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We present a domain decomposition method for computing finite difference solu-
tions to the Poisson equation with infinite domain boundary conditions. Our method
is a finite difference analogue of Anderson’s Method of Local Corrections. The so-
lution is computed in three steps. First, fine-grid solutions are computed in parallel
using infinite domain boundary conditions on each subdomain. Second, information
is transferred globally through a coarse-grid representation of the charge, and a global
coarse-grid solution is found. Third, a fine-grid solution is computed on each subdo-
main using boundary conditions set with the global coarse solution, corrected locally
with fine-grid information from nearby subdomains. There are three important fea-
tures of our algorithm. First, our method requires only a single iteration between the
local fine-grid solutions and the global coarse representation. Second, the error intro-
duced by the domain decomposition is small relative to the solution error obtained in
a single-grid calculation. Third, the computed solution is second-order accurate and
only weakly dependent on the coarse-grid spacing and the number of subdomains.
As a result of these features, we are able to compute accurate solutions in parallel
with a much smaller ratio of communication to computation than more traditional
domain decomposition methods. We present results to verify the overall accuracy,
confirm the small communication costs, and demonstrate the parallel scalability of
the method. c© 2002 Elsevier Science (USA)

Key Words: finite difference methods; multigrid methods; domain decomposition;
local corrections; potential theory.

1. INTRODUCTION

Solutions to Poisson’s equation have strong locality properties: the field induced by a
localized charge distribution is an analytic function away from the charge distribution. We
expect that, for a charge distribution with multiple scales, nonlocal coupling should be
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representable by a much smaller number of computational degrees of freedom than the
number of degrees of freedom required to represent the local influences of the solution.

This observation leads to domain decomposition as a natural strategy for computing
solutions to Poisson’s equation on parallel computers. One decomposes the computational
domain into disjoint subdomains, computes local solutions corresponding to the charge
distributions on each subdomain, and computes the far-field coupling using a reduced
description of the data. In the case of particle representations of solutions to the Poisson
equation such as the fast multipole method (FMM) [12] and the method of local corrections
(MLC) [1, 2], this approach has been used to dramatically reduce the cost of computing
the potential induced by a collection of charged particles. These algorithms map easily
to parallel architectures using domain decomposition [4, 6], leading to efficient parallel
algorithms with low communications requirements.

In the case of grid-based discretizations of the Poisson equation, parallel domain decom-
position methods have typically led to iterative methods, for example, by decomposing each
of the different levels in a multigrid algorithm into subdomains or by constructing a dense
linear system for the degrees of freedom on the boundaries between subdomains using a
Schur complement [15]. Such approaches require multiple iterations between the local and
nonlocal descriptions, leading to multiple interprocessor communication steps.

Unfortunately, the trend in computer architectures is that processor speeds are increasing
more rapidly than network speeds. For that reason, it is desirable to find algorithms with the
smallest communications cost possible. One possible approach is to use the ideas behind
the fast particle methods just described to construct a noniterative domain decomposition
method. One such method, based on the ideas in the FMM, was presented by Greengard and
Lee in [10]. Greengard and Lee developed an adaptive grid-based Poisson solver of arbitrary
accuracy. Their method divides the domain adaptively into square regions of various sizes
and uses K × K Chebyshev polynomials to represent the charge and field on each region.
These polynomials are accurate to O(H K ), where H is a local grid spacing on the adaptive
mesh. The FMM is used to match the solutions on each patch, removing discontinuities at
patch boundaries. The adaptivity of this method makes it difficult to estimate the amount of
computation required for this method in all cases, but asymptotically, the method requires
only O(NK) work. Strain has developed another set of methods for the rapid solution of
potential theory problems which is similar in spirit to the method of Greengard and Lee. In
Strain’s version, Fourier transforms are used to represent the charge and the field on each
domain, and boundary conditions are matched by Ewald summation [16].

In this work, we present a noniterative domain decomposition method for computing
a finite difference approximation to the Poisson equation for the case of infinite domain
boundary conditions. Parallelism is introduced by subdividing the discrete domain into
patches. Poisson problems with infinite domain boundary conditions are solved indepen-
dently on each of these patches, and a global coarse-grid solution is used to communicate
far-field effects to the patches. Each patch uses the global coarse solution, corrected with
local fine-grid information, to set boundary conditions for a final fine-grid solve. The first
set of local solutions, as well as the global coarse solution, are based on Mehrstellen dis-
cretizations of the Laplacian [8], while the final set of local solutions are based on a standard
five-point discretization. As was the case in [2], the discrete potential-theoretic properties
of the Mehrstellen discretization play a critical role in providing a clean separation between
the local and nonlocal contributions to the solution. Once the final solution on each patch is
calculated, the union of these solutions represents an accurate fine-grid solution to the global
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problem. Our method is completed in three large computation steps and two relatively small
communication steps. Since our domain decomposition does not require repeated iteration
between fine and coarse grids to converge toward a solution, the amount of communication
required on a parallel machine is significantly reduced.

This method has a number of other attractive properties. It is based on components that
are routine to implement: multigrid on rectangular grids and N -body calculations that need
not be “fast” (in the sense of [11]). It is also easily extended to three dimensions, using
essentially the same components. We will discuss these and other possible extensions of
these ideas in the final section of this paper.

2. ANALYSIS AND DISCRETIZATION OF THE INFINITE

DOMAIN POISSON PROBLEM

We are interested in the solution of the Poisson equation on �2 with a charge distribution
ρ which has compact support. Specifically, we seek the solution φ to

�φ = ∇2φ = ∂2φ

∂x2
+ ∂2φ

∂y2
= ρ(x, y), (1)

which has far-field behavior characterized by

φ = − R

2π
log

∣∣∣∣ 1
x
∣∣∣∣+ o(1), |
x | → ∞, (2)

where R is the total charge given by

R =
∫




ρ(
x) d 
x, (3)

and 
 contains the support of the charge ρ.
Using the maximum principle for harmonic functions, one easily shows that a solution

to (1) and (2) is unique.
The infinite domain solution to the Poisson equation can be written as a convolution with

the appropriate Green’s function,

φ(
x) =
∫




ρ(
y)G(
y − 
x) d
y, (4)

where the Green’s function is

G(
z) = − 1

2π
log

(
1

|
z|
)

. (5)

A Boundary Integral Form of the Solution

We need to compute the infinite domain solution in terms of solutions on bounded do-
mains. We do this using a technique that has been common in the plasma physics community
for some time; see, e.g., [13] or [14].

Consider finding a solution

φDB = φD + φB . (6)
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We define φD to be the solution of the Poisson equation with homogeneous Dirichlet
boundary conditions:

�φD = ρ, 
x ∈ 
, (7)

φD = 0, 
x ∈ ∂
, (8)

and

φD ≡ 0, 
x /∈ 
. (9)

We define φB to be the logarithmic potential of a single layer,

φB(
x) =
∫

∂


µ(
y(s))G(
x − 
y(s)) ds, (10)

where

µ(
y(s)) = ∂φD(
y(s))

∂n

∣∣∣∣
inside

. (11)

The field due to a single layer on ∂
 is harmonic both within 
 and outside of 
.
In addition, the potential is continuous as it crosses the boundary. However, the normal
derivative of such a potential goes through a jump discontinuity at the boundary. Our choice
of µ, then, is important: it is chosen such that φDB has a continuous normal derivative.
That is,

[
∂φD

∂n

]
= −

[
∂φB

∂n

]
, (12)

and therefore [
∂φDB

∂n

]
=
[
∂φD

∂n

]
+
[
∂φB

∂n

]
= 0. (13)

We find that our constructed solution meets our first criterion (1) by definition:

�φDB = �(φD + φB) =
{

ρ, 
x ∈ 
,

0, 
x /∈ 
.
(14)

Furthermore, since φDB and ∂φDB

∂n are continuous at ∂
, it follows that

�φDB(
x) = 0, 
x ∈ ∂
. (15)

To see that this solution satisfies the far-field condition, we need to use the divergence
theorem and the multipole expansion of the Green’s function. The divergence theorem states
that for a piecewise smooth boundary ∂
 and a continuously differentiable ϕ,

∫
∂


∂ϕ

∂n
ds =

∫



�ϕ d
y. (16)
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Representing the Green’s function by a multipole expansion, we have

∫
∂


∂ϕ

∂n
(
y(s))G(
x − 
y(s)) ds = G(
x)

∫
∂


∂ϕ

∂n
(
y(s)) ds +

∫
∂


∂ϕ

∂n
O

( |
y|
|
x |
)

ds (17)

= G(
x)

∫
∂


∂ϕ

∂n
(
y(s)) ds + o(1). (18)

Then substituting our definitions for φB and µ, we see that

φB(
x) = G(
x)

∫
∂


∂φD

∂n
(
y(s)) ds + o(1)

= G(
x)

∫



�φD d
y + o(1)

= G(
x)

∫



ρ d
y + o(1). (19)

Since we have defined φD to be identically zero outside of 
, in the far field we have

φDB = φD + φB = φB = G(
x)

∫



ρ d
y + o(1), |
x | → ∞, (20)

which satisfies our second criterion (2).
Finally, we note that it is possible to use this constructed solution as a boundary condition

for another Dirichlet problem. That is, we can solve

�φ = ρ, 
x ∈ 
L , (21)

and

φ = φDB, 
x ∈ ∂
L , (22)

where


L ⊃ 
. (23)

Again, this is another way of representing the solution: φ and φDB are identically equal
in 
.

2.1. Discretization of the Infinite Domain Problem

We need a way to discretize the Poisson equation on a bounded domain and a way to
discretize the boundary integral calculation. Given those two discretizations, a numerical
solution to the infinite domain Poisson problem can be found by solving the Poisson equa-
tion with homogeneous Dirichlet boundary conditions for φD , calculating the boundary
charge (11) on ∂
 and evaluating the convolution integral (10) to set the far-field bound-
ary conditions on ∂
L , and solving the Poisson equation a second time on 
L with the
Dirichlet boundary conditions just set. We first discuss finite difference discretizations of
the Poisson equation and the properties of these discretizations. Then we briefly describe
our discretization of the boundary integral calculation.
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In order to calculate numerical solutions, we represent the solution on a finite discrete grid.
We represent both the potential field, φ, and the charge, ρ, on a discrete, two-dimensional
Cartesian grid. For convenience, our grid is equally spaced in both x and y directions,
with grid spacing h. We index our grid by integer pairs 
j = ( jx , jy). A point 
j on the grid
corresponds to a point in the real plane 
x 
j = ( jx h, jyh). The Cartesian grid just described
is node-centered.

An exact solution, φexact, to the Poisson equation is represented on this discrete grid,
such that

φ
exact,h

j = φexact(
x 
j ). (24)

For our method we use two different discrete Laplacian operators: the standard five-point
discretization,

(L5ψ
h) 
j =

ψh
jx , jy+1 + ψh

jx , jy−1 + ψh
jx +1, jy

+ ψh
jx −1, jy

− 4ψh

j

h2
, (25)

and the nine-point discretization,

(L9ψ
h) 
j = 1

6h2

(
ψh

jx +1, jy+1 + ψh
jx +1, jy−1 + ψh

jx −1, jy+1 + ψh
jx −1, jy−1

+ 4
(
ψh

jx , jy+1 + ψh
jx , jy−1 + ψh

jx +1, jy
+ ψh

jx −1, jy

)− 20ψh

j
)
. (26)

Both of these Laplacian operators are accurate to O(h2), but the truncation error of the L9

operator takes a special form. If φexact,h is the exact solution evaluated at grid points, and
the truncation error, τ h


j , is defined as

τ h

j = ρh


j − (L9φ
exact,h) 
j , (27)

we can use Taylor expansion, along with the fact that �2φ = �ρ, to determine that

τ h

j = ρh


j − (L9φ
exact,h) 
j

= − h2

12
�ρ − h4

360

(
∂4ρ

∂x4
+ 4

∂4ρ

∂x2∂y2
+ ∂4ρ

∂y4

)∣∣∣∣

x 
j

+ O(h6). (28)

By preconditioning the charge and solving a slightly different equation,

L9φ
∗,h = ρ∗,h = ρh + h2

12
L5ρ

h, (29)

the truncation error is reduced to O(h4). Thus by combining the nine-point Laplacian
operator with suitable preconditioning of the right-hand side, we can construct a fourth-
order-accurate method. Such methods are called Mehrstellen methods [8]. Note that in the
special case of a harmonic function, where �φ = ρ = 0, preconditioning is unnecessary, the
first two terms in the truncation error vanish, and the truncation error (28) associated with
the L9 operator is reduced to O(h6).

It is important to our method to understand not only the behavior of the truncation error
but also the nature of the solution error in the far field. Specifically, we find that the solution
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error in the far field differs from a harmonic function by O(h6). To see this, first note that
the computed φ is the solution to

φ = (L9)
−1ρ. (30)

We can analyze the inverse operator, (L9)
−1, without actually constructing it. We know

�−1ρ = φexact = L−1
9 ρ + L−1

9 (L(ρ)) + O(h6), (31)

where the operator L is defined as

L(ψ) = h2

12
(�ψ) + h4

360

(
∂4ψ

∂x4
+ 4

∂4ψ

∂x2∂y2
+ ∂4ψ

∂y4

)
. (32)

This equation can be rearranged and applied recursively to find that

φ = φexact − �−1L(ρ) + �−1L(L(ρ)) + O(h6). (33)

Away from the support of ρ, this relationship can be represented as

φ|∼supp(ρ) = φexact + h4H + O(h6), (34)

where H is a harmonic function (�H = 0).
This result represents two significant characteristics of the discrete solution away from

the support of ρ. First, the error in the discrete solution is a local function of ρ, and therefore
we can expect our solution to be accurate to O(h4) away from the support of ρ. Second,
the leading-order term in the error is a harmonic function in that region. We emphasize that
both these properties hold without the use of the preconditioning described in (29). These
are distinctive characteristics of the nine-point Mehrstellen Laplacian discretization.

We choose to solve the bounded, discrete Poisson problems that arise in this method
with a variant of multigrid. Since our domain sizes are often not powers of 2, not all grids
can be evenly coarsened. When a grid cannot be evenly coarsened, we increase the size of
the grid by one, padding the residual field with zeros. This growing multigrid method is
quite robust when W-cycles are used, reducing the residual by a factor of 1010 in 8 to 17
iterations. It should be noted that the method used to accelerate convergence of the solution
is not essential to our algorithm: any fast solver would suffice.

While the specific acceleration method is not critical, the differences between the five-
and nine-point Laplacian operators are very important, when implementing our domain
decomposition method, which follows.

With a discretized representation of φD , it is also possible to evaluate φB numerically.
We can obtain an estimate of the boundary charge, µ, of (11) to the required accuracy
by a one-sided difference approximation. For example, for a point 
j on the right-hand
boundary of 
h ,

µ 
j = 1

h

(
25

12
φD


j − 4φD
jx −1, jy

+ 3φD
jx −2, jy

− 4

3
φD

jx −3, jy
+ 1

4
φD

jx −4, jy

)

= ∂φD

∂x
(
x 
j ) + O(h4). (35)

We evaluate the integral (10) numerically, using Simpson’s rule.
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The algorithm we use to find a discrete solution to the infinite domain Poisson problem
on a single grid can now be summarized in three steps:

• Solve the initial Poisson problem with Dirichlet boundary conditions:

Lφh,initial = ρh, 
x ∈ 
h,initial,

φh,initial = 0, 
x ∈ ∂
h,initial.
(36)

• Calculate the boundary charge and integrate around the boundary to set the far-field
boundary conditions as in (10) and (35), setting φD = φh,initial in (35) and using Simpson’s
rule to calculate φh = φB of (10) for all 
x ∈ ∂
h .

• Solve a Poisson problem with the Dirichlet boundary conditions just set:

Lφh = ρh, 
x ∈ 
h,

φh = φB(
x), 
x ∈ ∂
h .
(37)

Using this analysis, we find that

φh = φexact + h2

12
ρ + h4H + O(h6), (38)

whereH is a function that is harmonic away from the support of ρ and includes contributions
from the truncation error and the error in the boundary conditions.

3. DOMAIN DECOMPOSITION

We would like an O(h2) solution to

�φ = ρ (39)

with infinite domain boundary conditions. We have a method to compute the solution on a
discrete domain 
h , but we would like to subdivide the problem so that we can solve it in
parallel.

Let us define a domain decomposition for the problem. Given a domain 
 which contains
the support of ρ, we divide 
 into L patches, 
l , such that


 =
L⋃

l=1


l , (40)

ρ =
∑

l

ρl , (41)

and

supp(ρl) ⊂ 
l . (42)

Then we seek a solution

φ(
x) = (�−1ρ)(
x) =
∑

l

(�−1ρl)(
x) =
∑

l

φl(
x)

=
∑

l:
l near 
x
φl(
x) +

∑
l:
l far from 
x

φl(
x). (43)
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The calculation of the near field of φl involves only local work and local communication. The
first sum in (43) then involves local work, proportional to the size of the support of ρl , and the
calculations are independent for each l. The second sum in (43) represents the effect of far-
field harmonic functions, which are very smooth, in fact real analytic functions, and therefore
can be represented with a much smaller number of computational degrees of freedom. For
particles, the FMM uses multipole expansions to obtain a compact representation of the
far field, while the MLC uses a representation based on a finite difference calculation on a
coarse grid using a Mehrstellen discretization. We construct a version of the MLC for finite
difference problems.

Before we describe our algorithm fully, we need to define some of the notation and
operators we will be using. First, we define a rectangular domain on a Cartesian grid by
specifying the integer indices of the lower left and upper right corners, 
l and 
u. Given an

h = [
l, 
u] with grid spacing h, we can define various operators which return modified
domains. Since we are interested in grids which can be indexed by integers, we take care
that all of our operators return grids which also can be indexed by integers.

We define a coarsening operator, Coarsen, such that, given 
h = [
l, 
u],

Coarsen(
h, Nr ) = 
H =
[⌊ 
l

Nr

⌋
,

⌈ 
u
Nr

⌉]
, where H = Nr h. (44)

We also find it useful to define an operator, Grow, which returns a larger or smaller
domain growing the given domain by a certain amount in each direction. Given 
h[(lx , ly),

(ux , uy)], Grow can be defined as

Grow(
h, N ) = 
h,g = [
l − (N , N ), 
u + (N , N )]. (45)

Note that Grow is well defined even with negative integers N , in which case the returned
domain is smaller, rather than larger, than the original domain.

Finally, we need a sampling operator to extract coarse-grid representations from fine-grid
data:

ψ H

j = (SampleH (ψh)) 
j = (ψh)Nr 
j ′ , where H = Nr h. (46)

Sampling is possible since we are using node-centered grids; a more elaborate averaging
operator would be required for a cell-centered method.

3.1. Algorithm Description

Let us consider a fine-grid discretization 
h , corresponding to the domain 
, as in the
previous section. We decompose 
h into L grids with disjoint interiors such that they
intersect only at their boundaries and that


h =
L⋃

l=1


h
l . (47)

Associated with each 
h
l are two other grids. First we have a larger fine grid, 


h,g
l =

Grow(
h
l , Nr D). Because 


h,g
l is defined on a larger domain than 
h

l , the various 

h,g
l

overlap. The degree of overlap is a function of both a correction radius, D, and the refinement
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ratio, Nr . We also define a coarse grid 
H
l = Coarsen(


h,g
l , Nr ) representing a projection

of the grid 

h,g
l onto a coarser mesh with grid spacing H = Nr h.

Finally, we define a coarse grid corresponding with the entire problem domain: 
H =
Grow(Coarsen(
h, Nr ), D). Our algorithm can be described generally in terms of this
collection of discrete grids.

We seek to approximate the solution to

L5φ
single,h = ρh, (48)

where φsingle,h is the discrete solution on a single grid covering domain 
h , with grid spacing
h. As shown previously, L5 is a second-order-accurate approximation to the Laplacian
operator, �, and φsingle,h is a second-order approximation to the exact solution of the Poisson
equation, φexact.

We define a discrete solution φh on the domain decomposition described in (47), repre-
senting this solution as φh,l on each subdomain 
h

l . We want to compute φh such that

φh = φsingle,h + O(h2). (49)

In fact, we hope that

‖φh − φsingle,h‖ � ‖φsingle,h − φexact,h ‖, (50)

where φexact,h is the exact solution evaluated at grid points.
Our algorithm calculates the solution, φh,l , on each 
h

l in three main steps.

• INITIAL LOCAL SOLVE. On each local patch, 

h,g
l , solve

L9φ
h,l,initial = ρh,l (51)

with infinite domain boundary conditions, and construct a coarse representation of these
data:

φH,l,initial = SampleH (φh,l,initial). (52)

• GLOBAL COARSE-GRID SOLVE. Compute a single coarse-grid solution to communicate
global information

L9φ
H = RH , on 
H , (53)

with infinite domain boundary conditions, and with RH defined by

RH =
∑

l

RH,l , (54)

and

RH,l =
{

L9φ
H,l,initial, on Grow

(

H

l , −1
)
,

0, otherwise.
(55)
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• FINAL LOCAL SOLVE. On each local patch 
h
l , solve

L5φ
h,l = ρh,l , (56)

with boundary conditions set by a combination of data from nearby patches and data from
the coarse grid which has been adjusted to remove local effects,

(φh,l) 
j =
∑

l ′: 
j∈

h,g
l′

φ
h,l ′,initial

j + I

(
φH −

∑
l ′: 
j∈


h,g
l′

φH,l ′,initial

)

j
, 
j ∈ ∂
h

l , (57)

where I is an interpolation operator used to transfer information from the coarse grid to the
fine grid.

The first two steps are completely defined in the previous discussion, but one part of this
algorithm deserves special attention: the calculation of the fine-grid boundary condition for
the final local solve.

Setting Fine-Grid Boundary Conditions for the Final Solve

To set the boundary of a patch, we use both data from the local fine solutions and
interpolants from the large coarse solution. We must be careful always to use the local data
where they are available and yet not to add information twice by leaving the local effects
in the coarse-grid data which we interpolate.

The easiest way to keep track of all this is with a stencil. A sample interpolation stencil
is shown in Fig. 1. We move the stencil around the sides of each patch such that its center
row covers the projection of the boundary points which we wish to set. Coarse-grid data
are interpolated from the nine coarse-grid points which lie under the stencil. Note that for
accurate interpolation we need consistent data from all nine points. In Fig. 1, for example,
we would subtract φh,m,initial from the coarse-grid stencil values, but we would not sub-
tract φh,n,initial, since the stencil is not contained entirely by 
H

n . We later add local data
from φh,m,initial, but not from φh,n,initial, since those values were included in the coarse-grid
interpolant.

FIG. 1. An interpolation stencil as placed on the coarse grid.
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FIG. 2. An interpolation stencil as used to evaluate fine-grid values.

Figure 2 shows the fine-grid points we interpolate from the coarse-grid stencil. Note that
stencils generally share the fine points furthest from the center with neighboring stencils.
When multiple stencils can be used to evaluate a fine-grid point, we average all the values
produced by the various stencils.

We are able to construct an interpolant which is accurate to O(H 5) from our coarse
stencil. Since we have subtracted all local information from our stencil values,

φH,stencil = φH −
∑

m:
H
m ⊃
H,stencil

φH,m,initial, (58)

we have also made the coarse stencil data harmonic:

L9φ
H,stencil = L9φ

H −
∑

m:
H
m ⊃
H,stencil

L9φ
H,m,initial = 0. (59)

We interpolate by constructing approximate derivatives and a Taylor series representation of
a local solution. Since the coarse stencil values are harmonic, we are able to use a compact
3 × 3 stencil to compute sufficiently accurate approximations of the derivatives necessary
as interpolation coefficients to guarantee that the interpolated results, φh,stencil, are accurate
to O(H 5) overall.

Let us consider, for example, a top or bottom boundary, for which the fine-grid values of jx

vary but jy remains constant. The difference approximations to the necessary derivatives are

∂4ψ

∂x4
= − ∂4ψ

∂x2∂y2

= − 1

H 2

(
4ψ H


j − 2
(
ψ H

jx +1, jy
+ ψ H

jx −1, jy
+ ψ H

jx , jy+1 + ψ H
jx , jy−1

)+ ψ H
jx +1, jy+1

+ ψ H
jx +1, jy−1 + ψ H

jx −1, jy+1 + ψ H
jx −1, jy−1

)+ O(H 2), (60)

∂3ψ

∂x3
= − ∂3ψ

∂x∂y2

= 1

2H 3

(
ψ H

jx −1, jy+1 + ψ H
jx −1, jy−1 − ψ H

jx +1, jy+1 − ψ H
jx +1, jy−1

+ 2
(
ψ H

jx +1, jy
− ψ H

jx −1, jy

))+ O(H 2), (61)
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∂2ψ

∂x2
= 1

H 2

(
ψ H

jx +1, jy
− 2ψ H


j + ψ H
jx −1, jy

)− H 2

12

∂4ψ

∂x4
+ O(H 4), (62)

and

∂ψ

∂x
= 1

2H

(
ψ H

jx +1, jy
− ψ H

jx −1, jy

)− H 2

6

∂3ψ

∂x3
+ O(H 4), (63)

where the values of 
j refer to the indices of the coarse stencil. Note that the approximation
(60) is needed for (62), and (61) is needed for (63). We use these approximations in a Taylor
series approximation to interpolate fine-grid values:

φNr
h

j+ 
j h

= I(φH ) 
j = φH

j + δh

∂φ

∂x
+ δ2

h

2

∂2φ

∂x2
+ δ3

h

6

∂3φ

∂x3
+ δ4

h

24

∂4φ

∂x4
+ O(H 5). (64)

Here we still have 
j as the coarse-grid index. The index 
j h represents the displacement, in
fine-grid spacing, from the projection of the center of the coarse stencil onto the fine grid.
The distance δh is the quantity h| 
j h |.

Finally, we add back the local fine-grid information to the interpolated data in the stencil:

φh,stencil = φh,stencil +
∑

m:
h,g
m ⊃
H,stencil

φh,m,initial. (65)

We copy these values into the appropriate boundary cells of φh,l .
Once we have traversed the boundaries of every patch and set the boundary conditions,

we use multigrid to solve

L5φ
h,l = ρh,l . (66)

Our solution, φh , is then a composite of the φh,l calculated on each subdomain. Since our
boundary condition sets coincident boundaries exactly the same, we do not need to worry
about φh being multivalued at the intersections of subdomains.

We will later demonstrate that the combination of fine and coarse data which we used to
set boundary conditions is accurate to O(h2) + O(H 4) anywhere we wish to apply it. We
need not set boundary values along the original subdomain boundaries: we could divide
the original domain into a different set of patches, use the interpolation and correction as
described to set the boundary conditions on the new patches, and expect the final solution
to be just as accurate. Indeed, we could achieve the same overall accuracy by applying the
stencil everywhere to generate fine-grid values.

In many applications, our approach of setting boundary conditions for a final solve is
preferable. With such a method, the error away from the boundaries of the subdomains is
sufficiently smooth that one can apply difference operators to the solution to approximate,
e.g., ∇φ, to O(h2) accuracy.

3.2. Error Analysis of MLC

The algorithm we have just presented divides a charge field ρ with support confined to 


into several small charge fields ρl defined on subdomains 
l . We can understand most of
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the properties of this algorithm by looking at a simpler subproblem, such that the right-hand
side, ρ, is a charge with bounded support on some smaller domain, 
ρ .

Let us consider the application of our algorithm to this simpler problem. We subdivide the
problem into patches such that a single patch, 
h

0, contains the support of ρ. Our solution
is found in three steps.

• First, solve

L9φ
h,0,initial = ρh,0 (67)

on 

h,g
0 with infinite domain boundary conditions.

• Next, solve

L9φ
H = RH (68)

on 
H , the coarse domain covering the entire problem, with infinite domain boundary
conditions.

• Finally, set boundary conditions on each patch as

φh,l =
{

φh,0,initial + I(φH − φH,0,initial), for boundary points in 

h,g
0 ,

I(φH ), otherwise,
(69)

and solve a Poisson equation on each patch with the Dirichlet boundary conditions just set.

To better understand our result, let us construct an auxiliary solution, the solution to

L9φ̄
h = ρh (70)

on 
h with infinite domain boundary conditions.
We have shown previously that φ̄h and φh,0,initial are accurate to O(h2) on their domains.

If we can show that the boundary conditions we set, (69), are accurate to O(h2) as well, it
follows that our algorithm is accurate to O(h2) overall. It is sufficient to show

φ̄h − [φh,0,initial + I(φH − φH,0,initial)] = O(h2), (71)

for all boundary points in 

h,g
0 , and

φ̄h − I(φH ) = O(h2), otherwise. (72)

First, let us note that while φ̄h and φh,0,initial are both only accurate to O(h2), by (38),
they differ from one another by O(h4); i.e.,

φ̄h − φh,0,initial = O(h4). (73)

Let us now define

R̃H =
{

L9(SampleH (φ̄h)), outside 
H
0 ,

0, in 
H
0 .

(74)
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R̃H represents the error we make in our method by truncating R̃H to be zero outside the
correction radius. Note that

φH = SampleH (φ̄h) + (L9)
−1 R̃H + ξ B, (75)

where ξ B represents the error in the infinite domain boundary condition, which is O(H 4).
Since φ̄h differs from a harmonic function by O(h6) outside 


h,g
0 (away from the support

of ρ), we know

L9(SampleH (φ̄h)) = O(H 6) (76)

outside 
H
0 , and therefore

R̃H = O(H 6). (77)

Thus (75) becomes

φH = SampleH (φ̄h) + O(H 4), (78)

and the resulting error estimate for boundary points within 

h,g
0 is

ξ h,BC = O(h4) + O(H 4). (79)

For points outside 

h,g
0 , we note again that

φH = SampleH (φ̄h) + O(H 4) (80)

and that φ̄h is harmonic in this region. Therefore φH differs from a harmonic function by
terms that are O(H 4), and the far-field interpolated values obtained in (69) differ from φ̄h

by O(H 4).
The resulting composite solution, then, is accurate to O(H 4) + O(h2). As long as the

refinement ratio is chosen correctly, such that the O(H 4) and O(h2) terms are comparable,
we can guarantee an accuracy of O(h2) over the entire domain 
h .

3.3. Parallel Implementation

The implementation of this algorithm in parallel is fairly straightforward. Given a parallel
machine with Nprocs processors we assign patches associated with the fine grids of the domain
decomposition cyclically to each of the processors. Generally we use Nprocs equal to exactly
the number of patches in the decomposition. Both the initial local infinite domain Poisson
solves and the final multigrid solves on the fine grids can be performed in parallel without
any communication among the processors during those phases of the computation.

In a fashion similar to Baden’s parallel implementation of the MLC [4], we have chosen to
construct the global coarse-grid representation of both the right-hand side and the solution
on each processor. Since the global coarse grid requires fewer grid points than any individual
fine grid, this overhead is small both in terms of memory and computation required. To build
the global coarse representation, all the processors need to broadcast the coarse-grid right-
hand sides for each of their patches to all the other processors. This communication step
creates the global coarse right-hand side necessary for the global infinite domain Poisson
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solve. All the processors then perform that same solve, after which every processor has a
copy of the coarse-grid field necessary for the final phase of the computation.

The only other communication necessary is the communication among patches to correct
the interpolation of the fine-grid boundary conditions. This communication occurs between
processors which control neighboring patches and only points along the boundary are
communicated, so the communication requirement for this step is rather small.

3.4. The Relationship among Patches, Refinement Ratio, and Problem Size

We would like for our algorithm to be scalable on a parallel machine. To ensure scalability,
we need to consider the effect of the parts of the algorithm which are performed as serial
rather than parallel computations. In our algorithm, the global coarse-grid infinite domain
solve is the only serial calculation. We need to show that this part of the calculation can be
scaled such that it does not limit the parallel performance of the algorithm as a whole.

Let us consider a problem domain represented on a fine grid of dimensions [0, N ] ×
[0, N ]. We divide the domain into Np patches in each direction for a total of Np × Np

patches. We represent the global coarse data on a grid of dimensions [0, N C ] × [0, N C ].
The ratio of coarse-grid spacing to fine-grid spacing is the refinement ratio Nr = N

N C .
Scalability requires that the work done on the global coarse solve be proportional to the

work done on each patch. The work done on the global coarse solve is proportional to the
size of the coarse grid: O((N C)2) = O( n2

N 2
r
). The work per patch is O( N 2

N 2
p
). This implies that

we need a refinement ratio Nr proportional to the number of patches in each direction Np.
Now we must consider whether it is feasible to increase the refinement ratio as we increase

the number of patches. We expect our global solve to be accurate to O(H 4) while the overall
method is only accurate to O(h2). This implies a relationship between the refinement ratio
and size of the problem since Nr = H

h . We need

(Nr h)4 ∝ h2, (81)

N 4
r ∝ 1

h2
, (82)

or

N 2
r ∝ N . (83)

Combining this relationship with the relationship between patches and refinement ratio,
we have

N 2
r ∝ N 2

p ∝ N . (84)

If we hold to these relationships, the algorithm should exhibit both good parallel performance
and O(h2) accuracy overall.

3.5. Computational Overhead

To analyze the conditions under which our method is most attractive, we need to estimate
the overhead incurred in performing this type of domain decomposition. Multigrid typically
requires O(M log M) work to calculate a solution to Poisson’s equation on a grid of M
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points. For the purposes of this analysis, we will refer to this amount of work as M work
units, ignoring the log term. Note that this simplification favors large single grids over
domains decomposed into smaller grids.

First, let us consider the single-grid infinite domain problem. The solution for a domain

h,0 requires first a multigrid solution on an intermediate domain, 
h,initial, and then a
solution on a larger domain, 
h . For good accuracy we need 
h to be at least 10% larger
than 
h,0 in each direction. This requirement results in an overall size of 1.2N × 1.2N =
1.44N 2. The size of 
h,initial is then 1.1N × 1.1N = 1.21N 2. The two multigrid solutions
combined require 1.44N 2 + 1.21N 2 work units. The potential calculation also requires
O(N 2) work, but the cost is small compared to the multigrid solutions, and we will not
consider this portion of the work. The work required for the single-grid solution is then at
least 2.65N 2 work units.

For the parallel solution, our method involves three large steps: first, we solve a number
of independent problems with infinite domain boundary conditions; then, after aggregating
coarse data, we solve the coarse-grid problem for the entire domain with infinite domain
boundary conditions; and finally, after setting accurate boundary conditions, we solve local
fine-grid problems with Dirichlet boundary conditions. Communication steps are required
between the major computational steps, but we are interested in estimating only the com-
putational overhead here.

For a problem of size N × N , we use Np × Np processors and a refinement ratio of Nr

to determine the coarse-grid spacing. We require N 2
p ∝ N 2

r ∝ N for accuracy reasons, so
let us take

Np = a
√

N (85)

and

Nr = b
√

N . (86)

For the first step of our algorithm, we solve infinite domain boundary condition problems
of size ( N

Np
+ 4Nr )

2 on each of our N 2
p independent fine grids. These solutions, as in the

single-grid case, require two separate multigrid solutions. The first set of solutions, on
intermediate grids of size ( N

Np
+ 2Nr )

2, requires

W1a = N 2
p

(
N

Np
+ 2Nr

)2

(87)

= a2 N

(√
N

a
+ 2b

√
N

)2

(88)

= (1 + 4ab + 4(ab)2)N 2 work units, (89)

and the second set of solutions requires

W1b = N 2
p

(
N

Np
+ 4Nr

)2

(90)

= a2 N

(√
N

a
+ 4b

√
N

)2

(91)

= (1 + 8ab + 16(ab)2)N 2 work units. (92)
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Taken together, again ignoring the cost of the potential calculation, we find that the first
step in our method requires

W1 = (2 + 12ab + 20(ab)2)N 2 work units. (93)

It is important to note, however, that the work required for this step cannot be less than
2.65N 2 work units: the individual infinite domain solutions are subject to the same con-
straints on domain sizes as in the single-grid solution, and thus our method requires at least
as much work as the single-grid solve.

We have chosen to implement the second step of our algorithm, the global coarse-grid
solution with infinite domain boundary conditions, as a calculation which is replicated
across all the processors. Thus our N 2

p = a2 N processors each solve a problem of size
( N

Nr
)2 = N

b2 . These problems have the same overhead as a single-grid calculation, so we can
estimate the work for this second stage as

W2 = 2.65
a2

b2
N 2 work units. (94)

Finally, we need to solve the independent problems on each domain with Dirichlet bound-
ary conditions. The work required for this step is simply

W3 = N 2 work units. (95)

Taken together, we see that the total work must be at least 3.65N 2 work units. We can
ensure that the work is not much greater than that, however. Choosing Nr and Np such that
ba ≤ 1

16 is sufficient to ensure that W1 < 2.83N 2 work units. Choosing Nr and Np such
that b

a ≥ 4 ensures that W2 ≤ 0.17N 2 work units. Together, these conditions ensure that the
total work is less than 4N 2 work units.

In terms of Np, Nr , and N , the conditions for small computational overhead are expres-
sed as

Nr ≤ 1

2

√
N (96)

and

Np ≤ 1

4
Nr . (97)

These conditions imply that the smallest problem we can solve with this little overhead is
a 65 × 65 problem on a single patch with Nr = 4. The smallest problem we can solve in
parallel with such a small amount of computational overhead is a 257 × 257 problem on
2 × 2 patches with Nr = 8. Using these estimates to calculate theoretical speed-up, with
a 7% overhead of serial computation for the global coarse-grid solution, we would expect
our solution of the 257 × 257 problem on four processors to be 2.65 times as fast as the
single-grid calculation.

These constraints do not seem excessive since the algorithm is specifically designed for
solving large problems on large parallel machines and since we have removed almost all
the communication overhead required by a standard multigrid method.
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4. RESULTS

We have implemented versions of our algorithm in order to test our claims. Computer
programs were written in two separate programming environments designed for building
parallel algorithms for scientific computations: KeLP and Titanium. KeLP, designed and
written by Baden, Fink, and Kohn [5, 9], is a C++ library that provides a large number of
useful features both for parallel programming and for scientific computing. KeLP provides
for interfaces between high-level C++ descriptions of the data structures and lower level
numerical algorithms, implemented in Fortran. This division allows the user to take advan-
tage of the performance provided by Fortran compilers as well as the abstractions supplied
by the C++ language. Titanium [17] is a dialect of Java developed for parallel scientific
applications. The language has a SPMD model of parallel execution and has built-in ab-
stractions which are useful for scientific applications. The Titanium compiler aggressively
optimizes many of the most common routines in scientific computations, such as loops over
two- or three-dimensional arrays.

The performance of the Titanium code is slightly slower than that of the KeLP imple-
mentation for our algorithm, but since the Titanium code was easier to write and modify,
it proved more amenable to algorithm development and testing. All the results presented
here are generated by code written in Titanium. Timing tests were run on the IBM SP2 at
the San Diego Supercomputing Center. Additional results and comparisons including data
for the KeLP implementation can be found in [7].

One of the benefits of solving the Poisson equation is that we can easily create test
problems for which exact analytical solutions can be calculated directly. In such cases,
we are able to measure the error in our computed solution by comparing it with the exact
solution. We also use test problems for which the exact solution is not known. In these cases
we perform Richardson error estimation, using a series of increasingly refined solutions,
comparing each to the next finer. In all cases, we can calculate a convergence rate for our
method from norms of the error estimates as the grid is refined.

There are several properties that we seek to demonstrate about our algorithm. First,
we show that our algorithm is accurate to O(h2). Specifically, we show that the solution
converges as predicted when the problem is scaled appropriately, i.e., when the refine-
ment ratio, Nr , and the number of patches (in each direction), Np, are inversely pro-
portional to the square root of the grid spacing, h. In addition, we show that our algo-
rithm produces more accurate results than a single infinite domain boundary condition
solution on coarse-grid data with Mehrstellen preconditioning (29). Finally, we measure
the performance of the algorithm on a parallel machine, testing communication costs and
speedup.

4.1. The Test Problems

We have two similar test problems for which we can construct solutions. Both prob-
lems have radially symmetric charge distributions. The first charge distribution is very
smooth:

ρ =


(

r
R0

− r2

R2
0

)4
, r < R0,

0, r ≥ R0.
(98)
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This charge can be integrated directly to produce an exact solution:

φ =




r2
(

a8

100 − 4a7

81 + 6a6

64 − 4a5

49 + a4

36

)
+R2

0

(
1

10 − 4
9 + 6

8 − 4
7 + 1

6

)
log(R0), r < R0,

R2
0

(
1
10 − 4

9 + 6
8 − 4

7 + 1
6

)
log(r), r ≥ R0.

(99)

Our second test problem includes a tunable wavenumber component. This is useful to
demonstrate how methods perform on charges with a high wavenumber which can only be
resolved on fine grids. This second charge is defined as

ρ =


[

sin(wr)
(

r2

R0
− r2

R2
0

)]2
, r < R0,

0, r ≥ R0.
(100)

We define w to be 2mπ
R0

, where m is a positive integer. The solution for this right-hand side
can be represented as

φ =
{

φinterior, r < R0,

φexterior, r ≥ R0,
(101)

where the interior and exterior solutions are defined as

φinterior = cos(2wr) − 1

w2

(
137

64(wR0)4
− 47a2 − 52a + 11

32(wR0)2

)

+ cos(2wr)

w2

(a4 − 2a3 + a2)

8

+ sin(2wr)

w2

(
77a − 50

32(wR0)3
− 9a3 − 14a2 + 5a

16wr

)

+
(

3

16w4 R2
0

− 15

16w6 R4
0

)(∫
cos(2wr)

r
dr − log(r)

)

+
(

3

4w5 R3
0

)∫
sin(2wr)

r
dr + r4

32R2
0

− r5

25R3
0

+ r6

72R4
0

− 37R2
0

7200
+ R2

0 log(R0)

120

(
1 + 45

w4 R4
0

)
(102)

and

φexterior = R2
0 log(r)

120

(
1 + 45

w4 R4
0

)
. (103)

We are unable to write down a closed-form solution for this right-hand side because it
involves integration of terms such as sin(r)

r and cos(r)

r . We generate integrals of these terms
by numerical techniques, such as Taylor expansion near the singularity at the origin and
Richardson–Romberg integration elsewhere [3]. These numerical approximations provide
much higher order accuracy and are calculated with steps much smaller than the grid spacing
used in our algorithm so that we can ensure that they are far more accurate than the O(h2) we
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expect from our algorithm. This extra accuracy is essential, since we compare the solutions
calculated by our finite difference methods to this solution.

We have a third test problem for which no analytical solution is available. This charge
distribution is a variation on the tunable wavenumber test problem just described. The
charge distribution varies in θ , as well as r .

We define this charge as

ρ =


[

sin
(

wr
R∗
) (

r
R∗ − r2

R∗2

)]2
, r < R∗,

0, r ≥ R∗,
(104)

where w is defined as before and R∗ is defined as

R∗ = R0 cos(6θ) + 3

4
. (105)

The effect of the R∗ term is to create lobes out from the center of the charge. Our particular
choice of R∗ creates a six-lobed charge field. Since no analytical solution is available for
this charge distribution, Richardson error estimation must be used to study the convergence
of the solution in this case.

4.2. Validation of Far-Field Error Estimates

We show by numerical experiments that our analysis in Section 3.2 is correct. We are
interested in confirming our estimates in (76) and (77), specifically that

R̃H = L9(SampleH (φh)) = O(H 6), (106)

in the far field. Recall that this R̃H is a measure of the error we make in our algorithm
by truncating the far-field charge to zero when constructing the coarse charge field for the
global coarse solve.

To verify this assertion, we use a test problem in which the charge has compact support,
limited to a fraction of the solution domain. The charge that we use for these tests is given
by (98), centered at ( 1

4 , 1
4 ), with a radius R0 = 1

16 . The problem is solved on the domain
[0, 1] × [0, 1] in �2.

Figure 3 shows this far-field truncation error in the coarse-grid representation of the
charge for a fine-grid domain of size 65 × 65. The curve fits in this truncation error plot are
represented by

R̃H = 3.64 × 10−6 H 6

|
x |8 , (107)

where H is the grid spacing used for the coarse-grid Laplacian operator. This relationship
implies that the coarse-grid truncation error is O(H 6). The variation of R̃H as 1

|
x |8 is also
expected since the coefficients of O(H 6) terms in the error estimate are eighth derivatives of
the solution, and the solution is harmonic in the far field. Since the harmonic Green’s function
is proportional to log(|
x |), the eighth derivatives of a harmonic function are then O( 1

|
x |8 ).
To demonstrate that the error is a function only of coarse-grid spacing and distance from

the center of the charge, we have plotted the results for a 65 × 65 grid with Nr = 2, a
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FIG. 3. Far-field coarse truncation error for a 65 × 65 fine grid.

129 × 129 grid with Nr = 4, and a 257 × 257 grid with Nr = 8 in Fig. 4. For each of these
problems, the coarse-grid spacing remains a constant H = 1

32 , and all the data lie along a
single line, independent of the fine-grid spacing used to solve the Poisson problem.

4.3. Mesh Refinement Studies for the Full Algorithm

We now demonstrate by mesh refinement studies that our method produces results that
are accurate to O(h2) as the solution grid is refined and that the additional error induced by
the domain decomposition is small, relative to the intrinsic solution error from a five-point
discretization of Poisson’s equation.

Accuracy for a High-Wavenumber Charge

We use two test cases with high-wavenumber components to gauge the performance
of our method on nonsmooth charge distributions. It is difficult to assess accuracy of a

FIG. 4. Coarse-grid truncation errors for various fine-grid problems with a constant coarse-grid spacing.
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TABLE I

Error Norms and Convergence Rates for a Problem with a High-Wavenumber Charge

Distribution, Solved with Various Grid Sizes, Numbers of Patches, and Refinement Ratios

Error norms Convergence rates

Grid size Np Nr |error|max |error|2 |error|max |error|2

129 × 129 1 2 4.42e-7 9.21e-8
129 × 129 1 4 4.41e-7 9.18e-8
129 × 129 2 4 4.91e-7 1.03e-7
129 × 129 2 8 4.83e-7 1.00e-7
257 × 257 2 4 8.61e-8 2.18e-8
257 × 257 2 8 8.51e-8 2.13e-8
257 × 257 4 8 8.25e-8 2.02e-8
257 × 257 4 16 7.23e-8 1.77e-8
513 × 513 2 4 2.02e-8 5.32e-9 2.22 2.06
513 × 513 2 8 2.01e-8 5.26e-9 2.23 2.06
513 × 513 4 8 1.96e-8 5.05e-9 2.32 2.18
513 × 513 4 16 1.67e-8 4.12e-9 2.42 2.30

method on high-wavenumber charges in terms of a standard convergence study: as the
grid is refined, the problem becomes relatively more smooth. Therefore, for these tests, we
restrict ourselves to three grid sizes: 129 × 129, 257 × 257, and 513 × 513.

The results for the radially symmetric test problem are shown in Table I. For this set of test
problems, the charge was defined by (100), with R0 = 0.42 and m = 15. These parameters
result in 30 periods over the radius of the charge, or approximately 1.8 grid points per period
on the 129 × 129 grid, which is insufficient to resolve the solution. The 257 × 257 grid has
adequate resolution, and the 513 × 513 grid is well resolved, with over 7 grid points per
period. The convergence rates reported in Table I are based on comparing the 513 × 513
grid errors with the errors on the corresponding grids of size 129 × 129. These may be
questionable since the 129 × 129 grid is underresolved, but calculating the convergence
based on the 513 × 513 and 257 × 257 grids gives O(h2) convergence uniformly as well.

An error plot for this problem calculated on a 257 × 257 grid with Np = 2 and Nr = 8 is
shown beside an error plot for the same problem solved on a single 257 × 257 grid in Fig. 5.
The plots are very similar, and, equally important, the domain decomposition algorithm does
not add any strong discontinuities to the error. The error norms for the single-grid solutions
are shown in Table II.

To be fair, however, we should also compare our results with results from an infinite do-
main solver which uses Mehrstellen preconditioning: we need to demonstrate that a much
simpler, single-grid solution on a much coarser grid could not produce equally accurate
results. In Table III we juxtapose the previous results from our algorithm with results from
an infinite domain solution using Mehrstellen preconditioning (29). The MLC algorithm
is used with the fine- and coarse-grid sizes as noted in the table; the corresponding single-grid
infinite domain Poisson solution with Mehrstellen preconditioning is performed on a
grid with the coarse spacing. Note that in some cases, there are multiple values of Np for the
grid sizes and refinement ratios indicated in the table: in every such case we have chosen the
result which reflects the largest errors for our algorithm. We see that for any Nr we choose,
our method is more accurate than any single-grid solution with Mehrstellen precondition-
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FIG. 5. On the left, error for a high-wavenumber, radially symmetric charge covering most of the solution
domain, a 257 × 257 grid, with Np = 2 and Nr = 8; on the right, the error resulting when the same problem is
solved on a single 257 × 257 grid.

ing on the corresponding coarse-grid domain. Until the problem is sufficiently resolved on
the grid, the benefits of a higher order method with Mehrstellen preconditioning are not
realized.

Accuracy for an Extremely Large Problem

The ability to solve large problems is one of the main reasons for developing parallel
algorithms. Unfortunately, as problem sizes get larger and charge distributions get more
complicated, it becomes more difficult to study convergence of the solution. Here we solve
a rather complicated problem on grids of size 513 × 513, 1025 × 1025, and 2049 × 2049,
testing the accuracy of our solutions on the 513 × 513 and 1025 × 1025 grids by using
Richardson error estimation.

The charge distribution for this large problem is the superposition of three separate
high-wavenumber charge fields and a smooth, radially symmetric field. Two of the high-
wavenumber charge fields are six-lobe charge fields as defined by (104); the third is a radially
symmetric charge field defined by (100). The smooth, radially symmetric charge field is
defined by (98). The problem domain is defined on [0, 1] × [0, 1]. One six-lobe charge with
m = 6 and R0 = 0.25 is placed at (0.35, 0.3). A second six-lobe charge with m = 4 and
R0 = 0.18 is placed at (0.75, 0.8). The high-wavenumber, radially symmetric charge has
m = 18 and R0 = 0.38 and is placed at (0.6, 0.4). The smooth, radially symmetric charge
is placed at (0.4, 0.5) and also has R0 = 0.38. Error norms for this large problem are listed
in Table IV: again the method exhibits O(h2) accuracy.

TABLE II

Error Norms for a Single-Grid Solution

of the High-Wavenumber Problem

Grid size |error|max |error|2

129 × 129 4.92e-7 1.19e-7
257 × 257 8.62e-8 2.42e-8
513 × 513 2.02e-8 5.83e-9
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TABLE III
Comparison of Maximum Error Norms for a Single Coarse-Grid Solution of

the High-Wavenumber Problem, Utilizing Mehrstellen Preconditioning, to Error

Norms for MLC

MLC Mehrstellen
Fine size Nr Coarse size |error|max |error|max Ratio: MLC

Mehrstellen

129 × 129 2 65 × 65 4.42e-7 1.13e-5 3.9e-2
129 × 129 4 33 × 33 4.91e-7 5.97e-4 8.2e-4
257 × 257 4 65 × 65 8.61e-8 1.13e-5 7.6e-3
257 × 257 8 33 × 33 8.51e-8 5.97e-4 1.4e-4
513 × 513 4 129 × 129 2.02e-8 1.75e-7 1.2e-1
513 × 513 8 65 × 65 2.01e-8 1.13e-5 1.8e-3
513 × 513 16 33 × 33 1.67e-8 5.97e-4 2.8e-5

TABLE IV

Error Norms for a Very Large,

High-Wavenumber Problem

Grid size Np Nr |error|max

513 × 513 2 8 2.97e-8
1025 × 1025 4 16 6.47e-9

FIG. 6. Error for a high-wavenumber charge, solved on a 1025 × 1025 grid with 16 patches and Nr = 16.
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A plot of the error on the 1025 × 1025 grid appears in Fig. 6. It is possible to see faint
traces along the domain boundaries in this plot. These artifacts are very small in magnitude
compared to the intrinsic error due to the five-point discretization of the Poisson equation.

4.4. Parallel Timing

We would like to confirm experimentally that our algorithm scales well as the number of
processors is increased. There are many different measures of parallel speedup, depending
on the type of problem being solved. For some problems multiple processors are used in
order to take advantage of parallelism inherent in the problem. For such problems, one hopes
to compute solutions to the same problem in an amount of time inversely proportional to the
number of processors available. For another class of problems, however, multiple processors
are needed because the data are too numerous to fit in the memory associated with a single
processor. For these types of problems, scaled speedup is a more appropriate measure of
parallel performance. In scaled speedup tests, the size of the problem is scaled in proportion
to the number of processors, and one hopes that the time to compute solutions remains
constant even as the problem size increases.

Our algorithm is designed for scaled speedup. As discussed in Section 3.5, our method
introduces some degree of computational overhead even when solving Poisson’s equation
with infinite domain boundary conditions. If our method were used instead to solve problems
with simpler Dirichlet boundary conditions, the overhead would be an even greater factor.
As a result, single-grid methods are preferable when problems are small enough to fit on a
single processor. As problem sizes grow, however, and parallelism is necessary, the scaled
speedup provided by our algorithm becomes more attractive.

We constructed series of test problems for which the amount of computation required per
processor remains approximately constant. For this performance study, we expect the wall-
clock time required to be nearly constant as the problem sizes and number of processors
increase.

The amount of computation required per processor depends on both the local fine-grid
patch sizes and the global coarse-grid size. Therefore, as we increase the overall problem
size, N , we need to increase both the refinement ratio, Nr , and the number of patches in each
direction, Np. Three series of test problems were run on 1 to 16 processors. The parameters
for these series are shown in Tables V–VII.

The results of the first groups of scaled speedup tests, shown in Fig. 7, are very near what
we would expect. The three series lie nicely along horizontal lines. In fact, the deviations
from perfectly horizontal lines can be explained almost entirely by variations in the total
number of multigrid iterations required.

We are not only interested in the total time required to compute solutions, however. We
are also interested in the fraction of time spent communicating data among the processors.

TABLE V

Scaled Speedup Test: Series 1

Total size Patches Refinement ratio Local fine size Global coarse size

129 × 129 1 × 1 4 129 × 129 33 × 33
257 × 257 2 × 2 8 129 × 129 33 × 33
513 × 513 4 × 4 16 129 × 129 33 × 33
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TABLE VI

Scaled Speedup Test: Series 2

Total size Patches Refinement ratio Local fine size Global coarse size

257 × 257 1 × 1 4 257 × 257 65 × 65
513 × 513 2 × 2 8 257 × 257 65 × 65

1025 × 1025 4 × 4 16 257 × 257 65 × 65

TABLE VII

Scaled Speedup Test: Series 3

Total size Patches Refinement ratio Local fine size Global coarse size

513 × 513 1 × 1 4 513 × 513 129 × 129
1025 × 1025 2 × 2 8 513 × 513 129 × 129
2049 × 2049 4 × 4 16 513 × 513 129 × 129

TABLE VIII

Communication Costs for a Series with O(h2) Convergence

Problem size Patches Nr Communication time (s) Percent of total

257 × 257 2 × 2 8 0.081 1.5
513 × 513 2 × 2 8 0.17 1.1
513 × 513 4 × 4 16 0.16 2.5

1025 × 1025 2 × 2 8 0.31 0.57
1025 × 1025 4 × 4 16 0.30 1.7
2049 × 2049 4 × 4 16 0.54 0.96

FIG. 7. Timing results for a scaled speedup test.
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The communication overhead for our algorithm, shown in Table VIII, is very small and
never more than 2.5% of the total time for the method.

5. CONCLUSIONS

We developed a parallel finite difference algorithm for the computation of the solution
to the Poisson equation with infinite domain boundary conditions.

Our algorithm produces results accurate to second order for a wide range of problems.
The errors in the computed solution are almost entirely a function of fine-grid spacing. The
division of the problem into subdomains produces additional errors at the boundaries which
are small in magnitude compared to the errors on the interiors of the subdomains. In fact,
the overall errors for solutions calculated by our method are comparable to those produced
by a standard second-order single-grid solver.

The accuracy of the solution is not significantly degraded even for very coarse global
grids. We have found that it is possible to use coarse-grid spacings large enough that the
coarse-grid solve represents only about a 2–7% increase in the total number of floating
point operations.

The amount of communication required is small. Time spent in communication repre-
sents no more than 2.5% of the total time required to compute a solution for the Titanium
implementation of the algorithm running on the IBM SP2 at the San Diego Supercomputer
Center. Since both our parallel computational overhead costs and our communication re-
quirements are small, we expect our algorithm to exhibit very good parallel scaling. We
find that our program does obtain linear speedup on the SP2.

An important extension of this research will be the development of the three-dimensional
analogue of this algorithm. Unlike many other approaches, which become much more
complex or much less efficient in the transition from two to three dimensions, our algorithm
should remain fairly simple and largely unchanged. The most significant change required has
to do with the potential calculation for the infinite domain solve: a straightforward extension
of our method to three dimensions would result in a method which required O(N 4) work to
compute the boundary charge on a grid of N 3 points. This method would be unacceptable
since all other phases of the computation would be expected to require O(N 3 log N 3)

work at most. Projecting the potential onto a coarser outer grid, of spacing H = O(
√

h),
would reduce the work required to O(N 3), again, though, and O(H 8) interpolation on
the outer grid to set the boundary condition would be tedious, but not computationally
expensive.

Another important addition to our algorithm would be the introduction of alternative
boundary conditions. Many real-world problems require Dirichlet, Neumann, or some
sort of mixed boundary conditions for which our algorithm is not currently designed
to handle. One approach to supplying alternative boundary conditions to problems such
as these uses image charges. An example of this approach is described by Baden and
Puckett [6].

It would also be interesting to look at making the algorithm adaptive: we have seen that
the accuracy of our method depends very weakly on the coarse-grid spacing, and it should be
possible to use coarser local grids on patches with low-wavenumber charge distributions.
Adaptivity such as this would require us to look into load-balancing issues much more
carefully, however.
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