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We propose a decomposition applicable to low speed, inviscid flows of all Mach
numbers less than 1. By using the Hodge decomposition, we may write the ve-
locity field as the sum of a divergence-free vector field and a gradient of a scalar
function. Evolution equations for these parts are presented. A numerical procedure
based on this decomposition is designed, using projection methods for solving the
incompressible variables and a backward-Euler method for solving the potential
variables. Numerical experiments are included to illustrate various aspects of our
algorithm. c© 1999 Academic Press
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1. INTRODUCTION

We are interested in solving unsteady compressible flow problems where the flow speed
is much less than the sound speed and the acoustical waves have large wavelengths. Such
problems could be found in a variety of applications such as combustion [1] and flow noise
generation [2]. These low speed flows are often difficult to simulate numerically because
of the presence of low-amplitude acoustical waves.

One possible way to simulate to low speed flow is to treat such a flow as a fully compress-
ible flow and use an explicit method. These explicit methods have a time step restriction,
theCFL condition, which states that for stability, the time step size must be inversely pro-
portional to the maximum of the sum of flow speed and the sound speed. Explicit methods
are best suited for problems where the flow speed is on the same order of or larger than the
sound speed. In low speed problems, however, the sound speed could be orders of mag-
nitude larger than the flow speed, thus grossly overresolving in time features of the fluid
flow.
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One would then like to somehow separate out the “ill-conditioned” part of the flow and
treat it implicitly, while hoping that the rest of the flow may be advanced at an acceptable
time step with an economical and accurate method. Such is the approach first taken by
Amsden and Harlow [3] and later expanded by many others [4–11]. A common theme in
all these methods issplitting: by separating the flow variables into various parts, one may
identify the part of the flow that needs implicit treatment and thereby bypass the stringent
CFL condition dominated by the sound speed.

In their original paper [3], Amsden and Harlow treated thedensityvariable implic-
itly; later, it was understood that thepressurevariable is the problematic one. Casulli and
Greenspan [4] were able to show that onlypressureneeds to be discretized implicitly, and
the resulting difference equations are solved via an iterative procedure. Patnaiket al. [5]
extended the work of Casulli and Greenspan to include an “implicitness parameter” to tune
the degree of implicitness. Various other formulations have also been proposed in [6–8].
Klein [9] and co-workers [10] have also proposed a numerical method based on asymp-
totics, which were an extension of the low Mach number asymptotics of Klainermann and
Majda [12].

To develop a numerical method useful in the regime of our interest, we shall study a
decomposition of the equations of inviscid, compressible flows. These equations will be
rewritten in terms of a Hodge decomposition of the velocity field and in terms of auxiliary
pressures. With the new equations, we will separate the flow into the divergence-free part,
one that varies on a time scale determined by the flow speed, and a part that may contain fast
sound waves. The former part may be advanced with time step determined solely by the flow
speed. Since the fast sound waves are only present in the latter part, we can advance much of
the flow using an explicit method, and apply an implicit method only to the compressible part.

In this paper, we will first present the evolution equations for low speed flows in Section 2.
A numerical algorithm for solving these equations will be detailed in Section 3. Results of
numerical experiments will be tabulated in Section 4.

2. THE GOVERNING EQUATIONS

Consider the inviscid, compressible Euler equations for densityρ(x, t), velocityu(x, t),
and pressurep(x, t) in a closed rectangular container solid-wall,

ρt +∇ · (ρu) = 0, (1)

ut + (u · ∇)u+ 1

ρ
∇ p = 0, (2)

pt + (u · ∇)p+ ρc2(∇ · u) = 0, (3)

with initial values

ρ(x, 0) = ρ0(x),

u(x, 0) = u0(x),

p(x, 0) = p0(x),

and the boundary conditions

u · n = 0.
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Here c2= γ p/ρ is the square of sound speed, andγ is the ratio of specific heats. We
would like to rewrite the Euler equations in terms of a divergence-free velocity field and
a “correction.” Various asymptotic formulations have been studied by Klainermann and
Majda [12] and Kreisset al. [13]. Instead of an asymptotic expansion, we shall study the
exactdecomposition of the velocity field.

Our approach is based on the Hodge decomposition (see, for example, [14, Sect. 1.3]).
Classically, the Hodge decomposition is a splitting of an arbitrary vector field into two
orthogonal components, one divergence-free, and the other the gradient of a scalar field. If
w=w(x) is a smooth vector field defined on a smooth regionÄ, with∫

∂Ä

w · n dS= 0,

thenw can be written as

w = wd + 1

ρ
∇φ,

where∇ ·wd= 0 andwd · n= 0 on the boundary ofÄ, andφ is the solution to the elliptic
equation

Lρφ = ∇ · w in Ä,

1

ρ

∂φ

∂n
= w · n on ∂Ä,

with the variable-coefficient second-order elliptic operator

Lρφ = ∇ · 1

ρ
∇φ.

The decomposition is orthogonal with respect to the density-weighted inner product, that
is, ∫

Ä

wd · 1

ρ
∇φρ dV = 0.

The Hodge decomposition is unique.
We may define the variable-density projection operators

Pρ ≡ I −Qρ,

Qρ ≡ 1

ρ
∇(L−1

ρ

)∇·.
The operatorPρ is an orthogonal projection operator onL2 functions, defined by

Pρ = PT
ρ ,

P2
ρ = Pρ.

Pρ takes anL2 function to the space of divergence-free functions.
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In terms of the projection operators, the Hodge decomposition is

w = Pρw+Qρw,

with the divergence-free part

Pρw ≡ wd

and the gradient

Qρw ≡ 1

ρ
∇φ.

The constant-density projection operators

P0 ≡ I −Q0,

Q0 ≡ ∇(1−1)(∇ ·),

are defined similarly but withρ≡ 1. We shall apply these operators to the Euler equations.
Suppose now the flow velocity fieldu in the Euler equation is inL2; then we may apply

Hodge decomposition tou and split it into a divergence-free part and a curl-free part,

u = ud + up, (4)

where

P0u = ud, (5)

Q0u = up. (6)

We also define

Adu ≡ u · ∇u−∇ |up|2
2
, (7)

and an “acoustic pressure” as

δ ≡ p− π, (8)

whereπ is an auxiliary pressure variable defined by

1

ρ
∇π = −QρAdu. (9)

Finally, we define a potentialψ by

∇ψ ≡ −Q0

(
1

ρ
∇δ
)
. (10)
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We now make the ansatz that, for a closed rectangular container,

∂ρ

∂t
+∇ · (ρu) = 0, (11)

∂ud

∂t
+ PρAdu+ P0

(
1

ρ
∇δ
)
= 0, (12)

∂up

∂t
+∇ |up|2

2
+Q0

(
1

ρ
∇δ
)
= 0, (13)

∂δ

∂t
+ γ p∇ · up = −

(
u · ∇ p+ ∂π

∂t

)
, (14)

with initial values

ρ(x, 0) = ρ0(x),

ud(x, 0) = P0u0(x),

up(x, 0) = Q0u0(x),

δ(x, 0) = p0(x)+ L−1
ρ (∇ · (u0(x) · ∇u0(x))),

and the boundary conditions

ud · n = 0,

up · n = 0.

Note that by summing (12) and (13) we obtain (2), the momentum equation for compressible
flow. Also note that (14) is simply the pressure equation (3) rewritten in terms ofπ and
δ. The initial conditions and the boundary conditions match those of Euler as well. Since
the Hodge decomposition is unique, theud andup that satisfy Eqs. (11)–(14) must be the
unique solution of these equations.

The termP0(
1
ρ
∇δ) represents baroclinic generation of vorticity by the acoustics, that is,

a “feedback” mechanism from the acoustics to the fluid flow. In a purely incompressible
flow, this feedback is zero. AsMa→ 0, Majda and Klainermann [12] have shown that, with
initially divergence-free data,|up|/|ud| ∼O(Ma), and|∇ p| ∼O(Ma). Terms involvingup

in Eq. (12) become lower order, andP0(
1
ρ
∇δ)→ 0 as well. Thus the incompressible Euler

equation (with variable density) is recovered in the zero-Mach number limit, withπ as the
limiting incompressible pressure.

In the zero-Mach number limit, the total pressure may be written as (see [12])

p(x, t) = P0(t)+Ma2 p2+ · · ·.

That is, when properly scaled,π ∼O(Ma2). In numerical computations one may actually
excite the acoustic feedback mechanism by including anO(Ma) term in the initial pressure
(see [10]). Thus it is imperative that, in a nearly incompressible computation, the evolution
equations and the numerical method do not allow such excitations in time.

On the other hand, suppose now that the divergence-free component of the velocity is
zero initially, that is,ud(x, 0)= 0. Thenπ = 0 sinceAdu= 0, andp≡ δ. For a barotropic
fluid, p= f (ρ), and one can show that1

ρ
∇δ is a pure gradient, andP0(

1
ρ
∇δ)≡ 0 for all
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times. Thusud≡ 0 for all times, and Eq. (13) becomes the evolution equation foru, a
purely potential flow. A numerical scheme should preserve this limit as well, by ensuring
that the vortical component of the flow (and the associated pressure variables) does not
grow appreciably when properly initialized.

3. THE NUMERICAL METHOD

The numerical method for solving the initial-value problem (11)–(14) consists of the ad-
vection of density and velocity, various discrete projections, and an acoustics solve involving
up andδ.

We seek the numerical solution of (11)–(14) in a rectangular closed container [a, b]×
[c, d], which is discretized intoM intervals in thex-direction andN intervals in they-
direction, of widths1x= (b−a)/M and1y= (d− c)/N, respectively. A time discretiza-
tion of1t is used. At timetn= n1t , we haveun= (un, vn), δn, ρn, πn−1/2, un

d= (ud, vd)

at the cell centers(i, j ), i = 1 . . .M, j = 1 . . . N, andun
p= (un

p, v
n
p) at cell edges(i + 1

2, j )
and(i, j + 1

2), respectively.

3.1. The Discretized Equations

Equations (11)–(14) are written in the form

Vt + B(V,Vx,Vy) = F.

Our approach to solving Eqs. (11)–(14) is to discretizeB in space at the appropriate times,
and marchV in time.

The discretization ofB requires the discretizations of the divergence operatorD and
the gradient operatorG. Since the values of some of the variables are prescribed at cell
centers, while some are prescribed at cell edges, we will need to defineD andG that will
take the finite differences ofV at both cell centers and cell edges and return values at both
centers and edges. It turns out that only two divergence and two gradient operators are
required. The operatorDmac is the discrete divergence operator applied to edge values, and
D0 the discrete divergence operator applied to cell-centered values; both operations yield
cell-centered scalars. The operatorGmac is the discrete gradient operator, applied to a scalar
at the cell centers to yield a vector field at the cell edges, whileG0 is the discrete gradient
operator, applied to a scalar at the cell edges to yield a vector field at the cell centers. These
and other spatial operators will be described in detail in Section 3.2.

To advance the numerical solution one time step, we first use a Godunov advection
procedure to advance the densityρ to time tn+1, and compute the source termAd(u)n+1/2

for the projection of the incompressible pressure:

ρn+1 = ρn −1t Dmac(ρu)n+1/2, (15)

u∗d = un
d −1t

(
Ad(u)n+1/2+ 1

ρn+1/2
G0πn−1/2

)
. (16)

We then solve a (variable density) Poisson problem forLρ to obtain the incompressible
pressureπn+1/2:

πn+1/2 = πn−1/2− L−1
ρn+1/2 D0

(
u∗d − un

d

1t

)
. (17)
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Next we solve for the acoustic variablesup and δ at time tn+1 by first discretizing the
corresponding differential equations (13) and (14) implicitly:

u∗p = un
p −1t

(
Gmac

( |up|2
2

)n

+ 1

ρn
Gmacδn+1

)
, (18)

δn+1 = δn −1t

(
γ pn Dmacu∗p + (u · ∇ p)n + π

n+1/2− πn−1/2

1t

)
. (19)

Solving these equations algebraically forδn+1, we obtain a Helmholtz equation forδn+1.
Once we solve the Helmholtz equation forδn+1, we perform another projection to obtain
un+1

p :

un+1
p = un

p −1t

(
Gmac

( |up|2
2

)n

+Qmac
0

(
1

ρn+1
Gmacδn+1

))
. (20)

Simultaneously to the above steps, we collect the terms needed to advance the incompress-
ible velocityud to timetn+1:

un+1
d = u∗d −1t

(
1

ρn+1
G0(πn+1/2− πn−1/2)+ P0

0

(
1

ρn+1
G0δn+1

))
. (21)

In the next few sections, we shall describe the implementations of the above scheme in
greater detail. First, in Section 3.2, we describe the spatial discretizations of the discrete
divergence(D) and gradient(G) operatorsDmac, D0,Gmac, andG0, as well as the dis-
cretizations of the projection operatorsP andQ and the operatorLρ . Then, in Section 3.3,
we describe the time stepping of the above scheme in more depth. Inflow and outflow
boundary conditions used in the numerical experiments are explained in Section 3.4.

3.2. Spatial Discretizations

We shall need to determine various divergence and gradient operators, as well as the
appropriate discretization of the projection operatorsP andQ, and the discretization of the
operatorLρ .

SupposeD andG are the discrete approximations to the divergence and gradient op-
erators; then we would like, for an arbitrary vector fieldw= (w1, w2) on a regionÄ, to
have

w = wd + 1

ρ
Gφ,

where

Dwd = 0,

andφ satisfies

Lρφ = Dw in Ä,

n · Gφ = 0 on∂Ä.
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Ideally, we would like to haveD= (−1
ρ

G)T ; that is, the divergence and gradient are adjoint
of each other with respect to the density-weighted inner product. The discretization ofLρ
is given byLh

ρ = D 1
ρ

G. Note that because of the adjoint property,φ as defined above can
always be found (up to a constant).

Recall that the continuous projection operatorPρ is self-adjoint(Pρ =PT
ρ )and idempotent

(P2
ρ =Pρ). We would like our discretization of the projection operatorPh to have these

properties. If

Ph = I − 1

ρ
G

(
D

1

ρ
G

)−1

D

with D andG defined as above, then these properties of the projection operators are satisfied.
This projection operator, however, is not suitable for computation. The biggest disadvan-
tage is that the discrete operatorD 1

ρ
G would have a null space of four dimensions (see

[15]), and the solution decouples into four independent components. This is the so-called
“checkerboard effect,” or alternating modes.

Instead, we use the projection operator

Ph = I − 1

ρ
G
(
Lh
ρ

)−1
D.

There is no decoupling of the solution. However,

Lh
ρ 6= D

1

ρ
G.

This causes the discrete projection operatorPh to be non-idempotent. We call this an
approximateprojection.

In the algorithm specified above, we use two different discretizations of the gradient
operator. One discretization ofG, denoted byG0, is based on centered differencing. The
other,Gmac, uses the staggered marker-and-cell (MAC) mesh of Harlow and Welch [16]. On
a rectangular grid, the MAC gradient operator is defined by the differences of cell-centered
values:

(Gmacφ)xi+1/2, j =
φi+1, j − φi, j

1x
,

(Gmacφ)
y
i+1/2, j =

φi+1, j+1− φi+1, j−1+ φi, j+1− φi, j−1

41y
,

(Gmacφ)xi, j+1/2 =
φi+1, j+1− φi−1, j+1+ φi+1, j − φi−1, j

41x
,

(Gmacφ)
y
i, j+1/2 =

φi, j+1− φi, j

1y
.

The cell-centered gradient operator may be defined in terms of the MAC gradient operator:

(G0φ)xi, j =
1

2

(
(Gmacφ)xi+1/2, j + (Gmacφ)xi−1/2, j

)
= 1

2

(φi+1, j − φi−1, j )

1x
.
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(G0φ)
y
i, j =

1

2

(
(Gmacφ)

y
i, j+1/2+ (Gmacφ)

y
i, j−1/2

)
= 1

2

(φi, j+1− φi, j−1)

1y
.

The divergence of a vector field shall always he defined at the cell centers. Since we could
take the divergence of either a cell-centered vector field or an edge-centered vector field,
we shall need two kinds of divergence operators as well: The edge-centered divergence is

(Dmacw)i, j =
w1

i+1/2, j − w1
i−1/2, j

1x
+ w

2
i, j+1/2− w2

i, j−1/2

1y
,

and the cell-centered divergence is

(D0w)i, j = 1

2

(
w1

i+1, j − w1
i−1, j

1x
+ w

2
i, j+1− w2

i, j−1

1y

)
.

Note that the cell-centered divergence can also be viewed as an average of the edge-centered
divergence, if we let

w1
i+1/2, j =

1

2

(
w1

i+1, j + w1
i, j

)
,

w2
i, j+1/2 =

1

2

(
w2

i, j+1+ w2
i, j

)
,

that is, interpolate the edge-centered values by averaging the cell-centered values.
Boundary conditions are applied to the gradients by using values in the “ghost cells,”

cells outside the computational domain. For example, at the left edge, we would have

(G0φ)x1, j =
1

2

(φ2, j − φ0, j )

1x
,

whereφ0, j is in the first row of ghost cells, its value determined by a third-order extrapolation:

φ0, j = 3φ1, j − 3φ2, j + φ3, j .

Boundary conditions are applied to the divergences by considering the fluxes at the boundary.
We can writeD0w in conservation form,

(D0w)i, j = Fi+1/2, j − Fi−1/2, j

1x
+ Fi, j+1/2− Fi, j−1/2

1y
,

with

Fi+1/2, j = 1

2

(
w1

i+1, j + w1
i, j

)
Fi, j+1/2 = 1

2

(
w2

i, j+1+ w2
i, j

)
for i = 1, . . . ,M, j = 1, . . . , N. Then the boundary condition is applied toF on the bound-
ary. For example, on the left boundary, the conditionw · n= h is enforced by setting
F1/2, j = h1/2, j .
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The discrete operatorLh
ρ is given by

(
Lh
ρφ
)

i, j ≡ Dmac1

ρ
Gmacφi, j

= 1

1x

{
1

ρi+1/2, j

φi+1, j − φi, j

1x
− 1

ρi−1/2, j

φi, j − φi−1, j

1x

}
+ 1

1y

{
1

ρi, j+1/2

φi, j+1− φi, j

1y
− 1

ρi, j−1/2

φi, j − φi, j−1

1y

}
.

The inverse density, evaluated at the cell edges, is obtained by the average of the inverse
densities:

1

ρi+1/2, j
= 1

2

(
1

ρi+1, j
+ 1

ρi, j

)
;

1

ρi, j+1/2
= 1

2

(
1

ρi, j+1
+ 1

ρi, j

)
.

In the rectangular closed container, we have the Neumann boundary condition

∂φ

∂n
= g on ∂Ä.

On the left boundary, for example, we have

(φ1, j − φ0, j )

1x
= g1/2, j ,

or

φ0, j = φ1, j −1xg1/2, j .

And thusLρφ can be computed for all cells in the computational domain.
The projection operators can now be defined:

Qmac
ρ = 1

ρ
Gmac

(
Lh
ρ

)−1
Dmac;

Pmac
ρ = I −Qmac

ρ ;

Q0
ρ =

1

ρ
G0
(
Lh
ρ

)−1
D0;

P0
ρ = I −Q0

ρ.

There are two kinds of projection operators, a cell-centered projection and a MAC projection.
The difference is in the divergence and gradient operators used. In applying the MAC
projectionPmac

ρ to a vector fieldw, we solve the Poisson problem

Lh
ρφ = Dmacw
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with the appropriate boundary conditions. Then

Qmac
ρ w = 1

ρ
Gmacφ.

On the other hand, in a cell-centered projectionP0
ρw, one would solve the Poisson problem

Lρφ = D0w

with the appropriate boundary conditions. Then

Q0
ρw = 1

ρ
G0φ.

The Laplacian operators in the two projections are the same, but the arguments of the
divergence operators in the right hand side of the Poisson problems reside at different places
on the grid: in the regular projection,w is at the cell centers; in the MAC projection,w is
staggered. In both projections, the potentialφ will be cell-centered, but the final projected
vector fields will again reside at different places on the grid.

3.3. Details of the Time Stepping

As mentioned above, to advance the solution one time step, we compute (15)–(21) roughly
in that order. Here we shall present the details of time advancement.

First we need to computeAdu at the cell centers from the equation forud (16), while
advancingρ conservatively to the timetn+1 using the density equation (11). This may be
accomplished by a Godunov-type procedure. In our Godunov procedure, we first extrapolate
the values at cell centers to the edges and at half time, using Taylor series. For example, on
the vertical edge(i + 1

2, j ), we may extrapolate from the cell on the left:

un+1/2,L
d i+1/2, j ≈ un

d i, j +
1x

2

∂un
d

∂x
+ 1t

2

∂un
d

∂t
,

with the partial derivatives evaluated at cell(i, j ), or we may extrapolate from the cell on
the right,

un+1/2,R
d i+1/2, j ≈ un

d i+1, j −
1x

2

∂un
d

∂x
+ 1t

2

∂un
d

∂t
,

with the partial derivatives evaluated at cell(i + 1, j ). In both expressions we then replace
the time derivative by employing the equation

∂ud

∂t
= −((u · ∇)ud + (ud · ∇)up)− 1

ρ
∇δ −∇ψ.

This is simply Eq. (16) but with the term

Qρ(Adu)

omitted.
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Thus, at the edge(i + 1
2, j ), for the first component of velocity,

un+1/2,L
d = un

d i, j +
1x

2

∂ud

∂x
− 1t

2

(
ui, j

∂ud

∂x
+ vi, j

∂ud

∂y
+ ui, j

∂up

∂x
+ vi, j

∂up

∂y

)
− 1t

2

(
1

ρ
∇δ −∇ψ

)
.

The spatial derivatives of the velocityud in the normal direction is approximated by the
limited difference, using the van Leer limiter [18]: let

1xuC = 1

2
(ud i+1, j − ud i−1, j ),

1xuL = 2(ud i, j − ud i−1, j ),

1xuR = 2(ud i+1, j − ud i, j ).

Then

1ud i, j = min(|1xuC|, |1xuL |, |1xuR|) sign(1xuC), if 1xuL1xuR > 0,
= 0 otherwise.

The derivatives in the transverse direction are upwinded:

∂ud

∂y
= (ud i, j − ud i, j−1)/1y, vi, j ≥ 0,

= (ud i, j+1− ud i, j )/1y, vi, j < 0.

The derivative ofup in cell (i, j ) in the x-direction can be computed easily, sinceup are
defined on the edges(i + 1

2, j ):

∂up

∂x
= (up i+1/2, j − up i−1/2, j )/1x;

and the derivative ofup in cell (i, j ) in the y-direction is averaged:

∂up

∂y
= 1

4
(up i+1/2, j+1− up i+1/2, j−1+ up i−1/2, j+1− up i−1/2, j−1)/1y.

The derivatives ofδ andψ are approximated by centered differences.
Onceun+1/2,L

d i+1/2, j andun+1/2,R
d i+1/2, j have been constructed, the ambiguity at the edge(i + 1

2, j )
is resolved by choosing the upwind value based on the total velocity normal to the edge
(i + 1

2, j ),

Un+1/2
d i+1/2, j = Un+1/2,L

d i+1/2, j if un
i, j + un

i+1, j > 0;
= Un+1/2,R

d i+1/2, j if un
i, j + un

i+1, j < 0;
= 1

2

(
Un+1/2,R

d i+1/2, j +Un+1/2,L
d i+1/2, j

)
if un

i, j + un
i+1, j = 0,

for U = u, v. A similar procedure is applied to findun+1/2
d i, j+1/2.
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Once the edge velocities at half time are obtained, we correct for the pressure gradient
term by applying a MAC projection [21] to the edge velocity values: recall that in the
advection step above, we have omitted the term that corresponds to

1t

2ρ
∇π.

The effect of this omission is that the current value ofud on the edges, denoted here by
upredicted

d , is not divergence free. If we write

upredicted
d = ud +∇ϕ,

whereud is the divergence-free edge value, then a correction forupredicted
d may be found

by solving a Poisson equation forϕ. The Poisson operator in the equation above may be
discretized by the same five-point operatorL, but the source term is formed by taking the
MAC divergence ofupredicted

d .
Once we solve forϕ, we can correct the predicted values ofud by taking the discrete

gradient ofϕ:

un+1/2
d = un+1/2,predicted

i+1/2, j − Gmacϕ.

With the correctedud on the edges,(Adu)n+1/2
i, j may now be approximated by finite differ-

ences.
We also constructρ using the Godunov procedure outlined above, at the edges at the half

time. To determine the unique edge value at each edge, the density is advected passively by
the normal velocity:

ρ
n+1/2
i+1/2, j = ρn+1/2,L

i+1/2, j if un
i, j + un

i+1, j > 0;
= ρn+1/2,R

i+1/2, j if un
i, j + un

i+1, j < 0;
= 1

2

(
ρ

n+1/2,R
i+1/2, j + ρn+1/2,L

i+1/2, j

)
if un

i, j + un
i+1, j = 0.

Likewise,ρn+1/2
i, j+1/2 is passively advected byvn. The densityρ can now be advanced to the

time leveln+ 1 conservatively:

ρn+1 = ρn − 1t

1x

(
ρ

n+1/2
i+1/2, j u

n+1/2
i+1/2, j − ρn+1/2

i−1/2, j u
n+1/2
i−1/2, j

)
− 1t

1y

(
ρ

n+1/2
i, j+1/2v

n+1/2
i, j+1/2− ρn+1/2

i, j−1/2v
n+1/2
i, j−1/2

)
.

The densityρn+1/2, needed in the projection in (17), is a by-product of the Godunov proce-
dure, and already exists on the cell edges. The cell-centered quantityu∗d may also be formed
using (16), andun+1

d may be updated.
According to (17), we obtainπn+1/2 by solving the Poisson problem

Lρn+1/2δπn+1/2 = −D0

(
Adun+1/2+ 1

ρn+1/2
G0πn−1/2

)
,
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with the boundary conditions

∂

∂n
δπn+1/2 = 0

at solid wall boundaries. Then

πn+1/2 = πn−1/2+ δπn+1/2.

Once we obtainπn+1/2, the second term on the right hand side of (21) may be computed
andun+1

d may again be updated.
Up to this point, the all-speed algorithm reduces to the conventional projection method

(see [19], [20], or [21], for example) for incompressible flows, if incompressible initial data
is provided.

To compute the effects of compressibility, we first need to estimate the acoustic source
term in (14). We approximate the time derivative ofπ at time leveln by

∂

∂t
πn ≈ πn+1/2− πn−1/2

1t
.

We may approximate(u · ∇ p)n by taking the centered differences ofpn in the x- and the
y-directions. Thus the forcing term is

f n
i, j = −

πn+1/2− πn−1/2

1t
−
(

un
i, j

pn
i+1, j − pn

i−1, j

21x
+ vn

i, j

pn
i, j+1− pn

i, j−1

21y

)
.

Now (18) and (19) may be solved. These two equations are an implicit discretization of (13)
and (14). The termQ0(

1
ρ
∇δ) in (13) is “predicted” by1

ρ
∇δ in the discrete equation (18),

and will be corrected for when we solve the discrete equation (20). Equations (18) and (19)
are solved by first solving forδn+1 algebraically. This gives a Helmholtz equation forδn+1,

(
I −1t2γ pnLh

ρn

)
δn+1 = δn +1t f n

i, j −1tγ pn

(
Dmacun

p −1t L0

(∣∣un
p

∣∣2
2

)n)
,

with the boundary conditions

∂δ

∂n
= 0.

This linear system is always diagonally dominant and nonsingular, sinceρc2= γ p> 0. The
solutionδn+1 can always be found.

We now correctu∗p by projecting out the part of1
ρ
∇δn+1 that is not curl-free. This is

accomplished by first solving

∇ψn+1 = Qmac
0

(
1

ρn+1
Gmacδn+1

)
,

with Neumann boundary condition on all physical boundaries

∂ψ

∂n

n+1

= − 1

ρn+1

∂δ

∂n

n+1

,
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and updatingup using (20):

un+1
p = un

p −1t

(
Gmac

(∣∣un
p

∣∣2
2

)
− Gmacψn+1

)
.

Now we may compute the last term on the right hand side of (21) by averagingGmacψn+1

to the cell centers to formQ0
0(

1
ρ

G0δ). This completes the update ofun+1
d .

Since equations involving the sound speed are solved implicitly (in the Helmholtz solve),
we no longer need to take sound speed into account in determining a time step that will
render the scheme stable. Thus we may choose the time step1t by consideringu only:

1t < Ccf l
min(1x,1y)

maxx(|u0(x)|, |v0(x)|) .

The same1t may be used throughout the entire course of the computation; with some
modification to the computation of the acoustic source term, one may also use variable
time-stepping. A safety factor,Ccf l < 1, is also used.

3.4. Inflow–Outflow Boundary Conditions

In choosing appropriate boundary conditions for problems involving inflow and outflow,
we are guided by the definition of the Hodge decomposition, namely that the vector field
may be decomposed into orthogonal parts, one divergence-free, and one potential, and the
divergence-free part isparallel to the boundary near the boundary.

At a solid wall or an inflow boundary, one requires

u · n = g

for the inviscid Euler equations. We shall require

ud · n = 0 (22)

up · n = g. (23)

We shall only consider outflow boundaries where the flow is uniform in thex-direction.
Thus

v = vp = vd ≡ 0. (24)

The value of the potential velocityup at the outflow can be deduced from the gradient of
ψ , that is,

up = (Gmac)xψ (25)

at the outflow. The value ofψ in the first ghost cell is needed. For example, if the outflow
boundary is on the right, then

ψM+1, j = 3ψM, j − 3ψM−1, j + ψM−2, j .
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The vortical component of the velocity,ud, must be divergence-free at the boundary. A
Neumann boundary condition atud,

ud M+1, j = ud M, j , (26)

will be sufficient. Alternatively, a second-order extrapolation

ud M+1, j = 2ud M, j − ud M−1, j (27)

will also yield divergence-freeud at the outflow boundary.
For the projection

Pρ

(
−u · ∇u+∇ |up|2

2

)
, (28)

we may write

−u · ∇u+∇ |up|2
2
= Pρ

(
−u · ∇u+∇ |up|2

2

)
+ 1

ρ
∇π. (29)

The orthogonality condition gives

n · Pρ
(
−u · ∇u+∇ |up|2

2

)
= 0, (30)

or

n ·
(
−u · ∇u+∇ |up|2

2

)
= 1

ρ

∂π

∂n
. (31)

Note that if one only considers the orthogonality condition, then

π = 0 (32)

is also a valid boundary condition. In our numerical examples, we use (31) for inflow and
solid wall boundaries, while (32) is used at the outflow boundary.

Assuming that the inflow quantityg is constant in time, we may determine the boundary
condition for the projection

Q0

(
1

ρ
∇δ
)
, (33)

which appears in the evolution equation forup, (13). Let

Q0
1

ρ
∇δ ≡ −∇ψ. (34)

To ascertain

∂

∂t
up · n = 0,
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we must have

∂ψ

∂n
= ∂

∂n

( |up|2
2

)
(35)

= − 1

ρ

∂δ

∂n
. (36)

Thus the boundary conditions for the pressure variableδ at inflow and walls will be

∂δ

∂n
= −ρ ∂

∂n

( |up|2
2

)
. (37)

At outflow boundary, we shall specify the value ofδ, which is equal to the total pressure at
outflow. For theQ0 computation,

∂ψ

∂n
= − 1

ρ

∂δ

∂n
(38)

shall provide a Neumann boundary condition for all boundaries; alternatively,

∂ψ

∂n
= ∂

∂n

( |up|2
2

)
(39)

will ensureup · n= g at walls and inflow and may be used at those boundaries.

4. NUMERICAL EXPERIMENTS

First we shall present some convergence results. Our first problem is a convergence test
in the limit Ma→ 0.

The initial flow is a “vortex-in-a-box,” a swirly flow with

u(x, y, 0) = 2 sin2(πx) sin(πy) cos(πy),

v(x, y, 0) = −2 sin(πx) cos(πx) sin2(πy);
p(x, y, 0) = P0, P0 = 1, 10, 100, 1000;
ρ(x, y, 0) = 1− 1

2 tanh
(
y− 1

2

)
on the square 0≤ x≤ 1, 0≤ y≤ 1, with the no-flow boundary condition

u · n = 0

at the walls. We discretize the computational region by

1x = 1y = 1/32, 1/64, 1/128, 1/256.

For convergence test purposes, set1t = 0.51x, and advance the solution up tot = 0.125.
Table I shows the range of Mach numbers for which we have done convergence studies.
Here the Mach number is determined by taking the maximum of the ratio of the magnitude
of the total velocity to the sound speed att = 0.125.
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TABLE I

Mach NumbersMa as a Function

of Initial Pressure P0

P0 Approx.Ma

1 0.88
10 0.28

100 0.089
1000 0.027

We perform a convergence study. The pointwise erroreh is obtained by taking the absolute
value of the difference of the computed solution with spacingh and that with spacingh/2.
We expect that

eh = Cphp + O(hp+1),

wherep is the order of accuracy, or the rate of convergence. Thusp may be computed from
the ratio ofeh ande2h:

p = log2
e2h

eh
.

Tables II–VI show the errorseh and the convergence rates for various discretizations for
the densityρ, incompressible velocityud, total velocity u, incompressible pressureπ ,
and acoustic pressureδ. For P= 1000, the convergence rates for the “incompressible”
variables(ud, π) are basically second-order. This is actually quite remarkable, considering
that our scheme is a mixture of first- and second-order approximations. An examination
of the convergence rates foru, ρ, andδ reveals the effect of the backward Euler-centered
differencing discretization of Eqs. (14) and (13): the discretization is stable, but in order to
obtain the expected accuracy, the time step1t needs to satisfy the conditionc1t/1x< 1.
The acoustic pressureδ contains long-wavelength waves, with the largest wavelength on
the order of 1/Ma. For low Mach number flow, there is no hope of resolving such long
wavelengths in our box of length 1, and we expect the convergence rate forδ to be poor,
as seen in Table VI. The long-wavelength acoustic waves have very little feedback to
the incompressible flow at small Mach number. AsP decreases, the corresponding Mach
number increases, and it becomes more and more important that the acoustic waves be
resolved. ForP= 100 and 10, however, the conditionc1t/1x< 1 for theaccuracyof the
backward Euler-centered differencing scheme is not met, and the feedback of the acoustic
waves to the flow is not well-resolved; thus the accuracy of the overall scheme deteriorates.
For P= 1, the largest wavelength is on the order of the size of the box, which means that

TABLE II

L1 Convergence Results—Densityρ

P0 32–64 Rate 64–128 Rate 128–256

1 7.374e-3 1.08 3.491e-3 1.05 1.684e-3
10 3.551e-3 0.69 2.192e-3 0.77 1.280e-3

100 3.745e-4 0.18 3.275e-4 n/a 3.898e-4
1000 3.675e-4 2.07 8.726e-5 2.00 2.781e-5
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TABLE III

L1 Convergence Results—Incompressible Velocityud

P0 32–64 Rate 64–128 Rate 128–256

1 3.383e-3 1.54 1.169e-3 1.23 5.003e-4
10 3.666e-3 1.88 9.508e-4 1.70 2.928e-4

100 3.808e-3 2.07 9.047e-4 2.03 2.239e-4
1000 3.836e-3 2.03 9.422e-4 2.00 2.353e-4

TABLE IV

L1 Convergence Results—Incompressible Pressureπ

P0 32–64 Rate 64–128 Rate 128–256

1 3.767e-3 .73 2.263e-3 0.88 1.232e-3
10 1.787e-3 .33 1.415e-3 0.58 9.522e-3

100 2.595e-3 1.28 1.074e-3 0.17 9.563e-4
1000 2.342e-3 1.95 6.071e-4 1.79 1.761e-4

TABLE V

L1 Convergence Results—Total Velocityu

P0 32–64 Rate 64–128 Rate 128–256

1 5.517e-3 1.29 2.262e-3 1.11 1.047e-2
10 6.404e-3 0.86 3.529e-3 0.78 2.050e-2

100 3.898e-4 1.70 1.195e-3 0.14 1.087e-3
1000 3.836e-3 2.02 9.426e-4 1.87 2.575e-4

TABLE VI

L1 Convergence Results—Acoustic Pressureδ

P0 32–64 Rate 64–128 Rate 128–256

1 6.599e-3 1.10 3.080e-3 1.09 1.446e-3
10 4.062e-2 0.53 2.812e-2 0.70 1.720e-2

100 1.588e-2 n/a 3.986e-2 n/a 4.952e-2
1000 2.809e-4 n/a 4.158e-4 n/a 2.655e-3

TABLE VII

L1 Convergence Results for the “Incompressible Variables”

at t = 0.5 for P= 1000

32–64 Rate 64–128 Rate 128–256

ρ 1.930e-3 2.03 4.712e-4 2.03 1.163e-4
ud 4.659e-3 2.09 1.093e-3 2.04 2.653e-4
π 2.940e-3 2.20 6.377e-4 1.90 1.711e-4
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most of the long-wavelength components of the solution will be resolved, and we expect to
get first-order accuracy.

TheP= 10 case represents a transition of the numerical method from a second-order one
to a first-order one. Although the large-wavelength acoustic waves inδ are still not quite
resolved, we can see that the “compressible flow” quantitiesρ, u, andδ are beginning to
show convergent behavior. ForP= 1, our scheme is clearly first-order accurate, with the
backward Euler-centered differencing fully resolving all features of the acoustic waves.

For P= 1000, we surmised that the backward Euler-centered differencing Helmholtz
solver would eventually damp out the acoustic waves so that the feedback would be negli-
gible. We let theP= 1000 run go up tot = 0.5. The convergence rates forρ, ud, andπ in
this case are presented in Table VII. These rates are in agreement with the results of Bell
and Marcus [20]. These rates are an improvement over those att = 0.125, indicating that
the long-wavelength components have indeed sufficiently decayed that they have no effect
on the convergence rates.

Our next convergence test is to study the behavior of the numerical method in a potential
flow. We would expect only first-order convergence, because backward Euler-centered
difference is only first-order accurate. Initially, we have an adiabatic, quiescent flow

u(x, y, 0) = v(x, y, 0) = 0.0;
ρ(x, y, 0) = 1− 1

4 tanh
(
x − 1

2

)
tanh

(
y− 1

2

)
p(x, y, 0) = ρ(x, y, 0)γ

on the unit square 0≤ x≤ 1, 0≤ y≤ 1. Again, the spatial and temporal discretizations
are1x=1y= 1/25, 1/50, 1/100, 1/200;1t = 0.51x/|c|∞. Here|c|∞ is set to 2.0. The
convergence rates for the densityρ, the pressureδ, the velocityup, and the quantityp/ργ

at timet = 1 are presented in Table VIII.
In this test problem, only low-frequency waves are present. Time step size is also suffi-

ciently small. In these circumstances, the Helmholtz solver is first-order accurate, and our
numerical results are first-order convergent for the “potential” variables.

Next we present computational results of flow in a converging nozzle. In this flow,
we prescribe an inflow velocity ofuin at x=−1, and the total pressure is constantPout

at the outflow atx= 3.0. The initial densityρ is ρ0, and the density at inflow is held
constant atρ0. The nozzle walls arey= 0 andy= 1/4(3− tanh(4(x− 4))). The grid is
100× 25 cells, as shown in Fig. 1. In our experiments, we fixPout= 100 andρ0= 1.0,
and letuin= 1.0, 2.0, 3.0, 4.0, 5.0. All are executed up tot = 3.0. Table IX shows the
approximate maximum Mach numbers in the duration of each computation.

Results foruin= 4.0 at time t = 3.0 are shown in Figs. 2–8. As the fluid flows past
the bend on the top wall, it is compressed. This compressibility effect may be seen from

TABLE VIII

L1 Convergence Results for the Potential Flow

32–64 Rate 64–128 Rate 128–256

ρ 6.179e-4 0.92 3.266e-4 0.86 1.801e-4
δ 6.221e-4 0.81 3.554e-4 0.81 2.032e-4
|up| 6.092e-4 0.99 3.065e-4 0.96 1.575e-4
p/ργ 3.421e-5 1.04 1.661e-5 0.99 8.393e-6
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TABLE IX

Maximum Mach Numbers Ma as a Function

of Inlet Velocity uin

uin Approx.Ma

1 0.12
2 0.26
3 0.42
4 0.60
5 0.80

FIG. 1. The grid used in the converging channel computation.

FIG. 2. The Mach numberMa at t = 3.0. uin= 4.0.

FIG. 3. The acoustic pressureδ at t = 3.0. uin= 4.0.
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FIG. 4. The totalx-velocityu at t = 3.0. uin= 4.0.

FIG. 5. The totaly-velocityv at t = 3.0. uin= 4.0.

FIG. 6. The incompressible pressureπ at t = 3.0. uin= 4.0.

FIG. 7. The incompressiblex-velocityud at t = 3.0. uin= 4.0.
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FIG. 8. The incompressibley-velocityvd at t = 3.0. uin= 4.0.

uin= 1.0 on and up. The total pressure is mostly acoustic pressureδ. The pressure increases
in time gradually, eventually becoming almost constant from the inlet to the beginning of
the bend, decreasing rapidly as the fluid traverses the bend, and becoming constant again
as the fluid flows out of the channel. A high-pressure spot is found near the top of the bend,
while a low-pressure spot can be found near the bottom of the bend. The pressure profiles
are basically the same for all Mach numbers (except when the Mach number becomes close
to 1; see below); when the Mach number is greater, the pressure drop across the bend is
greater, as expected. The total velocityu is mostly potential by design. Thex-component
of the total velocity,u, settles into a pattern of low, almost constant in space upstream,
rapid acceleration through the high pressure gradient region, and high, almost constant in
space downstream. The velocity gradient is greater for greater values of inflow velocity.
They-component of the total velocity,v, remains “localized” around the bend for all Mach
numbers. The incompressible quantitiesπ andud are generally small after the initialization
effects are allowed to decay sufficiently; as the Mach number increases, their magnitudes
also increase.

As we increase the inflow velocity, we shall eventually reach a sonic point near outflow.
Our algorithm and boundary conditions are not expected to handle sonic or supersonic
flows. Generally, when the Mach number becomes too large (whenuin≥ 5 in these experi-
ments), the computation gives poor results, especially near the bend, where a “separation” is
observed. If sonic is reached in the course of computation, the computation will eventually
break down. These will be topics for future investigations.

5. CONCLUSIONS

We derived the evolution equations for the divergence-free and the curl-free parts of
the velocity field in an inviscid, compressible flow. A numerical method for simulating
flows whose Mach numbers are less than one based on these equations has been devised.
Convergence results show that our numerical method is second-order accurate for low-
Mach-number flows and first-order accurate for higher Mach numbers. Results of other
numerical experiments were presented.

One area of improvement is the resolution of acoustic waves. As we have seen from our
convergence tests, there can be important feedback from the acoustics into the flow even at
low Mach numbers. While it may not be important that the sound waves be resolved, we
do wish to minimize the polluting effects of the poor resolution of acoustics. A possible
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approach would be to use a higher-order time discretization in the Helmholtz solve. A
desirable higher-order time discretization should contain enough damping to eliminate
acoustic waves effectively at very small Mach numbers, and not as much damping for the
sound waves at higher frequencies.

Another area of improvement lies in the numerical implementation of boundary condi-
tions. We do not yet fully understand how to implement boundary conditions numerically
in general; each case has to be “engineered” to obtain physically reasonable results. We
would like to develop a consistent framework for the application and the implementation
of boundary conditions for the decomposed velocity fields, as well as the corresponding
boundary conditions for the projection operators.

Finally, we would like to extend our formulation to include viscosity and chemistry terms
to study combustion applications.
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