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We describe a new implicit-explicit hybrid method for solving the equations of 
hydrodynamics. The scheme is an extension of the explicit second-order piecewise-parabolic 
method (PPM) which is unconditionally stable. The scheme is thus of the Godunov type. It is 
conservative, accurate to second order in both space and time, and makes use of a nonlinear 
Riemann solver to obtain fluxes of the conserved quantities. The hybrid character of the 
method provides increased accuracy and computational efficiency. Switching between implicit 
and explicit formulations occurs smoothly and in a natural way and is performed separately 
for each characteristic family of waves. The method provides high resolution with shocks 
spread over only one zone and can produce accurate answers to most reasonable problems 
without the use of an artificial viscosity. © 1986 Academic Pre". Inc 

I. INTRODUCTION 

In the last several years much attention has been devoted to Godunov-type 
methods for hydrodynamical calculations. The scheme of Godunov [1] uses non-
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linear solutions of Riemann's shock tube problem at the interfaces between com
putational zones to obtain fluxes of mass, momentum, and energy between these 
zones during a time step. This procedure has two advantages. First, the data for the 
Riemann problems corresponding to the different families of waves is taken from 
different numerical domains of dependence chosen to match the physically correct 
ones as closely as possible. Second, nonlinearity can he built into the difference 
scheme through the Riemann solver, so that strong waves can be computed even if 
they are spread over only a zone or two on the grid. 

The recent interest in Godunov-type methods was generated by van Leer's inven
tion of the MUSCL scheme [2, 3]. This scheme demonstrated a means of con
structing Godunov-type methods with higher than first-order accuracy. In addition, 
the MUSCL scheme incorporated a monotonicity constraint developed in the con
text of linear advection [4]. This constraint permitted the sharp shock structures 
characteristic of Godunov-type schemes to be computed without the introduction 
of the post-shock oscillations normally associated with higher-order accuracy. van 
Leer's MUSCL scheme has inspired the development of other more robust and 
more refined schemes of the Godunov type. A number of these schemes have been 
extensively compared to methods of a more standard type in the review of 
Woodward and Colella [5]. 

The work reported here begins with the piecewise-parabolic method (PPM) for 
hydrodynamics calculations. Results of PPM calcultions are compared with those 
of several other methods in [5] and the scheme is described in detail in [6]. In this 
paper we will assume that the reader is familiar with these two references. The pur
pose of this work is to extend the PPM scheme into the implicit regime so that it 
can be used to attack a much broader class of problems. In performing this exten
sion we wish to retain the role of a Riemann solver in obtaining fluxes at the zone 
interfaces which are built from upstream-centered information for each charac
teristic family. We also desire a smooth transition at a Courant number of unity 
from the explicit PPM scheme to its implicit counterpart. The implicit scheme we 
will describe below performs this transition independently for each family of charac
teristics. Therefore, a wave which propagates more slowly than the mesh velocity 
i1x/i1t will be treated by the explicit PPM scheme, while faster waves will be treated 
implicitly. It is our belief that one should not ask an implicit scheme to propagate 
steep wave fronts faster than the mesh velocity. Thereforc, in the implicit portion of 
the scheme, we have omitted any analogs of the elaborate monotonicity constraints 
and contact discontinuity steepeners which allow thc explicit portion of the scheme 
to propagate steep wave fronts so well. However, the second-order accuracy of the 
implicit scheme allows smooth waves to be treated without significant damping as 
long as they movc less than about an eighth of a wavelength per time-step. We have 
expended considerable effort to ensure that rapidly propagating waves of short 
wavelength will be damped very strongly by the implicit scheme. This property 
gives the scheme a robustness usually associated only with much less accurate 
schemes employing backward Euler time differencing. 

Our aim was to develop a scheme for computing transient flows containing dis-
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parate timescales. Unlike many implicit schemes, which are designed to calculate 
steady flows, the method described in this paper was constructed primarily for 
problems in which time accuracy is important in at least some parts of the flow. 
Although the method should also work well for steady flow problems when for
mulated in Eulerian coordinates, it has not yet been demonstrated that using a dis
sipative method with second-order time accuracy is of any advantage over more 
conventional methods in obtaining steady state solutions. 

We will present below a numerical scheme for hydrodynamical calculations 
which combines the following properties: 

(1) smooth, automatic switching from an explicit to an implicit calculation 
performed separately for each characteristic family of waves, 

(2) strict conservation form, 

(3) construction of separate domains of dependence for each characteristic 
family to obtain upstream-centered information for fluxes, 

(4) nonlinear solutions to Riemann's problem to compute wave interactions 
and allow sharp shock structures, 

(5) second-order accuracy for all Courant numbers, with wave damping 
proportional to the Courant number in the limit of large time-steps. 

Schemes for advection equations with the first property on this list have been in use 
for many years [7-9]. Conservative implicit schemes involving upstream centering 
for gas dynamics are a more recent development. Schemes of this type are now 
under vigorous development by the aerodynamics community (see, e.g., the collec
tion of articles in [10, 11]). The scheme we will present below is to our knowledge 
the first one to possess the last property on our list, although second-order schemes 
employing nondissipative Crank-Nicolson time differencing are commonly used for 
hyperbolic problems. The combination of all five properties listed above makes the 
scheme presented here especially suitable as a general purpose method for solving 
gas dynamical problems. 

II. THE LINEAR ADVECTION SCHEME 

We first describe in detail how the new scheme is applied to solve the equation 
for simple advection 

(1) 

where t and x are the time and space coordinates, p is the quantity being advected, 
and c is the constant advection velocity. The space-time structure of a single zone 
is shown in Fig. 1, which also illustrates how the various quantities used in the 
following discussion are defined. 
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FIG. I. The structure of zone j in space-time for three dilTerent formulations of the scheme, showing 
how the variables used in the text are defined. The diagonal lines represent characteristics traced 
backward in time to the domain of dependence of the zone interface during the time-step. The solid 
diagonal lines show how the spatial average of p over the domain of dependence is mapped onto a time
averaged value of p at the zone interface. For the explicit scheme (a), the domain of dependence is com
puted by spatial interpolation. The spatial average of p is then obtained by integrating the piecewise
parabolic distribution of p over the domain of dependence. The spatial average is mapped into an inter
face value time-averaged over the interval 0 to At. When the Courant number for the characteristic 
exceeds unity (b), the spatial domain of dependence extends over the entire zone and is represented by 
the horizontal dotted line in the figure. The value of (p> in this domain is obtained by interpolation in 
time and mapped onto the time-averaged interface value. In this case, the time-average is approximated 
by the average over a time interval shorter than LIt. The scheme represented by (b) is only marginally 
stable and is therefore not used. For the scheme which is actually used in implicit zones (c), an extra 
characteristic is introduced which is traced backward in time from the new time interface value. The 
domains of dependence are not shown in this figure, but the construction for each of the characteristics 
is identical to that shown in (b). 
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The first step is to construct a piecewise-parabolic distribution of p on the grid as 
described in [6]. The domain of dependence of the zone interface is obtained by 
tracing characteristics (represented by the diagonal lines in the figure). For the 
explicit scheme (Fig. Ia), the time-averaged value of p along the zone interface, 
i57: IW, is then obtained by integrating the parabolic distribution of p over the 
domain of dependence of the zone edge. The value of (p) i at the new time can then 
be obtained from 

cAt 
(p) n+ 1= (p)n ___ (p-n+ 1/2 _p-n+ 1/2) 

I I Ax 1+1/2 1-1/2 (2) 

the notation (P)i is used to denote the spatial average of p in zone i, while i5 
represents a time average. This method is third-order accurate. For the case in 
which the Courant number 

cAt 
(1=-

Ax 
(3 ) 

for a characteristic in a given zone is greater than I (Fig. I b), the domain of depen
dence extends beyond the zone boundary and this method becomes unstable. In 
this situation a different formulation of the method must be used. The desired time 
average of p at the interface is now approximated by the average over a shorter 
time interval which is also centered at time A 1/2. This time average is again iden
tified with a spatial average obtained by tracing characteristics backward in time. 
The spatial domain for averaging in this case is the entire zone. This average value 
of p over the zone is determined by interpolation in time. The interpolation in time 
to obtain i57:l!22 makes the method implicit, since the temporal distribution of (P)i 
is not known but depends on the value of (p)7 + I. 

Linear interpolation in time between (p)7 and (p)7 + I for this single charac
teristic, as shown in Fig. 1 b, yields an especially simple difference scheme. The linear 
interpolation function can be used in Eq. (2) to obtain an implicit expression for 
(p)7+ 1, 

Unfortunately, this scheme is only marginally stable. Since it is important for an 
implicit scheme to have strong damping at large Courant numbers so that any 
noise generated while calculating a steady state solution can be quickly eliminated, 
this simple difference scheme has been rejected. Instead, we introduce a third time 
level at 1 = A 1/2 (see Fig. Ic). This doubles the number of implicit variables which 
must be solved for at each time step, but makes it possible to construct a scheme 
with more desirable properties. 

The need for introducing a third time level can be understood from the following 
argument. Any scheme in which the flux is computed using a linear combination of 
the interface values at the old and new times will either be accurate only to first 
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order in time or not be strongly dissipative at large Courant numbers. Schemes of 
this type can be written in the general form 

(5 ) 

where bp = Pi+ 1/2 - Pi-I/2· For p =!, the time differencing is Crank-Nicolson, 
while for P = 0, the method reduces to backward Euler. Frequently, a value of P 
slightly less than! is used to provide a scheme with some damping which is "close" 
to second order. 

In the limit of large Courant number, Eq. (5) reduces to 

bpn + I = _ _ P_ bpn 
1 - P . (6) 

For values of P> t this method is unstable. For P =! (Crank-Nicolson), bpn + I = 
_bpn and there is no damping. When 0 < P <!, there is damping in the method, but 
any linear wave can be damped by at most a factor P/( 1 - P) in one time-step 
regardless of the size of the Courant number. Furthermore, the amount of damping 
in this method is independent of wavelength for large Courant numbers. To provide 
complete damping of a wave in a single time-step, the value of P must be 0, which 
results in first-order backward Euler time differencing. 

Only by introducing an extra time level is it possible to obtain a scheme which is 
able to eliminate any unwanted noise in the solution quickly while still retaining 
second-order accuracy. To obtain the desired dissipation, the interface value of p at 
the old time level, p7 + 1/2' is ignored in determining the flux at the interface as a 
function of time. The time dependence of the flux is determined by linear inter
polation using only the interface values p7.N/i and P7://2 shown in Fig. lc. Strictly 
speaking, these interface values are averages over time intervals, but in constructing 
the time dependence of the flux we will treat them as point values at times L1t/2 and 
L1t. Because we will interpolate linearly in time, there will actually be no difference 
between these point values and the associated time averages. The approximation for 
Pi + 1/2 as a function of time is therefore 

2t 
(t) - (2- n + 1/2 -n+ I ) + (-n+ I -n+ 1/2) 

Pi+ 1/2 - Pi+ 1/2 - Pi+ 1/2 L1t Pi+ 1/2 - Pi+ 1/2 • (7) 

As a result of using an additional time level, it is necessary to use two charac
teristics in each zone: one at the half time and one at the new time (see Fig. lc). It 
should be emphasized that these characteristics are not traced back to the value of 
p at the zone center, but rather to the zone averaged value of P at the appropriate 
time. The domains of dependence have have not been drawn in Fig. lc for the sake 
of clarity. However, the construction for each characteristic is similar to that shown 
in Fig. Ib for the single characteristic. The average value of P in the domain of 
dependence associated with the half-time characteristic, for example, is equal to 
(p >7 for (f = I (which matches exactly with the explicit formulation of the scheme) 
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and moves upward in time with increasing (T, approaching (p)7 + 1(2 for large cr. 
This formulation permits switching between implicit and explicit versions of the 
scheme at a Courant number of 1 without introducing any noise into the solution. 

To derive the difference equations for the implicit scheme, we begin by 
integrating Eq. (1) to obtain 

(8) 

where Pi+ 1/2(r) is obtained from Eq. (7). Note that if Pi+ 1/1(1) is obtained by linear 
interpolation, consistency with Eq. (8) requires that (p >,(1) be interpolated 
quadratically in time. Combining Eqs. (3), (7), and (8) we now obtain 

+~ [(-n+1 _ -,,+1 )_(-1/+1/2_ -n+I/2)]} Jt Pi-I!l Pi-1/2 Pi+ 1/2 Pi-1/2 . 

For the important special cases t=L1t and t=L1t/2. Eq. (9) becomes 

and 

(p ) /+ 1/1 = <p)n _ (T[1(p-n+ 1/2 _ p-c' + 1.'2) _l{p-n+ I _ p-n+ 1. )] 
1 I 4 1+ 1/2 1- 1/2 4\ r+ 1/2 1- 12 . 

(9) 

(10 ) 

(11 ) 

As explained above, the values of fi7:i/l and fi7:i/2 are obtained by tracing charac
teristics to the zone-centered average values (p )~+ 1/2 and (p >:+ 1, respectively. 
Values of (p >:+ 1/2 and (p >:+ I are calculated by quadratic interpolation using a 
parabola which passes through <p)7, (p)7+ 1/2, and (p);'+l. It can easily be 
shown that the required interpolation formulae are 

1 - (J 20' - 1 2rr2- 36 + 1 
= __ (p >n + __ (p )n+ 1/2 + J (p)H I 

2(J2 I (J2 I 2(J- I 

and 
1+(T (J2-1 1-(J 

P-n+ 1/2 = <p)n t 1/2= __ <p)"+ __ <p)n. 12+ __ <p)n+1 
1+1/2 , 2(J2 , (J2 I 2a2 " 

(12) 

( 13 ) 

Finally we eliminate the interface values in Eqs. (10) and (11) using Eqs. (12) and 
(13) to obtain 

(14 ) 
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(15) 

where A(p) = (P)i- (P)i-I' Equations (14) and (15) represent a block
bidiagonal system of linear equations which can be solved for (p)7 + 1 and 
(p)7 + 1/2. In zones for which (j ~ 1 the explicit method is used, and the matrix 
becomes diagonal. These zones may be omitted from the matrix inversion to reduce 
execution time. Note that in the limit of large Courant number, A (p Y T I = 
3 A (p )n+ 1/2 = 0, i.e., the solution approaches the correct steady state solution 
(p )7+ 1 = constant. 

In order to derive the amplification factor for the scheme, we introduce a Fourier 
mode of wavenumber k so that 

A(p)=(l-S)(p), (16 ) 

where s = e-ik,jx. After some straightforward algebra we obtain for the amplification 
factor 

(l7) 

It can be easily shown that the scheme is stable for (j> 1 and accurate to second 
order. Note in particular that for (j = 1, (p) 7 • 1/< p ) 7 = S, the exact solution, and at 
a given wavelength g approaches 0 for very large timesteps. Thus any oscillations 
(particularly unwanted noise) generated in the solution will be strongly damped in 
zones in which the Courant number is very large. Also, as desired, the shortest 
wavelength modes undergo the strongest damping. 

The behaviour of I gl as a function of Courant number is plotted in Fig. 2a for 
modes of several wavelengths. Each curve is labeled by the wavelength in units of 
Ax. All wavelengths are damped for (1 > 1 and amplified for 0 < (1 < 1. In fact, the 
amplification factor becomes infinite for a wavelength of 2Ax at (1 = 1/J2. In the 
large Courant number limit, all wavelengths are damped as 1/(1 except for 2L1x 
which is damped as 1/(j2. The different behaviour of the 2Ax mode results from the 
first term in the numerator of Eq. (17) vanishing. Note that any mode except for 
2Ax can be propagated approximately an eighth of a wavelength per time step 
before significant damping occurs. 

For comparision, the amplification factor for a first order version of the method 
is plotted on the same graph (the dotted lines). This scheme is obtained by replac
ing (p)7:Ni by (p)7:i/2 in Eqs. (10) and (11) and is equivalent to an implicit 
form of Godunov's method with backward time differencing. The amplification fac
tor for a wavelength of 2Ax is 0 for the first-order method for all Courant numbers 
greater than 0, and therefore the curve representing this mode does not appear on 
the graph. The second-order scheme is able to compute a given wavelength mode at 
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FIG. 2. (a) Amplification factor for the purely implicit second-order scheme as a function of the 
Courant number (the solid lines). The curves are labeled by Fourier mode wavelength in units of the 
zone size. For Courant numbers less than unity, the implicit scheme is unstable and the explicit for
mulation must be used. For comparison, the amplification factor for the first-order implicit Godunov 
method is also shown (dotted lines). As can be clearly seen, the second-order method is able to compute 
a given wavelength mode at a considerably larger Courant number before significant damping 
occurs. (b) Phase angle for the purely implicit second-order scheme as a function of the Courant num
ber. Phase errors show up as departures of the curves from the diagonal line. Note that significant phase 
errors occur only for waves which are strongly damped. 
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a considerably larger Courant number without significant damping of the wave 
occurring. However, the dissipative properties of the two schemes are identical at 
large Courant numbers. 

The phase angle tfo=tan- 1 [ -Im(g)/Re(g)J as a function of Courant number is 
shown in Fig. 2b. The exact solution is the diagonal line tfo/kAx = (J. Significant 
phase errors develop only for Courant numbers for which there is strong damping. 

Since the implicit scheme is stable only for (J ~ 1, it cannot be used for regions of 
the flow which require an explicit timestep. In practice, this method is combined 
with the explicit PPM scheme [6J to form an implicit-explicit hybrid method. The 
decision of which method to use is made for each characteristic in each zone. There 
are two advantages to using this procedure. Implicit schemes couple all the zones in 
the grid together, which for small time steps is unphysical. By using the explicit 
method wherever possible, this error in computing domains of dependence is 
minimized. In addition, the implicit scheme requires much more computer time 
than the explicit version. As a result, by using the implicit scheme only in those 
zones in which the Courant number is greater than 1, the calculation can be made 
more efficient. 

The two methods were designed specifically to join smoothly at a Courant num
ber of 1. At first glance, it might appear that introducing an extra characteristic and 
an extra difference equation (Eq. (11)) suddenly when the Courant number exceeds 
1 would result in a discontinuous switching between the two schemes. However, 
(p >;1+ I becomes independent of (p >;' + 12 as (J approaches 1, as can be seen from 
Eq. (14). Since (p>7+ 1!2 is discarded and not used in the calculation of the next 
timestep, the switching is indeed continuous. Also, as discussed above, the domain 
of dependence used to calculate the half time interface value is the same for each 
scheme at (J = 1. 

III. LAGRANGIAN HYDRODYNAMICS 

The advection scheme described in the previous section can be extended for use 
in hydrodynamics in a way analogous to that desribed in [6J for the explicit ver
sion. The structure of a zone in space-time is as illustrated in Fig. 1, except that for 
Lagrangian hydrodynamics there are two characteristics at each time level (denoted 
in the following discussion by subscripts + and -) corresponding to waves with 
characteristic speeds + C and - C, where C is the Lagrangian sound speed. 
Figure 3 shows two zones in a region which contains both implicit and explicit 
characteristics. Average values of the hydrodynamic variables in the domain of 
dependence for each characteristic are interpolated and allowed to interact non
linearly through a Riemann problem to obtain time-averaged values of the fluxes at 
zone interfaces. 

There are two major differences between the implicit and explicit versions of the 
scheme. First, for implicit characteristics, as discussed for the case of advection, 
interpolation in time replaces the spatial iterpolation used for explicit charac-
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FIG. 3. The space-time structure of two adjacent zones for Lagrangian hydrodynamics. In this region 
of the now, the characteristics representing waves moving to the right (marked by a + ) are implicit while 
the characteristics representing waves moving to the left (marked wIth a- ) are explicit. Note, however, 
that the minus characteristic which is traced from the new time interface value must be treated with the 
implicit formulation of the scheme. 

teristics. The other major difference is that the implicit difference equations must be 
linearized. This involves computing the Jacobian of the fluxes with respect to the 
conserved quantities. The resulting system of linear equations is then solved by 
inverting a block-tridiagonal matrix. 

In this paper we consider only the simple case of one-dimensional hydrodynamics 
in planar coordinates with a simple source term. We also limit the discussion to the 
case of an ideal gas equation of state, although a general equation of state can be 
accommodated [12, 15]. We write the equations for Lagrangian hydrodynamics in 
conservation form 

av au 
at am' 
au oP 
--= --+G at om ' 
aE aup 
-= --+uG at a ' 

(18 ) 

(19 ) 

(20) 

where V is the specific volume, u is the fluid velocity, P is the pressure, E the sum of 
internal and kinetic energies per unit mass, G an arbitrary source term, and m the 
mass coordinate. The internal energy per unit mass f., density p, and pressure Pare 
related to the conserved quantities V, u, and E by 

p = l/V, 

p= (y - I) pi:. 

581,63/2-4 

(21 ) 

(22) 

(23 ) 
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Equations (18}-(20) can be expressed in finite difference form as 

At 
U'!+I=U"--[F (U" un+I)-F (un u n + I )] + AtH.(Un Un + l ) 

I I Am 1+1/2. 1- 1/2 , '" 

where 

JT7 

U,!+I= 
I 

V7+ 1 

u7+ 1 

E7+ 1 

JT7+ 1/2 ' 

u7+ 1/2 

E7+ 1/2 

u'!= 
I 

u7 
E7 
JT7' 
u7 
E7 

l:'n + 1/2_ 
r i ±I/2 -

-un + 1/2 
i± 1/2 

P" + 1/2 
i± 1/2 

Un+ 1/2 
i± 1/2 

_J. Un+ 1/2 
4 i± 1/2 

J. pn+ 1/2 
4 i± 1/2 
3 Un + 1/2 
4 i± 1/2 

pn+ 1/2 
i± 1/2 

+ 1 n+1 
4 Ui ± 1/2 
I ,,+1 

-4Pi± 1/2 
p,,+1 1 n+1 pn+1 

i±I/2 -4 Ui±I/2 i±l/2 

and H i( un, un + I) is the vector describing the effect of the source term 

H'!+ 1/2 = 
I 

o 
G7+ 1/2 

Gn + 1/2 (u'! + 1/2 + u'! + 1/2)/2 
I 1+~2 1-~2 

o 
(iG7+ 1/2 -:iG7+ I) 

J.Gn+I/2(un+I/2+un+I/2)_lGn+l(un+1 +un + l ) 
8 i i + 1/2 j - 1/2 8 i j + 1/2 i - 1/2 

(24) 

(25) 

(26) 

(27) 

Equation (24) represents a system of nonlinear equations which must be solved 
to obtain the conserved quantities at the new and half time levels. First, we proceed 
by linearizing the equations by expanding F( un, Un+ 1) as 

F1(un un+I)~F1(un Un)+OF(U". Un+I)/ bn+1 
• -, oU" + I Un • 

(28) 

where In+ 1= Un+ I _ un and of( un, Un + I )/0 un + II un is the Jacobian of the flux 
vector with respect to the new and half-time conserved quantities evaluated at the 
old time. A similar expansion is also performed for H( if. Un + I). For convenience 
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we abbreviate Fi+I/2(Un, Un+ l ) by F7:i/i, Fi+ I/2(Un, un) by P!+1/2 and similarly 
for H. The resulting set of linear equations can then be written as 

L1 {fJP+ 1/2 fJp+ 1/2 (fJF"+ 1/2 fJP+ 1/2) } bn~I+_t i+I/2bn+l_ i-I/2bn+l+ ;+1/2_ i-I/2 bn+1 
i A fJ un + I ; + I fJ UI'! + I I - I fJ un + I fJ un + 1 I m ,+1 ,-1 I I 

CH,!jl/2 At 
- At 'ib'! + 1 = - - (F:\ li2 - F7 _ 1 '2) + At H7, aU7+ I Am . , 

(29 ) 

where all the derivatives are evaluated at un. 
F or problems in which iteration of the linear scheme is required to obtain 

improved accuracy, further iterations of Newton's method may be used. We were 
able to obtain satisfactory answers for all the test problems discussed in the 
following section without iterating. Since one extra iteration costs as much as 
reducing the time step by a factor of two, we suspect that for most problems, 
iterating is not practical. 

The first step in the calculation is to obtain a piecewise-parabolic distribution of 
V, u, and P as described in [6]. The domain of dependence of the zone interface 
during the time-step for each of the two hydrodynamic wave families is then com
puted to obtain left and right states for the Riemann problem at the zone interface 
at the half-time level, as for the explicit method. For the implicit method, this 
procedure is performed for characteristics at both time levels. If the domain of 
dependence of any hydrodynamic wave extends beyond the zone boundary, the 
explicit method becomes unstable. In this case, the states used for the Riemann 
problems at both half- and new-time levels are obtained by interpolating between 
the zone averaged values at the old-, half-, and new-time levels (Eqs. (12) and (13)). 
Since the average values at the new and half time are not known, the method is 
implicit and requires an initial guess that the average value of each variable in the 
zone is constant in time. The decision of whether to use the explicit or implicit 
method is made for each characteristic in each zone. Thus, if one family of waves in 
a certain zone has a much larger velocity than the other family, the more slowly 
moving wave may be treated with the full accuracy of the explicit scheme. Note, 
however, that the characteristics traced from the new time interface value must be 
treated implicitly for Courant numbers greater than ~. 

We now discuss the additional steps which are necessary to perform the 
calculation implicitly. To calculate the Jacobian of the flux vector F, it is necessary 
to calculate the derivative of u7:Ni, P7:11/i, u7:i/2' and P7:1~2 with respect to the 
conserved quantities at both the half and new times. This is accomplished in several 
steps, the results of which are combined by the chain rule to produce the final 
answer. We begin by differentiating the equations 

(30) 
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where W ± is the nonlinear Lagrangian wave speed 

( y + 1 P* _ P +) 1/2 
W + = C+ 1 +-2--P----=-- - y ± 

(31) 

and C ± is the Lagrangian sound speed 

C ± = (yP ±/V ±)1/2. (32) 

The subscripts + and - refer to the states at the ends of the + and - charac
teristics shown in Fig. 3. The subcript * refers to the value at the zone interface at 
either the new or half time. Equations (30) are differentiated with respect to u±, 

P ±, and C ± to obtain 

(33 ) 

(34) 

(35) 

where # refers to either + or - and !5 ±. # is the Kronecker delta. The derivatives 
of the wave speeds in the above equations are 

aw± y+! C~ 
oP*-"4YP±w±' 

aw±_ y+l C~P* !5 
ap# - -"4Y P~ W# ±.#' 

aw± W# 
ac=-C <>±'#' 

# # 

(36 ) 

(37) 

(38) 

Equations (33)-(35) actually represent twelve 2 x 2 systems of linear equations (six 
at the half time and six at the new time) which can easily be solved for the desired 
derivatives. For any characteristic for which u < 1, the derivatives are set equal to O. 

It is now convenient to change variables from P, u, and C to the conserved quan
tities V, u, and E. This can be accomplished by expressing P ±. U ±, and C ± as 
functions of V ±, U ±, and E ± using the equation of state 
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and differentiating to obtain 

ap+ P± 
av: = -~' 

oP + y-1 

oE: V ± ' 

ap+ (y-l) 
---= ---U-t' 
au± V + -

oC± C± 
oV±=-V±' 

ac ~ = y(y -l) 

oE± 2f72±C±' 

iJC ±' y( Y - 1 ) u + 

au ± = - 2 V~ C ± ' 

iJu± =0, 
av± 

ou± =0 
oE± ' 

iJu+ 
--=1 
cu± . 

We then obtain from Eqs. (33)-(35) and (40) using the chain rule, 

iJx* ax* oP ± ax* ac ± --=---+----a V ± a P ± a V ± ac ± 0 V ± ' 

ax* ax* oX* ap + oX* oC + -=-+-----+----_. 
au ± au ± 0 P + au ± oC ± au ± ' 

oX* oX* oP ± ax* oC ± --=---+----
oE± ap± oE± oC± oE±' 
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(39) 

( 40) 

(41 ) 

where X* represents either p* or u*. The derivatives of X* on the right-hand side 
of the equation are calculated assuming X* is a function of P ± ' u ±' and C ± while 
the derivatives on the left-hand side of Eqs. (41) assume X* is a function of 
V ± , U ±, and E ± . 

The derivatives of the interface values with respect to V ±, U ± ' and E ± must now 
be converted to derivatives with respect to the conserved quantities at the half- and 
new-time levels by differentiating the interpolation formulae (Eqs. (12) and (13)) 
and applying the chain rule again. The derivatives of the interpolation formulae are 

ov+ 20--1 
OV7+ 1/2 =~ 

, 

oV± 2(J2 - 30- + 1 
(42) 

avn+ I 
I 

. 
2a 2 
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for the new-time characteristics and 

av± I-IT 
(43 ) 

aV7+ I 2IT2' 

for the half-time characteristics with similar expressions for derivatives of u ± and 
E ±. Finally, applying the chain rule gives, for example, 

"n+12 2 3+1::1n+1 CU i ± 1/2 _ (J - (J uU i ± 1/2 

aVn+1 - 2IT2 ~' I _ 

(44) 

a nti 21::1'1+1 
u i t 1/2 _ IT - uU i ± 1/2 

a v;' f 1/2 -~ ov± ' 
(45) 

aUn + 1/2 1 _ (J Oun + 1/2 
i±I/2 _ iTl/l 

a V7 + I - 2IT2 a v ~ , (46) 

aun + 1/2 (J2 - I aun + 1/2 
i+ 1/2 it 1/2 

aV7+1/2=7~ ( 47) 

In the above equations, (J is computed from the zone average values at the old time. 
Now all that remains is to use Eqs. (44)-(47) to obtain the derivatives of the flux 
vector Pj ~ //i and source term H7 + 1/2. The right-hand side of Eq. (29) is calculated 
by evaluating Eqs. (26) and (27) at the old time (which involves solving Riemann's 
problem at each zone interface). The resulting matrix equation can now be inverted 
by standard techniques to obtain bn + 1 and hence Un + l • The matrix is block 
tridiagonal with 6 x 6 blocks, the inversion of which completely dominates the 
execution time for the scheme. If desired, the procedure can now be iterated using 
Newton's method. 

The scheme described above will provide satisfactory answers to most problems. 
However, when shocks are present it is advisable to make two small modifications 
to reduce the amplitude of the oscillations behind the shock. As a shock approaches 
a zone interface, it steepens into a pure jump instead of being spread over its nor
mal width of 1 to 2 zones. Such a sharp jump will produce unwanted oscillations in 
the solution. To reduce this effect, the order of the scheme is reduced in zones near 
a shock by flattening the structure of these zones as described in [6] for the explicit 
scheme. The only corresponding change necessary for the implicit scheme is that the 
values of the fluxes and source terms in Eqs. (26) and (27) at the half-time level are 
replaced by a linear combination of the half-time and full-time values with coef
ficients determined by the flattening formula. For zones which are completely flat
tened, the scheme reduces to an implicit Godunov method differenced backward in 
time. 
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The other modification is the addition of a very small implicitly differenced 
Lapidus [13] viscosity. This is most easily accomplished by adding a term to the 
flux vector and modifying the Jacobian accordingly. This artificial dissipation is not 
used to spread the shock over several zones as in many schemes, but merely to help 
damp unwanted oscillations at Courant numbers near unity where the amount of 
dissipation in the scheme is negligible. As a result, a very small coefficient (usually 
about 0.1) is sufficient, so that very little diffusion of sharp structures occurs. This 
extra dissipation is only required when trying to push the scheme to its limit, e.g., 
by trying to propagate a strong shock across most of a zone in one time-step. Since 
a calculation of this type can be more efficiently computed with the explicit version 
of the scheme, the use of an artificial viscosity will not normally be required. 

In order to make efficient use of this scheme, it is important to choose the value 
of At wisely. For regions of the flow which contain no discontinuities, the 
customary accuracy time-step control of allowing a maximum relative change in 
each variable may be used. Since the scheme is second order in time, a larger time
step may be used than with first-order schemes to achieve the same accuracy (see 
Fig. 2a). For zones containing discontinuities this choice of time-step is too restric
tive. These zones can be easily detected as described in [6J and the speeds of the 
discontinuities estimated. The value of At should then be chosen so that no discon
tinuity moves more than one zone during the time-step. 

IV. RESULTS 

The scheme was tested on a variety of problems, some of which may seem 
somewhat unusual for an implicit code. These calculations were chosen to illustrate 
the properties of the scheme as well as to show how difficult a calculation could be 
performed while retaining stability and an acceptable level of accuracy. The first set 
of calculations we discuss are of a nonlinear standing wave in a box with a 
reflecting wall on each side. The initial conditions were zero velocity and a 
sinusoidal distribution with an amplitude of 0.1 and wavelength of 25 zones for 
both pressure and density. The ambient pressure and density were 1.0 and 1.4, 
respectively. The grid contained 50 zones and the value of y was 1.4. The calculation 
was performed for a variety of Courant numbers and shows how different 
wavelength modes are treated by the method. 

Figure 4 shows the results for a Courant number of 1 (based on the ambient 
sound speed) plotted against the results of the purely explicit PPM code at a 
Courant number of 0.5. This calculation is a good test of how the implicit and 
explicit methods join at a Courant number of 1. As illustrated in the Courant num
ber plot, half the wave is being treated with the implicit method and half with the 
explicit scheme. There is absolutely no evidence of any unwanted noise when 
switching fro~ one method to the other. If any noise had been generated, it would 
have persisted since there is no damping in the scheme at a Courant number of 1. 
The results are plotted after two sound crossing times of the grid. At this time the 
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FIG. 4. Results after two sound crossing times for a nonlinear standing wave in a box with reflecting 
walls. The solid lines represent results obtained from the explicit version of the scheme at a Courant 
number of 0.5 while the dotted line was obtained using the implicit-explicit hybrid method at a Courant 
number of I based on the ambient sound speed. Note from the plot of the Courant number that half of 
the wave is being calculated implicitly and half explicitly without producing any noise in the solution. 
Since both the implicit and explicit schemes are exact at a Courant number of 1, the results obtained 
with the hybrid method are somewhat more accurate than those produced by the purely explicit method. 

nonlinearity of the solution is clearly evident as the originally sinusoidal waves have 
steepened into shocks. For a linear wave, the velocity should be exactly zero at this 
time but for the nonlinear case, the wave traveling to the left does not exactly can
cel the wave moving to the right resulting in a finite amplitude velocity wave with 
half the original wavelength. Note that the results at a Courant number of 1 (dotted 
line) are slightly more accurate than the Courant number of 0.5 results since there 
is somewhat less damping near a Courant number of 1. This is most apparent in the 
width of the shocks. 
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FIG. 5. Results for a nonlinear standing wave in a box obtained at a Courant number of 2. The 
results are still quite good with only the shortest wavelength modes being damped significantly. 

The results obtained at a Courant number of 2 are shown in Fig. 5, again plotted 
with the results from the explicit scheme. The results are still reasonably good with 
only the shortest wavelength modes being damped. The nonlinearty of the solution 
is still clearly present, especially in the velocity. For a Courant number of 4 (Fig. 6) 
only the fundamental frequency remains. There is no noticeable nonlinearity left at 
this time and a phase error has become evident. The pressure and density should 
now be at their maximum amplitudes and the velocity should be O. Figure 7 shows 
the results obtained at a Courant number of 25 which corresponds to the wave 
moving one wavelength per time step. Very strong damping has occurred, as the 
pressure and velocity waves have been essentially eliminated after 4 time-steps. The 
scheme is converging toward the steady state solution of constant pressure and zero 
velocity. Note that the pressure and velocity are damped before the density. A small 
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FIG. 6. Results for a nonlinear standing wave in a box obtained at a Courant number of 4. Now 
only the fundamental frequency remains and its amplitude has been damped noticeably. 

residual oscillation of half the original wavelength remains in the density where the 
wave deposited its energy while being damped. This is due to the nonlinearity of the 
wave. Small amplitude waves can be damped in a single timestep without this effect 
occurring. The ability of the scheme to damp a wave this quickly is a result of dis
carding the value of the flux at the old time as discussed in Section II. Finally we 
show the results after 2 time-steps for a Courant number of tOOO in Fig. 8. The 
wave has been eliminated for all practical purposes but an oscillation of significant 
amplitude remains in the density. This is not a serious limitation of the code for 
practical problems, since calculating a wave with this large an amplitude at a 
Courant number of 1000 (the wave is moving 40 wavelengths/time-step) violates 
any reasonable time-step constraint one might impose. If an unwanted wave of 
large amplitude should appear in a calculation, it could be damped after just a few 
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FIG. 7. Results for a nonlinear standing wave in a box obtained at a Courant number of 25. The 
wave is now moving 1 wavelength/time-step. As expected, the wave is strongly damped. The pressure 
and velocity are damped before the density, leaving an oscillation in the density of half the original 
wavelength where the wave deposited its energy while being dissipated 

time-steps at a smaller Courant number (e.g., (J ~ 10) and then the time-step could 
be increased to the desired value. Of course, to obtain the correct answer to this 
problem, an implicit method should not be used. We have presented these results 
simply to illustrate the properties of the scheme. Reasonably accurate results are 
obtained for (J < 2 while at large Courant numbers alI wavelengths are strongly 
damped. This is an advantageous property for an implicit scheme, since any 
extraneous noise which is generated while trying to calculate a steady flow solution 
can be quickly eliminated. 

The next class of problems we discuss is the solution of shock tubes. Again, we 
do not recommend the use of an implicit code for this type of problem, but include 
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FIG. 8. Results for a nonlinear standing wave in a box obtained ai a Courant number of 1000. For 
all practical purposes, the wave has been eliminated after two cycles except for the residual oscillation in 
the density. The wave is moving 40 wavelengths/time-step. 

the results to show how robust and accurate the scheme is. The first shock tube 
calculated is the one studied by Sod [14]. The initial conditions are PL= 1, P L = I, 
UL=O., PR=0.125, P R =O.l, uR=O., and y= 1.4. The subscripts Land R refer to 
the states on the left and right of the initial discontinuity, which was located at zone 
50 on a grid of 100 zones of equal width. The results are plotted in Fig. 9 against a 
very accurate solution (solid line) which was obtained with the explicit PPM code 
on a grid of 1000 zones. The corners of the rarefaction are quite sharp and there is 
only a minimal oscillation behind the shock. The maximum Courant numer (...., 1.2) 
occurred in the region between the shock and the contact discontinuity. The rest of 
the flow is calculated explicitly. The shock has moved about 0.9 zones/time-step. 
Even though the calculation was performed in Lagrangian coordinates, the results 
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FIG. 9. Results for the shock tube studied by Sod on a grid of 100 zones. The solid line was obtained 
using the explicit version of the scheme with a grid of 1000 zones. There is only a slight rounding of the 
corners of the rarefaction and very little noise behind the shock. The region between the shock and con
tact discontinuity is being calculated implicitly while the rest of the flow is being computed with the 
explicit method. The shock is moving about 0.9 zones per timestep. 

are plotted as a function of distance rather than mass to facilitate comparison with 
other published results (see, e.g., (16) and (l7)). Even so, direct comparision is dif
ficult. For example, the rounding at the foot of the rarefaction is exaggerated in a 
Lagrangian calculation since the zones in this region are expanded. Also, an 
Eulerian calculation will show much less noise behind the shock due to dissipation 
caused by the matter moving across zone boundaries. Even with these con
siderations, the results obtained are superior to other results we have seen of shock 
tube calculations performed with implicit codes, all of which were performed with 
smaller time-steps. 

Figure 10 illustrates the results of a more difficult calculation of a shock tube 
containing a very strong shock with initial conditions PL = 1, PL = 106, UL = 0, 
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FIG. 10. Results for a shock tube problem containing a very strong shock on a grid of 100 zones 
plotted against an accurate solution obtained with the explicit scheme using 1000 zones. A small part of 
the rarefaction as well as the region between the shock and the contact are being treated implicitly. The 
shock is moving 0.7 zones/time-step. 

PR = 1, P R = 1, UR = 0, and y = i- The initial discontinuity was placed at zone 60 on 
a grid of 100 zones of equal width. The results are shown at time 4 x 10-4 again 
plotted against the results of the explicit code on a grid of 1000 zones. The 
maximum Courant numer here is 1.4 and the shock is moving about 0.7 zones per 
time step. Note that part of the rarefaction is being calculated implicitly also with 
no loss of accuracy except for a small overshoot in the pressure. 

We also calculated a third shock tube with parameters which are more 
appropriate for an implicit code. In this case there is a hot diffuse gas expanding 
into a cold dense gas. The sound speed in the diffuse gas is much larger than the 
shock speed and provides a severe time-step constraint on an explicit code. With 
the hybrid scheme, the shock can be calculated using the explicit portion of the 
code, while the region in which the sound speed is large can be treated implicitly. 
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FIG. II. Results for the expansion of a hot diffuse gas into a cold dense gas. Reflecting boundaries 
were used at both edges of the grid. Results obtained both with 100 zones and 400 zones are plotted. The 
sound speed in the diffuse gas was originally 1000 times larger than in the dense gas, resulting in a severe 
time-step constraint for an explicit code. With the hybrid scheme, a much larger time-step could be used. 
The Courant number behind the contact discontinuity originally was about 750 and has dropped to 
about 450 at this time. The shock is being calculated explicitly and is moving about 0.7 zones/time-step. 

The initial conditions for this problem are PL = 10- 6, P L = 10, UL = 0, PR = 1, 
PR = 1, UR = 0, and y = l The initial discontinuity was located at zone 40 on a 
uniformly spaced grid of 100 zones with reflecting boundaries. The results are 
shown at time 0.12 in Fig. 11 plotted against a solution obtained using 400 zones. 
The time-step is roughly 450 times the Courant time while the shock is moving 
about 0.7 zones/cycle. It would require about 40,000 cylces to obtain this result 
with an explicit code. The result presented here required only 60 cycles. 

We conclude by describing another calculation which is well suited to an implicit 
code, namely the relaxation to a steady state configuration driven by a source term. 
The initial conditions are constant pressure P = 100, constant density P = 1, and 
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FIG. 12. The relaxation to a steady state of a uniform density gas with a constant gravitational 
acceleration to the left. Results after each of the first three time-steps as well as the initial distribution are 
plotted. The final two curves are indistinguishable, showing that the steady state has been obtained after 
only two time-steps. 

zero velocity. The source term chosen was a constant gravitational acceleration 
g = 0.1 to the left. The grid contained 50 zones and a reflecting boundary was used 
on both sides. Instead of using a fixed time-step as in the previous calculations, the 
initial value of L1 t was chosen to be 20, and the time-step was then allowed to triple 
after each cycle. 

Figure 12 shows the initial distribution as well as the results after each of the first 
three cycles. The final two curves are indistinguishable showing that by the third 
cycle, the steady state (opjom = g) has been obtained. The calculation was con
tinued until the Courant number exceeded 108 at which time the velocity had drop
ped to 10 - t3 and the pressure had reached the analytical solution to within the 
roundoff error of the computer. 
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V. CONCLUSIONS 

We have demonstrated that the method described above provides good results in 
a wide variety of situations. Accurate answers can be obtained both for problems 
with rapidly varying solutions as well as for those with steady state solutions. The 
method works well for problems involving shocks of any strength and for smooth 
flow. The method possesses a number of advantages over other implicit methods. 
Most notable are: the technique of switching between implicit and explicit for
mulations to obtain improved accuracy and efficiency, the use of Riemann problem 
solutions to obtain sharp shocks and eliminate the need for artificial viscosity, and 
the three-level time differencing, which is superior to both the Crank-Nicolson and 
backward Euler methods 

The algorithm can be applied equally well to any hyperbolic system of conser
vation laws. Although the method described above is strictly Lagrangian, an 
Eulerian version can be obtained by applying an explicit remap at the end of each 
cycle. Although there is then a time-step constraint that no material can move more 
than one zone/cycle, for many problems this is not restrictive. A single-step 
Eulerian version of the scheme which will not have this restriction as well as 
generalizations of the method to two dimensions, curvilinear coordinates, general 
equation of state, and other systems of equations will be discussed in future papers. 
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