse ceD. L t: J are the lengths of the 
coarse cell edge and the fine cell edges that cover it 
Note that 8F is an extrinsic quantity t e.g. mass not den
sity. The update (4.1) is equivalent to repeating the 
integration of the coarse cell using the sum of the fine 
grid fluxes to update the cell instead of the coarse grid 
flux. 

When tracking is included, additional 
modification are needed to account for the effects of the 
redistribution step of the algorithm. These corrections 
arise because redistribution provides an additional 
mechanism for communication across a coarse-fine 
boundary. There are four basic coarse-fine redistribu
tion terms: 

OR}: These are the values redistributed into the fine 
grid from the grid boundary cells; hence, there 
are artificial and their effect must be removed. 

OR!: These are the values redistributed from the coarse 
grid into the coarse grid cells underlying the fine 
grid that are subsequently lost when the coarse 
values is redefined by averaging the fine values. 

OR. f: These are the values redistributed from the fine 
grid into its boundary cen. These values are then 
10Sl. 

oR;: These denote the redistribution values from the 
coarse grid underlying the fine grid to the coarse 
grid cells on the boundary of the fine grid. Their 
effect should be removed. 

We now define 

(4.2) 

and 

(4.3) 

These terms, which are accumulated in extrinsic form, 
represent the values that should be added to the coarse 
interior cells on the boundary of the fine grid (and the 
fine cells thal cover them) and the correction to be 
added to the coarse grid exterior to the find grid We 
associate OR I with the coarse grid cell from which the 
values came and ORE with the coarse grid cell that 
received them. We note that the liR's and the aF's 
must, in gene!t.l be accumulated by both states and that 
the fluxes appe.Jring in the definition of SF are aperture 
weighted These tenns are then combined to fonn 

o,v'_ = _I_(U' + OREJ + 8RIJ) (4.4) 
c I At 

which is a generalized reflux correction to coarse grid 
cells that border fine grids. As we did in the main 
integration step. we include a stable portion of the 
update in each cell and redistribute the remainder to its 
neighbors. Thus, 

U••1,1·_U·+lJ . ~.I' .- TOM c-/ 

and 

~11""d.1 = (l_A'\J:.uL 
UlYJ c-/ jUJP.l. c-/ (4.5) 

The OM~J me then redistributed to the neighboring 
coarse cells using the procedure defined in the previous 
section. Values redistributed during this procedure to 
coarse grids lilat are covered by fine grid cells are lifted 
to the fine grid, weighted by the fine grid A's. We note 
that for interfaces between coarse and fine grids that are 
not near a po!:ion of the tracked front, the OR's in (4.4) 
vanish and the reflux correction reduces to (4.1). For a 
shock wave t.'te redistribution can be simplified. F~ 
liRE). and ~Ri;, are both zero in (4.4). Furthermore, 
the pre-shock redistribution in (4.5) can call be placed 
in the post-~": xt cells as in the basic integration algo
rithm. 

Numerical ExampJe 

In this section we present a numerical example 
showing the combined tracking I adaptive mesh 
refinement algorithm. The example shows a tracked 
Mach 10 shoe'r impinging on a circular cloud of gas. 
The cloud region is in thermodynamic equilibrium but 
it is 10 times as dense as the surrounding ambient gas. 
The shock is m~tially to the left of the cloud and mov
ing to the light with the cloud initially at reSL The 
base grid is 6Ox30 with two levels of refinement 
allowed. Each refinement reduces the grid spacing by a 
factor of 4 in each direction. thus1 a single grid at the 
finest level of resolution would be 960x480. The 
refinement criteria set to prevent the incident shock 
from being refined in the upper portion of the domain. 
Figures la t"t"'OOgh Id show contours of the logarithm 
of density. In the contouring algorithm the pre- and 
post-shock states are averaged onto the grid for contour
ing. Thus. we observe an apparent thickening of the 



tracked front as its level of refinement progresses from 
the finest level near the cloud to the coarsest level near 
the top of the domain. Figure la shows early time 
when the shock has just begun to enter the cloud. In 
the next frame. the shock has progressed most of the 
way through the cloud and the cloud is beginning to 
deform dramatically. Note that the bow shock is well
resolve using the capturing scheme. In Ie the tracked 
shock has left the cloud and the cloud has continued to 
deform. In the final frame, the tracked shock has tran
sitioned to Mach re.ftection. The cloud is continuing to 
undergo increasingly complex distonions. 

Figures 2a through 2d show a composite of the 
tracked front superimposed on boxes that represent 
where the refined grid patches are located. (Not at the 
same times as the frames in Figure 1.) The larger boxes 
show where the level 1 grids are located and the 
smaller boxes show the level 2 grids. During this 
sequence we note several changes in the structure of the 
front. Between frames 2a and 2b. the front pinches off 
10 fonn two separate pieces. Between frames 2b and 2c 
the smaller piece of the front disappears. Finally. 
between 2c and 2d we see a sharp kink develop in the 
tracked front indicating the transition of Mach 
reflections. Because the algorithm recons~cts the front 
locally at each step from the local state variables and a 
volume fraction no special cases are needed to deter
mine how fronts interact or change topology. 
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Figure 1. Times sequence of logarithmically spaced density contours from computation of a Mach 10 shock hitting 
a dense cloud. 
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Figure 2. Times sequence of tracked front location superimposed with location of tine grids. 


