
Along-standing challenge in both ap-
plied and theoretical physics is to fully
understand and predict the behavior
of systems far from thermodynamic

equilibrium,1–4 including those systems driven
by an external force or experiencing a sudden
change in environment (such as pressure or tem-
perature). They also include systems transition-
ing from one metastable or long-lived state to
another. The need to accurately model and nu-
merically simulate these processes has become
more pressing as efforts to derive well-
parameterized evolution equations for meso-
scopic nonequilibrium dynamical processes’
progress. Simultaneously, it’s becoming increas-
ingly important (for example, in phase transition
kinetics5,6) to be able to validate equations and
their solutions against experiment. This valida-
tion requires highly accurate and efficient par-
tial differential equation (PDE) solvers.

PDE integrators for these problems aren’t typi-

cally selected for their space and time accuracy. In-
stead, researchers have used easily implemented,
mostly explicit methods to determine universal fea-
tures such as domain growth exponents. For mod-
ern materials applications, however, space and time
resolution are crucial for modeling system behav-
ior. For these applications, the standard low-order
or fixed-grid integration approach is prohibitive
due to time-step constraints. We address this issue
by applying adaptive mesh refinement (AMR)
methods in dynamical condensed-matter systems.
For ease of exposition, we focus on the time-de-
pendent (real) Ginzburg-Landau (TDGL) equa-
tions because they’re the prototypical example of a
spatially extended nonequilibrium system under-
going a dynamical phase transition.

Nonequilibrium Phenomena
The equations of dynamical critical phenomena,
phase separation, and so on typically fall into the
reaction-diffusion or reaction-diffusion-advection
type.4,7 They can contain several scalar, vector, or
tensor fields, and they’re often dissipative, but
sometimes they have an inertial manifold.8–10 In
this article, we consider nonequilibrium phenom-
ena of the following type:

• The system (for example, a binary alloy) is at
high temperature, in the disordered or single
phase. 
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• The temperature or other control parameter is
rapidly changed to a value at which the system is
unstable to fluctuations. 

• Via nucleation or continuous ordering, coherent
structures of the new stable phase grow. 

• As time progresses, the ordered domains R grow,
typically as some power of time R(t) ~ t�. 

Because most of the alloy concentration’s varia-
tion is at the interface between domains, it’s
worthwhile to use numerical and analytical meth-
ods that take advantage of this fact. Relatively re-
cent efforts work in the regime of a very sharp in-
terface.11–13

One such approach is AMR, in which the com-
putational mesh is locally refined in regions where
greater accuracy is desired. Local refinement of the
computational mesh can permit solutions with the
accuracy of the finest mesh with only a fraction of
the cost of a computation on the equivalent uni-
formly fine mesh. We use Marsha Berger and
Phillip Colella’s block-structured approach,14 in
which refinement is organized in logically rectan-
gular regions of the domain. Discontinuities in the
computational mesh due to local refinement
require special stencils to maintain accuracy. Block-
structured refinement allows this overhead at in-
terfaces between coarse and fine meshes to be
amortized over many regular operations on the in-
teriors of the refined regions. This approach was
initially implemented for gas dynamics,14 but has
been successfully extended to other systems of
equations including incompressible fluid dynam-
ics,15,16 plasma fluid dynamics,17 and magnetohy-
drodynamics (MHD).18

The Time-Dependent 
Ginzburg-Landau Equations
Our physical system is characterized by a coarse-
grained local order parameter �(x, t), which
represents a concentration difference between
competing phases.

The free energy for this system is given by

, (1)

where V(�) is a local potential. For simplicity, we
choose V(�) = (1/4)�4 – (1/2)�2, which is a double-
well potential.

The standard approach to generating a dynam-
ics when the order parameter isn’t conserved is to
equate the local order parameter’s time derivative
with the local chemical potential, which in this case

is the (negative) of the free energy’s variational de-
rivative with respect to the order parameter.
Hence,

. (2)

For simplicity, we’ve set any kinetic coefficients to
unity. Our specific potential V then yields the fol-
lowing dynamics for the order parameter:

. (3)

These equations model the time development of
the concentration difference between competing
stable phases. Other evolution equations for non-
equilibrium dynamics have similar behavior and
will be dealt with elsewhere.

AMR Operators and Notation
As Figure 1 illustrates, we start with a single, uni-
form Cartesian mesh, with grid spacing h0 and in-
dexing i = (0, N0 – 1). Where refinement is desired,
we refine logically rectangular patches by a refine-
ment ratio nref

0 , with cell spacing h1 = h0/nref
0 . The

collection of logically rectangular patches with h =
h1 are considered to make up a single AMR level,
level 1 (the original base mesh is level 0). If further
refinement is desired, we can refine logically rec-
tangular patches of level 1 by nref

1 to create a second
level of refinement (level 2). 
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Figure 1. Block-structured local refinement. Two levels of refinement
(levels 1 and 2) are nested within the coarse mesh (level 0).
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In general, we can create an arbitrary number
of refinement levels. The refinement level � is re-
lated to the coarser level (� – 1) by the refinement
ratio nref

�–1 = h�–1/h�. Because the solution on finer
grids is assumed to be more accurate, only cells
that aren’t covered by refinement are considered
to have “valid” solution values; the collection of
cells on a level uncovered by refinement are con-
sidered to be the “valid region” on a given AMR
level. In our implementation, we’ve used refine-
ment ratios that are powers of two. To simplify the
stencils at the interfaces between fine and coarse
regions, we require that refined regions be prop-
erly nested14—the edge of level � must either be
adjacent to level (� – 1) cells or be located at the
boundary of the computational domain. Imple-
mentation is also greatly simplified by the use of

a global index space on each level; for the cell-
centered discretization used in this work, the cell
i = (i, j) on level � is centered at xi = (xi, yj) = ((i +
1/2)h�, (j + 1/2)h�).

Implementing numerical algorithms on locally
refined meshes requires care in the construction of
operator discretizations at the coarse–fine interface
to ensure that the appropriate accuracy is main-
tained for the resulting solution. We refer to such
discretizations on the composite mesh hierarchy as
composite or AMR operators. We’ll use a composite
discretization of the Laplacian operator,16 which
we’ll refer to as Lcomp�.

Although other AMR time-accurate applications
employ refinement in time and space,14–18 we’ve
elected to advance cells at all levels of refinement
with the same time step (also referred to as a non-
subcycled algorithm). This approach has been used in
various contexts, including incompressible flow and
porous media flow.19,20 The hyperbolic nature of
the equations solved elsewhere14–16 make refine-
ment in time particularly useful, because it enables
all levels to advance at similar CFL (Courant-
Friedrichs-Lewy) numbers. 

Because the advection schemes employed in
these other works have better phase-error accu-

racy at moderate CFL numbers, subcycling is
important to the numerical accuracy on coarser
levels for these algorithms.1 Subcycling is partic-
ularly useful when similar temporal accuracy is re-
quired on all levels in the adaptive mesh hierarchy
or when a problem has a very large range of
dynamic scales (resulting in many levels of refine-
ment). The TDGL equations solved in this arti-
cle produce solutions that quickly evolve into a
fairly sharp interface between regions in which
the solution is relatively constant spatially. In this
case, the solution’s accuracy on the coarse levels
isn’t important because all the dynamics occur at
the interface. Therefore, implementing subcy-
cling won’t affect solution accuracy in any appre-
ciable way, assuming that the interface between
the two phases is completely refined. Subcycled
algorithms are more complex, both algorithmi-
cally and in code implementation. In the case of
the TDGL equations, the subcycled algorithm for
a given level (�) would look like this:

1. If (� > 0), interpolate boundary conditions in
time and space from level (� – 1).

2. Advance the solution on level � using a single-
level advance from time (t�) to time (t� + �t�),
where �t� = (1/nref

�–1)�t�–1.
3. If a level (� + 1) exists, advance the solution on

the next finer level nref
� times (which will also

include advancing any levels finer than (� + 1)).
At this point, both the level � and level (� + 1)
solutions will have reached the same time.

4. Perform a multilevel elliptic synchronization
solve over all levels that have reached time (t�

+ �t�).
5. Average level (� + 1) solution to covered re-

gions of level �.

Note that in a subcycled algorithm, the TDGL
equations’ elliptic/parabolic nature implies that the
synchronization step entails an extra multilevel el-
liptic solve to enforce the proper matching condi-
tions between coarse and fine levels.15 In contrast,
the nonsubcycled algorithm is the same as the
single-level algorithm, except that it uses compos-
ite AMR operators.

Because there is no real accuracy benefit to im-
plementing subcycling for the solutions computed
in this work, we decided to implement the simpler
choice. Adopting a nonsubcycled algorithm results
in a much simpler algorithm with fewer elliptic
solves; we believe that the benefits of refinement in
time are outweighed by the increased algorithmic
complexity and computational cost the additional
elliptic solves would require in this case.

Subcycling is particularly useful when temporal

accuracy is required on all levels in the adaptive

mesh hierarchy or when a problem has a very

large range of dynamic scales.
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Integration
We wish to compute solutions to the TDGL
equations that are second-order accurate in time
and space. Due to the stability constraints of ex-
plicit methods for parabolic equations, we elect
to use a semi-implicit approach instead. Although
the Crank-Nicolson scheme is commonly used
for these types of problems, it suffers from accu-
racy and stability problems in the presence of lo-
cal refinement. Instead, we use the second-order
L0-stable scheme detailed elsewhere.21 Although
this scheme requires two elliptic solves for each
update instead of the one required for Crank-
Nicolson, its improved performance in the pres-
ence of local refinement makes it a good choice
for AMR algorithms.

Mathematically, we can treat the TDGL equa-
tions as a heat equation with a nonlinear forcing
term:

, (4)

where V(�) is the potential.
We discretize � in time and space in a cell-

centered manner:

�n
i = �(xi, tn). (5)

The basic advance step from time tn to time tn+1

= tn + �tn proceeds as follows:

1. Evaluate source term Sn = –(V�)n = –dV/d�(�n).
2. Predict ~

�n+1 using a forward-difference ap-
proximation:

~
�n+1 � �n + �tn(�� – (V�)n). (6)

3. Use  ~�(n+1) to predict source term Sn+1 = –(V �)n+1

for time tn+1.
4. Do initial elliptic solve for parabolic advance

and solve for intermediate term �e:

(I – r2�t�Lcomp)�e = e (7)

e = (1 + (1 – a)�tLcomp)�n

+ 1/2�t [Sn + (1 – 2(a – 1/2)�tLcomp)Sn+1]. (8)

5. Do second elliptic solve for parabolic advance
and solve for �n+1:

(I – r1�tLcomp)�n+1 = �e. (9)

The quantities a, r1, and r2 are the values suggested
elsewhere:21

a =  2 – – �, 

discr = ,

r1 = ,

r2 =  ,

where � is a small quantity (we use 10–8).

Solver
We constructed our implementation of this algo-
rithm with the Chombo infrastructure,22 which
simplifies the implementation of the locally adap-
tive algorithm. To perform the multilevel AMR el-
liptic solves, we use the Chombo AMR elliptic
solver, which is based on a multigrid algorithm.

Results
For this AMR approach to be worthwhile, it must
satisfy three things:

1. The AMR algorithm should converge at sec-
ond-order rates; adding coarse–fine interfaces
to the discretization can cause a loss of accu-
racy, which can impact convergence.

2. Suitably placed local refinement should result
in the same solution accuracy as the solution
on an equivalent uniformly fine computation
mesh.

3. The use of local refinement should result in
computational savings over the uniform mesh
solution with the same resolution.

Let’s examine each of these in more detail.

Convergence of the AMR Algorithm 
To demonstrate this algorithm’s convergence
properties, we solve the sample three-dimen-
sional TDGL system (Equation 3) on a 64.0 �
64.0 � 64.0 domain using an initial condition in
which � is initialized to be a sum of sinusoids to
create an analytic initial condition that is also
complex geometrically.

To evaluate convergence consistently, we specify
a refined patch in the center of the domain and re-
fine the entire grid hierarchy. Because the grid
hierarchy in this case isn’t truly adaptive, we don’t
expect to get fine-grid accuracy in these computa-
tions (although demonstrating the algorithm’s
overall convergence properties is useful). The so-
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lution features cross coarse–fine interfaces in this
test, so this test highlights any discretization prob-
lems at the coarse–fine interfaces. Because no ana-
lytic solution exists for this problem, we compute
a solution on a uniform 5123 fine mesh and treat it
as the “exact” solution against which we compare
other computed solutions. We compute error
norms by averaging the “exact” solution down to
the appropriate resolution, subtracting the com-
puted solution, multiplying by the cell volume on
each level, and then summing over the valid re-
gions on each level:

. (10)

Because the domain is a 64 � 64 � 64 cube, the L1

and L2 error norms are normalized by dividing by
the total domain volume, V = 262,144.

Tables 1, 2, and 3 show the test problem’s con-
vergence at L1, L2, and L�; note that because the
refinement is placed without regard to the solu-
tion, there is no apparent accuracy gain due to re-
finement. Because the time step and cell spacing
are reduced simultaneously (the time step is
halved when the cell spacing is halved), second-
order convergence in these plots demonstrates
convergence in both time and space. As expected,
adding refinement in this example doesn’t no-
ticeably improve the solution’s accuracy, because
the refinement isn’t placed in an adaptive manner.

AMR Accuracy
For the AMR approach to be worthwhile, a solu-
tion with well-placed local refinement should pro-
vide accuracy essentially equivalent to a solution
computed with a uniform fine mesh. To demon-
strate this, we use a different test problem with a
more AMR-appropriate initial condition.
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Table 1. Convergence results for L1 arbitrary refine grids, L1 norm.

Base grid size Single level nref = 2 nref = 4
Error Rate Error Rate Error Rate

32 1.0053e-01 — 9.0256e-02 — 8.7002e-02 —
64 1.6024e-02 2.65 1.6800e-02 2.42 1.5859e-02 2.46
128 3.9268e-03 2.02 3.8158e-03 2.13 — —
256 9.9205e-04 1.98 — — — —

Table 2. Convergence results for arbitrary refined grids, L2 norm.

Base grid size Single level nref = 2 nref = 4
Error Rate Error Rate Error Rate

32 3.0811e-04 — 3.1077e-04 — 3.0196e-04 —
64 5.4665e-05 2.49 5.7526e-05 2.43 5.4348e-05 2.47
128 1.3575e-05 2.01 1.3121e-05 2.12 — —
256 3.4496e-06 1.98 — — — —

Base grid size Single level nref = 2 nref = 4
Error Rate Error Rate Error Rate

32 1.0257e+00 — 1.0840e+00 — 1.0617e+00 —
64 3.0519e-01 1.75 3.3780e-01 1.68 3.2419e-01 1.71
128 7.8087e-02 1.97 7.8628e-02 2.10 — —
256 1.9702e-02 1.99 — — — —

Table 3. Convergence results for arbitrary refined grids, L� norm.
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The initial condition for � is the sum of two
Gaussians in a 64.0 � 64.0 � 64.0 cubic domain:

, (11)

where

n = 1
x0 = (30, 24, 24)
�0 = 1
�0 = 25
x1 = (36, 40, 40)
�1 = –1
�1 = 25.

The solution is evolved to time t = 1, using the
undivided gradient of � as the indicator for refine-
ment. Tables 4, 5, and 6 show the error norms
computed by using Equation 10; base grid size is
the number of cells per side on the coarsest AMR
level. If the refinement is effective, then the 323

base grid solution with nref = 2 should have the
same error as the 643 uniform grid solution, and
the 323 with nref = 4 solution should have the same
accuracy as the 1283 uniform grid solution. When
the refinement is appropriately placed, Tables 4, 5,

and 6 demonstrate that the solutions do attain the
equivalent uniform grid solution’s level of accuracy.

Performance
To demonstrate the AMR approach’s effective-
ness, we use a simple test problem on a 64 � 64 �
64 domain with homogeneous Dirichlet bound-
ary conditions.

n = 1
x0 = (30, 24, 24)
�0 = 1
�0 = 50
x1 = (36, 40, 40)
�1 = –1 
�1 = 50.

We compute this with a base 323 mesh (h0 = 2.0),
with two levels of refinement at nref = 4. As before,
we tag cells for refinement based on the undivided
gradient of �. To estimate the cost of the equiva-
lent uniform-grid solution, we computed 15 time
steps on the equivalent 512 � 512 � 512 uniform
grid. Figure 2 shows the solution at the initial
time and at time t = 10.0. Figure 3 shows the
finest-level grid boxes at the final time (by this
point, the first level of refinement has grown to
cover the entire domain).
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Base grid size Uniform grid error nref = 2 error nref = 4 error
32 7.0774e-04 2.2495e-04 6.3469e-05
64 2.2375e-04 6.1733e-05 1.5261e-05
128 5.3856e-05 1.3769e-05 —
256 1.3174e-05 — —

Table 4. Errors for Gaussian AMR test (L1).

Base grid size Uniform grid error nref = 2 error nref = 4 error
32 6.2447e-06 1.9765e-06 5.4413e-07
64 1.9765e-06 5.4237e-07 1.2004e-07
128 5.4230e-07 1.1713e-07 —
256 1.1626e-07 — —

Table 5. Errors for Gaussian AMR test (L2).

Base grid size Uniform grid error nref = 2 error nref = 4 error
32 2.2907e-02 7.4154e-03 2.0236e-03
64 7.4154e-03 2.0236e-03 9.7390e-04
128 2.0236e-03 4.3250e-04 —
256 4.3246e-04 — —

Table 6. Errors for Gaussian AMR test (L�).
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Figure 4 shows the total number of cells ad-
vanced per time step for the AMR computation
compared to the uniform grid computation. This
number slowly increases to approximately 40 per-
cent of the number in the uniform grid case (at
the initial time, it’s less than 1 percent of the
number of cells in the uniform grid case). The
smaller problem size can be crucial in fitting the
problem onto machines with less memory. The
total time spent advancing the solution (not
counting I/O and initialization) was 87,942.67
seconds on a 1.8-GHz Opteron machine. As a
comparison, running the equivalent single-level
computation out to time t = 10 would have taken
291,360 seconds. The AMR computation took
30.2 percent of the execution time and required

only 40 percent of the memory the equivalent
single-level computation needed. We should
note, though, that this is still a fairly small sam-
ple problem. We expect that a larger problem
with finer resolution will result in more pro-
nounced benefits due to AMR.

The work described here only
scratches the surface of potential
AMR applications to nonequilib-
rium problems. A first step beyond

would be to treat systems with multiple-order
parameter fields, including, for example, the dy-
namics of liquid crystals and superfluids.

Another direction in which AMR could be ap-
plied is modeling systems with a conserved order
parameter. The dynamical equations then contain
higher order differential operators such as the
Cahn-Hilliard equation, in which the Laplacian
is replaced by the fourth-order (–��) operator.
Classical finite difference spatial discretizations
aren’t well-suited for this problem. Instead, we
would consider using a different approach to
multiresolution modeling for constant coefficient
PDEs.23

For the problem examined in this work, the undi-
vided gradient of the solution provided a reasonable
indicator for locating refinement. For more compli-
cated problems, this simple approach could be re-
placed by more appropriate indicators. One ap-
proach14 is to estimate the local truncation error and
refine it where it is above a given threshold. Another
approach is to determine a physical parameter of the
solution as an indicator for refinement (for example,
vorticity in a fluid or heat release in a flame).
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Figure 4. Cells updated per time step. “Solution time” is the time t to
which the solution �(x, t) has been evolved. “Uniform grid” is the
number of cells in the equivalent uniform-grid computation.


