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Abstract

We present results of Adaptive Mesh Refinement (AMR) simulations of the pellet injection process, a proven me
refueling tokamaks. AMR is a computationally efficient way to provide the resolution required to simulate realistic pell
relative to device dimensions. The mathematical model comprises of single-fluid MHD equations with source term
continuity equation along with a pellet ablation rate model. The numerical method developed is an explicit unsplit up
treatment of the 8-wave formulation, coupled with a MAC projection method to enforce the solenoidal property of the m
field. The Chombo framework is used for AMR. The role of theE × B drift in mass redistribution during inside and outsi
pellet injections is emphasized.
 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Injecting small pellets of frozen hydrogen into a tokamak is a proven method of fueling. Experimentally, it
known that the density distribution, after the pellet ablates upon encountering the high temperatures in a t
is not consistent with the distribution inferred from assuming that the ablated material remains on the flux surfa
where the ablation occurred. The subsequent redistribution of mass is believed to be due to anomalo
processes. The mass redistribution is observed to be a sensitive function of the angle (with respect to
plane) in which the pellet is injected[1,2]. It is this phenomenon which we seek to explain.

A previous three-dimensional computational investigation of pellet injection was performed by Strauss a
Park[3]. They investigated the evolution of a large density “blob” representing the ionized pellet ablation
However, they did not treat a moving pellet source and their resolution was relatively coarse. Our approa
perform detailed simulations of the pellet injection process and quantify the MHD processes responsible
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redistribution. We employ Adaptive Mesh Refinement (AMR) in our simulations to provide the resolution re
to simulate realistic pellet sizes relative to device dimensions (typical ratios are O(10−3)). In Section 2, we describe
the physical problem and the mathematical model along with the pellet ablation model and discussion of initial
boundary conditions. InSection 3, we describe the numerical method. InSection 4, we present results from AMR
simulations emphasizing the differences between inside and outside injections.

2. Description of problem and mathematical model

2.1. Physical problem

The physical problem we are dealing with involves the injection of frozen fuel pellets into a tokamak
physical processes are broadly distinguished into the following two stages. The first stage is the ablation
at the pellet surface due to the high temperature background plasma encountered by the pellet. The abla
mass, which is a neutral gas, is rapidly heated by electrons and ionizes to form plasma. The second stage is
redistribution of the ablated pellet material by free streaming along the magnetic field lines and by ano
MHD processes which cause mass flow across field lines and flux surfaces. The pellet ablation phenomenon of
first stage is considered well-understood[4,5], and as such we use existing ablation models. The thrust of the
described here is an accurate and efficient simulation of the second phase.

2.2. Mathematical model

Our mathematical model consists of single fluid MHD equations with source terms in the continuity equati
to model the mass injected into the system by the pellet, and source (sink) terms in the energy equations
electron heating and corresponding cooling on flux surfaces. The equations are written below.

(1)
∂U

∂t
+ ∂Fj (U)

∂xj
= ∂Fv,j (U)

∂xj
+ ST (U) + S∇·B(U) + Spellet(U),

where the solution vectorU ≡ U(x1, x2, x3, t) ≡ U(R, z,R0φ, t) is U = {ρ,ρui,Bi, e}T, and the flux vecto
Fj (U) is given by

(2)Fj (U) =




ρuj

ρuiuj + ptδij − BiBj + BT B3δij − BiBT δ3j − BjBT δi3

ujBi − uiBj + BT δi3uj − BT δ3jui

(e + p + 1
2BkBk)uj − Bj(Bkuk) + BT B3uj − (Bkuk)BT δ3j




.

In the above equations,R, z, φ, are the radial, axial and toroidal coordinates,R0 is the major radius;ρ is the
density,ui is the velocity,Bi is the magnetic field,p andpt are the pressure and total pressure, respectively
e is the total energy per unit volume of the plasma. For numerical stability and robustness, we have subtra
the equilibrium toroidal component ofthe initial equilibrium magnetic field,BT (xi,0) ≡ g0/R. These equation
are closed by the perfect gas equation of state,

(3)e = p

γ − 1
+ ρ

2
ukuk + 1

2
BkBk,

which we note does not include the contribution 1/2B2
T . The flux vectorFv,j (U) corresponds to the diffusiv

resistivity/viscosity terms and is omitted in the interest of brevity. The toroidal geometry terms are modele
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(4)ST (U) = − 1

R




ρuR

ρu2
R − ρu2

φ − B2
R + B2

φ + 2BφBT

ρuRuZ − BRBz

2ρuRuφ − 2BRBφ − 2BRBT

0

uRBz − BRuz

0

(e + pt)uR − (B · u)BR + BT BφuR




+
(

1

R0
− 1

R

)
∂Fφ

∂φ
.

For a large aspect ratio tokamak,ST (U) is small but it contains essential toroidal effects which cause the in
asymmetry discussed inSection 4. The source termsS∇·B(U), written below,

(5)S∇·B(U) = −∇ · B
({

0,BR,Bz,Bφ,uR,uz, uφ,uz, (B · u)
}T)

,

are included because we use the symmetrization procedure of Godunov[6] which leads to the 8-wave formulatio
This formulation was also used by Powell et al.[7] in their AMR implementation of ideal MHD. Finally, the sourc
termsSpellet= {Sn/n0,0,0,0,0,0,0, Se/n0}T, wheren0 is some reference number density, correspond to the m
source and energy source/sink terms, and are described next.

2.3. Pellet ablation model

In the present model, the pellet is described by a sphere of frozen molecular hydrogen of radiusrp . The trajectory
xp(xi, t) of the pellet is prescribed with a given initial locationxp0 ≡ xp(xi,0) and constant velocityup. The
density source term arises from the ablation of the pellet and is written in terms of number density (i.e. at
unit volume per unit time) as

(6)Sn = Ṅδ(x − xp),

where the delta function is approximated as a Gaussian distribution centered over the pellet with a char
size equal to 10rp. The ablation rate of the pellet, originally derived by Parks and Turnbull[4] and modified for
hydrogen pellets by Kuteev[8] is given below (in atoms/sec)

(7)Ṅ = −4πr2
p

drp

dt
2nm = 1.12× 1016n0.333

e T 1.64
e r1.33

p M−0.333
i ,

wherene is the background plasma density in cm−3, Te is the background plasma electron temperature in eVMi

is the atomic mass number in atomic units andnm = 2.63× 1022/cm3 is the molecular density of frozen hydroge
A useful approximation which eliminates the electron timescale from the problem is to consider the electron h
flux as being instantaneous compared tothe other processes being computed. The time-asymptotic effect of th
large electron heat flux is to make the temperature uniform along field lines, i.e.T ≡ T (ψ). Thus, for single fluid
equations, the temperatureT (ψ) in the volumeVψ between flux surfacesψ andψ + dψ will equilibrate as the
density changes while still conserving energy in the volumeVψ . This leads to the following energy source ter
in the energy equation

(8)Se = 3
(
SnT (ψ) + nṪ (ψ)

)
.

The first term inSe corresponds to the localized increase in energy due to the heating of the ablated pelle
while the second term corresponds to a global adiabatic cooling of the entire flux surface. In practice, we comp
the contribution due to the second term by separately solving a 1D model for the pellet injection assumi
classical processes are present. We then use table lookup and interpolation to compute the termṪ (ψ) in our 3D
AMR simulation.
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2.4. Initial and boundary conditions

The initial condition is a static equilibrium state. The initial magnetic field is written in terms of two function
ψ(R, z) andg(R, z), i.e.

(9)B = 1

R
(φ̂ × ∇ψ + gφ̂).

These functions satisfy the Grad–Shafranov equation,

(10)R
∂

∂R

1

R

∂ψ

∂R
+ ∂2ψ

∂z2 + R2 dp

dψ
+ g

dg

dψ
= 0,

wherep ≡ p(ψ) andg ≡ g(ψ). For a torus with rectangular cross-section of radial extent 2a and axial extent o
2b = 2κa we may writeψ(R, z) = f (R)cos(πz/κa). Further, withg(R, z) = g0 = constant we get

(11)R
d

dR

(
1

R

df

dR

)
+

(
R0π

a

)2(
αR2 − 1

4κ2

)
f = 0,

which permits a Frobenius-type series solution. The value ofα is determined by imposing the boundary conditio
ψ = 0. The pressure is written asp = p̄ +p0ψ

2 wherep̄ is a small background pressure to avoid zero ion-acou
speeds andp0 = απ2/(2a2R2

0). The toroidal field functiong0 = R0απ2|ψ|maxq0/(2ab), whereq0 (≈ 1) is the
on-axis safety factor. Boundary conditions imposed are perfectly conducting walls in the radial/axial dir
and periodic in the toroidal direction. In our simulations we useκ = 1, a/R0 = π/9, for whichα = 0.481509.

3. Numerical method

In this section, we focus on the evaluation of the hyperbolic flux terms (Fj (U)) in Eq. (1). We use a finite
volume technique wherein each variable is stored at the cell center. The numerical fluxes of conserved q
are obtained at the cell faces using a combination of the 8-wave formulation[6] and unsplit upwinding[9,10].
We define a vector of “primitive” variablesW = {ρ,ui,Bi,p}T. Given the conserved quantities and all the sou
terms, i.e.Un

i , Sn
i (in this notation,i is a 3-tuple corresponding to the three dimensions), we want to comp

second-order accurate estimate of the fluxes:F
n+1/2
i+ed/2

(d indicates thed th direction, 0� d � 2). The first step is

to computeWn
i in each cell, followed by fitting a linear profile in each cell subject to slope limiting. We

extrapolate the primitive and conserved variables at thecell faces using the normal derivative terms and the so
terms at the cell centers, as follows.

(12)Wi,±,d = Wn
i + 1

2

(
±I − Ad

i


t

h

)
P±
dWi , Ui,±,d = U(Wi,±,d) + 
t

2
Sn

i ,

whereAd
i = (∇WU∇W Fd)(Wi) andP±(W) = ∑

±λk>0(lk · W)rk , and
dWi is the undivided but limited slope

The eigenvalues, and left and right eigenvectors ofAd
i areλk , lk , andrk , respectively withk = 1 . . .8 in the eight-

wave formulation (see Powell et al.[7] for the left and right eigenvectors). We compute corrections toUi,±,d

corresponding to one set of transverse derivatives appropriate to obtain(1,1,1) diagonal coupling:

(13)Ui,±,d1,d2 = Ui,±,d1 − 
t

3h

(
F 1D

i+ed2/2
− F 1D

i−ed2/2

)
, d1 �= d2, 0� d1, d2 < 3,

whereF 1D
i±ed/2

= RP(Ui,+,d ,Ui+ed ,−,d). The notationF = RP(UL,UR) implies that the fluxF is evaluated by
solving a linearized Riemann problem usingUL andUR as left and right states, respectively. We next comput
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final corrections toUi,±,d due to transverse derivatives:

(14)U
n+1/2
i,±,d = Ui,±,d − 
t

2h

(
Fi+ed1/2,d2

− Fi−ed1/2,d2

)
,

whereFi+ed1/2,d2
= RP(Ui,+,d1,d2,Ui+ed1,+,d1,d2

), and 0� d < 3; d1 �= d2 �= d . At this stage, we solve anoth

Riemann problem at the cell faces usingU
n+1/2
i,+,d and U

n+1/2
i+ed ,−,d

as the left and right states, respectively. T
magnetic field obtained from the solution to the Riemann problem atn + 1/2 at the cell faces is not guarante
to be divergence free. We enforce the solenoidal property of the magnetic field by a MAC projection, uB
at the cell faces to obtain a cell-centered monopole charge density. A Poisson solver is used to find a scalar fie
satisfying∇2χ = ∇ ·B with Neumann boundary conditions in the radial/axial directions and periodic in the toroid
direction. The magnetic field at thecell faces is then corrected according toBn+1/2

i+ed/2
= B

n+1/2
i+ed/2

− ∇χ . Finally the

fluxes at cell faces are obtained asF
n+1/2
i+ed/2

= F(U
n+1/2
i+ed/2

) and the conserved quantity at the cell centers are upd
using these fluxes. The Poisson equation in the projection step above is cast in a residual-correction f
solved using a multi-grid technique on each level in the AMR hierarchy. The residual smoothing is a G
Seidel relaxation procedure with red-black ordering. When meshes cannot be coarsened any further, the
solve is taken to convergence using a bottom-smoother which is a biconjugate gradient solver. We impl
the above method into theChombo framework and have developed a second-order adaptive parallel MHD
Chombo is a collection of C++ libraries for implementing block-structured AMR finite difference calculations[11].
Particular care is taken in implementing coarse-fine interface interpolations of appropriate order to ensure
order accuracy. Furthermore, conservation at coarse-fine interfaces is maintained by flux-refluxing. This leads
a non-zero cell-centered∇ · B in coarse cells which are adjacent to coarse-fine boundaries, which being a
codimension one does not significantlyaffect the accuracy of the solution.

4. Simulation results

In this section, we present preliminary results from early to intermediate stages of pellet injection. The
discussed here correspond to a midpoint toroidal field of 0.23T, β ≈ 0.1, and a pellet of 1 mm radius movin
radially with a velocity of 3200 m/s in a tokamak with minor radius ofa = 0.26 m. Two cases are discussed: o
in which the pellet is initialized on the high field side (HFS or the so-called inside launch case) and the o
which the pellet is injected from the low field side (LFS or the “outside” launch case). Because the temperatu
the plasma is low near the edges of the tokamak, we initialize the pellet at some radial distance inside the t
This is merely to save computational effort and have interesting dynamics take place relatively quickly. In b
LFS and the HFS case, the initial location of the pellet is on the same flux surface so that the pellet encoun
the same initial temperature in both the LFS and HFS cases. Based on preliminary tests which suggeste
energy sink term provides only a small contribution, but is nonetheless computationally expensive to evalu
occasionally leads to noisy solutions, we omitted the sink term in the results presented here.

Fig. 1 shows a density isosurface, viewed radially inwards, at timest = 2,20,60 (time is normalized by th
Alfvén time) for the HFS case. The outlines of the various meshes in the calculation are also shown inFig. 1. At
t = 2 the pellet ablated mass is roughly in the shape of an ellipsoid with its major axis aligned along the magne
field lines. The pellet cloud is a localized region of highβ with the dominant mass motion being along the magn
field lines. As time progresses, the ablated mass moves parallel to the magnetic field at speeds of about on
the local acoustic speed. (See scatter plots ofβ vs. density inFig. 2and local Mach number vs. density inFig. 3.)
In addition to the “classical” parallel transport there is clear evidence of “anomalous” transport perpendic
the flux surfaces.

We now examine this phenomenon in more detail and compare and contrast between HFS and LFS pe
launches.Fig. 4 shows poloidal slices at the mean toroidal pellet location for the HFS and LFS cases. At tim
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Fig. 1. Density isosurface (ρ = 2) for a HFS pellet launch. (a)t = 2, (b) t = 20, (c) t = 60 viewed radially inwards. The magnetic field lin
are shown in red. The box outlines depict the meshes. Time is normalized by the Alfvèn wave transit time. (Note that although the domain
torus the visualizations are presented in a cube.)

Fig. 2. Scatter plot ofβ vs.ρ at t = 60 for the HFS launch. Highβ is strongly correlated with high density.

Fig. 3. Scatter plot of local Mach number vs.ρ at t = 60 for the HFS launch.

t = 2 we observe the ablated mass in a cloud around the mean pellet position. At later times (t = 20,60), the pellet
ablated mass has a significant outward radial displacement compared to the mean pellet location.

The LFS case shows a dramatic turning around of the mass due to the zero mass flux boundary condit
(Fig. 4(b3)) It is conjectured that an outflow boundary condition would lead to a substantial loss of the abla
mass and thus poor fueling efficiency in the LFS case. The observed outward displacement implies t
launches are more favorable for refueling tokamaks asopposed to the LFS launches, consistent with obse
behavior in experiments[1,12]. We may reconcile this seemingly “anomalous” transport by appealing to the m
by Parks[13] which notes that magnetic curvature and∇B-induced charged particle drifts cause a local separatio



226 R. Samtaney et al. / Computer Physics Communications 164 (2004) 220–228

de in
picture
ads to

e earlier
to the flux
at the
m in

coupled
operty

multi-
ize in the

and
Fig. 4. Density field in a poloidal cross-section. (a1) HFSt = 2, (a2) HFSt = 20, (a3) HFSt = 60, (b1) LFSt = 2, and (b2) LFSt = 20, and
(b3) LFSt = 60.

of charges in the pellet cloud. This leads to an axially-oriented electric field, and so theE × B drift is radially
outward in both the LFS and the HFS case.

It is instructive to examine the flow pattern of the perpendicular drift velocityv⊥ = E × B/|B|2. The radial
component ofv⊥ is the dominant one and is shown inFig. 5 in a poloidal slice. For the HFS case, inFig. 5(a),
there is a dominant outward radialv⊥ carrying the bulk of the pellet mass outward. This is flanked on either si
the axial direction by inward radial motion resulting in a nearly incompressible flow pattern. So the simple
of only outward radialv⊥ drift is augmented by this somewhat smaller turning around of the mass which le
the mushroom-shaped structure in the poloidal plane.

For the LFS case too, the outward radialE × B drift grows with time and is clearly seen inFig. 5(b). The
perpendicular transport of the ablated mass brings into question some of the assumptions made in th
section. In calculation of the ablation rate, we assumed that the ablated mass is heated instantaneously
surface temperature. However, the motion of the ablated mass radially outwards in the HFS case means th
temperature the pellet encounters will actually be smaller than that assumed. Furthermore, the energy sink ter
the equations, which are based on a one-dimensional parallel transport model will need to be modified.

5. Conclusion and future work

In this paper, we presented a numerical method which is based on an unsplit upwinding method
with the eight-wave formulation. A MAC-projection scheme is implemented to enforce the solenoidal pr
of the magnetic field. This projection requires the solution of a Poisson equation which is solved using a
grid technique. It was observed that the convergence of the Poisson solver was sensitive to the block-s
AMR mesh-hierarchy. A pellet injection model was implemented as a source term in the density equations
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Fig. 5. Perpendicular drift velocityv⊥ in a Poloidal cross-section. (a1) HFSt = 20, (a2) HFSt = 60, (b1) LFSt = 20, and (b2) LFSt = 60.

corresponding energy sources and sinks in the energy equation. AMR simulations of the pellet injection
were carried out for the inside and outside launch cases. Preliminary studies indicate that AMR provides a s
exceeding two orders of magnitude over corresponding uniform meshsimulations essential to accurately reso
the physical processes involved in pellet injection. AMR is an effective way of achieving computational effi
in detailed and resolved simulations of the pellet injection process. It was observed that the pellet ablated
dominantly transported along magnetic field lines but that aE × B drift causes a significant outward radial moti
of the pellet cloud in both the LFS and HFS cases. A high resolution numerical simulation is a viable me
computing the relative importance of these two competing phenomena for redistributing the pellet mass.

The results presented in this paper did not include resistive terms which will be included in future wo
also plan to develop models which better account for the rapid electron heating and corresponding cooli
in the energy equation, taking into account the perpendicular transport of the ablated mass. Finally, we
undertake resolved simulations of pellet injection with more realistic physical parameters, and to investiga
launch locations in addition to the HFS and LFS pellet injections.
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