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We present an algorithm to compute adaptive solutions for incompressible flows
using block-structured local refinement in both space and time. This method uses a
projection formulation based on a cell-centered approximate projection, which allows
the use of a single set of cell-centered solvers. Because of refinement in time, addi-
tional steps are taken to accurately discretize the advection and projection operators
at grid refinement boundaries using composite operators which span the coarse and
refined grids. This ensures that the method is approximately freestream preserving
and satisfies an appropriate form of the divergence constraint.c© 2000 Academic Press
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1. INTRODUCTION

We present a local refinement algorithm for finite-difference solutions to the time-
dependent incompressible Euler equations. Our approach is based on that of Berger and
Oliger [11] and Berger and Colella [10], in which refined regions are organized into unions
of a relatively small number of nested rectangular blocks. Refinement is performed in time
as well as in space so that the ratio of the time step to the grid spacing is kept fixed. Calcu-
lations are organized around updating the data on the union of rectangles corresponding to
a given level of refinement, combined with steps to enforce consistency among the data at
different levels.

1 This research was supported at the Lawrence Berkeley National Laboratory by the U.S. Department of Energy:
Director, Office of Science, Office of Advanced Scientific Computing Research, Mathematical, Information, and
Computing Sciences Division under Contract DE-AC03-76SF00098 and at the University of California at Berkeley
by the U.S. Department of Energy Mathematical, Information, and Computing Sciences Division, Grants DE-
FG03-94ER25205 and DE-FG03-92ER25140, and the Computational Science Graduate Fellowship Program of
the U.S. Department of Energy.
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This adaptive mesh refinement (AMR) algorithm has been used extensively to solve a
variety of problems in hyperbolic conservation laws and more recently has been extended
to incompressible flow in [3]. The incompressible flow case is essentially more difficult for
local refinement methods, particularly in the presence of refinement in time. In that case, it
is not entirely obvious how to represent the divergence-free constraint. One set of design
choices for dealing with this problem was made in [3]; this paper investigates an alternative
set of choices for this issue that are simpler, particularly in light of anticipated requirements
of representing complex geometry using Cartesian grids.

Our underlying single-grid discretization method is a second-order extension of Chorin’s
projection method [15] of a type first introduced by Bell, Colella, and Glaz (BCG) [8]. In
this approach, a time-centered estimate of the right-hand side of the advective and diffusive
terms in the momentum equation is used to compute a provisional update of the velocity.
This velocity is then projected onto the space of divergence-free fields. The velocities are
co-located at the centers of rectangular control volumes. Advective terms are computed
using time-centered velocity fields centered at the edges using a second-order Godunov
method, combined with an intermediate staggered-grid projection step [9, 18]. This choice
of a single-grid method leads to an adaptive grid method which is second order in space
and time as1t,1x→ 0, with 1t

1x held fixed.
In extending this algorithm to be adaptive, we addressed the following major design

choices.

Choice of Projection Discretization

We use a cell-centered approximate projection similar to that developed independently
by Lai and co-workers [23, 24] and Zanget al. [36]. This has the advantage of using the
same cell-centered elliptic solvers that are used in the intermediate staggered-grid projection
step and that are also required for the viscous solvers. Starting from this single-grid algo-
rithm, we apply the projection at two different points in the Berger–Oliger time-stepping
procedure. At the end of each time step on a given level of refinement, we apply the pro-
jection to the velocity field at that level, using appropriate boundary conditions for the
pressure and velocity interpolated from the next coarser level. Second, we apply a multi-
level projection similar to that used in [27, 28] to the velocity data at multiple levels of
refinement at times when data at two or more levels of refinement have been advanced
to the same time. This projection has the effect of imposing the correct matching con-
ditions on the velocity field at the boundaries between different levels of refinement. In
the approximate projection formulation of the BCG algorithm, there are four options that
have the same truncation error. Either the velocity or the update to the velocity may be
projected, and the projection may solve for either the pressure or the update to the pres-
sure over the course of the time step [7, 33]. We have found that, to obtain a robust algo-
rithm, it was necessary to use the project-velocity/solve-for-pressure formulation in the level
projection.

Freestream Preservation for Advective Transport

It is often necessary to compute the advective transport of conserved scalars using a
conservative finite-difference formulation. In a single-level calculation, advective transport
of additional conserved scalars is computed using intermediate edge-centered velocities
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that are discretely divergence-free, leading to an algorithm that is freestream-preserving.
The straightforward application of the algorithm in [10] to maintain conservation in the
presence of refinement in time fails to be freestream-preserving in the neighborhood of
the boundary between grids at different levels of refinement. The face-centered advection
velocities on the coarse and fine grids are computed independently, and there is nothing to
guarantee that the composite, time-averaged velocity field is discretely divergence-free at
the boundary between coarse and fine grids. Our approach to this problem is based on the
volume discrepancy method in [1, 30, 35]. We carry an auxiliary advectively transported
quantity that is initialized to be identically equal to a constant. The deviation of this quantity
from the constant is an integrated measure of the extent of the violation of the freestream
condition. We use this auxiliary quantity to form the right-hand side of a Poisson equation
for a potential flow field which, when added to the advection velocity, tends to restore locally
constant advected quantities to their freestream state. We find that this procedure reduces
the maximum deviation from freestream conditions by one order in the mesh spacing. In
addition, the deviation from freestream conditions is negligible away from the cells adjacent
to boundaries between levels.

To test these ideas, we present the algorithm in the simplest possible setting: the in-
compressible Euler equations with an additional conserved scalar. Despite the simplicity
of the equations, this is a stringent test for the ideas presented here. The extension to the
Navier–Stokes equations will follow in a later paper.

2. AMR NOTATION

Following [10], we perform our adaptive mesh calculations on a hierarchy of nested,
cell-centered grids (Fig. 1). At each AMR level` = 0, . . . , `max, the problem domain is
discretized by a uniform grid0` with grid spacingh`. Level 0 is the coarsest level, while
each level̀ + 1 is a factorn`ref = h`/h`+1 finer than level̀ ; the refinement ration`ref is an
integer. Because refined grids overlie coarser ones, cells on different levels will represent
the same geometric region in space. We identify cells at different levels which occupy the
same geometric regions by means of the coarsening operatorCr (i, j ) = (b i

r c, b j
r c). In that

FIG. 1. Block-structured local refinement. Note that refinement is by an integer factor and is organized into
rectangular patches.
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case,{Cr }−1{(i, j )} is the set of all cells in a gridr times finer that represent the same
geometric region (in a finite volume sense) as the cell(i, j ).

In the present work, we assume that the problem domain is a rectangle and that the
refinement ratios are powers of 2. Calculations are performed on a hierarchy of meshes
Ä` ⊂ 0`, withÄ` ⊃ Cn`ref

(Ä`+1).Ä` is the union of rectangular patches (grids) with spacing
h`; the block-structured nature of refinement is used in the implementation to simplify
computations on the hierarchy of meshes. On the coarsest level,Ä0 = 00. A cell on a level
either is completely covered by cells at the next finer level or is not refined at all. Since
we assume the solution on finer grids is more accurate, we distinguish betweenvalid and
invalid regions on each level. The valid region on a level is not covered by finer grid cells:
Ä`valid = Ä` − Cn`ref

(Ä`+1). The grids on each level satisfy aproper nestingcondition [10]:
no cell at level̀ + 1 represents a geometric region adjacent to one represented by a valid
cell at level`− 1.

Likewise,Ä`,∗ denotes the cell edges of level` cells, whileÄ`,∗valid refers to the cell edges
on level` not covered by level̀ + 1 edges. Note that the coarse–fine interface∂Ä`+1,∗

between levels̀ and`+ 1 is considered to be valid on level`+ 1, but not on level̀ . The
coarsening operator also extends to edges:Cn`ref

(Ä`+1,∗) is the set of level̀ edges overlain
by level`+ 1 edges.

A composite variableis defined on the union of valid regions of all levels. Since we
organize computation on a level-by-level basis, the invalid regions of each level also con-
tain data, usually an approximation to the valid solution. Alevel variableis defined on
the entire levelÄ` (not just the valid region). For a cell-centered variableφ, the level
variableφ` is defined on all ofÄ`; the composite variableφcomp is defined on the union
of valid regions over all levels. We also define composite and level-basedvector fields,
which are defined at normal cell edges. Like other edge-centered variables, a composite
vector fielduedge,comp is valid on all edges not overlain by finer edges (Fig. 2). Likewise, we

FIG. 2. Sample coarse–fine interface with an edge-centered vector field. Cell(i, j ) (open circle) is to the right
of the coarse–fine interface.
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define composite and level operators which operate on composite and level variables, resp-
ectively.

It is also necessary to transfer information from finer grids to coarser ones. We define
〈φ`+1〉 to be the appropriate cell-centered or edge-centered arithmetic average of level`+ 1
dataφ`+1 to the underlying coarser cells in level`.

Divergence, Flux Registers, and Reflux Divergence

The basic multilevel divergence is a cell-centered divergence of an edge-centered vector
field. If none of the edges of cell(i, j ) are coarse–fine interfaces, we use a centered-
difference divergence:

(Dcomp,`uedge)i, j =
uedge

i+1/2, j − uedge
i−1/2, j

h`
+ v

edge
i, j+1/2− vedge

i, j−1/2

h`
. (1)

On the fine side of a coarse–fine interface, the stencil is unchanged, since the coarse–fine
interface with the coarser level`− 1 is a valid edge in level̀. For cells on the coarse side of
a coarse–fine interface, the coarse-grid vector on the coarse–fine interface is the average of
the fine-grid vectors on that edge. For the coarse-grid cell in Fig. 2, the divergence operator
is

(Dcomp,`uedge)i, j =
uedge,`

i+1/2, j − 〈uedge,`+1〉i−1/2, j

h`
+ v

edge,`
i, j+1/2− vedge,`

i, j−1/2

h`
. (2)

The level-operator divergenceD` of a level variableuedge,` is defined by ignoring any
finer levels and computingD` everywhere inÄ` using (1). Since the composite diver-
gence on level̀ depends on both level̀ and level`+ 1 data, it may be written as
Dcomp,`(uedge,`, uedge,`+1); the level operator only depends on level` data:D`(uedge,`).

Assume that the vector fielduedge,` can be extended to all edges inÄ`,∗, including
those covered by the coarse–fine interface edge∂Ä`+1,∗. The composite divergenceDcomp

uedge,comp onÄ` may then be expressed as the level-operator divergenceD` along with a
correction for the effects of the finer level(`+ 1). To do this efficiently, we define aflux
registerδu`+1, defined onCn`ref

(∂Ä`+1,∗), which stores the difference in the edge-centered

quantityuedgeon the coarse–fine interface between levels` and`+ 1. Notationally,δu`+1

belongs to the fine level (`+ 1) because it represents information on∂Ä`+1,∗. However, it
has coarse-level (`) grid spacing and indexing.

We define thereflux divergence D`R to be theD` stencil as applied to the edge-centered
vectors on the coarse–fine interface with level`+ 1; the general composite operator can
then be expressed as

(Dcomp,`uedge)i, j = (D`uedge,`)i, j + D`
R(δu

`+1)i, j , (3)

δu`+1 = 〈uedge,`+1〉 − uedge,` onCn`ref
(∂Ä`+1,∗). (4)

For the level̀ cell (i, j ), D`
R can be defined as

D`
R(δu

`+1)i, j = 1

h`

∑
p

± (δu`)p, (5)
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where the sum is over the set of all edges of cell(i, j ) which are also coarse–fine interfaces
with level`+ 1, and the± is+ if the edgep is on the high side of cell(i, j ) and− if p is
on the low side. Note thatD`

R only affects the set of level̀ cells immediately adjacent to
the coarse–fine interface with level`+ 1.

Gradient and Coarse–Fine Interpolation

The gradient is an edge-centered, centered-difference gradient of a cell-centered variable
φ. The fieldGcompφ is a composite vector field, defined on all valid edges in the multilevel
domain. On edges which are not coarse–fine interfaces,

Gcomp,`(φ)xi+1/2, j =
φi+1, j − φi, j

h`
(6)

Gcomp,`(φ)
y
i, j+1/2 =

φi, j+1− φi, j

h`
.

To computeGcompφ at a coarse–fine interface, we interpolate values forφ using both
coarse- and fine-level values. For the example shown in Fig. 3, to compute they-component
of the gradient across the horizontal coarse–fine interface we first interpolate values into
ghost cells around the fine grid (circled X’s in Fig. 3); we then use these interpolated values in
(6). We use a quadratic interpolation similar to that used in [27] and adopted by [3, 25, 28]
to computeφ I . First, a quadratic interpolation is performed parallel to the coarse–fine
interface using nearby coarse cells (open circles in Fig. 3) to get values at intermediate
points (solid circles). These intermediate values are used along with two fine grid cells
(X’s) in a second quadratic interpolation normal to the interface to get the appropriate ghost
cell values. We denote this quadratic coarse–fine interpolation operator asI (φ`, φ`−1).

FIG. 3. Interpolation at a coarse–fine interface. Left stencil is the usual stencil. Right stencil is the modified
interpolation stencil; since the upper coarse cell is covered by a fine grid, use a shifted coarse grid stencil (open
circles) to get intermediate values (solid circles) and then perform final interpolation as before to get “ghost cell”
values (circled X’s). Note that to perform interpolation for the horizontal coarse–fine interface, we need to shift
the coarse stencil left.
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Hence

φ` = I (φ`, φ`−1) on ∂Ä` (7)

means that ghost cell values forφ on level` along the coarse–fine interface with level`− 1
are computed using this interpolation.

As in [25], if a coarse-grid cell used in the interpolation stencil is covered by a finer
grid, we then shift the stencil so that only uncovered coarse-grid cells are used in the
interpolation (Fig. 3). This is done for accuracy reasons—we want the flux to beO(h2) to
obtain a formally consistent method. The alternative is to use an averaging procedure which
is O(h3), a process which increases the complication of the algorithm and leads to larger
buffer regions between levels, reducing the efficiency of the method. If a suitable coarse-
grid quadratic stencil does not exist, we drop the order of interpolation and use whichever
coarse cells are available, with a corresponding local loss of accuracy.

The level-operator gradientG` is defined by extendingGcomp (which is only defined on
Ä
`,∗
valid) to all edges inÄ`,∗. Away from ∂Ä`,∗ we use the grid-interior stencil (6), while

on interfaces with a coarser level`− 1, we use the interpolation operatorI (φ`, φ`−1) to
compute ghost cell values to be used in (6).

The composite gradient on level`, Gcomp,`, is dependent on level̀ and coarse-level
(`− 1) data: Gcomp,`(φ`, φ`−1). Likewise, the level-operator gradient can be written
G`(φ`, φ`−1).

Laplacian

The Laplacian is defined as the divergence of the gradient:

Lcompφcomp= DcompGcompφcomp (8)

L`φ` = D`G`φ`. (9)

On the interiors of grids, (8) and (9) reduce to the normal five-point second-order discrete
Laplacian. On the fine side of a coarse–fine interface, the interpolation operatorI fills
ghost-cell values which are used in the five-point stencil. On the coarse side of a coarse–
fine interface, (8) becomes

Lcomp,`φ = L`φ` + D`
R(δGφ

`+1) (10)

δGφ`+1 = 〈G`+1φ〉 − G`φ`. (11)

On grid interiors,Lcomp has a truncation error ofO(h2) owing to cancellation of error
terms in the centered-difference stencil. At coarse–fine interfaces, this drops toO(h) owing
to division of theO(h3) interpolant byh2 and the loss of centered-difference cancellations.
However, if the discrete equationLcompφ = ρ is solved using these operators, the resulting
solutionφ is second-order accurate, because this loss of accuracy occurs on a set of codi-
mension one [22]. The dependencies of the Laplacian operators may again be expressed
explicitly: Lcomp,`(φ`, φ`+1, φ`−1) andL`(φ`, φ`−1).
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3. ADAPTIVE ALGORITHM DESCRIPTION

3.1. Formulation of the Problem

The simplest example of inviscid incompressible fluid flows is the incompressible
constant-density Euler equations

∂u
∂t
= −(u · ∇)u−∇ p, (12)

∇ · u = 0, (13)

u · n = 0 on∂Ä, (14)

whereu(x, t) is the fluid velocity vector(u, v)T , t is the time, andp(x, t) is the pressure.
The evolution equation for a passively transported scalars(x, t) in incompressible flow is

∂s

∂t
+∇ · (us) = 0. (15)

We transform the constrained dynamics problem of Eqs. (12) and (13) into an initial value
problem through the use of the Hodge–Helmholtz decomposition. An arbitrary vector field
w can be uniquely decomposed into two orthogonal components, one of which is divergence-
free, with the other being the gradient of a scalar:

w = wd +∇φ (16)

∇ · wd = 0 (17)

1φ = ∇ · w onÄ (18)

wd · n = 0,
∂φ

∂n
= w · n on ∂Ä (19)∫

Ä

wd · ∇φ dx = 0. (20)

This decomposition can be expressed in terms of an orthogonal projectionP: P(w) =
wd, computed by solving (18) for∇φ and subtracting to obtain the divergence-free part.
Formally,

P= I −∇(1)−1∇· (21)

Using the projection operator, we can transform the constrained system (12), (13) into a
pure evolution equation, with the constraint applied to the initial data:

∂u
∂t
= P(−u · ∇u) (22)

(∇ · u)(·, t = 0) = 0. (23)

Chorin [15] used this formulation as the starting point for a discretization of the incom-
pressible flow equations. Following [8], we use for our algorithm a predictor–corrector
formulation in which we first compute an intermediate velocity field and project it onto
the space of vectors which satisfy the divergence constraint. Updates to the scalars are
computed using a conservative update.
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On a uniform grid with grid spacingh, the velocityu(x, t) is approximated byui, j (t) ≈
u(ih, jh, t). The scalar fields(x, t) is likewise approximated assi, j (t) ≈ s(ih, jh, t). Then,

u(t +1t) = P(u(t)−1t (u · ∇u)H ) (24)

∇ pH = 1

1t
(I − P)(u(t)−1t (u · ∇u)H ) (25)

s(t +1t) = s(t)−1t∇ · (us)H , (26)

where the superscriptH indicates centering at the intermediate time(t + 1
21t). Following

[16], we compute(u · ∇u)H and(∇ · (us))H using a second-order upwind method. Details
of the advection scheme can be found in the Appendix. Equation (24) can also be expressed
in terms of the pressure gradient(∇ pH )i, j ≈ ∇ p(ih, jh, t + 1t

2 ), where∇ pH is computed
using (25):

u(t +1t) = u(t)−1t (u · ∇u)H −1t (∇ p)H . (27)

We extend the algorithm developed by Berger and Colella [10] for hyperbolic conser-
vation laws to the incompressible Euler equations. The algorithm in [10] refined in time
as well as space and maintained conservation at coarse–fine interfaces. This algorithm can
be extended to general first-order hyperbolic PDEs such as the momentum equation for in-
compressible flow. For context, we first outline the hyperbolic algorithm before describing
its extension to incompressible flow.

3.2. Hyperbolic Algorithm

In [10], hyperbolic conservation laws of the form

ut + f (u)x + g(u)y = 0 (28)

are solved using local refinement in both time and space.
The multilevel hyperbolic algorithm can be generalized for any number of levels by

defining it as a series of recursive single-level advances. The pseudocode in Fig. 4 advances
the level̀ discrete solutionU ` from timet` to t` +1t`. Because this function is recursive,
all finer levels (initially also att`) are also advanced to the new time. The entire solution
is advanced from timet0 to t0+1t0 by advancing the coarsest level, which advances the
composite solution through a series of recursive level advances.

In the initial update toU `, an explicit conservative finite-difference method is used.F =
(F,G)T is the numerical approximation to the flux functionf = ( f, g)T . Data needed for
the stencil of this method which lie outsideÄ` are interpolated in time and space using level
`− 1 data. The recursive finer-level advances are subcycled, with1t`/h` = 1t`+1/h`+1.
Discussions of the benefits of subcycling can be found in [3, 10, 11]. The time steps{1t`}
can only be changed at the end of the level 0 time step.

Once the fine level (̀+ 1) has been advanced to timet` +1t`, levels` and`+ 1 are
synchronized. Synchronization forces the update of the multilevel solution to be in discrete
conservation form by replacing the flux across∂Ä`+1,∗ into the valid level̀ cells with the
sum of the fine-level fluxes. Since these coarse cells have already been updated in the initial
update, this is achieved in the synchronization step by a reflux divergence of the difference
between the coarse flux and the sum of the fine-level fluxes. Also, the solutionU `(t` +1t`)
on invalid regions of level̀ is replaced with the averaged finer solution〈U `+1(t` +1t`)〉.
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LevelAdvance(̀, t`,1t`)

Initial update ofU `:

U `(t` +1t`)i, j = U `(t`)i, j −1t`D`(F`)

Initialize/update flux registers:

if (` < `max) δF`+1 = −F` · n`+1
CF onCn`ref

(∂Ä`+1,∗)

if (` > 0) δF` := δF` + 1
n`−1

ref

〈
F` · n`CF

〉
onCn`−1

ref
(∂Ä`,∗)

Recursive calls to LevelAdvance for next finer level:
if (` < `max) then

for n = 0, n`ref− 1

1t`+1 = 1
n`ref
1t`

t`+1 = t` + n1t`+1

LevelAdvance(̀ + 1, t`+1,1t`+1)

end for
Synchronize level̀ with level`+ 1:

U `(t` +1t`) = 〈U `+1(t` +1t`)〉 on Cn`ref
(Ä`+1).

U `(t` +1t`) := U `(t` +1t`)−1t D`
R(δF

`+1)

end if

endLevelAdvance

FIG. 4. Pseudocode for recursive timestep used for hyperbolic conservation laws.

3.3. Extension to the Incompressible Euler Equations

In the incompressible algorithm, we maintain the essential structure of the hyperbolic
algorithm. Once again, the algorithm is structured as a series of recursive updates on a level.
The basic steps when updating level` are:

1. Perform single-level update on level`, including application of a level̀ projection to
the velocities to ensure that they are approximately divergence-free (π` is the approximation
to the pressure computed using the level projection),

2. Initialize/update flux registers with coarse–fine interface information.
3. Make recursive calls to update finer levelsnref times with1t`+1 = 1t`/n`ref.
4. Synchronize composite multilevel solution.

The single-level update is based on the single-grid projection algorithm outlined in the
Appendix. In addition to conservation, additional issues are raised by solving the equations
of incompressible flow on a multilevel hierarchy of grids.

To illustrate these issues, consider a straightforward extension of the hyperbolic algorithm
to a projection method for incompressible flow, illustrated in pseudocode form in Fig. 5.
(Hereuhalf andshalf are staggered-grid approximations tou ands at the intermediate time
(t` + 1

21t`), computed as described in the Appendix.) In this algorithm, the velocity field
is updated using a projection based on cell-centered level operators, described below. Even
though the momentum equation is not in conservative form, a refluxing correction is applied
at the coarse–fine interface, as was done in [3]. This results in a consistent and stable set of
boundary conditions for the velocity advection operator.
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EulerAdvance(̀, t`,1t`)

Initial update ofs`, u`:

s`(t` +1t`) = s`(t`)−1t`D`(uhalf,`shalf,`)

u`(t` +1t`) = P`(u`(t`)−1t`(uhalf,` · ∇uhalf,`))

π`(t` + 1
21t`) = (I − P`

)
(u`(t`)−1t`(uhalf,` · ∇uhalf,`))

Initialize/update flux registers:

if (` < `max)

δs`+1 = −shalf,`uhalf,` · n`+1
CF

δV`+1 = −uhalf,`uhalf,` · n`+1
CF

if (` > 0)

δs` := δs` + 〈shalf,`uhalf,`〉 · n`CF

δV` := δV` + 〈uhalf,`uhalf,`〉 · n`CF

Recursive calls for finer level:

if (` < `max) then

for n = 0, n`ref− 1

1t`+1 = 1
n`ref
1t`

t`+1 = t` + n1t`+1

EulerAdvance(̀+ 1, t`+1,1t`+1)

end for

Synchronization:

s`(t` +1t`) := s`(t` +1t`)−1t`D`
R(δs

`+1)

u`(t` +1t`) := u`(t` +1t`)−1t`D`
R(δV

`+1)

end if

endEulerAdvance

FIG. 5. Straightforward extension of hyperbolic algorithm to incompressible flow.

This algorithm suffers from two deficiencies, both of which were identified in [3].

1. While the level projectionP` ensures that the velocity field satisfiesD`u` = 0, there
is nothing to guarantee that(u`,valid− 〈u`+1,valid〉) · n`+1

CF = 0 to the appropriate order of
accuracy along the coarse–fine interface∂Ä`+1,∗. This is equivalent to the elliptic match-
ing condition described in [25, 26]. To maintain accuracy, solutions to elliptic equations
must satisfy both Dirichletand Neumann matching conditions across coarse–fine inter-
faces. The pressure field computed in this algorithm only satisfies a Dirichlet matching
condition across coarse–fine interfaces. Also, we increment the coarse-level velocity field
in the velocity-refluxing step, but we do not guarantee that this increment is divergence-
free.

2. Refluxing is not freestream preserving: initially constant scalar fields may not remain
constant at coarse–fine interfaces. Consider a scalar field which has a constant values0.
In this case, the level̀ fluxes are equal, and the single-level update produces the correct
updated values0. For freestream preservation, the flux correction in the synchronization
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step should be zero. For scalar advection we have

δs`+1 = (〈Fs,`+1〉 − Fs,`) · n`+1
CF

= (〈uhalf,`+1s`+1〉 − uhalf,`s`) · n`+1
CF

= (〈uhalf,`+1〉 − uhalf,`)s0 · n`+1
CF . (29)

To preserve the uniform solution, the level` and averaged (`+ 1) advection velocities
uhalf would have to be equal along the coarse–fine interface. However,uhalf,` anduhalf,`+1

are computed independently on each level, with nonlocal dependence on the data via a
solution to an elliptic pressure equation, so there is no reason to expect this to be the
case. As a result, errors in advection occur at coarse–fine interfaces; these errors are then
advected through the flow. The essential problem is that incompressibility of the advection
velocities is enforced using single-level operators rather than composite operators, so the
advection velocities are not divergence-free across coarse–fine interfaces. While it would be
possible to implement a composite multilevel projection for the advection velocities at all
subcycled time steps (as done by Hornung and Trangenstein [20] in the context of porous
media flow), this would substantially increase the computational expense of the method and
would reduce the benefits of refinement in time.

In the following, we discuss the cell-centered discretization and its extension to multi-
ple levels used to impose an appropriate form of the divergence constraint on multilevel
velocity data. We also describe the volume discrepancy method used to maintain freestream
preservation, at least approximately.

3.4. Composite Projection

The multilevel divergence, gradient, and Laplacian operators defined in Section 2 corre-
spond to an idempotent projection based on a staggered-grid velocity field, similar to those
used in the composite staggered-grid projection in [28]. However, velocity and pressure in
this work are cell-centered; so a cell-centered projection discretization is required.

In earlier versions of the projection method [8, 9, 15],P= I − G(DG)−1D, whereD
andG are difference approximations to the divergence and gradient, withD = −GT . This
discretization of the projection is idempotent (P2 = P); however, decoupling of the stencils
causes badly behaved linear algebra, which greatly increases the difficulty of implementing
local refinement [21]. It was first proposed in [2] to deal with this problem by the intro-
duction of a stable but nonidempotent discretization of the projection with well-behaved
numerical linear algebra. The starting point for the discretization ofP used in this work is
the approximate projection developed by Lai [24], which uses only cell-centered solvers:

P= I − GCC(L−1)DCC. (30)

HereDCC andGCC are cell-centered centered-difference approximations to the divergence
and gradient operators, andL is the standard five-point discrete Laplacian operator.

The cell-centered divergence and gradient operators are constructed from staggered-grid
operators through the use of appropriate cell-to-edge and edge-to-cell averaging. Ifuedgeis
a staggered-grid vector field, defined onÄ`,∗, thenAvE→C(uedge) is

(AvE→Cuedge)i, j =
(

uedge
i+1/2, j + uedge

i−1/2, j

2
,
v

edge
i, j+1/2+ vedge

i, j−1/2

2

)T

. (31)
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If u is a cell-centered vector field defined onÄ`, then

(AvC→Eu)i+1/2, j = ui+1, j + ui, j

2
onÄ`,∗ − ∂Ä`,∗

(32)

(AvC→Ev)i, j+1/2 = vi, j+1+ vi, j

2
.

On∂Ä`,∗, (AvC→Eu) is obtained by second-order extrapolation, including solid wall phys-
ical boundaries, but not including periodic boundaries—the latter are computed using the
interior formulas (32) and ghost cells.

We can use these operators to define cell-centered divergence and gradient operators on
Ä`:

DCC,`uCC = D`AvC→EuCC,`, (33)

GCC,`φ` = AvE→CG`φ`. (34)

The composite operatorsDCC,comp andGCC,comp are defined similarly:

DCC,comp= DcompAvC→EuCC,comp, (35)

GCC,compφcomp= AvE→CGcompφcomp. (36)

Typically, the gradient field being computed in the projection is discontinuous at coarse–
fine interfaces, since it is correcting the mismatch in the normal component of the velocity
across the interface. For the correction field shown in Fig. 6, computing staggered-grid gra-
dients usingGcomp and then averaging to produce a cell-centered gradient washes out the
structure of the gradient field near the interface because the positive and negative gradients
cancel. For this reason, the derivative normal to the interface is computed using one-sided
differencing from the coarse side of the coarse–fine interface; this one-sided gradient is used

FIG. 6. Typical synchronization correction,φ. Fine grid is to the left of the coarse–fine interface.
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for the coarse cell immediately adjacent to the coarse–fine interface, which is sufficient to
preserve the structure of the correction. The composite cell-centered gradient can be written
asGCC,comp,`(φ`, φ`−1), while the level-operator cell-centered gradient can be expressed
GCC,`(φ`, φ`−1). Likewise, the composite and level-operator cell-centered divergence op-
erators can be writtenDCC,comp,`(uCC,`, uCC,`+1) andDCC,comp,`(uCC,`), respectively.

Discretization of the Composite Projection

Our composite projection is based on the composite cell-centered operatorsGCC,comp,
DCC,comp, andLcomp. Since the composite Laplacian is already a cell-centered operator, it
is used without modification. Similar operators were used in the nonsubcycled algorithm
in [27, 28]. This projection is applied to a multilevel velocity field for all levels finer than
and including̀ base:

Pcomp= (I − GCC,comp(Lcomp)−1DCC,comp) on
⋃

`≥`base

Ä`valid. (37)

We first solve for a correction fieldφ,

Lcompφcomp= DCC,compu for ` ≥ `base
(38)

φ`base= I (φ`base, φ`base−1),

with appropriate physical boundary conditions; we then apply the correction

u := u− GCC,compφcomp for ` ≥ `base
(39)

φ`base= I (φ`base, φ`base−1).

Note that coarse–fine boundary conditions have been given for the case where`base> 0.
The discrete composite projection operator we use is

Pcomp= I − AvE→CGcomp(Lcomp)−1DcompAvC→E. (40)

For a uniform single grid with periodic boundary conditions, Lai [24] demonstrated
using Fourier analysis that this projection discretization is stable, in that‖P‖ ≤ 1, and that
repeated application of the projection drives the divergence to zero,

DCC(PNu)→ 0,

asN →∞, wherePN(u) represents the repeated application of the projectionN times to the
velocity fieldu. To demonstrate the effectiveness and stability of this composite projection,
we repeatedly applied the composite projection to a sample problem and evaluated the
results. This was performed on a three-vortex test case. Each vortex has the initial condition

uθ (r ) =
{
0
(

8
3R5 r 4− 5

R4 r 3+ 10
3R2 r

)
if r < R,

0
(

1
r

)
if r ≥ R,

(41)

whereuθ is the azimuthal velocity component around the vortex center,r is the radial
distance from the vortex center(x0, y0), R is the radius of the vortex patch, and0 is
the vortex strength. For this problem, there are three vortices with equal strength and
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FIG. 7. (a) Max(divergence) and (b) max(Gcomp(e)) vs number of repeated projection applications.

radius0 = 0.50 andR= 0.75 which are centered at (0.68, 0.5), (0.455, 0.65588457), and
(0.455, 0.34411543).

Figure 7a shows|Dcompu|∞ vs N. The composite divergence does go to zero as the pro-
jection is applied repeatedly. Adding more levels of refinement affects the rate at which the
divergence decreases, but does not appear to affect the general behavior. (While the maxi-
mum divergence may seem high, it is not unreasonably so—Max(D(u)) is an expression of
the local truncation error and will tend to exaggerate isolated values along the coarse–fine
interface, which will have only a minor effect on the solution accuracy.) A better indicator
is the amount that each application of the projection changes the solution; (Pn − Pn+1) is
equal to(I − P)Pn, which isGCC,compen. We expect each successive projection to have a
smaller effect on the solution, as the velocity field converges toward one which is discretely
divergence-free. Figure 7b shows|GCC,comp(e)|∞, the maximum that the solution is changed
in a given application of the projection (note that the maximum velocity for this problem is
about 10). This value decreases monotonically as the projection is repeatedly applied. The
magnitude of the correction is much larger in the first application of the projection because
the physical boundary condition (solid walls, in this case) is being enforced; the velocity
field is initialized as if it were in infinite space and then the initial projection enforces the
no-flow boundary conditions. After a few iterations,|GCC,comp(e)|∞ has decreased by three
orders of magnitude, as the error in the velocity field decreases.

3.5. Freestream Preservation

The starting point for our approach to freestream preservation is the introduction of an
auxiliary advected scalar field3 whose purpose is to provide a time-integrated measure of
the extent to which freestream preservation has been violated:

∂3

∂t
+∇ · (u3) = 0, (42)

3(x, t = 0) = 1. (43)

Since3 should remain one everywhere,3 6= 1 is an indicator of freestream preservation
errors. We use3 to compute a correction velocity fieldup, which is added to future advection
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velocities and works to drive3 back to one. Conserved scalarss satisfying (15) (including
3) are then evolved using the equation

s`(t` +1t`) = s`(t`)−1t D`(uADs`), (44)

uAD = uhalf,`+ u`p. (45)

The fieldup is a potential flow field computed by solving an elliptic equation,

up = Ge3 (46)

Le3 = ζ(3− 1), ζ > 0. (47)

Like the projection operator, the physical boundary conditions fore3 are∂e3/∂n = up · n.
The fieldup is computed during the synchronization step for all levels` ≥ `base. Since3
is updated using a conservative scheme, (47) is solvable.

If 3>< 1, then∇ · up>
< 0. This leads to the evolution equation for3

3`(t +1t`) = 3` −1t`D`(uAD3) (48)

= 3`(t)−1t`(uAD · G3)cen−1t`3̄`D`up, (49)

where3̄` and(uAD · G3)cenare obtained by using a discrete Leibniz rule. So, the qualitative
behavior of this correction is to drive3 back to one.

For dimensional consistency,ζ must have units of 1/T . Since (47) is solved during a
synchronization operation, we use 1/1tsync. We also include a scaling factor,η, to adjust
the strength of the correction. The equation we solve is

Lcompe3 = 3− 1

1tsync
η for ` ≥ `base

(50)
e`base
3 = I

(
e`base
3 , e`base−1

3

)
,

up = Gcompe3. (51)

The parameterη in this formulation is the number of̀basetime steps it will take for3 to be
returned to one. We have found thatση < 1/2 is a sufficient condition for stability, whereσ
is the CFL number (U1t/1x). For the problems examined in this work, we have generally
usedσ = 0.5 andη = 0.9.

To demonstrate the behavior of the freestream preservation correction, we computed
solutions from an initial condition which is a pair of counterrotating vortices. Each vortex
has an initial condition described by (41). For this problem, there are two counterrotating
vortices, one with0 = 0.35, R= 0.15, and centered at(x0, y0) = (0.3, 0.65), and the
second with0 = −0.35, R= 0.15, and(x0, y0) = (0.3, 0.35). The domain is the unit
square, with solid-wall boundary conditions. The result of this initial condition is that the
vortex pair translates to the right. For this problem, we use a 32× 32 base grid with one level
of refinement withnref = 4. Grids are placed dynamically and follow the vortices; regridding
is done every two coarse-grid time steps. Figure 8 shows the vorticity distribution at time
t = 0.36.

Figure 9 shows the distribution of the3 field after 2 and 100 time steps if no correction is
applied, while Fig. 10 shows3 when the freestream preservation correction is applied. To
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FIG. 8. Two-vortex solution (a) at initial time and (b) after 100 time steps.

isolate the effect of the freestream preservation correction, the synchronization projection
is applied in both cases. Note that the scales are different for the two figures.

Recall that(3− 1) is the error in3 caused by failures of freestream preservation.
Without the correction (Fig. 9), freestream preservation errors are generated at coarse–fine
interfaces as the solution evolves. Furthermore, as the grids move with the vortices, each new
coarse–fine interface results in the creation of a new set of errors, which is left behind once
the refined grids have moved. These errors are then advected throughout the flow, quickly
becoming nonlocal. In contrast, even with moving grids, Figure 10 shows that the correction
tends to confine errors to the cells immediately adjacent to the coarse–fine interfaces and
limits them to approximately the error generated in one time step. Since the correction is a
lagged one, this is what is expected. Although this one-cell-wide error is left behind when
the coarse–fine interface moves, it is quickly removed by the action of the correction.

To further examine the advection errors for this case, we ran a series of cases with
32× 32, 64× 64, and 128× 128 base grids, each with one level of refinement. To judge
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FIG. 9. 3 (without volume-discrepancy correction) after (a) 2 and (b) 100 time steps.
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FIG. 10. 3 (with volume-discrepancy correction) after (a) 2 and (b) 100 time steps.
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FIG. 11. Max(3− 1) vs time for the traveling vortex pair case: (a) without freestream preservation correction
and (b) with correction. Once again, note that (a) and (b) have different scales.

the effects of refinement ratio on the advection errors, each case was run with bothnref = 2
andnref = 4. |3− 1|∞ is plotted vs time for these cases in Fig. 11. Without the correction
(Figure 11a), the advection errors are to first approximation a function of the coarse-grid
spacing; the effect of the refinement ratio is only secondary. Also, without the freestream
preservation correction, the errors converge at roughlyO(hc), wherehc is the coarse-grid
spacing.

Comparison of the scales of Figs. 11a and 11b demonstrates that the volume discrepancy
correction drastically reduces the maximum error. Because of regridding, the max(3) field
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in the corrected case is much more oscillatory than the uncorrected case; as the grids
move, the correction field must adjust to the new grid configuration. Since we observe
that the correction restricts the error to something less than the error made in one time
step, and we expect this error to be no worse thanO(hc)1tc, where1tc is the coarse-
grid time step (which isO(hc)), this restores second-order accuracy to this aspect of the
method.

We have also found that the freestream preservation correction does not corrupt scalar
fields which are nonconstant in the vicinity of coarse–fine interfaces. To demonstrate this,
we take the case of a single vortex in a unit square domain with solid walls, Eq. (41) with
0 = 1.0, R= 0.3, and(x0, y0) = (0.5, 0.5). We initialize an advected scalars to have a
Gaussian distribution:

s(x, y, 0) = e−r 2
blob/R,

(52)
r 2

blob = (x − 0.35)2+ (y− 0.35)2.

For this test case, we refined the lower-left quadrant of the grid and computed the solution to
time t = 6.4. As in the previous case, a 1024× 1024 uniform-grid solution was used as the
“exact” solution. Errors ins both with and without the freestream preservation correction
are tabulated in Table I.

If a scalar fields is non-constant, the errors in freestream preservation are small in
comparison to the variations in the solution, so the effect due to the freestream preservation
correction is small; the freestream preservation violations which are so apparent in3 are
not significant fors, since they are overwhelmed by variations in the solution. While the
freestream preservation correction does not improve the accuracy of advected scalars in this
case, neither does it corrupt the solution. In contrast, a constant scalar near a coarse–fine
interface mirrors the behavior of3; the use of the freestream preservation correction in
this case drastically reduces the solution errors and increases the convergence rates, which

TABLE I

L2 and L∞ Norms of Errors in Advected Scalars for the Single-Vortex

Test Problem at Time 6.4

Base Grid Sizeh

1/32 1/64 1/128 1/256

L2: Uniform Grid 1.248e-2 4.247e-3 1.606e-3 5.458e-4
nref = 2: with correction 1.133e-2 3.800e-3 1.389e-3 —

without correction 1.122e-2 3.781e-3 1.386e-3 —
nref = 4: with correction 1.119e-2 3.730e-3 — —

without correction 1.104e-2 3.705e-3 — —

L∞: Uniform Grid 1.143e-1 4.965e-2 2.391e-2 9.432e-3
nref = 2: with correction 9.888e-2 4.178e-2 2.057e-2 —

without correction 9.720e-2 4.181e-2 2.059e-2 —
nref = 4: with correction 9.712e-2 4.046e-2 — —

without correction 9.505e-2 4.050e-2 — —
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FIG. 18. Error in freestream preservation indicator3 at timet = 0.75: (a) without freestream preservation
correction; (b) with correction. Note the different scales in the figures. Base grid size is 64× 64, with one level of
refinement,nref = 4.

demonstrates the importance of the freestream preservation correction when solutions are
constant-valued at coarse–fine interfaces.

3.6. Multilevel Algorithm

In this section, we describe the complete recursive algorithm used to advance the level
` solution from timet` to time t` +1t`. Implicit in this recursive algorithm is the subcy-
cled advance of all finer levels to timet` +1t`, including all necessary synchronization
operations. A pseudocode description appears in Fig. 12.
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EulerLevelAdvance(̀, t`,1t`)

Compute advection velocitiesuAD,`

Compute advective fluxesFs,`,F3,`

Compute advective updates:

s`i, j (t
` +1t`) = s`i, j (t

`)−1t`D`(Fs,`)i, j

3`
i, j (t

` +1t`) = 3`
i, j (t

`)−1t`D`(F3,`)i, j

Predictuhalf

u∗,`i, j = u`i, j (t
`)−1t [(u · ∇)u]n+1/2

i, j

Update advective and velocity flux registers:

if (` < `max) then

δs`+1 = −Fs,` · n`+1
CF onCn`ref

(∂Ä`+1,∗)

δ3`+1 = −F3,` · n`+1
CF onCn`ref

(∂Ä`+1,∗)

δV`+1 = −(uAD,` · n`+1
CF

)
uhalf,` onCn`ref

(∂Ä`+1,∗)

end if
if (` > 0) then

δs` = δs` + 1
n`−1

ref

〈
Fs,` · n`CF

〉
onCn`−1

ref
(∂Ä`,∗)

δ3` = δ3` + 1
n`−1

ref

〈
F3,` · n`CF

〉
onCn`−1

ref
(∂Ä`,∗)

δV` = δV` + 1
n`−1

ref

〈(
uAD,` · n`CF

)
uhalf,`

〉
onCn`−1

ref
(∂Ä`,∗)

end if
Projectu∗,`→ u`(t` +1t`) :

SolveL`π` = 1
1t` DCC,`u∗,`

u`(t` +1t`) = u∗,` −1t`GCC,`π`

if (` < `max)

1t`+1 = 1
n`ref
1t`

for n = 0, n`ref− 1

EulerLevelAdvance(̀+ 1, t` + n1t`+1,1t`+1)

end for
if ((t` +1t`) < (t`−1+1t`−1)) Synchronize(̀ , t` +1t`, t`)

end if

endEulerLevelAdvance

FIG. 12. Recursive level time step for the incompressible Euler equations.

Variables

We start the level̀ advance with the solution at timet`, which includes the velocity
field u`(x, t`) = (u`, v`)T , an advected scalars`(x, t`), the freestream preservation scalar
3`(x, t`), and the staggered-grid freestream preservation correctionup from the most recent
synchronization step, which has been extended to the invalid regions on level`with 〈u`+1

p 〉.
We also need flux registers to contain coarse–fine matching information. The flux register

δV` contains the normal and tangential (to the coarse–fine interface) momentum fluxes
across the coarse–fine interface between level` and the coarser level`− 1. The registers
δs` andδ3` contain the fluxes of the advected scalarss and3.
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Level Advance

The basic update on a level is structured in a way similar to that of the single-grid
algorithm described in the Appendix. Because most of the algorithm is the same, only the
differences due to the adaptive algorithm are highlighted here.

1. Compute advection velocities.First, a set of staggered-grid advection velocities
uAD,` is computed. Before the tracing and upwinding steps described in Appendix A.1
are performed, we fill a ring of ghost cells around each grid which is wide enough to com-
plete the tracing stencil for all interior cells with appropriate solution values foru(t`). If a
level` ghost cell lies in the interior of another level` grid, solution values are copied from
the other grid. If the ghost cell lies over a coarser grid’s valid region, the coarse-grid solution
u`−1 is interpolated in time and space, using conservative linear interpolation. Once ghost
cells have been filled, computation of the staggered-griduhalf,` can be carried out as detailed
in the Appendix.

Then,uhalf,` is projected using a staggered-grid projection to ensure that the advection
velocities are divergence-free:

L`φ` = D`uhalf,`

(53)

φ` = I

(
φ`,

1t`

2
π`−1

)
.

The coarse–fine boundary condition onφ is designed to ensure matching betweenφ` and
the coarse-level pressure field. Then, the velocity field is corrected:

uhalf,` = uhalf,` − G`φ`

(54)

φ` = I

(
φ`,

1t`

2
π`−1

)
.

Finally, up from the most recent synchronization is added:

uAD,` = uhalf,` + up. (55)

2. Update scalars. Once advection velocitiesuAD,` have been computed, the scalars
s` and3` can be updated. As in the previous step, a ring of ghost cells around each grid
is filled by either copying values from other level` grids or by performing a conservative
linear interpolation in time and space of coarse-level data. Then, the advective fluxesFs,`

andF3,`, as well as the updated scalarss(t` +1t`) and3`(t` +1t`), can be computed
on a grid-by-grid basis using the conservative scalar advection algorithm detailed in the
Appendix. The update equation used is

{s,3}`(t` +1t`) = {s,3}`(t`)−1t`D`(uAD{s,3}half,`). (56)

3. Predictuhalf andu∗,`. Using the advection velocitiesuAD,`, the transverse compo-
nents of the staggered-grid velocity fielduhalf,` are computed as in Section A.3, using the
same coarse–fine boundary conditions with the level`− 1 solution as in the original tracing
step. The intermediate velocity fieldu∗,` is then computed,

u∗,` = u`(t`)−1t`[ AvE→C(uAD,`) · (G`uhalf,`)], (57)
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using the same discretization as Eq. (A.22) in the Appendix. Note the distinction in (57)
betweenuAD, theadvectingvelocity, anduhalf, theadvectedvelocity.

4. Initialize/update momentum and advective flux registers.Once the updates have been
completed, the appropriate flux registers are updated to contain the mismatches between
coarse and fine advective and momentum fluxes, as shown in Fig. 12.

5. Projectu∗,`→ u`(t` +1t`). To complete the single-level portion of the level up-
date, the intermediate velocity fieldu∗,` is projected using a level projection. First,
solve

L`π` = 1

1t
DCC,`u∗,`

(58)
π` = I (π`, π`−1),

whereπ`−1 in the coarse–fine boundary condition is the most recentπ`−1, which is treated
as piecewise constant in time throughout the subcycled level` time steps. The correction
is then applied to the velocity field:

u`(t` +1t`) = u∗,` −1tG`π`

(59)
π` = I (π`, π`−1).

6. Recursively update finer levels.If a finer level`+ 1 exists, it is then updatedn`ref

times with a time step of1t`+1 = (1/n`ref)1t`. This brings all levels finer than level` to
time t` +1t`.

7. Synchronize. If a finer level`+ 1 exists, we now synchronize level` with all finer
levels. We denote the time at which this synchronization takes place astsync= t` +1t`. The
coarsest level which has reachedtsync is denoted as̀base; all levels finer than and including
`baseare synchronized at once. In practice, we check to see if the current level has reached
the new time of the coarser level,(t`−1+1t`−1). If so, we drop down to the coarser level.
We also denote1t`base as1tsync, the time interval over which the synchronization is taking
place. A pseudocode description of the synchronization step appears in Fig. 13. First, the
finer level solutions are averaged down to underlying coarse grids and a refluxing operation
is performed to correct coarse-level fluxes. Then, a multilevel sychronization projection
is applied, which solves for the synchronization correctionesync. The appropriate physi-
cal boundary conditions foresync are the homogeneous form of the boundary conditions
applied to the level pressureπ in the level projection. For solid walls, this is a homoge-
neous Neumann boundary condition. Finally, the freestream preservation correctionup is
computed.

3.7. Initialization

After a new grid configuration is defined, either at the initial time or after a regridding
operation, the solution must be initialized, as described in pseudocode form in Fig. 14.
Before the initial time step, the velocity field must be projected to ensure that it satisfies
the composite divergence constraint, so the composite projection defined in Section 3.4 is
applied to the entire composite velocity field.

After a new grid configuration is defined for a level` during a regridding operation,
solution values foru`, s`, and3` are either copied from the old level` grids where
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Synchronize(̀base, tsync,1tsync)

Average finer solution onto coarser levels:

for ` = `max− 1, `base,−1

u`(tsync) = 〈u`+1(tsync)〉 onCn`ref
(Ä`+1)

s`(tsync) = 〈s`+1(tsync)〉 onCn`ref
(Ä`+1)

3`(tsync) = 〈3`+1(tsync)〉 onCn`ref
(Ä`+1)

end for

Reflux for conservation:

for ` = `max− 1, `base,−1

u`(tsync) := u`(tsync)−1t`D`
R(δV

`+1)

s`(tsync) := s`(tsync)−1t`D`
R(δs

`+1)

3`(tsync) := 3`(tsync)−1t`D`
R(δ3

`+1)

end for

Apply Synchronization Projection:

SolveLcompes = 1
1tsync DCC,compu(tsync) for ` ≥ `base

e`base
s = I

(
e`base

s , e`base−1
s

)
u(tsync) := u(tsync)−1tsyncGCC,compes for ` ≥ `base

Freestream Preservation Solve:

SolveLcompe3 = (3(tsync)−1)
1tsync η for ` ≥ `base

e`base
3 = I

(
e`base
3 , e`base−1

3

)
up = Gcompe3

endSynchronize

FIG. 13. Synchronization for incompressible Euler equations.

EulerInit(̀ base, t init )

Project initial data

SolveLcompe= DCC,compu for ` ≥ `base

e`base= I (e`base, 0)

u := u− GCC,compe

Compute initialup:

SolveLcompe3 = (3−1)
1t`base

η for ` ≥ `base

e`base
3 = I

(
e`base
3 , e`base−1

3

)
up = Gcompe3

endEulerInit

FIG. 14. Initialization algorithm for the incompressible Euler equations.
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available or interpolated from the finest level available using conservative interpolation
in time and space. This new velocity is then projected using a composite projection, with a
coarse–fine boundary condition for`baseof e`base= I (e`base, 0). For initialization purposes,
`baseis defined as the finestunchangedlevel in the grid hierarchy.

Also, after a regridding operation, there are existing freestream preservation errors which
must be corrected in future time steps. The advection correctionup is computed using the
current3 field to correct for these errors.

3.8. Comparison with Earlier Work

There have been a number of earlier works which apply block-structured AMR to in-
compressible flow. Thompson and Ferziger [34] constructed an algorithm for steady flow.
The algorithms of Howell and Bell [21] and Minion [27, 28] are also based on cell-centered
discretizations of the projection, but they do not refine in time.

The main earlier work relevant to this paper is that of Almgrenet al. [3], which is also
second order in space and time, refines in time as well as space, and is freestream-preserving.
The discretization of the projection employed in [3] is based on that of Almgrenet al. [2],
which uses a discrete Galerkin formulation. This discretization has the advantage of proven
stability (‖P‖ ≤ 1) and accuracy. However, it is node-centered: pressures are centered at
the corners of cells. Since a set of cell-centered solvers must be used to compute advection
velocities and for viscous solves, this means that two sets of solvers must be developed
and maintained, which can substantially increase the effort involved in extension to new
problems and more complicated geometries. One of the ultimate goals of this work is to
combine the AMR algorithms for incompressible flow with the Cartesian grid embedded
boundary methods for representing complex boundary geometries [4, 5, 22, 29]. In this
approach, conservative cell-centered discretizations can all be implemented using a common
software framework [17]. The introduction of node-centered discretizations and solvers
required for the approximate projection in [2, 3] would considerably enlarge and complicate
the software support required.

Also, note that in this algorithm the projection is applied to an approximation of the up-
dated velocity field at the new time (u∗). Other implementations of the projection, including
those in [3, 27], project the right-hand-side of the velocity update; for example,

un+1− un

1t
= P

(−(u · ∇u)n+1/2−∇ pn−1/2
)

(60)

∇ pn+1/2 = ∇ pn−1/2+ (I − P)
(
(u · ∇u)n+1/2+∇ pn−1/2

)
. (61)

While the two discretizations are equivalent for a projection which is idempotent, for ap-
proximate projections (in whichL 6= DG and soP 6= P2), these temporal discretizations
are no longer equivalent. We were unable to construct a stable multilevel projection algo-
rithm for (60) and (61) using a cell-centered approximate projection; however, our algorithm
appears to be well behaved. This is consistent with the findings of Rider [32] and Almgren
et al. [7] who have observed that projecting an approximation to the velocity field is more
robust than projecting the update to the velocity field. However, the non-subcycled algorithm
in [27] successfully used the formulation in (24)–(25) with a cell-centered spatial discretiza-
tion similar to the one used in this work, which tends to indicate that our difficulties in this
case are due to refinement in time.
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In [3], freestream preservation is maintained exactly by computing a correction to the
advection velocity field, performing a correction advection step, and then interpolating the
corrections to finer levels. This method has been used successfully in a variety of appli-
cations. However, it introduces an interpolated coarse-grid approximation of the advection
operator at all the finer levels, which could conceivably lead to an unacceptable loss of ac-
curacy. In the present approach, we avoid such errors by the use of the volume discrepancy
approach, at the cost of satisfying the freestream condition only approximately.

The algorithm in this work also differs from both the hyperbolic algorithm in [10] and
the incompressible flow algorithm in [3] in the structure of the synchronization. In places
where the synchronization operations require the solution of elliptic equations, we solve
at once for all levels which have reached the same time (tsync) rather than solving a series
of two-level pairs. As a result, the composite projection and freestream correction solves
are multilevel solutions for all levels finer than and including the coarsest level which has
reachedtsync. There is some evidence [26] that a multilevel elliptic solve is more accurate
than solving a series of coarse–fine pairs.

3.9. Solvers

The algorithm used in this work uses two elliptic solvers. The first is a single-level solver,
which solves an elliptic equation using single-level operators (D`,G`, L`, etc.) on the union
of rectangular grids which comprise an AMR level. If the level does not cover the entire
domain, boundary conditions are taken from the next coarser level using the coarse–fine
interpolation operatorI . We use a straightforward multigrid approach with Gauss–Siedel
with red–black ordering to relax on each multigrid level. For a general union of grids,
there will be a point beyond which the grids cannot be coarsened without changing the
shape of the grids; at that point, we cease coarsening and use a conjugate gradient solver
as a bottom solver. Multilevel solutions of elliptic equations are found using the AMR-
multigrid algorithm described in [6, 34] and also used in [13, 25, 26, 31]. For a typical
two-level problem, withnref = 2 or 4, it takes our multilevel solver eight V-cycles to reduce
the composite residual by 10 orders of magnitude.

4. RESULTS

We will demonstrate that this method is second-order accurate, that local refinement is
effective at increasing the accuracy of the solution, and that the freestream-preservation
correction is effective in more complicated situations. Also, we will demonstrate that this
algorithm can result in significant savings in computational costs through the use of local
refinement.

We use two test problems. First, we use the three-vortex problem described in Section 3.4,
which is a good demonstration of the effectiveness of local refinement, since the area of
interest (the vortices) is a small part of the entire domain.

We also use the doubly periodic shear layer in a unit square domain from [8], with the
initial conditions

u(x, y, t = 0) =
{

tanh
(
ρs
(
y− 1

4

))
if y ≤ 1

2,

tanh
(
ρs
(

3
4 − y

))
if y > 1

2 (62)

v(x, y, t = 0) = δs sin(2πx),
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FIG. 15. Evolution of doubly periodic shear layer. Vorticity at times (a)t = 0 and (b)t = 0.75. The base
grid is 64× 64, and the refined grids represent a factor of 4 refinement. All contour plots use the same scale:
Max(ω) = 40.20, Min(ω) = −40.20.

withρs = 42.0 andδs = 0.05. As this solution evolves, the shear layers roll up into two large
vortices. Figure 15 shows the evolution of the vorticity and the adaptive nature of the refine-
ment for a 64× 64 base grid with a single level of refinement withnref = 4. This problem is
not well suited for adaptivity, since a large portion of the domain must be refined; however,
we believe it to be a more stringent test of the accuracy of the algorithm than the three-vortex
problem, owing to the larger and more complicated coarse–fine interfaces generated.

These runs were done with fixed time steps so that the results could be directly com-
pared, with a CFL number of 0.5. Since no analytic solution exists for these problems,
uniform-grid 1024× 1024 solutions were computed and used as the “exact” solution. For
the AMR cases, grids were placed dynamically, based on vorticity. Cells with a vorticity
higher thanε|ω|∞ were tagged for refinement, withε = 0.25 for the problems examined
here. Refined grids were then generated from the tagged cells using the clustering algorithm
of Berger and Rigoutsos [12]. Regridding intervals varied to ensure that regridding was done
at the same times in all cases. For example, the 32× 32 base-grid cases used a regridding
interval of three level 0 time steps, the 64× 64 base-grid cases used a regridding interval of
six time steps, and so on. To judge the effects of adaptivity, a series of adaptive calculations
were run with one level of refinement withn0

ref equal to 2 and 4. For comparison, a series
of uniform grid computations was also carried out.

4.1. Accuracy and Convergence

If the adaptive algorithm is effective, we expect that the accuracy of the adaptive com-
putations should approach that of the uniform-grid computation of equivalent resolution;
we expect that a computation with a 64× 64 base grid and one level ofnref = 4 refinement
should attain the same accuracy as a 256× 256 uniform-grid computation. Figure 16 shows
the errors inx-velocity for the three-vortex solution at timet = 0.128 and for the shear
layer problem at timet = 0.75 (y-velocities are similar). In both cases, the adaptive solu-
tions attain the accuracy of the single-grid solution with equivalent resolution, indicating
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FIG. 16. Errors inx-velocity vs base grid size for (a) the three-vortex solution att = 0.128 and (b) the shear
layer problem att = 0.75.

that local refinement is effective at increasing the accuracy of the solution. Also, the solu-
tion errors converge at second-order rates inL2, except in the coarsest uniform-grid cases,
where the solutions are under-resolved and so are not expected to be in the asymptotic
regime. (Brown and Minion [14] found similar behavior in their study of the shear-layer
problem.)

4.2. Freestream Preservation

To evaluate the performance of the freestream preservation correction for the shear-layer
problem,L2 and L∞ norms of3 are shown in Fig. 17 for timet = 0.75. The effects of
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FIG. 17. Convergence of3− 1 for shear layer problem in (a)L2 and (b)L∞ norms. Adaptive cases were
run with 32× 32, 64× 64, and 128× 128 base grids, with one level of refinement,nref = 2 and 4. In all cases,
the higher pair of lines is without the freestream preservation correction; lower sets of lines are with correction.

the correction are much more dramatic in this case than for the two-vortex case presented
in Section 3.5, probably due to the more complicated refined-grid configurations generated
for this flow. Without the volume-discrepancy correction, errors in3 due to failures of
freestream preservation are about an order of magnitude higher inL2 andL∞ norms. Also,
the errors in3display markedly slower convergence without the correction. Figure 18 shows
(3− 1) at timet = 0.75 both with and without the correction. As in the two-vortex case,
without correction, errors in3 are generated at coarse–fine interfaces and then advected
throughout the flow, contaminating the entire solution. With the correction, however, the
errors are primarily confined to cells immediately adjacent to coarse–fine interfaces. (Note
the difference in scales in Fig. 18 between the two cases.)
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4.3. Synchronization Projection

To determine the effect of the synchronization projection for this algorithm, these cases
were also run without the synchronization projection, where the no-synchronization al-
gorithm is the algorithm presented in Fig. 5. Comparison showed no noticeable accuracy
difference as a result of the synchronization projection. This is in marked contrast to the
results presented in [3], in which the synchronization projection was shown to be necessary
to maintain the accuracy of the method. This behavior was found to be consistent across
all problems on which we tested this algorithm—we were unable to find a test case for
which the synchronization projection was necessary for accuracy or stability. We believe
this to be a result of our projecting an approximation to the velocity field (as in (24) and
(25)) instead of using the approximation tout ((60) and (61)), which is projected in [3].
For theP(ut ) formulation, any non-divergence-free components of the velocity field which
are not eliminated by the projection persist and accumulate, corrupting the solution, while
for the P(u) formulation, these components are reduced or eliminated by subsequent ap-
plications of the projection [32, 33]. So, the projection formulation used in this work is
more forgiving of errors made at coarse–fine interfaces, because during every time step, the
velocity field is resubjected to at least a coarse approximation of the composite divergence
constraint [7].

The obvious question is then whether the synchronization projection is really necessary
for this algorithm. Performance data indicate that our code spends about 15% of its execution
time performing the synchronization projection. Although the synchronization projection
does not seem to have any effect on the accuracy of the method, it does have an impact
on how well the solution satisfies the divergence constraint (13). Table II tabulates the
L2 and L∞ norms of Dcomp(u). It is notable that while the no-synchronization results
show higher divergences and slower convergence in all norms, the difference between the
synchronization and no-synchronization cases is much less dramatic than in the results
presented in [3]. The exception to this is in theL∞ norm withnref = 4, where it appears
that convergence stalls and actually begins to diverge. This is due to a single point (a convex
corner in the refined-grid configuration) where the divergence remains large in the 64× 64
base grid computation. TheL2 norms are not as affected.

TABLE II

L2 and L∞ Norms of Composite Divergence with and without Synchronization Projection

for the Shear Layer Problem at Time = 0.75

Base Grid Sizeh

1/32 Rate 1/64 Rate 1/128 Rate 1/256

L2: Uniform Grid 1.545e-1 1.65 4.925e-2 1.65 1.569e-2 2.14 3.558e-3
nref = 2: with sync 2.761e-2 1.72 8.364e-3 2.05 2.026e-3 — —

without sync 5.868e-2 1.14 2.661e-2 1.45 9.715e-3 — —
nref = 4: with sync 1.237e-2 1.52 4.310e-3 1.60 1.423e-3 — —

without sync 6.931e-2 1.18 3.053e-2 1.30 1.244e-2 — —

L∞: Uniform Grid 8.874e-1 1.15 3.990e-1 0.803 2.286e-1 1.25 9.617e-2
nref = 2: with sync 2.619e-1 0.827 1.477e-1 1.59 4.899e-2 — —

without sync 3.998e-1 0.636 2.572e-1 0.956 1.326e-1 — —
nref = 4: with sync 1.708e-1 1.33 6.805e-2 0.129 6.221e-2 — —

without sync 4.529e-1 0.780 2.637e-1 −0.169 2.965e-1 — —
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Another way to judge the effect of the synchronization projection is to examine the mag-
nitude of the correction to the flow field made as a result of the synchronization projection.
Figure 19 shows theL2 and L∞ norms of(1/1tsync)Gcompes in the x-direction, which
is the correction applied to the velocity field as a result of the synchronization projection.
For the no-synchronization cases, the algorithm was run with the synchronization projection
turned off, and then the composite projection was applied to the resulting velocity field—in
these cases,(1/1tcomp)Gcompes represents the correction needed to return the velocity field
to compliance with the composite divergence constraint. These corrections are noteworthy
mostly for their magnitude; for comparison, the solution errors are also included in Fig. 19.

FIG. 19. (a) L2 and (b)L∞ norms ofx-direction correction due to synchronization projection, compared with
solution error. The synchronization corrections are marked with broken lines, while the solution errors are solid
lines. Adaptive cases were run with 32× 32, 64× 64, and 128× 128 base grids, with one level of refinement.
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As can be seen, both with and without synchronization, the corrections are about an order of
magnitude smaller than the solution error. Also, the difference between the cases with and
without synchronization is quite small. We have observed similar behavior in all other test
problems we have examined. As mentioned before, we believe that because we are project-
ing the velocity field, the level-projected velocity field does not stray far from the composite
divergence constraint, since the level projections provide a reasonable approximation to the
composite constraint.

FIG. 20. Performance of the adaptive algorithm for the three-vortex problem. (a) Total cells advanced.
(b) CPU time.
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4.4. Adaptive Algorithm Performance

Almgren et al. [3] demonstrated that using a locally adaptive algorithm can produce
substantial savings in the computational time and memory necessary to achieve a desired
solution accuracy.

It should be noted that performance data for locally adaptive methods such as this one
are highly problem dependent; results will depend on the fraction of the domain which is
refined, and on the grid configurations chosen. It is felt by the authors that the example used
here is representative of “typical” problems where adaptivity will be beneficial.

Figure 20 shows the total number of cells advanced and the total CPU time used for
the three-vortex problem with a single uniform grid, one withnref = 2 levels of refinement
and one withnref = 4 levels of refinement. Note that these results are indexed by the finest
resolution of the solution, rather than that of the base grid, to represent the cost of achieving
a given accuracy. Also worth noting is that as the size of the problem increases, the single-
grid code becomes less efficient (CPU time per cell rises) owing to decreased efficiency as
a result of worsened cache performance. While the benefits of adaptivity are marginal for
smaller cases, they become more pronounced at higher resolutions.

To illustrate the effects of adaptivity on a single problem, Fig. 21 shows the CPU time
and cell counts for three cases, each with an equivalent resolution ofhfinest= 1

1024. Results
are normalized by the single-grid values. In this case, both thenref = 2 andnref = 4 cases
show significant savings, both in memory and in CPU time. The difference between the two
lines in the figure represents the overhead due to adaptivity, which comes primarily from the
synchronization and intergrid transfer operations. It is expected that with some optimization,

FIG. 21. Normalized timings and cell counts for adaptive code for equivalent 1024× 1024 resolution. Cell
counts and timings are normalized by the cost of the single-grid calculation.
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this overhead could be substantially reduced, which would enable the execution time to
better follow the cell counts.

5. CONCLUSIONS

We have presented an algorithm for computing solutions to the equations of incom-
pressible flow on locally refined grids using a multilevel projection algorithm based on a
cell-centered approximate projection. Use of a cell-centered discretization for the projection
enables the use of only one set of cell-centered solvers to implement this algorithm, which
will simplify the extension of this work to more complex situations and geometries. The
algorithm refines in time as well as space and uses an approximate volume-discrepancy
approach to correct for errors in freestream preservation at interfaces between coarse and
fine grids.

We have demonstrated that the algorithm is second-order accurate in space and time and
displays the same convergence properties as the uniform-grid algorithm upon which it is
based. Also, we demonstrate that, with appropriate choice of local refinement, multilevel
solutions computed with this algorithm can attain the accuracy of the equivalent uniform
fine grid at less computational cost.

The approach to freestream preservation was shown to drastically reduce deviations
from freestream conditions in advected quantities, both by reducing their magnitude and
by confining freestream errors primarily to the set of coarse cells immediately adjacent to
coarse–fine interfaces.

Although we include a composite synchronization projection to enforce the divergence
constraint, we have been unable to find a case in which the synchronization projection is
necessary for accuracy or stability. We believe that to be due to the projection formulation
employed in this work, which appears to be more robust than the technique of projecting the
velocity update. The natural conclusion is that the synchronization projection is unnecessary
for this particular algorithm. However, it may still be necessary for problems with more
complicated models, such as viscous flow, a topic which will be explored in future extensions
of this algorithm.

APPENDIX: SINGLE-GRID ALGORITHM

The single-grid version of the algorithm advances the solutionu ands from time tn to
time tn+1. At time tn we have the current solutionun andsn. Our discretization of (12) is

un+1 = un −1t [(u · ∇)u]n+1/2−1t∇πn+1/2, (A.1)

whereπn+1/2 is our approximation of the pressure at timetn + 1
21t . The scalar advection

equation (15) is discretized as

sn+1 = sn −1t [∇ · (us)]n+1/2, (A.2)

which is our evolution equation fors.
We use a predictor–corrector scheme based on that in [8] as extended in [9]. We first

predict an approximation to the new velocity field,u∗, which does not, in general, satisfy
the divergence constraint (13). We then correct the velocity field by projectingu∗ onto the
space of vector fields which approximately satisfy the divergence constraint.
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A.1. Computing Advection Velocities

First, we compute approximate edge-centered advection velocitiesuedgeby averaging the
cell-centeredun to edges:

uedge= AvC→Eun. (A.3)

Next, we use a Taylor expansion to extrapolate normal velocities to cell edges at time
tn +1t/2, using (12) to replace the time derivative. For the(i + 1

2, j ) edges, this is

unorm
i, j =

1

2

(
uedge

i+1/2, j + uedge
i−1/2, j

)
(A.4)

ũL ,n+1/2
i+1/2, j = un

i, j +min

[
1

2

(
1− unorm

i, j

1t

h

)
,

1

2

]
(ux)i, j − 1t

2h
(ūy)i, j ,

whereux is the undivided centered-difference in the normal direction,

(ux)i, j = 1

2

(
un

i+1, j − un
i−1, j

)
, (A.5)

andūy is the undivided upwinded transverse difference,

vtan
i, j =

1

2

(
v

edge
i, j+1/2+ vedge

i, j−1/2

)
(A.6)

(ūy)i, j =
{

un
i, j − un

i, j−1 if vtan
i, j > 0,

un
i, j+1− un

i, j if vtan
i, j < 0.

Computing the right state is similar and we get

ũR,n+1/2
i+1/2, j = un

i+1, j +max

[
1

2

(
−1− unorm

i, j

1t

h

)
,−1

2

]
(ux)i+1, j − 1t

2h
(ūy)i+1, j . (A.7)

Then, we choose the upwind state:

un+1/2
i+1/2, j =


ũL ,n+1/2

i+1/2, j if uedge
i+1/2, j > 0,

ũR,n+1/2
i+1/2, j if uedge

i+1/2, j < 0,

1
2

(
ũL ,n+1/2

i+1/2, j + ũR,n+1/2
i+1/2, j

)
if uedge

i+1/2, j = 0.

(A.8)

The pressure term is not included in the extrapolation because these velocities are pro-
jected with an edge-centered projection. Also, unlike previous implementations of similar
algorithms [3, 8, 24] we do not employ slope limiters when computingux anduy. Hilditch
[19] found slope limiters, developed to prevent oscillations in compressible flows with sharp
discontinuities, to be unnecessary for smooth, low Mach number flows.

Extrapolation of normaly-direction velocities is similar. Once we have computed an
edge-centered normal velocity field, we apply an edge-centered projection to ensure that
the advection velocities are divergence-free. First solve

Lφ = D
(
un+1/2

)
, (A.9)
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and then correct the velocity field,

uhalf = un+1/2− Gφ. (A.10)

This set of edge-centered advection velocities at timetn+1/2 is used to compute the
advective terms in (A.1). Note that we have only computed velocities normal to the faces,
which would be(uhalf

i+1/2, j , v
half
i, j+1/2)

T .

A.2. Scalar Advection

First, we predict edge-centered upwinded values forsn+1/2 in the same way as for the
velocity predictor. As before, we compute values fors̃L ,n+1/2 and s̃R,n+1/2, and then we
choose the upwind value based on the local sign ofuhalf:

unorm
i, j =

1

2

(
uhalf

i+1/2, j + uhalf
i−1/2, j

)
s̃L ,n+1/2

i+1/2, j = sn
i, j +min

[
1

2

(
1− unorm

i, j

1t

h

)
,

1

2

]
(sx)i, j − 1t

2h
vtan

i, j (s̄y)i, j .

As before,

vtan
i, j =

1

2

(
vhalf

i, j+1/2+ vhalf
i, j−1/2

)
(sx)i, j = 1

2

(
sn
i+1, j − sn

i−1, j

)
(A.11)

(s̄y)i, j =
{

sn
i, j − sn

i, j−1 if vtan
i, j > 0,

sn
i, j+1− sn

i, j if vtan
i, j < 0.

For the right state we have

s̃R,n+1/2
i+1/2, j = sn

i+1, j +max

[
1

2

(
−1− unorm

i, j

1t

h

)
,−1

2

]
(sx)i+1, j − 1t

2h
vtan

i+1, j (s̄y)i+1, j .

Then, choose the upwind state:

sn+1/2
i+1/2, j =


s̃L ,n+1/2
i+1/2, j if uedge

i+1/2, j > 0,

s̃R,n+1/2
i+1/2, j if uedge

i+1/2, j < 0,

1
2

(
s̃L ,n+1/2
i+1/2, j + s̃R,n+1/2

i+1/2, j

)
if uedge

i+1/2, j = 0.

(A.12)

Computation ofsn+1/2
i, j+1/2 on they-edges is similar. Then, we compute the fluxes:

Fs,x
i+1/2, j = uhalf

i+1/2, j s
n+1/2
i+1/2, j

(A.13)
Fs,y

i, j+1/2 = vhalf
i, j+1/2sn+1/2

i, j+1/2.

Finally, the updated statesn+1 can be computed using the discrete analog to (A.2):

sn+1
i, j = sn

i, j −1t

(
Fs,x

i+1/2, j − Fs,x
i−1/2, j

h
+ Fs,y

i, j+1/2− Fs,y
i, j−1/2

h

)
. (A.14)
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A.3. Velocity Predictor

Using uhalf, we compute an approximation of the advection term [(u · ∇)u]n+1/2. Al-
though the advection velocities in this algorithm are discretely divergence-free, which
would allow conservative differencing to be used to compute the advection terms, we
instead use convective differencing. In the multilevel case, the advection velocities are not
generally discretely divergence-free, owing to the effects of the freestream preservation
correction.

First, we re-predict edge-centered velocities as in Section A.1, this time usinguhalf rather
thanAvC→E(un), which was used in Section A.1. We re-use the already-computed normal
velocitiesuhalf as predicted velocities. So, we only compute the tangential edge-centered
predicted velocities. To computevhalf

i+1/2, j , for example, we extrapolate in the same way as for
uhalf

i+1/2, j , in this case includingGφ to represent the effects of the edge-centered projection.
We obtain

unorm
i, j =

1

2

(
uhalf

i+1/2, j + uhalf
i−1/2, j

)
(A.15)

ṽ
L ,n+1/2
i+1/2, j = vn

i, j +min

[
1

2

(
1− unorm

i, j

1t

h

)
,

1

2

]
(vx)i, j − 1t

2h
vtan

i, j (v̄y)i, j ,

where

(vx)i, j = 1

2

(
vn

i+1, j − vn
i−1, j

)
(A.16)

and

vtan
i, j =

1

2

(
vhalf

i, j+1/2+ vhalf
i, j−1/2

)
(A.17)

(v̄y)i, j =
{
vn

i, j − vn
i, j−1 if vtan

i, j > 0,

vn
i, j+1− vn

i, j if vtan
i, j < 0.

For the “right” state, we have

ṽ
R,n+1/2
i+1/2, j = vn

i+1, j +max

[
1

2

(
−1− unorm

i, j

1t

h

)
,−1

2

]
(vx)i+1, j − 1t

2h
vtan

i+1, j (v̄y)i+1, j .

(A.18)
Then we choose the upwind state:

v
n+1/2
i+1/2, j =


ṽ

L ,n+1/2
i+1/2, j if uhalf

i+1/2, j > 0,

ṽ
R,n+1/2
i+1/2, j if uhalf

i+1/2, j < 0,

1
2

(
ṽ

L ,n+1/2
i+1/2, j + ṽR,n+1/2

i+1/2, j

)
if uhalf

i+1/2, j = 0.

(A.19)

Finally, we include the pressure gradient:

vhalf
i+1/2, j = vhalf

i+1/2, j − (Gφ)i+1/2, j

= vhalf
i+1/2, j −

φi+1, j+1+ φi−1, j+1− φi+1, j−1− φi−1, j−1

4h
. (A.20)
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To compute the advective terms, first compute a cell-centered advection velocity:

uAD−CC = AvE→CuAD .

Then,

[(u · ∇)u]n+1/2
i, j = uAD−CC

i, j

(
uhalf

i+1/2, j − uhalf
i−1/2, j

)
h

+ vAD−CC
i, j

(
uhalf

i, j+1/2− uhalf
i, j−1/2

)
h

(A.21)

[(u · ∇)v]n+1/2
i, j = uAD−CC

i, j

(
vhalf

i+1/2, j − vhalf
i−1/2, j

)
h

+ vAD−CC
i, j

(
vhalf

i, j+1/2− vhalf
i, j−1/2

)
h

.

Finally, we computeu∗:

u∗i, j = un
i, j −1t [(u · ∇)u]n+1/2

i, j
(A.22)

v∗i, j = vn
i, j −1t [(u · ∇)v]n+1/2

i, j .

A.4. Projection

First, solve

Lπn+1/2 = 1

1t
DCC(u∗). (A.23)

Then, correct the velocity field onto the space of vector fields which satisfy the divergence
constraint:

un+1 = u∗ −1tGCCπn+1/2. (A.24)
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