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A DIRECT EULERIAN MUSCL SCHEME FOR 
GAS DYNAMICS* 

PHILLIP COI.ELLAt 

A h~tract. \Ve present a second order extension of GOdUllOV'S method for gas dynamics in Euleri,1Il 
c(l(1!din,ltcs patterned after van Leer's MUSeL scheme for gas dynamics in L.agrangian coordinates. The 
[,re,ent lTlcll'Od performs the Eu\eri<ln calculation in a single step \1v solving Ricm:lI1n problellls and 
charncll'r;,tic cquntions for the fluxes in the Eulerian frame. We nls" make several modifications in the 
rC'rtlllllation of 1\1lfSCL, applicahle to both this scheme and to the original Lagrangian scheme. all aimed 
at making a more rnhust and accurate scheme. We present the results of tcst cadulations in one and two 
space "'rjobles. 

Key "ords. hyperbolic c(lnservation I"",,;. Goduno\"s method. Riem;lI1n problem 

1. Introduction. In [7], van Leer described MUSCL, a second order accurate 
extension of Godunov's method [4]. [5J for solving the eyuations of gas dynamics in 
one space variable in Lagrangian coordinates. van leer presented this lagrangian 
scheme as the core of a llluitidimensional Eulerian code, developed by van Leer and 
\Voudward [R]. One time step of a one-dimensional Eulerian calculation is done by 
performing a one-dimcnsional Lagrangian step, then mapping the rcsults back to a 
lixed Eulerian grid. The multidimensional algorithm is obtained by lIsing the OI1C­

dimensional Eulerian algorithm with operator splitting. 
Tn this papcr, we present a different MUSel algorithm, based on some of the 

ideas in [7]. for computing gas dynamics in Eulerian coordinates in one space dimell';ion. 
The present algorithm is not formulated as a Lagrangian step, followed by a remap. 
but performs the Eulerian calculation in a single step. This direct Eulerian MUSCL 
bears the same relation to the nonlinear Eulerian Godunov algorithm discllssed in 
1'1], [51. as the lagral1f'ian MUSCL does to Godunov's method in lagrangian coordin­
'ltes. As in [7J. the extension to multidimensional calculations is then performed Llsing 
operator splitting. 

Because we work in Eulerian coordinates. the details of the direct Eulerian 
algorithm are substantially different than those of the Lagrangian scheme. In MUSCL, 
dissipation at shocks is introduced hy the constant reaveraging of a discrete travelling 
wave solution on the mesh. Since shocks always move relative to the mesh in Lagrangian 
coordinates, there is always introduced a certain minimum amount of dissipation in 
the solution near shocks in lagrangian calculations. In Eulerian coordinates. it is 
possible to have nearlv stationary shocks where the dissipation vanishes; consequently, 
it is necessary to introduce dissipative mechanisms for strong nonlinear waves beyond 
those described in [7]. More generally, care is required at places where one of the 
characteristic speeds associated with sound waves vanishes. This, plus the additional 
logic involved with both solving the Riemann problem and tracing characteristics in 
the Eulerian frame, make for a slightly more complicated algorithm than the simplest 
form of the 10 Lagrange plus remap MUSCL discussed in [7]. On the other hand. 
there is no remap to perform. Furthermore, we introduce some innovations whose 
analogue'S are not present in the Lagrangian method in [71, In particular. we lise the 
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sirnplified Rieman 11 problem solver discussed in [1]. Also. we derive the slopes of the 
di~;tributiolls of the dependent variables from the average values. rather than treating 
them as separate dependent variables, as was done in the code which generated the 
results presented in (7]; thus. the present one-dimensional algorithm is compatible 
with any multidimensional Eulerian code which performs its hydrodynamics calculation 
ill a series of one-dimensional passes. The interpolation algorithm for deriving the 
slopes is slightly more complicated than the second order central difference algorithm 
discussed in Pl. but yields a steeper representation of discontinuities. particularly 
contact discontinuities. Finally. we take advantage of the fact that for gas dynamics, 
the characteristic equations for the hydrodynamic waves are well approximated by the 
shockiulllfl relations for the waves of the opposite family. We exploit this relation in 
sllch a way that the solution of the characteristic equations reproduces the correct 
shock jump rclatiuns in the presence of strong gradients. 

2. Description of the method. We \vill be constructing approximate solutions to 
Euler's equations describing the motion of an inviscid compressible fluid in one space 
va ria hie r: 

(2.1) 

aU iI(AF) ClH 
-~+--+~-=O 
(It (J V iir ' 

Hi U) = (~). \ 0 

\() 

Here V= V(r) is a generalized volume coordinate. A(r)=dV/dr. These equations 
describe one-dimensional inviscid compressible flow with either planar, cylindrical, or 
spherical svmmetry, or flow in a duct whose cross-section at r is A( f), depending on 
whether V(,) = r, ,.2/2. ,.1/3, or j~" A(r) dr. respectively. Here p is the density. u is 
thc component of velocity in the direction of the one-dimensional sweep, v is the 
component of velocity orthogonal to u (hereafter, u and v will be referred to as the 
velocity and transverse velocity, respectively). and E is the total energy per unit mass. 
\Ve define e, the internal energy per unit mass, and p, the pressure, as 

e=E-~(u:'+V2). p=(y-l)pe 

where y j, the ratio of specific heats. Throughout this paper. y will be assumed to be 
a constant. y> I (polytropic gas); for a discussion of the Illodifkations required for a 
more general equation of state, see Colella and Glaz [2]. 

There are several other derived quantities which will be of interest: T, the specific 
volume. c, the speed of sound. and A ±.O, the three characteristic velocities: 

1 
T=T(U)=-, 

p 

hP 
c = c( U) = V;' A+ = A,( U) = u ± c, Ao( U) = u. 

Let !:it be a time increment, 'i+ J /2 the boundary between zones j and j + I, and 
define r,=~(ri+l/2+'j-1/2), I1r;=rj+l/Z-r;l/z. and I1Vj =V(rj+l/2)-V(rj-I/:')' We 
assume that, at time til, we know Ui', the averages of the conserved quantities across 
each zone: 

1 f'j"" Un =~- U(r In) dV. 
I 11 V. ., 

, ri--" 1.1 2 
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'We wish to compute (if" I, the averages of the conserved quantities at the new time 
/l l l=t"+LlI: 

In outline, the procedure followed by MLJSCL for calculating U;"] can he divided 
in to five steps: 

1) Com pute linear proliles of the dependent variables in each zone by interpolating 
slopes at the centers of zones, subject to certain ll1otlolonicitv constraints. This gives 
rise to a global distribution of the dependent variables which is picce\vise linear, linear 
in each zone. with jump discontinuities at the edges of Z()I1C~" 

n ('Oll1putc Uj', ['2' the solution at the old time at the cdges of zones. by solving 
the Riemann prohlems which resolve the jump discontinuities at the edges of the zones. 

J) COIllPU1l' II ;','] an approximation to the solution at the edge of the zones at 
the new time, by tracing approximate characteristics, and solving difference approxima­
tions to the characteristic equations. 

4) Compute time-averaged values of F and H, llsing the values computed in 2) 
and :1). and the following formula: 

M r ,".' 
F" ],~=- (F( U;~] 2)+ n U;"'/2)) =, F(U(rj+I/2, t) dt+ O(6.t't-6.rjM), 

2 . ," 

H" " =~~I ( '-I( [I;', 1'2H- HI uj',ii/')) = f' H ( U I 1"1 .C' t)) rtf + O(6.r' + MM}). 
- , 

'i) C:liculate t hc conserved quantities u,ing divided ditferences of the values 
calculated in 4): 

(2.2) ._(~/J' ]_;L~!.L] /2} 
6.rJ 

Clearly. most of the work in this algorithm is in steps 1)-3). We will proceed to describe 
those steps in more detail. 

Step 1. Interpolation of slopes. Given Ollr discrete data Uj', we will interpolate a 
global description for our dependent variables at all points (r, t") which is piecewise 
linear. and linear in each zone: 

(2 . .l ) 
. " (r- r;) 

III r) = q. + 8il.-----~-
, 1 J 6. r' ' 

1 

Here if ~~ q( (l) represcnts any useful flow varia hIe, conserved or not. For q = p, p, II, c. 
we will take qt' = q( (l/'), and construct the slopes ()q, hv a suitable difference formula. 
The distributions of other quantities 11 = II (p, p. 1I. L') arc then derived from those of 
p. p, II, l' in the foJiowing fashion: 

(2.4 ) 

II I" 
(1)+ I i2.H = q i+ 1- 2u qj+l' 

BIl) = (h i+ I ,'I - h, i'LJi), 

h;' =~(hj+]/2J + hili',")' 

q = p, p. [I, U. 

s= L R, 
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In the case of equally spaced zones D.r; = D.r, oqj is calculated using the following 
two-step algorithm. We first calculate Ojqj. a first guess to the slope using the monoton­
ized central difference algorithm discussed in [7J. 

') _ mm qj+l-qj' qj -qj-I . 1 qj+,-qj qj -qj 1. -> • { . (I /I "I I /I /I 1)2 'f (1/ 1/)( 11 11·) - () 

( limqj - 0 otherwise, 
(2.5) 

Finally. we calculate 8qj by differencing the values at two points on either side of 
,. obtained by llsing the interpolant given using orq as the slope: 

( Vi) 
'1 - . {21 I ~ . 1 ~ I ~ } (. ) , qj- mll1 j if,' I -- 4U j(jj+ 1 - qj-I - 4Ufq] -I • {)limqi sgn q}+ I .- qr-I. , 

,'lif; = ,"j(q", .... qj+2)' 

To obtain oqj in the case of unequal zones, calcuiate Sqj = 8(C/j-2, ... ,qj+2), Sri 

ij( 1'; 2. ", ri+2)' using (2.6). Then we calculate 

(2.7) 

In the case where the minima in (2.5)-(2.7) are obtained in the first arguments, one 
obtains 

i5qj _ (~(C/j+l-qj-l)-b(qj+2-qj-2)) 
D.r, - (~(rj+l- rj-')-T~(ri+2- rj-2» , 

which is a fourth order flnite difference approximation to dq / drl , . and thus is well 
I 

behaved in regions where the solution is smooth. The fact that Bq, is obtained from 
8rq, a monotonized first guess, gives rise to steeper prol1les representing discontinuities 
than tlwse obtained using either the fourth order accurate formula by itself, or by 
setting 8qj = orqj' as was suggested in [7]. 

There are situations, however. in which the above slope setting procedure leads 
to pro flies which are too steep, in the sense that the scheme will not provide sufficient 
dissipation to ensure that the correct amount of entropy production occurs. This 
situation arises when the speed of the characteristic of the family associated with the 
shock chclllges sign across the shock, i.e., where the shock is nearly stagnant. In such 
situations. the calculation remains stable, but there is a small amplitude (:s5%), low 
frequency error in the post shock values generated at the shock. In this case, we reduce 
the slopes computed by the above procedure by some fraction Xj' 0;:0; Xi;:O; 1: oqjeduceU = 

l"(lJXi' We want X, to have the following properties. If the jth zone is not inside a shock, 
or if the jth zone is inside the shock, but the speed of the characteristics of the family 
associated with that shock does not change sign, then Xj = 1. If the jth zone is inside a 
shock having zero velocity, then Xj = 0, thus reducing the method locally to Godunov's 
method. Intermediate cases should have an intermediate amount of flattening. Finally, 
.\; = I if there is not the possibility of a significant amount of entropy production across 
the zone. The formula given below for Xi satisfies the above requirements. 

W; = IpjjJ -- pj_II/J_l ___ l_l. 
pj+l Pj-l 

si=sgn (Pj-I-Pj+l), 
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f ___ IUJ ___ _ 
Xj = II UJ+ min (IA jl I, IAj.1{ 1) 

1 

and (Uj+1 -1111 ) < 0, 

otherwise, 

Yj=max (0,] -(I-X,)/rl). 

Here 0 < 1) 2 1 and Fp is the minimum pressure jump which would be considered a 
shock; in the calculations presented here TJ = t F

" 
= J. 

Steps 2~3. Calculation of interrace values. We must calculate U;', 1/2, Uj','/'2' 
approximate values to the solution at the old and new times, at the zone edges rj+I!2' 

To obtain Uj~I/2' we calculate the solution to the Riemann problem. Since the solution 
to he obtained from the Riemann pf(lblern is for an infinitesimal time after the 
breakdown of the initial .iump, the geometric source terms have no efTect on the 
solution. so that the Riemann problem wc solve is for the equations of gas dynamics 
in Cartesian coordinates. As is well known (for a detailed discussion, see Collella [1], 
and the references cited there), the solution to that Riemann problem with left and 
right states U/, UI{ is 1/;( (r It), UL , U,~); i.e., it depends OIl r. t only in the ratio rl I. 

To calCidale Uj'+1/2' we take our states 

(see Fig. I). and set 

If 

"i~ 1/1 l"-i- .I .... 2 

FI(;. I. Spatial dislriiJwion of' q al illitial tillll' I". 
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If U" (r, t) is the exact solution to the initial value problem given by the global piecewise 
linear distribution (2,3), then lim,]," U"(ri+l/2' t) = Uj'+I/2' As was the case for the 
Eulerian Godunov's method, the approximate Riemann problem solver described in 
[1] appears to be both inexpensive and sufficiently accurate, without introducing 
rarefaction shocks into the solution, 

To calculate Ui"', we solve a finite difference approximation to the characteristic 
equations, which we review briefly below, Given a solution U(x, t) to (2.1), we say 
that a curve (Tt.o-" (r(ur.o), t(u,.o» is a characteristic of the +, -, () family if U is 
continuolls in a neighborhood of that curve, and if the following ordinary differential 
equations hold 

(2)1),,0 

(2.9)r 

(2.9)() 

dt 
-=1 
du ' 

1 dp du At 
---±--+-uc=O, 
pc dCT" d(T± A 

dT dp 
-=-----

Here dh/d(T=(d/du)(h(r(T), tilT))) and all functions of (r, t) are evaluated at 
(r( (]"), f(u)). 

The equations (2.8), (2.9) completely describe the solution in regions where U 
is continuous or near contact discontinuities. However, in the neighborhood of a shock, 
the equations (2.9) no longer hold along the curves described by (2.8), and some 
modification to the equations must be introduced which takes into account this fact. 

Our strategy for calculating U;'/11/2 proceed as follows, considering, for the 
moment, the case dA/ dr 0= O. First, we find approximations to the paths described by 
(2.8)'.0 which intersect the pointe 'it 1/2' t"+ 1), taking due care to trace backwards to 
the origins of centered rarefaction fans if (ri+ 1/2, t) t> t" is inside such a fan. Then we 
calculate Ui'4-'/j2 in three stages, First, we solve a pair of nonlinear algebraic equations 
for pj',\I(2, u;~'i/2' given the values of the solution at the base of the +, - characteristics. 
These are the same nonlinear algebraic equations as those for the values of p, II between 
the two sonic waves in the Riemann problem with left and right states. given by, 
respectively, the values of the solution at the base of the + and - characteristics. 
Intuitively, what we are doing is lumping all the waves of the + (resp. -) family which 
are crossed by the -- (resp. +) characteristic into a single shock or rarefaction shock 
jump. In the case where the solution is continuously differentiable, we obtain a nonlinear 
finite difference approximation to (2.9)+. If the solution is not smooth, this procedure 

. I f lIt 1 ,,+ I I . h II b h d W h I I' . . gIves va uesor Pj+I/2, Uj+l/2 W llC are we eave. e t en so ve an exp IClt equatIOn 
for the pj' .... II/2, given the value of the solution at time t" and that of pj':lj2' which again 
lumps the pressure wave crossing the streamline into a single shock or rarefaction 
shock. In the limit that the pressure jump is small, we similarly obtain a solution to a 
finite difference approximation to (2.9}0. Finally, Vj':lj2 is just set equal to its value at 
the base of the approximate characteristic of the O-family. 

We now give the details of the procedure outlined above. First, we want to 
determine points (ri+I/ZA', t") such that (rj+l/2,#, t") and (ri+I/2, t"+I) are connected 
by a straight line which approximates a solution to (2.8)#. To this end, we define 
Dor;', In..,.,. sir, r;:I/Z.""'" q;:I/2,#, ()q;:I/2,#, q = p, p, U, V, A#, as follows: 



I I () 

These arc the qual1titie~ which describe the linear distribution of the depenUel1l 
variables in the zone which contains (ril 1/2."" I"). (iiven these quantities. we define 

1', I I '-.II to be 

(2.10) 

- iSj~I/'#+"'-;'+1/2." i:lt/i:lr;'+I~* d = ---~----------------
1+8'\;'Ili.,.",!:it/!:ir/".", ' 

rjfIIC" = 1',1 I ,- ,;"1/2.* max (min (d, ~). -i) 111';', I 

In the case where the maxima and minima are obtained in their Jirst arguments, 
this is a formula for the point where a straight line with slope "'-",(rj+ 12. ) passing 
through the point (f}!-I I? t"'I) intersects the line {t = /"} (Fig. 2). If we were integrating 
a single COllserv<t tionlaw. this line would coincide exactly with the characteristic through 
(l'j-I'2. t'" I L given that the characteristic velocity had the linear distribution given by 
(2.4). Tn t he extent t hat we lise (2.10) for a system. we are neglect ing the eHect of 
the interaction between waves of different families on the wave speeds in tracing the 
charaderistics. This introduces an O(;..\rj', I i2.",!:it) error into the value of ri" I! 2,"" 

. .1 

~. / .. 

,., q""#-~I/(r(t'),I") 
I 1·.' 

FIG. 2_ Approximate solution to the characteristic equation of the # tamil\'. 

Given r i, Ii 2."" we can also define ifj+I/2.o''' the value of the sulution at the base of 
the characteristic passing through (rj-H/2. til): 

(2.1 I ) 
r' 1 - r" " + J+ 1/ ~,# J+ I 1 •• #) tr 

!:i tr ~qf+l!2.#' 
rj+l/2.# 

q = p, p, Il, V. 

In the case that U;', 1/2 cam from evaluating the solution of the Riemann problem 
inside a centered rarefaction fan of the + or --- familY. we assume that the characteristic 
of that family passing through the point (ril I 2. t;,+I) originates fmm the Riemanll 

problem at (fj+I/2, til) ami define ril 1/2.#' ({j+I/2.#' accordingly: 

ri+I!2J,,=rj+112, qj+1!2.+=qj'H/2' q=p.p,l/,v. 

Given q;-, I 2,"" q = p, (I. II. V. #:= 0, -1-, • Wt' can now express P;~+I~ 2, Pj'4+/'. 
" + 1 II' I . f h .. F" . J I I 

/lj+I;2. V I+ I Hl terms 0 t ose quantIties. 'Irst. we reqll1re that pj'+1 2. Uj'4+1/2 satisfy 
the pair of equations 

(2.12) 

( 11+1 ) 
Pj+I/2 P}+1/2.[ ( ,,+1 

P/( 1141 -----------.. ± Uj-l-I/2--- lIi'I,Z.-,)=0, 
, Pj+ I 12, Pj+J/2.~' P,+1!2.,) 

( ( 1'+1 p*_p)')lf2 
W( p*, p, p) = i'PP 1 +-2-:;:- ---1-) -
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If Ipj+ 1/2.+ - pj'1I2-I, I H,+ I 12.+- Uj+ 1/ are O(~ri' ~ri+ I }, then this is just a flI1IIt: differ­
ence approximation to (2.Y)c. If either the quantities Ipj! 1/ .~.+'- P/4 1/ i Uj '·1 ".-­

Uj+li2.+1 is 0(1), then we have the interpretation of the equations (2.12) given above. 
The equations (2.12) for 17,,+1, U,,'-I arc exactly the ones given in [IJ for the central 

pressure and velocity for the approximate Riemann problem solver given in r I]. and 
the iteration scheme given there can be used to solve (2.12) for pn' I. u"+ I. 

Tl I f ,,+ I " + I . lit' II' I' . . 1e va ue Of Pi' 1'." V"'I 2 are gJ\'cn 1y t lC . 0 O\\'Ing Cxp lClt exprcsslons: 

(2.1 3) 

Again, if Ip;':i/2 - Pj; 112.01 is small, then (2.13) is a Jinite ditIerellce approximation to 
(2.9)0' If the pressure jump is large, then the change in density is given by lumping 
all of the pressure variation along the strearnline into a single shock or rarefaction 
shock jump. An immediate consequence of the above formulas is that. if all of the 
slopes Oil either side r;41 are zero. then U;','i =-C' U;'. and We recover Godun()v'~ 
method, with the Riemann problem solution algorithm in ll], for calculating the fluxes. 

In the case where A';-t' 0, we want to include the etIect of the source terms in the 
calculation of p,,+.t.pn+J,unll,vn+l, Let ;),"1, a n+ l , be the V(1)u{"s oht(1illed by the 

procedure leading up to the equations (2.12) i.e., not including the eHeet of source 
terms. We obtain P;\\j20 11;':11/2' by solving the foilowillg set of linear equations. which 
approximate (2.Y)± 

I . n ,_ I " + 1 ) A I ( rj I I!:. I ) 
~ - \ Pi+1 /2 -- Pf + I /2.,) ± (H,+ 1/2 - !If I 1/2.±, + ~\'-(-~-, ,-) Ii}+ 1'.'.< Cr+ 1'2.,i= 0, 
>Y." T,! I.' ~" 

where H/±= W(i5;~411!2'PJI1!2,"'PJ+1 2.1) and (',+1/,.,,=C(I:,.+1/2') have alreadv been 
obtained above in calculating the solution without source krllls. After a littlc algebra, 

one find5: 

(2.14) 
" + I. _." + I. ~ t. ( W ! \ I ( I)., 1./ 2....) 

ll/+-II-, = llj-l-I/"+---- ---------lli~I/:? .Cf·'~"l '1. 
- , - W. + Hi A (Til In. __ ) , . 

-- ..':':~+A~~~Jj}cJ !I; I I. 2.+ C;I I' 2.~). 
A(I'/+1'2., ) 

Given P;'~+/Il' 1I;'ill/2' the values for tbe other variables are ohtained lIsing (2, U1. 
This completes the calculatioll of U;', 1/2, Uj',1 i, c' Tbese va lues ale then imcrted 

into (2.2) to obtain uti, the conserved quantities at the new time. The time step 
must satisfy the usual CFL condition for stability: 

(2.15 ) (' D.r ) M "'.? (T max --";,-'-'---~; 
J [zljl+cj 

where 0 < a < 1. The smallest (T for which (2. J 5) is sati,fied is called the CFI. !lumher 
for that time step of the calculation. 
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3. Numerical results. 
Boundary conditions. In order to calculate uri, j == M r , ... , M/(. it suffices to 

"pecify qj'. (Oq);, j== M f -1, .. '. M" + 1. Then one has sufficient data to calculate 
V " V"+I . '1 1 '1 d h V"+ 1, If . 'f II' /+112. /+1/2' j=dl.- , ... ,1> /(, an t e j s. we can specI y qi,j= 

MI - 3, ... ,M" + 3, then it follows from (2.6) that we can calculate 8q,. f = 

tHI - 1. ...• JI.1R + 1. In one dimension, or for two-dimensional problems for which 
the boundaries are aligned with the mesh directions, this is straightforward. For 
example. for the left boundary, we have 

Refiecting wall: 
Continuation: 
111 tlrJl\": 

qMr.-1 = q"h+I·-I, UI\1[·-1 = U~f" I· I, 

qM[--1 =q"1r +l--·l, 

q;~ll-1 = qO(t"), 

where !f = fl. p, l' for the reflecting wall, and q = p, p. C, Ii for the subsequent boundary 
conditions. with! = 1,2,3. For a reflecting wall. we have chosen to change the slope 
limiting procedure slightly. We allow the values extrapolated to the wall to take on 
the values which are obtained at the wall by solving a Riemann problem with left and 
right states (VI. V R ) = ( V;~I[- J. V;~lr ). This procedure seems to improve the resolution 
of shock reflections in multidimensional calculations. 

Specifically, we define PJim to be one of the roots of 

(3.1 ) 

where Pli'" is the root § Po if lIMr § O. Then we define 

"These arc used in the equations for 8JirnqM/.~1/ i' if = P, p. u: 

8 _ {m. in (2Iq'\I/ - q,\I/ ,I, 2jq,\ll - qiiml) 
limqM/ ,- 0 

if (qM/ qlim)(qlim - q,\I, ,,) > 0, 
otherwise. 

if (qMr. -qlim)(qlim-q;\1r ,) > O. 
otherwise. 

The corresponding procedure for a reflecting wall at MH is obtained by exchanging 
>, < in choosing the root of (3.1). and replacing ML +l, lvh. M[-l with AIR-I. 
1\Ili' MI< + 1. 

If 1<\1, " is the axis of symmetry for a cylindrically or spherically symmetric 
problem. then we treat it as a reflecting wall. except that the geometric source terms 
± ileA' / A in the characteristic equations (2.9) are set equal to zero in calculating 

[j'~I: I J 2, i.e .. (7:~/, I 1'2 = q:~'~~1/2' 
Finally. ill the diverging duct problem discussed below, we use a characteristic 

boundary eondition at the right-hand side of the duct. The density p" is specified to 
be a constant at the right end of the duct. Then, as a function of time values of p, U 

are specified using the characteristic equatiol1s, using the assumption that the -, 0 
characteristics point to the right: 

( 3.21 
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Test problems. This method has heen tested Oil a variety of test problems ill nne 
space dimension, including shock tubes in Cartesian, cylindrical and spherical geometry. 
Results were obtained for one-dimensinal problems which were indistinguishable from 
those shown in [71 and [1]. obtained using the Lagrange plus remap l-vlLTSCL This 
method has also been used to calculate the oblique reflection of a shock against an 
inclined plane in two space varia blcs [I 1], successfully resolving multiple Mach stem 
con figu rations. 

We presellt here two test calculations. As a one-dimensional test pmbkm. we 
calculated the steady state solution to the duct flow problem in Shubin. Stephens. and 
Glaz [6], marching in time until the steady state was reached. The duct is specified by 
A(,.) =: 1.398+.347 tanh (.8r--4), O~ r~ 10, with boundary conditiolls 

p(O, t) =: .3809, p(O, I) =: .502, u(O, t) = 1.299, p(10, t) = .776. 1:0:: O. 

The initial conditions are given by setting q(x, 0) = q(O, 0), i.e., impulsiv,_ start. 
Inflow boundary conditions arc imposed :11 the left boundary. and the characteristic 
boundary conditions (3.2) are imposed at the right boundarv. The density profiles at 
t = 200 are shown in Fig. 3, for M = ~ and LH = j~;, plotted as a dotted line, with circles 

DT~O.211~9E+()fI TlMF ~ 1l21l(lOOF+0.' NSTP·· 942 
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at the data points. This is to be compared with the exact solution, plotted as a solid 
line. We obtain good agreement with the exact solution, even for the coarsely zoned 
ca Iculatioll. 

We also calculated the two-dimensional Cartesian shock reflection problem used 
by van Lecr [7] as a test problem for the Lagrange plus remap versions of MUSCL; 
see also Woodward and Colella [9]. The computational domain is a channel of length 
3 in the x direction, and of width] at the left end in the)' direction, with a step of 
height 2 extending to the right beginning at x = 6. The step and the upper and lower 
walls of the channel are reflecting houndaries, with a Mach 3 uniform inflow on the 
left, and continuation houndary conditions on the right. The initial conditions are that 
of uniform flow throughout the channel: 

p(x, ),,0) = L p(x,)', 0) = 1.4, uAx,)" 0) = 3, u,,(x, y, 0) = O. 

In Figs. 4 and 5, we show the density and pressure contours of the solutioll at 
t = 4, \vith 6x = 6y =.1 and .05, respectively. The first shock reflection point along 
the upper wall has been seen in other calculations [9J to be a Mach reflection, located 
directly above the edge of the step. The present calculations obtain the correct location 
of the reHection point, although the Mach stem in the 6x =.1 is two zones long; 
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consequently, the slip line extending to the right from the triple point is not resolved, 
as it is ill the ux = .05 calculation. The othe r rell ected shocks are well resolved in both 
calculations, even though they are quite weak. 

These results represent an improvement over the the results in [7J in two respects. 
First, the overall resolution of the shocks, particularly in the ux =. J calculation, is 
substantially better. Second. the numerical boundary layer generated at the corner 
along the upper surface of the step is feH weak er than that ge nerated in the Lagrange 
plus remap results. In the latter calculation, the boundary layer separates at x = l. 
changing somewhat the shock pattern downstream. The numerical boundary layer 
does not separate in the present calculations. 

These two-dimensional problems were run on the Cray-l at LLNL using a fully 
vectorized implementation of the algorithm, the ux =.1 calculation taking .066 minutes 
to run 194 time steps, and the ux = .05 calculation taking .36 minutes tf) run 376 time 
steps. However, the vector lengths in these calculations \vere that of the Ilumber of 
zones in a one-dimensional sweep, a IJd were hence too short to obse rve the fu II speed 
of a fully vectorized calculation on the Cray, i\ more typical speed for larger problems 
is 20 fLS / zone/ time ~tep/ dimension. 
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4. Discussion and conclusions. The direct Eulerian MUSCL algorithm described 
above follows the basic conceptual framework given by van Leer for the Lagrangian 
MUSeL scheme. There are, however, substantial technical differences, all aimed at 
producing a more robust, and in certain ways, simpler scheme. A central feature to 
the engineering of the scheme is that of solving the characteristic equations (2 .8)-(2.9) 
directly, rather than, as in [7J, deriving a formula based on Taylor expansions, for the 
time derivative of the flux. The present approach makes it much easier to account 
correctly for sonic points in rarefaction waves (2.11), to introduce tracing characteristics 
forward in time (2.10); and to exploit the duality between the Riemann problem and 
the characteristic equations for gas dynamics by introducing the nonlinear algorithm 
for calculating Uj'/ t'/2 ' The latter two procedures were essential for calculating strong 
shocks with CFL numbers close to 1, and appear to be necessary for Lagrangian 
calculations using MUSCL as well [12]. 

We have presented here the basic framework for extending the Lagrangian 
algorithm of van Leer to Eulerian gas dynamics. This approach can be easily modified 
to an arbitrary moving coordinate system, in one dimension, or a moving rectangular 
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coordinate system in more than Ol1e dimensjpn .. A central issue which relll;tins to be 
fully resolved for this methnd. <I- well as other higher order exten~inf]~ ()f G(lduf]o''.; 
method is controlling the behavior of such scheme~ when one of the characteristic 
speeds. measured relative (0 the mesh motion. vanishes. The treatment of sonic celltered 
rarefaction waves and the flattening of slopes at nearly stationary shocks constit1!te a 
first step. but more work is required. A, fuller an,dysis of these problems ;lJ)!k:ar~ in 
[3], [10], along with some proposals for ameliorating them. 
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