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Abstract

We present results of Adaptive Mesh Refinement (AMR) simulations of the pellet injection process, a proven method of
refueling tokamaks. AMR is a computationally efficient way to provide the resolution required to simulate realistic pellet sizes
relative to device dimensions. The mathematical model comprises of single-fluid MHD equations with source terms in the
continuity equation along with a pellet ablation rate model. The numerical method developed is an explicit unsplit upwinding
treatment of the 8-wave formulation, coupled with a MAC projection method to enforce the solenoidal property of the magnetic
field. The Chombo framework is used for AMR. The role of #ex B drift in mass redistribution during inside and outside
pellet injections is emphasized.
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1. Introduction

Injecting small pellets of frozen hydrogen into a tokamslaiproven method of fueling. Experimentally, it is
known that the density distribution, after the pellet ablates upon encountering the high temperatures in a tokamak,
is not consistent with the distribution inferred from assog that the ablated material remains on the flux surfaces
where the ablation occurred. The subsequent redistribution of mass is believed to be due to anomalous MHD
processes. The mass redistribution is observed to be a sensitive function of the angle (with respect to the mid-
plane) in which the pellet is injectdd,2]. It is this phenomenon which we seek to explain.

A previous three-dimensional computational investign of pellet injection was performed by Strauss and
Park[3]. They investigated the evolution of a large density “blob” representing the ionized pellet ablation cloud.
However, they did not treat a moving pellet source and their resolution was relatively coarse. Our approach is to
perform detailed simulations of the pellet injection process and quantify the MHD processes responsible for mass
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redistribution. We employ Adaptive Mesh Refinement (AMR) in our simulations to provide the resolution required
to simulate realistic pellet sizes relative to device dimensions (typical ratios are ))& Section 2we describe

the physical problem and the mathematimodel along with the pellet ablation model and discussion of initial and
boundary conditions. I8ection 3 we describe the numerical method.Saction 4 we present results from AMR
simulations emphasizing the differences between inside and outside injections.

2. Description of problem and mathematical model
2.1. Physical problem

The physical problem we are dealing with involves the injection of frozen fuel pellets into a tokamak. The
physical processes are broadly distinguished into the following two stages. The first stage is the ablation of mass
at the pellet surface due to the high temperature background plasma encountered by the pellet. The ablated pellet
mass, which is a neutral gas, is rapidly heated by mlastand ionizes to form plasma. The second stage is the
redistribution of the ablated pellet material by free streaming along the magnetic field lines and by anomalous
MHD processes which cause mass flow across field lindglar surfaces. The pellet ablation phenomenon of the
first stage is considered well-understdd¢b], and as such we use existing ablation models. The thrust of the work
described here is an accurate and efficient simulation of the second phase.

2.2. Mathematical model

Our mathematical model consists of single fluid MHD elipres with source terms in the continuity equation
to model the mass injected into the system by the pellet, and source (sink) terms in the energy equations to model
electron heating and corresponding cooling o 8urfaces. The equations are written below.

oU  IF;(U)  9F, ;(U)
at ax;  dxj

+ 87 (U) + Sv.8(U) + SpeliedU), 1)

where the solution vectot/ = U (x1, x2, x3,1) = U(R, z, Rop. 1) is U = {p, pu;, Bi, e}", and the flux vector
F;(U) is given by
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In the above equations, z, ¢, are the radial, axial and toroidal coordinat®g, is the major radiusp is the
density,u; is the velocity,B; is the magnetic fieldp and p, are the pressure and total pressure, respectively, and

e is the total energy per unit volume of the plasma. For numerical stability and robustness, we have subtracted out
the equilibrium toroidal component diie initial equilibrium magnetic fieldBr (x;, 0) = go/R. These equations

are closed by the perfect gas equation of state,

Fij(U)= ()

p P 1
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which we note does not include the contributio,ﬂZB%. The flux vectorF,_ ;(U) corresponds to the diffusive
resistivity/viscosity terms and is omitted in the interest of brevity. The toroidal geometry terms are modeled in the
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source terms as
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For a large aspect ratio tokamals; (U) is small but it contains essential toroidal effects which cause the in—out
asymmetry discussed Bection 4 The source termSy.g(U), written below,

Sva(U)=—V -B({0, B, B,, By, ug, uz, g, uz, (B-u)}"), (5)

are included because we use the symmetrization procedure of Goijinahvich leads to the 8-wave formulation.
This formulation was also used by Powell et[@].in their AMR implementation of ideal MHD. Finally, the source
termsSpeliet= {S»/10,0,0,0,0,0,0, S,/no}T, whereng is some reference number density, correspond to the mass
source and energy source/sink terms, and are described next.

2.3. Pellet ablation model

Inthe present model, the pelletis described by a sphere of frozen molecular hydrogen ofyabinestrajectory
xp(x;, 1) of the pellet is prescribed with a given initial locatiapo = x,(x;, 0) and constant velocity,. The
density source term arises from the ablation of the pellet and is written in terms of number density (i.e. atoms per
unit volume per unit time) as

Sy =N&(x — x), (6)

where the delta function is approximated as a Gaussian distribution centered over the pellet with a characteristic
size equal to 16,. The ablation rate of the pellet, originally derived by Parks and Turridliind modified for
hydrogen pellets by Kuted®] is given below (in atomssec)

N= _4m,§0('jifznm = 1.12 x 1016,0338164,133)/-0333 )
wheren, is the background plasma density in ti 7, is the background plasma electron temperature in\&V,

is the atomic mass number in atomic units apd= 2.63 x 10?2/cn? is the molecular density of frozen hydrogen.
A useful approximation which eliminates the electroneasuoale from the problem is to consider the electron heat
flux as being instantaneous comparedtte other processes being computéde time-asymptotic effect of the
large electron heat flux is to make the tearngture uniform along field lines, i.&. = T (y). Thus, for single fluid
equations, the temperatufgy) in the volumeV,, between flux surfaceg andvy + dy will equilibrate as the
density changes while still conserving energy in the volurpe This leads to the following energy source terms
in the energy equation

Se =3(SaT (W) +nT (V). (8)
The first term inS, corresponds to the localized increase in energy due to the heating of the ablated pellet mass,
while the second term corresponds to a global adiabatitieg of the entire flux surface. In practice, we compute
the contribution due to the second term by separately solving a 1D model for the pellet injection assuming only
classical processes are present. We then use table lookup and interpolation to compute The/deimour 3D
AMR simulation.
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2.4. Initial and boundary conditions

The initial condition is a static equilibrium state. The initial magméeld is written in terms of two function
¥ (R, z) andg(R, z), i.e.
1. n
B=—(§xVV+gh). 9
These functions satisfy the Grad—Shafranov equation,

d 1oy %y ,dp dg
R———— 4+ —— 4+ RZ = 4o °
GRRIR 92 N ay Tay
wherep = p(¥) andg = g(v). For a torus with rectangular cross-section of radial exterdarad axial extent of
2b = 2ka we may writeys (R, z) = f(R) coqmz/ka). Further, withg(R, z) = go = constant we get

d /1df Rom\*( , 1\,

which permits a Frobenius-type series solution. The valueisfdetermined by imposing the boundary conditions

¥ = 0. The pressure is written as= p + poy2 wherep is a small background pressure to avoid zero ion-acoustic
speeds ango = ar?/(2a2R3). The toroidal field functiongo = Roarw |y [maxgo/ (2ab), wheregg (~ 1) is the
on-axis safety factor. Boundary conditions imposed are perfectly conducting walls in the radial/axial directions
and periodic in the toroidal direction. In our simulations we bse 1, a/Ro = /9, for whicha = 0.481509.

0, (10)

3. Numerical method

In this section, we focus on the evaluation of the hyperbolic flux termsl()) in Eq. (1) We use a finite
volume technique wherein each variable is stored at the cell center. The numerical fluxes of conserved quantities
are obtained at the cell faces using a combination of the 8-wave formul&fi@nd unsplit upwinding9,10].
We define a vector of “primitive” variable® = {p, u;, B;, p}'. Given the conserved quantities and all the source
terms, i.e.U;", S} (in this notation,i is a 3-tuple corresponding to the three dimensions), we want to compute a

second-order accurate estimate of the fluxél J;ld//zz (d indicates thefth direction, 0< d < 2). The first step is
to computeW;" in each cell, followed by fitting a linear profile in each cell subject to slope limiting. We then
extrapolate the primitive and conserved variables at#lidaces using the normal derivative terms and the source
terms at the cell centers, as follows.

a8t

1 At
Wiza=W'+2 (il - A7 >PiAdW,-, Ui =UWiza)+—Si, (12)

2
whereA{ = (VyUVw F?)(W;) and P+ (W) = 3", _o(k - W)rx, and A?W; is the undivided but limited slope.
The eigenvalues, and left and right eigenvectorsjbhrexk, Ik, andry, respectively witht = 1...8 in the eight-
wave formulation (see Powell et 4I7] for the left and right eigenvectors). We compute correction&ia 4
corresponding to one set of transverse derivatives appropriate to ¢btairl) diagonal coupling:

At
Ui +.dy,dy = Ui .0y — E(Fijfedz/z - Fil_l:)edz/z)9 di#da, 0< dr,dp <3, (13)
whereFilﬂE’e(,,/2 =RPU; 1.4, Ui e _ 4). The notationf' = RP(UL, Ug) implies that the fluxF is evaluated by

solving a linearized Rimann problem using/;, and Uy as left and right states, nesctively. We next compute
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final corrections tdJ; + 4 due to transverse derivatives:

n+1/2 At

Ui,i,d =Ui+a— F'+ed1/2,d2 - Fi—edl/Z,dz)’ (14)

2 (Fi
whereF; i 5 4, = RPWUi tdy,dys Upiotr 4 gy 4,)» @Nd 0<d < 3;d1 # d2 # d. At this stage, we solve another

Riemann problem at the cell faces usm’§+1/2 and U”Jrl/2 as the left and right states, respectively. The
magnetic field obtained from the solution to the Rlemann problem-iaﬂ/z at the cell faces is not guaranteed
to be divergence free. We enforce the solenoidal property of the magnetic field by a MAC projectionBusing
at the cell faces to obtain a cell-cerad monopole charge density. A Poisssolver is used to find a scalar field
satisfyingV2y = V- B with Neumann boundary conditions in the radial&xiirections and periodic in the toroidal

direction. The magnetic field at tleell faces is then coected according tm?"J’ld//zz :l_:_:l:i//zz — V. Finally the
n+1/2

fluxes at cell faces are obtalnedla +1/2 =FWU, 2) and the conserved quantity at the cell centers are updated
using these fluxes. The P0|sson equatlon in the projection step above is cast in a residual-correction form and
solved using a multi-grid technique on each level in the AMR hierarchy. The residual smoothing is a Gauss—
Seidel relaxation procedure with red-black ordering. When meshes cannot be coarsened any further, the Poisson
solve is taken to convergence using a bottom-smoother which is a biconjugate gradient solver. We implemented
the above method into th@éhombo framework and have developed a second-order adaptive parallel MHD code.
Chombo is a collection of C++ libraries for implementing block-structured AMR finite difference calcul@tibpns
Particular care is taken in implementing coarse-fine interface interpolations of appropriate order to ensure second-
order accuracy. Furthermore, conservation at coarsefiegaces is maintained by flux-refluxing. This leads to

a non-zero cell-centered - B in coarse cells which are adjacent to coarse-fine boundaries, which being a set of
codimension one does not significandlffect the accuracy of the solution.

4. Simulation results

In this section, we present preliminary results from early to intermediate stages of pellet injection. The results
discussed here correspond to a midpoint toroidal field.280, g ~ 0.1, and a pellet of 1 mm radius moving
radially with a velocity of 3200 s in a tokamak with minor radius af= 0.26 m. Two cases are discussed: one
in which the pellet is initialized on the high field side (HFS or the so-called inside launch case) and the other in
which the pellet is injected from the low field side (LFS bet‘outside” launch case). Because the temperature of
the plasma is low near the edges of the tokamak, we initialize the pellet at some radial distance inside the tokamak.
This is merely to save computational effort and have interesting dynamics take place relatively quickly. In both the
LFS and the HFS case, the initial location of the peliedin the same flux surface so that the pellet encounters
the same initial temperature in both the LFS and HFS cases. Based on preliminary tests which suggested that the
energy sink term provides only a small contribution, but is nonetheless computationally expensive to evaluate and
occasionally leads to noisy solutions, we omitted the sink term in the results presented here.

Fig. 1 shows a density isosurface, viewed radially inwards, at time<, 20,60 (time is normalized by the
Alfvén time) for the HFS case. The outlines of the various meshes in the calculation are also strogvriLirt
t = 2 the pellet ablated mass is roughly in the shape ofllgzseid with its major axis aligned along the magnetic
field lines. The pellet cloud is a localized region of higkvith the dominant mass motion being along the magnetic
field lines. As time progresses, the ablated mass moves parallel to the magnetic field at speeds of about one-third of
the local acoustic speed. (See scatter plog @$. density inFig. 2and local Mach number vs. densityhig. 3.)

In addition to the “classical” parallel transport there is clear evidence of “anomalous” transport perpendicular to
the flux surfaces.

We now examine this phenomenon in more detail aochgare and contrast between HFS and LFS pellet
launchesFig. 4 shows poloidal slices at the mean toroidal peltesation for the HFS and LFS cases. At time
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Fig. 1. Density isosurfaceo(= 2) for a HFS pellet launch. (a)= 2, (b) r = 20, (c)¢ = 60 viewed radially inwards. The magnetic field lines
are shown in red. The box outlines depict the meshes. Time is naeddly the Alfvén wave transit time. (Note that although the domain is a
torus the visualizations are presented in a cube.)
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Fig. 2. Scatter plot o vs. p atr = 60 for the HFS launch. Higl is strongly correlated with high density.
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Fig. 3. Scatter plot of local Mach number ysats = 60 for the HFS launch.

t = 2 we observe the ablated mass in a cloud around the mean pellet position. At later ta& 60), the pellet
ablated mass has a significantwatd radial displacement conmeal to the mean pellet location.

The LFS case shows a dramatic turning around efrifass due to the zero mass flux boundary conditions
(Fig. 4(b3) It is conjectured that an outflow boundary conditionwid lead to a substantial loss of the ablated
mass and thus poor fueling efficiency in the LFS case. The observed outward displacement implies that HFS
launches are more favorable for refueling tokamaks@sosed to the LFS launches, consistent with observed
behavior in experimen{4,12]. We may reconcile this seemingly “anomalous” transport by appealing to the model
by Parkq13] which notes that magnetic curvature ai@-induced charged particle disfcause a local separation
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Fig. 4. Density field in a poloidal cross-section. (al) HES 2, (a2) HFS = 20, (a3) HFS = 60, (b1) LFSr = 2, and (b2) LFS = 20, and
(b3) LFSt = 60.

of charges in the pellet cloud. This leads to an axially-oriented electric field, and 90 th& drift is radially
outward in both the LFS and the HFS case.

It is instructive to examine the flow pattern of the perpendicular drift velogity= E x B/|B|2. The radial
component ofv; is the dominant one and is shownhig. 5in a poloidal slice. For the HFS case, kig. 5(a)
there is a dominant outward radial carrying the bulk of the pellet mass outward. This is flanked on either side in
the axial direction by inward radial motion resulting in a nearly incompressible flow pattern. So the simple picture
of only outward radiab, drift is augmented by this somewhat smaller turning around of the mass which leads to
the mushroom-shaped structure in the poloidal plane.

For the LFS case too, the outward radialx B drift grows with time and is clearly seen Fig. 5(b) The
perpendicular transport of the ablated mass brings into question some of the assumptions made in the earlier
section. In calculation of the ablation rate, we assumed that the ablated mass is heated instantaneously to the flux
surface temperature. However, thetion of the ablated mass radially outwards in the HFS case means that the
temperature the pellet encounters will actually be smdilen that assumed. Furthermore, the energy sink term in
the equations, which are based on a one-dimensional parallel transport model will need to be modified.

5. Conclusion and futurework

In this paper, we presented a numerical method which is based on an unsplit upwinding method coupled
with the eight-wave formulation. A MAC-projection scheme is implemented to enforce the solenoidal property
of the magnetic field. This projection requires the solution of a Poisson equation which is solved using a multi-
grid technique. It was observed that the convergence of the Poisson solver was sensitive to the block-size in the
AMR mesh-hierarchy. A pellet injection model was iraplented as a source term in the density equations and
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Fig. 5. Perpendicular drift velocity | in a Poloidal cross-section. (al) HFS 20, (a2) HFS =60, (b1) LFSt = 20, and (b2) LFS = 60.

corresponding energy sources and sinks in the energy equation. AMR simulations of the pellet injection process
were carried out for the inside and outside launch cases. Preliminary studies indicate that AMR provides a speed-up
exceeding two orders of magnitude overresponding uniform messimulations essential to accurately resolve

the physical processes involved in pellet injection. AMR is an effective way of achieving computational efficiency

in detailed and resolved simulations of the pellet injection process. It was observed that the pellet ablated mass is
dominantly transported along magnetic field lines but th&at-a B drift causes a significant outward radial motion

of the pellet cloud in both the LFS and HFS cases. A high resolution numerical simulation is a viable method of
computing the relative importance of these two pating phenomena for redistributing the pellet mass.

The results presented in this paper did not include resistive terms which will be included in future work. We
also plan to develop models which better account for the rapid electron heating and corresponding cooling terms
in the energy equation, taking into account the perpendicular transport of the ablated mass. Finally, we plan to
undertake resolved simulations of pellet injection with more realistic physical parameters, and to investigate other
launch locations in addition to the HFS and LFS pellet injections.
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