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In this paper we present a method for solving the equations governing time-
dependent, variable density incompressible flow in two or three dimensions on an
adaptive hierarchy of grids. The method is based on a projection formulation in which
we first solve advection—diffusion equations to predict intermediate velocities, and
then project these velocities onto a space of approximately divergence-free vector
fields. Our treatment of the first step uses a specialized second-order upwind method
for differencing the nonlinear convection terms that provides a robust treatment of
these terms suitable for inviscid and high Reynolds number flow. Density and other
scalars are advected in such a way as to maintain conservation, if appropriate, and
free-stream preservation. Our approach to adaptive refinement uses a nested hierarchy
of logically-rectangular girds with simultaneous refinement of the girds in both space
and time. The integration algorithm on the grid hierarchy is a recursive procedure
in which coarse grids are advanced in time, fine grids are advanced multiple steps
to reach the same time as the coarse grids and the data at different levels are then
synchronized. The single grid algorithm is described briefly, but the emphasis here
is on the time-stepping procedure for the adaptive hierarchy. Numerical examples
are presented to demonstrate the algorithms’s accuracy and convergence properties,
and illustrate the behavior of the method. An additional example demonstrates the
performance of the method on a more realistic problem, namely, a three-dimensional
variable density shear layer. o 1998 Academic Press
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2 ALMGREN ET AL.

1. INTRODUCTION

In this paper we develop a local adaptive mesh refinement algorithm for variable den:
constant viscosity, incompressible flow based on a second-order projection method.
equations governing this flow are:

1
Ui+ U -VU = ;(—Vp—i—uVZU + Hy), (1)
o+ V- (pU) =0, )
¢ + (U - V)c = kV?c + H, (3)
V.U =0, 4)

whereU = (u, v, w), p, ¢, and p represent the velocity, density, concentration of an ad
vected scalar, and pressure, respectively, ldgd= (Hy, Hy, H;) represents any external
forces. Hereu is the dynamic viscosity coefficierk,is the diffusive coefficient foc, and

H. is the source term foc. In general one could advect an arbitrary number of scalar
either passively or conservatively.

The development of the single grid second-order projection methodology for the inco
pressible Navier—Stokes equations is discussed in a series of papers by Bell, Colella,
Glaz [6], Bell, Colella, and Howell [7], and Almgren, Bell, and Szymczak [4]. The metho
discussed here is an adaptive version of the algorithm presented by Alrigedr4],
generalized to include finite amplitude density variation as originally discussed in Bell a
Marcus [8]. The details of the single grid algorithm are discussed in Puekatt [23].
The basic methodology presented in those papers was motivated by a desire to apply h
order upwind methods developed for hyperbolic conservation laws to incompressible fl
In particular, they use a specialized version of the unsplit second-order upwind meth
ology for the convective terms in Egs. (1)—(3) that was introduced for gas dynamics
Colella [16]. The upwind methodology provides a robust discretization of the convect
terms that avoids any stability restriction other than the CFL constraint for inviscid flow.

The focus of this paper is on developing a local adaptive mesh refinement (AMR) v
sion of the basic projection methodology. This algorithm uses a hierarchical structu
grid approach first developed by Berger and Oliger [10] for hyperbolic partial differenti
equations. In particular, AMR is based on a sequence of nested grids with successi
finer spacing in both time and space. Increasingly finer grids are recursively embedde
coarse grids until the solution is sufficiently resolved. An error estimation procedure ba
on user-specified criteria evaluates where additional refinement is needed and grid ge
ation procedures dynamically create or remove rectangular fine grid patches as resoll
requirements change.

The approach to adaptive gridding used here has been demonstrated to be highly
cessful for gas dynamics by Berger and Colella [9] in two dimensions and by Ba#I[5]
in three dimensions. Steinthorsenal.[27] generalized this approach to the compressible
Navier—Stokes equations in two dimensions. Skamarock and Klemp [26] have success
implemented an adaptive scheme with subcycling in time for the compressible formulat
of the equations governing atmospheric flows.

Forincompressible flow, Howell and Bell [17] presented a two-dimensional nonconser
tive adaptive algorithm, based on the Bell, Colella, and Glaz projection formulation, whi
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did not subcycle intime. This version used an exact projection which introduced substa
complication at coarse/fine boundaries because of local decoupling of the projection.

Minion [21] has developed an adaptive projection method for the two-dimensional
compressible Euler equations with constant density on locally refined grids. In this apprt
all grid levels are advanced with the same time step which is determined by the data ¢
finest level. Minion uses the treatment of the convection terms discussed in Bell, Col
and Howell [7] in which a MAC projection is used as an intermediate step in the conv
tion algorithm in order to enforce incompressibility at the half-time level. He also uses
approximate cell-centered projection based on the MAC projection to enforce the diverg
constraint at the end of the time step.

Almgrenet al.[1, 3] developed a two-dimensional, variable density adaptive version
the approximate projection formulation developed by Almgren, Bell, and Szymczak [4]."
methodology presented in these papers used nonconservative difference approximati
the convective terms and did not incorporate an intermediate MAC projection. Since
treatment of convection was nonconservative a simplified synchronization between le
of refinement was used. Almgrenal.[2] present a generalization of this approach to thre
dimensions.

Clark and Farley [14] and Stevens [28, 29] present methods for solving the anel
formulation of the equations governing the atmosphere on an adaptive hierarchy of g
(The anelastic equations are analogous to the incompressible Navier—Stokes equatio
with a different constraint, namely, - (oo(2)U) = 0, wherepg is a given function of altitude
that represents atmospheric stratification.) In [14], there is no temporal refinement; in
29], an adaptive projection method is used with subcycling in time. Both of the ab
algorithms use a staggered representation of velocities, with arbitrary integer factol
refinement and different types of difference approximations than presented here.

In both methods there is two-way nesting, in that coarse-grid data are used as bou
conditions for fine grid operations, then fine-grid data are averaged down onto coarse
data at the end of a time step. However, there is no elliptic synchronization step to enf
both the Dirichlet and Neumann matching conditions for the elliptic pressure solve at
coarse/fine interface. As documented in [29] and this paper, there is a loss of accl
associated with not satisfying both matching conditions.

There are also a number of adaptive algorithms for incompressible flow based o
unstructured grid approach. The reader is referred to Ramamaintidr;’and Sandberg [25],
Ramamurti, Sandberg, andhrier [24], and the references cited therein for some discuss
of this approach.

The methodology presented here is based on the approximate projection algorithr
veloped in Almgren, Bell, and Szymczak [4]. The goal of this work is not simply to devel
an adaptive algorithm for the incompressible Navier—Stokes equations, but to provide
basis for adaptive algorithms for more general low Mach number flow models. Exam|
of these types of models include the anelastic equations for atmospheric flow, with moc
for moisture physics and radiation, and low-speed combustion models,where the diverc
constraint is inhomogeneous, with modules for reaction kinetics and thermal radiation
conduction. The characteristics of these more general low Mach number flows suc
additional desirable features for the flow algorithm which have influenced the design
sented here. First, the nonlinearity of the additional physics modules, particularly as rel
to exothermic reactions, make conservation of advected species an important consi
tion. Second, the additional computational requirements of these more general models
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require that not all regions of interest are refined to the finest available level. For this rea:
we want the method to perform as well as possible on coarser levels.

As in our previous work [1, 2, 3] the method presented here uses subcycling in tir
this allows all levels to be advanced at the same CFL number, where the performanc
upwind advection algorithms is optimal. However, unlike earlier versions of the adapti
algorithm, we now use an intermediate MAC projection so that the advection velocity use
evaluating the convective terms in Egs. (1)—(3) satisfies the divergence constraint (Eq.
This permits conservative differencing to be used to advance advected quantities w|
guarantees conservation on each grid individually. In addition, we have paid special atter
to the synchronization step of the algorithm so that the overall method is conservative
density (and other conservatively differenced scalar fields) and free-stream-preservin
the sense that constant scalar fields with no source terms remain constant independe
grid refinement patterns and the velocity field.

Before describing the adaptive algorithm we will briefly review the basic fractional ste
scheme for a single grid. In the third section we describe, in detail, the recursive tin
stepping procedure for the adaptive algorithm and other aspects of the adaptive algori
The fourth section shows convergence results and presents computational examples
trating the performance of the method.

2. SINGLE GRID PROJECTION ALGORITHM

In this section we review the basic fractional step scheme for the case of a single unif
grid. The reader is referred to [4, 6] for a more detailed description. In this algorithi
velocity, density, and concentration are defined at cell centers at integer times and
denoted byJ;"; , o' «, andc?; ., respectively. Pressure is specified at cell corners and

staggered in time; thus, pressure is denote@{t@“ﬂfjﬂ/zykﬂﬂ.

2.1. Advection-Diffusion Step

In the first step of the fractional step scheme, we solve the advection—diffusion equati
Egs. (2)—(3) for the updated density and concentration, and we compute an intermec
velocity field from Eqg. (1) without strictly enforcing the divergence constraint on velocity
In the second step, we project this intermediate field onto the space of vector fields wt
approximately satisfy the divergence constraint.

For the advection—diffusion step we solve the conservative forms of Egs. (1)—(3). T
leads to a natural definition of face fluxes that are used to handle refluxing across coarse
grid boundaries in the adaptive algorithm. In particular, we solve

u* —un o )

T = _[V . (UU)]n+1/2+ pn+1/2 (_vpn 1/2+ E(vzun + V2U )+ HS+1/2> ,
(5)

pn+1 _ pn 1
A = VU™ /2, (6)
and
¢+l _ ¢n K

T = —[V . (CU)]n+l/2 + Hé’|+1/2 + E(VZCn + V2cn+1) (7)
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for the intermediate velocity) * and the updated densigy’*! and concentratiorc"*.
We note here that the same conservative discretization is used to represent convecti
conservative differences because the advection velocities are discretely divergence
(This equivalence would not be true in the more general low Mach number case.)
method uses an unsplit second-order upwind predictor—corrector scheme for evaluatir
advective derivatives in Egs. (5)—(7). For this step the pressure gradient is evalu&téd at
and is treated as a source term in Eq. (5), with? = %(p” + p™1). The forcing term
Hy in the momentum equation and the source téfgin the concentration equation are
centered in time to preserve second-order accuracy.

In the predictor we first extrapolate the normal velocities to cell facé8at? using
a second-order Taylor series expansion in space and time. The time derivative is rep
using Eq. (1). For facé + 3, j, k) this gives

L.n+l/2 AX At
u|+r172/JkNu|]k+ x+7ut
At . At - —
| gkt ( Inj k™o ) (ug,hm)i,j,k + o <_(vuy)i,j.k — (WU jk
1/2
( (pr)P]k/ +MAh k+HUXI]k)> (8)
Ijk

extrapolated fronti, j, k), and

~R.n+1/2 AX At
012k & Uk — Ukt Sl

AX A\, oy At/
=U'gjk— (7 + uin+1,j,k7> (ug Im)i+1,j,k + > (—(Uuy)i+1.j,k

(—(GxP i+ pAD HS,x,iH,j,k))v

)
extrapolated fronti + 1, j, k). Here,A" is a standard, five-point in 2D, seven-point in 3D
cell-centered approximation to the Laplacian &= (Gy, Gy, G,) is a discretization of
the gradient operator which defines a cell-centered gradient from a node-based pre
field.

Analogous formulae are used to predict values;fcfff‘/gl/ % and NID]/ t’ +”1721/ Z at the other
faces of the cell. In evaluating these terms the first derivatives normal to the face (in this
um) are evaluated using a monotonicity-limited fourth-order slope approximation [1
The limiting is done on each component of the velocity at timiedividually.

The transverse derivative termst( and wu, in this case) are evaluated by first ex:
trapolating all velocity components to the transverse faces from the cell centers on e
side, then choosing between these states using the upwinding procedure defined bel
particular, in they direction we define

— (WU)i41,jk +
P41,k

~F Ay At :
U jtyok =Yk + (7 - 7”in,j,k> (U;’“m)i,j,kv (10)

~B Ay .
Ui,J'+1/2,k = l4,ni+l,k - < 2 + 2 |n1+1 k) (U{)’“m)i,jﬂ,k' 11)
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Values are similarly traced fror, j, k) and (i, j, k + 1) to the(i, j, k + 1/2) faces to
defineLAJi’Dj’kH/2 and Oi’uj,kﬂ/z, respectively.

In this upwinding procedure we first define a normal advective velocity on the fa
(suppressing thé, j + % k) spatial indices on front and back states here and in the ne
equation):

oF, if 9F > 0,9F + 9B > 0,
M =4 0 fF<08%=00rdF +98=0,
SRS ]
8, if B <0,9F +9B <.

We now upwindU based omf‘f‘jr%'k:
0", if i’ﬁ?il/z,k >0,
Ui jsaan =4 1/2007 + 0%, if 329, ,, =0,
0°, if 5291 5 < O.

After constructingUs j _1/2x, Ui, k+1/2, andU; j x_1/2 in a similar manner, we use these
upwind values to form the transverse derivatives in Egs. (8) and (9):

1
— ,\adv ,\adv A~ A
(VUy)i jk = 27y (07951 2k + 07 0/0k) (O 172k — i j-1/2.0)
— 1 A adv A adv ~ A
@0 jk = o= (B Fesas2 + D Tiegy2) (O jisaz = Bij-/2).

The normal velocity at each face is then determined by an upwinding procedure ba
on the states predicted from the cell centers on either side. The procedure is similar to
described above, i.e. (suppressing the- 1/2, |, k) indices),

GL,n+1/2, if uL,nJrl/Z >0 andGL,n+1/2 + GR,nJrl/Z > 07

Grill//zzl = 0, if GLN+Y2 < 0 GRMY/2 > 0 or GL-MHY/2 4 GRI2 —

GR,nJrl/Z’ if GR,n+l/2 <0 andGL,n+1/2+ l]R,nJrl/Z < 0.

We follow a similar procedure to construﬁﬁ/ﬁzﬁk and w“?ﬂ(/fl /2

The normal velocities on cell faces are now centered in time and second-order accu
but do not, in general, satisfy the divergence constraint. In order to enforce the constr
at this intermediate time, we apply the MAC projection (see [7]) to the face-based veloc
field before construction of the conservative updates. The equation

1 ljn+1/2
DE—)C (_nGC—>E¢MAC> — DE—)C ( ) (12)
P

At/2

is solved fopyMAC, with homogeneous Neumann boundary conditions on all physical boun
aries except for outflow, whetg""C is set to zero to enforce the “no tangential acceleration
criterion. Here

~Nn+1/2 ~N+1/2 ~n+1/2 ~n+1/2 ~n+1/2
EoC <U ) 1 Uiqjk —YUi—2jk n Vi Y12k — Vi j—1/2k

A2 | T At2 AX Ay

~n+1/2 ~N+1/2
n Wi j k+1/2 — Wi jk-1/2

Az
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andGC¢—E = —(DE~%T so that

(GSHE(I)MAC)HL]-/Z’LK _ —

with G$~F andG5~F defined analogously.
(In axisymmetric coordinate®) &~ would be defined by

~nil)2 N N L2 antly2
esc(Y / _ 1 (ra™Y2) 0 — U215 N Vi jt12 — Vi jl12
At/2 | T At)2 ri Ar Az ’

wherer is the distance from the axis of symmet&£—E would be unchanged.)
The face-based advection velocity*®V is then defined by

~ At
yADY _ M2 _ GCEgMACY
Zpin+1/2,j,k ( norm )

where G F is the gradient operator in the normal direction to each face. Here anc
Eq. (12),p on the faces is averaged geometrically from the cell centers attifvée note
also thatincorporatingt /2 into Eq. (12) defineg as a pressure correction, which clarifies
coarse/fine boundary conditions in the adaptive algorithm.)

At this point the predictor step is performed for the tangential velocity componer
density, and concentration. The extrapolation of the normal velocity components from
centers to all cell faces has been described above; the tracing of density, concentr
and tangential velocity components is analogous with the time derivatives replaced L
Egs. (1)—(3). )

Now letS={U, p, c}. Time-centered valueS™*/2 at each face (i.eg™*/2, &"*1/2, and

gtz including the normal velocity component) are determined by upwinding, as
éL, |f U:AE]\.éz.J,k > O,
Siyzjk =1 /28" +Sd), it utly, =0
SR, if uﬁijz’j’k < 0.

We define the conservative update terms in terms of the advective flRjés; UAPVS+1/2;
[V - (SU)TY? = DE~C(FaY).
Using this approximation we now compyt&*! from Eq. (6):
P = " — AtDE~C (2t

For later convenience, we define now the viscous and diffusive fluxes corresponding te
discretization ofA" = DE~CGC—E:

norm norm

RS = iRt + Ry = %(GC*EUWZ + Grom U™,
: - w K
ot = R34 Rl = K

C—EAnt C—EAn+1¢
(Gnorm c + Gnorm c )
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Equations (5) and (7) require solution of parabolic equations for each component of
intermediate velocity) *,

H’At h * E—C d
(1—2pn+l/2A >U =U" — AtDE~C(F5Y)

At

1 .
= | = n—-1/2 |, —“E—C (pvisc n+1/2
pn+l/2( Gp +2D (FUR°) + Hy )

and for the concentratiocf1:

kAt At i
<1 _ ZAh) "l — o = AtDE»C(ngv) + 7 DE%C(Féjnlff) + At Hg+l/2_
These parabolic solves are described in more detail in Section 4.

The upwind method is an explicit difference scheme and, as such, requires a time-
restriction for stability. We use the standard CFL condition, modified to account for the ce
where the initial velocity is very small (or zero) but the accelerations may be large:

. . AX Ay Az . 2AX
At < min | min , , ., min
Lk \ Uikl vkl lwijkl/ ik Y [Hug ik — (GP)iyjkl/ o0k

We note here that since the viscous terms are not included in defining the states used i
transverse derivatives (Egs. (10)—(11)) there is an additional stability constraint on the t
step for largeu or k which can require that the maximum CFL be reduced/®(tee [20]).
Also, we note that in three dimensions we have not included full corner coupling in t
advection algorithm; consequently, we require CFL to be less than 0.8 in three dimensi

The velocity fieldU * computed using Eq. (5) does not, in general, satisfy the divergen
constraint. The projection step, as described in the next subsection, approximately enfc
this constraint.

2.2. Discretization of the Projection

In the projection step, a vector field decomposition is applielf te (U* — U™)/At
to obtain the new velocity field) "1, and an update for the pressure. In particulaP if

represents the projection then
U n+1 _ un
. Y 13
o V) (13)

1 1
n+1/2 _ n-3
pn+1/2Vp - pn+1/2Vp 2+ =PM).

Note that the vector field/ we project is notU*, it is an approximation tdJ;. This
distinction is significant when the projection is not exact. Discretely, the projection
computed by solving for the appropriately weighted gradient componevitwhich we
denote by(1/0)G¢. We determine by solving

L0*2¢ = DV,

where D is a discrete nodal approximation to the divergence operatorl_ﬁ‘hbfch is a
second-order accurate nodal approximatioR to((1/p"+¥?)V¢).
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Intwo dimensions the projection discretization can be derived directly from the variatio
form

/%Vqﬁ(x) -V (x) dx = /V -Vy(x)dx Vi (x), (14)

wheredx is the volume elemerdx dy, orr dr d6, as appropriate. If this variational form
is used in conjunction with standard piecewise bilinear or piecewise linear (on a stan
triangulation of a mesh) finite element basis functions, the resulting discrete problem
responds to standard nine-point and five-point discretizatiorls[}b’f/z, respectively. (In
this paper we use the nine-point discretization for all two-dimensional problems.) We t
define

yntt _yn 1
whereGg is the cell average o¥ ¢ and

pn-ﬁ-1/2 — pn—1/2 +¢.

We note that this is not a discrete orthogonal projection; in fati"* £ 0. However,
the projection as defined by Eqgs. (13) and (14) is a discrete orthogonal projection or
larger velocity space (in the finite element sense) which is then averaged onto the
The resulting approximate projection satisfies the divergence constraint to second-
accuracy and the overall algorithm is stable. The reader is referred to Alragaeifd] for

a detailed discussion of this approximation to the projection.

In three dimensions a 27-point discretization of the projection can be derived us
trilinear basis functions; however, the derivation of an analog to the five-point scheme
not extend directly. Standard approaches to dividing a cube into tetrahedra lead to direct
biases in the discretization which are undesirable. Instead, to avoid the computational
associated with the 27-point discretization we use a standard seven-point finite differ
analog to the five-point discretization in two dimensions to approxirlngité/z. The details
of these stencils are given in the Appendix.

2.3. Initialization of the Data

Specification of the problem must include values thrp, andc at timet =0 and a
description of the boundary conditions. The pressure is not initially prescribed and mus
calculated in an initial iterative step.

To begin the calculation, the initial velocity field is first projected to ensure that it satis
the divergence constraint &t=0. Then an initial iteration is performed to calculate al
approximation to the pressuretat At/2. If this process were iterated to convergence ar
the projection were exact, tham' = U* in the first step, because the pressure used
Eq. (5) would in fact bep'/2, not p~/2. However, in practice we typically perform only a
few iterations, since what is needed for second-order accuracy in Eg. (5) is only a first-c
accurate approximation §0"+/2, which in a standard time step is approximatedBy*/2.

In each step of the iteration we follow the procedure described in the above two sub
tions. In the first iteration we usg? = 0. At the end of each iteration we have calculate
avalue ofu?! and a pressurp'/2. During the iteration procedure, we discard the value
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U?, but definep=Y/2 = p'/2. Once the iteration is completed, we use the valupdf? in
Eq. (5) along with the values &f°, p°, andc®.

3. ADAPTIVE MESH REFINEMENT

In this section we present the extension of the algorithm described above to an adaj
hierarchy of nested rectangular grids. In the first subsection we describe the creation o
grid hierarchy and the regridding procedure used to adjust the hierarchy during the ¢
putation; in the second we describe the initialization procedure used to begin a multile
calculation. The third and fourth subsections contain an overview of, then the details
the time step algorithm for the grid system that subcycles in time, focusing on the s
chronization between different levels of refinement. In the fifth and sixth subsections
discuss the spatial discretization of the single-level and multilevel elliptic operators use
the algorithm.

3.1. Creating and Managing the Grid Hierarchy

The grid hierarchy is composed of different levels of refinement ranging from coars
(¢ =0) tofinest(¢ = £max). Each level is represented as the union of rectangular grid patch
of a given resolution. In this implementation, the refinement ratio is always even, with 1
same factor of refinement in each coordinate direction,Axitl = Ay‘+l=Az+1=
(1/r)Ax¢, wherer is the refinement ratio. (We note here that neither isotropic refineme
nor uniform base grids are requirements of the fundamental algorithm; see the sectiol
future work.) In the actual implementation, the refinement ratio, either 2 or 4, can b
function of level; however, in the exposition we will assume thiatconstant. The grids are
properly nested, in the sense that the union of grids at kewel is contained in the union
of grids at levek for 0 < ¢ < £max. Furthermore, the containment is strict in the sense tha
except at physical boundaries, the letgfrids are large enough to guarantee that there is
border at least one levélcell wide surrounding each levé- 1 grid. (Grids at all levels
are allowed to extend to the physical boundaries so the proper nesting is not strict ther

The initial creation of the grid hierarchy and the subsequent regridding operations
which the grids are dynamically changed to reflect changing flow conditions use the sz
procedures as were used by Balal.[5] for hyperbolic conservation laws. The construction
of the grid hierarchy is based on error estimation criteria specified by the user to indic
where additional resolution is required. The error criteria are currently based on track
features of the flow such as vorticity or density gradients; however, more sophistica
criteria based on estimating the error can be used (see, e.g., [9]). Given grids &Mevel
use the error estimation procedure to tag cells where the criteria for further refinement
met. The tagged cells are grouped into rectangular patches using the clustering algor
givenin Berger and Rigoustsos [11]. These rectangular patches are refined to form the (
at the next level. The process is repeated until either the error tolerance criteria are sati
or a specified maximum level is reached. The proper nesting requirement is imposed at
stage.

At t =0 the initial data is used to create grids at level O throdgh. (Grids have a
user-specified maximum size; therefore more than one grid may be needed to cove
physical domain.) As the solution advances in time, the regridding algorithm is called ev
k. (also user-specified) levélsteps to redefine grids at leveélst 1 to £max Level O grids
remain unchanged throughout the calculation. Grids at level are only modified at the
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end of level¢ time steps, but because we subcycle in time, M, 1 = (1/r)Aty; level
£ + 2 grids can be created and/or modified in the middle of a letehe step itk ; < r.

When new grids are created at level 1, the data on these new grids are copied from tt
previous grids at level+ 1 if possible, otherwise interpolated in space from the underlyir
level ¢ grids.

We note here that while there is a user-specified limit to the number of levels allowe
any given time in the calculation there may not be that many levels in the hierarchy;
£max can change dynamically as the calculation proceeds, as long as it does not excet
user-specified limit.

3.2. Initialization of the Multilevel Data

As in the single grid projection method, we must first project the given velocity field
approximately enforce the divergence constraint and iterate with the initial data in orde
define an initial pressure field. For accuracy, the initial projection is done as a full multile
composite solve over all levels as described in Section 3.5. As aresult, the velocity resu
from this projection satisfies the divergence constrairtb?), not only at each level, but
also at all the coarseffine interfaces. After the projection all quantities other than pres
are averaged down from fine grids onto the coarser cells underlying them to ensure the
level ¢ data, 0< ¢ < {max iS the average of the finer values overlying it.

For the iteration used to define the initial pressure, we compute the time step or
finest level currently defined and iterate all levels with that time st®), i.e. without
subcycling. Here, however, the velocity is advanced on each level without being proje
at that level; i.e.U*¢, but notU**, is defined for O< £ < £may One multilevel composite
projection is then done on the fieft * — U%)/ At‘max to compute the pressure update ot
all levels simultaneously. Here again the constraint is approximately satisfied not onl
each level but also at all the coarse/fine interfaces. As in the single grid case, during
iteration procedure the valuesof computed by the projection are discarded and the ne
value of pressure is used for the next iteration. When the iteration is complete, the reg
time-stepping procedure (i.e., with subcycling) is begun.

3.3. Overview of Time-Stepping Procedure

There are two approaches to solving a system of equations on a composite hierarc
grids like those presented here. The first is to solve the system on the composite hier:
at each time step using a combination of multilevel operations. This approach reqt
that every level be advanced with the same time step. The second approach is to ad
each level independently at its own time steyt®™* = (1/r)At?), requiring no interlevel
communication other than the supplying of Dirichlet data from a coarse level to be u
as boundary conditions at the next finer level and then to synchronize the data at diffe
levels at some specified interval. The algorithm is this paper is based on the latter app
for reasons detailed further in a later section.

The adaptive time-step algorithm can most easily be thought of as a recursive proce
in which to advance level, 0 < ¢ < {naxthe following steps are taken:

e Advance levek in time as if it is the only level. Supply boundary conditions for th
velocity, density, concentration, and pressure from Iévell if level ¢ > 0, and from the
physical domain boundaries.
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o If £ < fmax
—advance level? + 1) r times with time stepAt‘*! = (1/r)At‘. Use boundary
conditions for the velocity, density, concentration, and pressure fromdeaeld from the
physical domain boundaries;
—synchronize the data between levetsd¢ + 1, and interpolate corrections to higher
levelsif¢ + 1 < £max

Before describing the steps of the synchronization in detail, we first discuss, in gene
terms, how to synchronize the data at different levels so that the solution as computet
each level sequentially can most closely approximate the solution which would be fot
using composite solves. The nature of the synchronization depends on the nature o
operator; however, during the advance of each level, for each operator we supply Diric
boundary data for the fine grids from the next coarser grid. Thus implies that the value
both levels are consistent, but the computed fluxes at the coarse/fine interfaces are nof
this mismatch in fluxes which accounts for the discrepancy between solutions.

For hyperbolic equations the correction of flux discrepancies, which we summarize bel
is discussed in detail in Berger and Colella [9]. For simplicity, we first assume that the coz
and fine grids use the same time step and that we have computed fluxes on the coarse
and on the fine grid using coarse-grid data for boundary conditions. Because the opera
local and the discretization is explicit, the mismatch affects the solution only adjacent to
coarse/fine interface. We make the assumption that the fluxes as calculated on the fine
are more accurate than those calculated on the coarse level. Thus, we replace the coars
flux at a coarse/fine interface with the average of the fine grid fluxes in the coarse grid upd
This corrects the coarse grid values immediately adjacent to but “outside” the fine grids .
represents a composite update to the solution. When generalized to the subcycling cas
fine-grid fluxes used to update the coarse boundary cells are averaged in time as well.

For a self-adjoint elliptic operato¥, - 8V¢, there are also fluxeg,V¢, associated with
each face which are differenced to discretize the operator. Again we solve on each |
separately with only Dirichlet data from the coarse grid, which generates a mismatch
tween the coarse and fine level fluxes at the interface. In this case we are matching Diric
data but allowing a mismatch in the Neumann data, whereas a composite solution w
satisfy both matching conditions at the interface. Unlike the hyperbolic case, here we n
solve an auxiliary elliptic equation with the flux mismatch as a source term in order
correct the solution. Furthermore, although the source is localized along the coarse
interface, the correction modifies the entire solution on both coarse and fine grids. In
context of the projection method with subcycling, we compute the temporal average
the fine grid fluxes to compute the flux mismatch that forms the source term for the
liptic correction. Similar considerations are used for parabolic equations which are sol
implicitly in the method.

With these general principles in mind we can now discuss the specific sources of mism.
in the adaptive algorithm and briefly describe how each is corrected. The specific detail
these corrections are described in the following subsection.

After the level¢ + 1 data have been advanced to the same point in time as thelleve
data, there are four mismatches in the composite solution which require correction in
synchronization step:

(M.1) The data at level that underlie the leved 4 1 data are not synchronized with the
level ¢ + 1 data.
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(M.2) The composite advection velocity computed from the MAC projection, defin
as the time-averaged (over a leveime step) levek + 1 advection velocity on all level
¢+ 1 faces, including thé/ (¢ + 1) interface, and the levéladvection velocity on all other
level ¢ faces, does not satisfy the composite divergence constraintétthe 1) interface.
This mismatch results in spatially constant advected quantities with no source term:
remaining constant.

(M.3) The advective and diffusive fluxes from the levdhces and the level+ 1 faces
do not agree at the/(¢ + 1) interface, resulting in a loss of conservation.

(M.4) The composite new-time velocity, defined as the Iéwl1 new-time velocity on
alllevel¢ + 1 cells, and the level new-time velocity on all leved cells not underlying level
¢+ 1 grids, does not satisfy the composite divergence constraint 4t the- 1) interface.

The aim of the synchronization steps is to correct the effects of each mismatch. Asir
hyperbolic case (see, e.g., [9, 10]), (M.]) is easily corrected by averaging thé levdallata
onto the levek data beneath. We denote this correction by (S.I). Velocity and scalar dat
the new time are averaged from the fine grids onto the coarse level in a simple cell-cen
averaging procedure. The level 1 pressure is then averaged in time onto the lével
nodes, such that the pressure at a lévebde underlying a level + 1 node is defined to
be the average over time of thdevel £ 4+ 1 values at that node defined within the singls
level ¢ time step just completed. This is consistent with the understanding, as describe
the next subsection, that pressure is defined over a time interval rather than at a sp
time.

The second mismatch, (M.2), is discretely manifest as a nonzero difference betwee
coarse and the effective time-averaged fine advection velocities at the coarse/fine |
face. This difference results from not having satisfied the elliptic matching condition:
the coarseffine interface during the MAC solve. As discussed earlier, an elliptic solv
necessary to correct for the mismatch. We perform a le¥lAC sync solve” (S.2) foise,
with the right-hand side defined as the divergence of the mismatch between thededel
the time averaged levél+ 1 advection velocities. The correction velocity field is define
as the inverse-density-weighted gradiend@fnd is used to re-advect velocity and scalar
at level¢. These “re-advection corrections,” as well as the interpolation of these correcti
to all higher levels, are combined with the refluxing corrections to modify the solution
described below.

In the case of zero viscosity/diffusivity, the re-advection corrections described imr
diately above and the correction for (M.3), which is simply the hyperbolic refluxing st
described earlier, are added directly to the new-time solution. The refluxing correcti
modify the solution only on the coarse-grid cells immediately outside the fine grids;
re-advection corrections modify the solution at all cells at |évahd higher.

However, in the case of nonzero viscosity/diffusivity, the modification of the soluti
by the re-advection and refluxing corrections requires solving additional elliptic equati
(S.3).

In the single grid projection algorithm, advective and diffusive fluxes are not added
rectly to the solution update; rather, they form part of the right-hand sides for the parak
solves associated with the Crank—Nicolson discretization of the diffusive terms in the
locity and scalar update equations. Similarly, in the synchronization step, the advective
diffusive flux mismatches, as well as the re-advection corrections, define the right-h
sides for the refluxing solves. The solutions to the elliptic refluxing equations atlesil
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modify the new-time velocity and scalar data on all grids at léyeind the interpolation
of these corrections will modify the new-time data on all grids at all higher levels. The
corrections to the velocity field are not divergence-free, however, and must be projec
before they can be added to the new-time solution.

The fourth mismatch, (M.4), arises from enforcing only Dirichlet conditions in the leve
projections. The mismatch is manifest as a nonzero composite residual at the inter
found using a multilevel stencil which sees both the coarse and fine data adjacent tc
interface. We can fix (M.4) using a composite (two-level) nodal projection, called the “sy
projection,” with the right-hand side defined by the composite residual at the interfe
between levelg and¢ + 1; exactly how this residual is calculated will be discussed in th
following section. Computationally, we take advantage of the linearity of the projectic
to combine the right-hand side from the composite residual with the divergence of
corrections to the velocity field resulting from the re-advection and refluxing steps so t
only one multilevel sync projection is necessary.

In the next subsection we will discuss the details of advancing a single level of d
when it exists within an adaptive hierarchy of grids and then describe the quantities wt
must be accumulated on the coarse/fine interface over thedeiek step to capture the
mismatches. Following that we will give the details of the synchronization steps descrit
above.

3.4. Details of Time-Stepping Procedure

Assume now that we are advancing le¥eD < ¢ < fmax ONe level? time step. Let
un¢, o™t andc™* be the velocity, density, and concentration at timt® on the level?
grid, whereAt* is the time step of the levelgrid. Let A® be the area of a face at levgl
and letVol* be the volume of a grid cell at levél Let MGt be pMAC as computed by the
MAC projection on level, andG p"~Y/2¢ be the lagged pressure gradient at lévédefine
S={p,c}.

3.4.1. Advancing a Single Level

To advance the data on levabne levek time step, we follow the time-stepping procedure
as described for the single grid algorithm in the previous section. We can distinguish 1
types of operations used to advance the data at a level: those that can be done one gri
time, and those that must be done at all grids at a single level simultaneously. All advec
operations other than the MAC projection are done grid by grid; the MAC projectio
parabolic solves, and nodal projection must be done on all grids at a level simultaneot
Boundary conditions for these projections and solves, and the interpolation and solu
procedure for these equations, are discussed in Sections 3.5 and 3.6.

Boundary conditions for the explicit levéloperations are implemented by filling “ghost
cells” of each fine grid. These ghost cells are filled by copying from other fine grids, whe
possible, otherwise by interpolating from underlying coarse grids or imposing physi
boundary conditions, as appropriate.

When a coarse/fine boundary does not coincide with a physical domain boundary
the level¢ advection step, level — 1 velocity and scalar data are interpolated linearly
in time and conservatively in space to fill the ghost cells outside the fine grids. (A thre
cell-wide zone of ghost cells is needed to compute fourth-order slopes; otherwise ju



CONSERVATIVE ADAPTIVE PROJECTION 15

one-cell-wide zone of ghost cells is needed.) A linear-in-time profile for velocity impli
a piecewise-constant-in-time profile for pressure, since the pressure gradient, as a fc
term, correlates with change in velocity over time. Thus in the advection step, the lac
pressure gradienG p"~¥2¢-1, is considered constant in time over the previous lévell
time step, and in the MAC solveMAC¢~1 is considered constant over the level 1 time
step and is interpolated spatially to provide boundary conditiong6t-¢ where necessary.

3.4.2. Computing the Coarse—Fine Mismatch

Over the course of a level time step, we must accumulate several quantities at t
¢/(¢ + 1) interface in order to correctly capture the mismatches at the end of theflev
time step. We refer to the face- or node-based data structures that contain these qua
as registers. The velocity and flux registers accumulate the mismatch between the le
and level(¢ + 1) face-based advection velocities and fluxes, respectively. The sync regi
accumulates the node-based composite residual which will be used in the right-hand
for the sync projection.

These registers are defined only on th€¢ + 1) interface and are indexed by level
indices. Note that il dimensions, one level face containg -1 level (¢ + 1) faces; the
sums over faces below should be interpreted as summing over al{teyel) faces which
are contained in the levélface. The sums ovéeshould be understood as summing ove
ther level (¢ + 1) time steps contained within a single levdime step.

At the end of the level time step, the velocity regist€U ‘) holds the area-weighted
difference between the MAC-projected advection velocity at Iéwahd the time average
over one level time step of the space average over the area of the lefade of the
MAC-projected advected velocity at leveh- 1:

1 r
SUK — _AZUADV,Z - AZ+1UADV.k,z+1 )
+ED D )

k=1 faces

The advective flux registers for velocityF2?"*) and scalargs F3%*) contain the time

step- and area-weighted difference between the advective fluxes calculated étdadel
the time average over the levetime step of the space average over the area of thedeve
face of the advective fluxes at level 1:

(SFde,e — Att <—A[ FSdV,e + r} zr: Z (A4+1F3dv,k,e+1>>

k=1 faces

angV,/Z — Ate <_A€ ng\/,é + % rz Z (A€+1F§dv.k,£+1)> )

k=1 faces

The viscous/diffusive flux registers for veloc'(tyFL‘,’iS“) and scalar&s Fgm) are defined

analogously, but with the viscous/diffusive fluxes rather than advective fluxes:

r
SFL\J/iS(;Z — Ate (_Ae FL\J/isc,é + r} Z Z (Ae+1 FL\J/isck,eJrl))

k=1 faces

8Féjiff,€ — Atﬂ (_AZ Féjiﬁ,( + r} i Z (AE+1ngﬁ,k,E+1)> .

k=1 faces
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We note here that the signs of the quantities added to the flux registers actually deg
on the orientation of the normal facing away from the fine grid. We follow the conventic
below that the signs are given for the faces at which the fine grid is in the direction of 1
lower coordinate indices.

In accumulating the composite residual to be used in the right-hand-side for the s
projection, we must keep in mind that the nodal projection is not an exact projection. If:
defined the composite residual as the composite divergerid&'dfon levels? and¢ + 1
at the end of the level time step, then even if the composite divergence constraint h:
been satisfied exactly by the solution of the level projections, the residual would not be z
because of the approximate nature of the projection. Hence, in order to capture only
mismatch at the coarse/fine interface and not the “approximateness” of the projection,
composite residual is defined as a time-averaged residual that measures the extent to\
the level projections fail to satisfy the equations defining the composite projection at
coarseffine interface, but not the extent to which the projection is nonexact. The compc
residual has the form

1 1¢ 1
_ 4 14 . k,0+1 k,0+1
ReéP = Dcoarse<v - 7pn+1/2,12 Go > + A E Dflne(v - 4pnk+1/2,€+1 Go >,
k=1

where the divergence operafdg,,rseis defined to include only that contribution to the usual
nodal divergence operator which comes from the léveide of the¢/(¢ + 1) interface,
and Dyine is defined to include only that contribution to the divergence which comes fro
the level(¢ + 1) side of the interface. The fine grid contribution is computed along the fir
nodes of the interface and averaged onto the coarse nodesVHeas in the single grid
projection, is the vectofU *¢ — U™¢)/At¢.

3.4.3. Synchronization of Data

The first synchronization step, (S.1), was described in the previous subsection. Here
give the details of (S.2)—(S.4).

The mismatch, (M.2), is captured in the velocity register’; the divergence ofU*
defines the right-hand side for the le¥adlAC sync solve (S.2). We solve

A ~EC
E-C C—E sl | _ RE— ¢
D <pn+1/2.ee (5€ )) = DF7CBUY

on all grids at levet for the correctiorse’. Recall thasU* is defined only at the coarse/fine
interface; herdd £~ is defined to be the MAC divergence operator evaluated only on t
level? cells adjacent to the interface but not underlying any lével grids. (At level cells
underlying levek? + 1) grids the right-hand side is zero.) Boundary conditions on physic:
no-flow boundaries are homogeneous Neum@tae)¢/on = 0); on outflowse’ =0. If

£ > 0, the boundary conditions fée’ are given as homogeneous Dirichlet conditions or
the level(¢ — 1) cells outside the leved grids. We then define the correction velocity field
from se’:

ut _—1

_ C—E 4
corr — pn+1/2,l G (3e).
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We now use the correction velocity field to define flux corrections at all lévates.
Because of memory considerations we do not store all the time-centered face states,
must redefine these on all leveffaces. That is, we recreate"V/2¢ and S™+1/2¢ ysing
UAPV-£ for upwinding, identically to the procedure immediately following the IeVIAC
projection. The flux correction&s®™ = UL, U™ and FP™ = U §77%° a
then defined.

Because we must diffuse the re-advection and refluxing corrections before adding 1
to the new-time solution and because even for inviscid flow the corrections to the new-
velocity field do not satisfy the divergence constraint, we do not add them directly to
solution. Rather, the divergence of the re-advection flux corrections is added to the adve
and viscous/diffusive flux mismatches to define the cell-centered right-hand sides fol

refluxing solves (S.3):

1 1 ;
_ E—C corr,¢ adv,¢ visc ¢
RS0 = D= R~ rver (5 o et >

RHiisync: _DE_>C ch:orr,e _ (5F§dvl +5Fglﬁ €>.

AttVolt

Then, we solve for the correction to the solutidt,,.and S{ .

At ¢
(1_ 2pn /2 )Vsync— RHS{,SW

kAt
(1 - A >§ym= RHS .

If ¢ > 0, we must now modify the levek — 1) velocity registers and flux registers to
account for the corrections to the solution due to the re-advection corrections, as we
the diffused corrections. This is analogous to the accumulation of advective and diffu
fluxes while advancing of a single level. To do this, we set

8U[_1 8U£ 1+ r Z AK COIT)

faces

8Fadve 1 _8Fadv£ 1+ 1At[ 12 AchorrZ)

faces

- - 1
(SFL\fch—l — 8FL\jlscl—1 + FAtzflz (2 AZGCHEVSZynC) )

faces

SFEMEL . sFAMETT L r} AP (ATRETY),

faces

i 1
aFglﬁ,Z 1 _5Fglﬁl l+rAtK lz (ZAEGC‘)EiynC>‘

faces

We can now add the corrections to the scalar fields,
1, 1,
Sn+ f Sn+ L + At iync

and if £ < ¢max We interpolate the correction onto the fine gridsalitfiner levels,q,
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£ < q < £maxusing conservative interpolation:
S = S 4 AtInterpong( Synd)-

This completes the synchronization steps for scalar quantities.

The sync projection, (S.4), must account for the mismatch, (M.4), and also for the c
rections now stored ir‘q/S‘ync In order to correct for just the mismatch, (M.4), we would
solve

L2+1/2¢1SP = Re@P’

whereReg  is the field we have accumulated on levehodes by taking one-sided
divergences at levelsand{ + 1. Here we would do a composite solve on leviedsidé + 1
to create a solution on both levels. We would then subtratt (o"+2/2)Gg3P from the
new-time velocity field at both levels.

To project the corrections stored nyno we would interpolate\/seync to level¢ + 1 to
definevsﬁ,fé, take a composite divergence and solve

L2+1/2¢28P = D(Vsync)

for 57 on a composite grid. Then we would defing‘ Vo as the contribution te "+1,
whereVproj = PVsyne = Vsync— (1/10n+1/2)G¢23P-

Given that, in generalReg ,#0, and the contributions iVeync are not already
divergence-free, we merge the above procedures, and we see that the field we wa
add to the existing new-time velocity field ist‘(—G¢7 P + Vprj), Which is equivalent to
adding At*Veync and subtractingAt®/p"/2)G(¢5F + ¢57). We note that if we define
psyne=¢7" + 957, then

L2+1/2(¢syn(‘) = Reé_p + D(Vsync),

and thus, in practice we need not sepatt from ¢5°. Rather we solve the above, and
add the corrections to the velocity and pressure fields:

1
n+1,¢ .__ n+1.¢ 4 4 ¥4
UMLE .= yntLe 4 At <vsync— Py G¢Sync)

1
NL,6+1 ._ yyn+le+l ef\erl _ e+1
U =U + At (Vsync pn+1/2,z+1G¢syn6)

pn+l/2,Z — p”+1/2‘[ + ¢§ync
— L _ 1
prtizz . pntl 2”K+l+¢§;nlc
In the above solutionp"tY/2¢ = 1/2(p™¢ + p"t1), and p"t/24+1 is the weighted
average over the levéltime step of the density at levéeH- 1.
If £ > 0 we must account for the correction to the le¢gklocity field in the composite
residual for the(¢ — 1)/¢ sync projection. We do this by adding a contributiorRies; %,

_ _ 1 1
Reg b := Reg b + - Dfine<vseync_ WGQbéync)’
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where the contribution iDsne comes only from the leved grids and is defined only at
nodes on thé¢ — 1) /¢ interface which are not also at leweh- 1 (i.e., which are not at a
physical boundary). This modification of the levetiata will be seen by the levet — 1)
data through the next levét — 1)/¢ sync projection.

If £4+1 < £max We then interpolate the node-based pressure corregtidrusing bilinear
interpolation, and interpolate the cell-based velocity correcﬁg’ﬁé, using conservative
interpolation, onto fine grids all finer levelsg, £ + 1 < q < ¢max

1
19 ._ 1, ¢ Gl Gttt
yntia .— yn+la 4 At Interpcons(vsjnc ~ e G¢Jnc>

n+1

Mg 4 Interpyiin (Peyne) -

We note here that in previous work (see [2]) we had believed that solving the equat
above on the level grids alone would be sufficiently accurate since béfjacandRes_p
are defined at coarse grid resolution. In a single-level sdlyg;andgsyncwould be defined
only at level¢ and corrections at levels+ 1 and higher would be defined by interpolation
While it is true that the source for the equation is at coarse grid resolution, if solved c
composite hierarchy the behavior of the solution on the fine grid away from the coarse
interface is not well represented on the coarse grid. As a result we have decided to us
composite grid solve despite the additional CPU expense.

Computational examples have borne out that in some but not all cases, the effect of t
the multilevel rather than single-level solve is nontrivial. One can show analytically that
increased accuracy is most significant when there is significant variation in the right-t
side for the level /(¢ +1) sync projection along the levél-1 boundaries. In one dimension
the solution to Laplace’s equation is linear, and hence, linear interpolation of the solu
from a coarse to fine grid is exact. For two and three dimensions the Green'’s functic
proportional to the log or the inverse, respectively, of the distance from the source; tl
functions are not well approximated near the source by linear interpolation.

3.5. Details of the Nodal Projections

The AMR time-stepping scheme requires projection solutions on single levels (“level t
jection”) and pairs of levels (“sync projection”), and for initialization it requires a projectic
on all levels at once. We compute these solutions using a multigrid algorithm adapted t
AMR grid hierarchy. The main complications involve the choice of coarse/fine interf
stencils and the need to support refinement ratios of 2 or 4 between levels.

Amathematical description of the projection operatoris givenin Section 2.2. The esse
point is that we must solve

V. (%w) = RHS (16)

for ¢ over some subset of the AMR levels for some right-hand Rid&determined by the
needs of the time-stepping algorithm. In what follows we abbreviate the elliptic oper:
asL,, and we often work in residual-correction form so that the equation to be sol
Le=r.

Equation (14) defines compact stencils for the elliptic operator in the grid interiors.
same finite-element integral provides the somewhat more complicated stencils used c
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coarse/fine interfaces. This is in contrast to some other multilevel methods, e.g. FAC [
which derive the relationships between coarse and fine data from the multigrid algorit
itself. An advantage to the finite-element formulation is that, if used consistently for bc
the elliptic operatot. , hoand the divergencB, the right-hand side of (16) is always in the
range of the elliptic operator. Thus no compatibility correction is required, even for singu
problems with periodic or Neumann boundary conditions.
Figure 1 shows the spatial extent of the stencils for the 2D nine-point discretization

a refinement ratio of 4; the 2D five-point and 3D seven-point discretizations are similar.

0]0]0j0]010}0JO

010]0]0

ofjojolo

0]0]0]0

01010j0]0O

FIG. 1. Stencils at grid edges and corners, shown for a refinement ratio of four. On the left, the stencil
V-1/pV¢ usesy values defined at nodes (solid circles) andalues defined at cells (open circles). Also, the
divergence stencil fo¥ - V usesV defined at these same (open) cell positions. On the right are the stencils f
restricting residuals to the coarse grid.
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the interiors of the coarse and fine levels each finite element basis function is assoc
with a node of the mesh and extends over the four adjacent cells. On the interfaces the
functions are associated with coarse nodes only, with values at the intermediate fine r
linearly interpolated from the coarse nodes.

In the diagrams on the left side of the figure, a value at the central node is computed
values at the indicated surrounding nodes and cells. For diverd@vicef a velocity field
V, velocity values at cells marked with open circles are used. Likewise the linear oper
expressiorL ,¢ involvesp at these same cells agdat the nodes marked by solid circles.
The diagrams on the right side show the nodes involved when averaging residuals fror
fine level down to the coarse level. A residual computed on an interface node represe
basis function with less area and, hence, less weight than a full coarse node. In the restr
step of a multigrid solve this value is combined with nearby fine grid values in order
produce a correctly weighted coarse-grid value.

Equations for the difference and restriction stencils are presented for both two and t
dimensions in the Appendix. In 2D there are only the five basic geometric configurati
shown, not counting rotations and reflections. In 3D, however, the number is much lal
and a more general element assembly process becomes necessary.

Specifying the stencils at all points in the domain defines the linear system; now
consider the separate question of how to solve it. In preparation for a multigrid solve,
start with the levels of the AMR structure on which we want the solution and construct r
levels between and below (i.e., coarser than) the active AMR levels so that adjacent
of levels are related by a factor of 2. There new levels are for use by the multigrid so
alone; they do not participate in any other part of the adaptive algorithm. Each new lev
created by coarsening the next finer level above it and will not communicate with coa
AMR levels below it in any way.

Figure 2 may make the relationships between levels more clear. The top picture shc
multigrid V-cycle (cf. [30]) for a level projection—all coarse levels are obtained by coars
ing the grid structure of the single active AMR level. The bottom picture shows a multile
cycle involving three AMR levels with a factor of four refinement between each level.

FIG. 2. Inthe multigrid V-cycle (top), operations apply only to interior points of a level. In the multilevel cycl
(bottom) two operations are defined that cross the coarse/fine interface—computing the residual and restric
to the coarse grid. Dotted lines show AMR levels, other levels are used only by the multigrid algorithm.
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We continue to denote AMR levels I8y with a particular subset of levelg, < ¢ < £y
being active in a given multilevel solve.We similarly denote the multigrid levelsnby
0 < m < my;. Since the layout of multigrid levels depends on which AMR levels ar
currently active, it will typically be different for each invocation of the solver.inet m(¢)
be the multigrid level corresponding to a given AMR level. Note that wimi{é,;) = my;,
generallym(¢;,) # O.

A multigrid V-cycle for the linear systerh €™ =r™, wherem is either identical to or
coarsened from an AMR levé| has the following recursive form:

Begin V-Cycle(qu, e ™ €, vy, v0)
If (m= 0)then
Solve(L, €™, r™)
Elseif(¢ — 1> ¢, andm—1=m( — 1))
Relax(L?, e ™ vy)
Else
Relax(Lg‘, em ™, vp)
rm b= 1t (rm — Le™)
e-1:=0
V-cycIe(L’;—l, e r™tim—1,¢ vy, v5)
emi=e"4 I et
Rela(LT, €™ r™, vy)
Endif
End V-cycle

The “Relax” operation consists of two or mang) iterations of red—black Gauss—Seidel,
while the “Solve” operation on the coarsest level uses a diagonally preconditioned conju
gradient routine. All operations take place on the dongzirtonsisting of all grids at level
£. (€ without a superscript represents the computational domain as a whole.) Bounc
conditions ordQ2¢ — 32 are Dirichlet conditions from level — 1, while ond Q¢ N 92 they
are physical boundary conditions for the edge of the computational domain. Before e
relaxation or residual computation, it is necessary to update ghost nodes around the b
of each grid from the boundary conditions or from neighboring fine grids. After relaxatio
it is also necessary to synchronize the nodes shared by adjacent grids. We perform t
updates quickly using optimized grid-to-grid copy operations.

There are two motivations for including the coarse-level conjugate gradient “Solv
operation. One is that the coarsest multigrid level may consist of hundreds of cells spr
over many grids and, thus, may not be small enough to solve by Gauss—Seidel relaxa
alone. The other is that for problems with large discontinuities in density, Gauss—Se
relaxations may converge too slowly even on a small grid.

To complete the description of the multigrid scheme, we must specify the restricti
and interpolation operators and show how the linear operator itself is applied on coarse
grids. Restriction is the simplest. We use a “full-weighting” method, where each fine nc
provides an equal contribution to the coarse grid residual. The residual thus behaves a
were a conserved quantity in the multigrid system. In 2D the stencil for this is

121
n)=1512 4 2
121
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In the multilevel algorithm to follow, we also have to deal with restriction at coarseffi
interfaces. The details are more complicated, but the same conservation arguments .
The actual stencils we use appear in the Appendix.

Next we address the coarse grid operators themselves. For the sake of brevity ir
section we will not present formulae for the various difference stencils here; those ca
found in the Appendix. What all of these stencils have in common is a dependence
coefficient ¥p in the four cells surrounding each node (eight cells in 3D). We call th
coefficiento, so that the elliptic operation becom®s: o V. For axisymmetricr — 2)
problems we can use = r/p, instead, which gives us the same stencils as in the Cartes
grid case except for a small (second-order) correction.

Sinceo is analogous to conductivity, we coarsen it by doing an arithmetic averz
transverse to each “flux” and a harmonic average parallel to the flux. This gives us sep
o’s for each coordinate direction on the coarser grids. Foktt&ection in 2D the result is

x),m-1 __ 1

Gipgjre = 1 1 ,

m m m m
01,i 01 Ot TOi1 1

with an analogous expression g /yz),‘}T/‘gl in the y-direction. For still coarser grids we use

the same formula, using values ®f ™1 to computes ®-™-2 and values ot -1 to
computes V)-m-2,

The linear operators on the coarsened grids then take the same form as the operat
the fine grids, using these coarsened coefficients. More elaborate coarsening strategie
be added to the algorithm in the future to give better performance with large discontinu
in density, but this one has provided adequate multigrid convergence for most of our pre
applications.

Having introduced the directional’s, we can now present the operator-dependent i
terpolation stencils required by the multigrid algorithm. Like the themselves, these
formulae work with both the five-point and nine-point linear operators in 2D, and an
vious extension applies to the seven-point operator in 3D. (For simplicity, we present
formulae as if we were computirgd'*? := 1 ™1e™.) We first inject the points that coincide
with their coarse equivalents,

ezn?ﬁ/z,z i—1/2 = €12 j_1/25
then we weight the points offset in tixedirection using the coefficients for differences in
that direction,
ezn?ﬂ/z,z j—1/2
_ (Uz(f)zjmjll + Uz(i)f)z'jmﬂ) Fani]ﬂ/z,zj _127+ (Uz(uxlinzl—l + Gz(f:)tle) ezniqihl/z,zj —1/2

(X),m+1 (x),m+1 (X),m+1 (x),m+1 ’
Ogi2j 02 2j41 +02}12] T 02 12j11

and use a similar formula for points offset in thiedirection. Finally, the points offset in
both thex- andy-directions are defined by the composite formula

m+1

€i11/2,2j+1/2
(X),m+1 (X),m+1\ .m+1 (X),m+1 (X),m+1 m+1
{(UZi,zj + 05511 )€ 1j22i 1172+ (0241 2] 0241 2] +1) €A s111/2,2) 4172
WML | (y).mELy mel WM+l | ().mEL \ mtl

_ +(02i,2j + 057112 )%i+1/2,2j—1/2+(0"2i,2j+1 +Uzi+1,zj+1)ezi+1/z.2j+1/2}
T _(0,m+1 (X),m+1 (X),m4-1 (X),m+1 (y).m+1 (y).m+1 (y).m+1 (y).m+1

02i2j  TO22j41 TO02412] T02412j41 022 102 112f T03 211 T02112j11
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Since the interpolation stencils do not extend past the borders of each coarse cell
special multilevel stencils at coarse/fine interfaces are required in the multilevel algoritt
We do, however, use ordinary linear interpolation instead of the operator-dependent stel
along the interfaces, since the interface stencilsLigp assume a linear profile between
coarse nodes.

A multilevel cycle for the linear system’ ¢* = RHS is as follows:

Begin Multilevel cycle(L¢, ¢¢, RHS, r™&D ¢ vy vy)
m := m(¢)
rm:= (RHS — LLgY)
If (¢ < €y thenr™ =1/, ,r™D on QL 4 9Qi+t
If (¢ =4¢p)thenv :=v;elsev:=0

en:=0
V-cycle(L:, €™, r™ m, £, v, vp)
¢t =9+ €"
If (¢ > ¢min)
no rm—LoeM on Q¢
~ | RHS — L5145 onpgqt — o0
¢g|;jl = ¢E—l

Multilevel cycle(L:™, ¢*~1, RHS™ 1™ £ — 1, vy, vp)
€M =1/ (¢t — p5gh onQ’ +9Q°

¢t =t +eMonQf + Q"

rm:=(rm— LM

en:=0
V-cycle(L:, ™, r™ m, ¢, 0, vp)
¢Z = ¢€ + em

Endif

End Multilevel cycle

This cycle is repeated as many times as necessary for convergence. All operations
place onQ¢, including points of the physical boundadg2 but not including points 0§ ¢
bordering the coarser level*~! unless otherwise noted.

3.6. Details of the Cell-Centered Level Solves

The cell-centered solves required by the adaptive projection algorithm as presented
are all single-level solves; the MAC projection, the MAC sync solve, and the parabo
solves done for the Crank—Nicolson representation of the diffusive terms all involve 1
same type of spatial discretization. The discretization yields a cell-centered right-h:
side and a cell-centered solution (by contrast to the projections described in the prev
subsection in which both the solution and the right-hand side are defined at nodes).
construction of the right-hand sides for the MAC projection and the parabolic solves |
been defined in Section 2 and for the MAC synchronization step in Section 3.4. Here
focus on the discretization of the operator and the solution procedure.

The goal in each case is to solve an equation of the fartw) — V - (8(X)V))¢ = RHS
on the union of grids at a single level with boundary conditions for the union of grids giv
by physical boundary conditions @if2 N 92, and by data from level — 1 elsewhere.
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The discretization of the variable-coefficient elliptic operator uses a standard, five-poi
2D, seven-point in 3D, cell-centered finite difference approximation in the interior of t
grids. In particular, the discretization can be viewed as computing the MAC divergenc
face-based fluxe®,(x) V¢. The only complication in these solves, aside from performan
issues, is that of maintaining sufficient accuracy at the boundary of the union of grids
level. In this subsection we describe how the stencils at these boundaries are defined

We solve this system using standard multigrid methods (V-cycles with red—black Gat
Seidel relaxation and a conjugate gradient solver at the bottom of the V-cycle) as shov
Fig. 2a. The restriction operator is volume-weighted averaging; the multigrid interpola
is piecewise constant.

At each level of the V-cycle (i.e. each multigrid leva), each red or black relaxation
sweep is performed on all grids sequentially, with the boundary conditions effectiv
imposed once per sweep. For convenience, the boundary conditions are represented
operator at any given point as Dirichlet values in the ghost cells immediately outside
fine grids. For a given fine grid, each ghost cell value can be copied from another fine
or defined using physical boundary conditions or the coarse grid data as well as int
data. In the latter two cases, interpolation or extrapolation of the data is usually require
define a value at the ghost cell location.

Physical boundary conditions are typically defined as either Neumann or Dirichlet
on a2 (as opposed to at the center of the ghost cell just outside the domain). In the ca
Dirichlet data, an extrapolation procedure is defined which fits a parabola through the v
at the boundary and the two interior grid values along a line normal to the boundary. W
used in the stencil for the elliptic operator this gives a second-order approximation tc
normal derivative at the boundary. In Fig. 3a, the linear operator at point (a) is evalu
using values at the cells marked with the small open or closed circles (the closed circle
legitimate fine grid values; the small open circle is the value at the ghost cell for (a)).
value in the ghost cell is evaluated by the extrapolation procedure defined above, usin
data at the large open circle on the boundary as well as the data at the cell values mark
large open circles. For Neumann data, the extrapolation procedure defines a parabolap
through the two interior values and with the given normal derivative at the boundary in ol
to define a value in the ghost cell. This again gives a second-order accurate approxim
to B(x)(d¢/an); in both cases the second-order flux results in first-order local truncat
error in the definition of the elliptic operator.

To supply boundary conditions from the coarse data before a red or black sweep, the
are interpolated onto the ghost cells immediately surrounding the fine grid. (See Fig. 3
a 2D example; in this the thickest lines represent the boundaries of individual fine gt
Note that at the fine—fine interface shown; nothing special is done other than a copy fror
other fine grid.) The interpolation is done in two stages: first the coarse grid data (the |
closed circles in Fig. 3b) are interpolated tangentially to the coarseffine interface, so
coarse grid data are defined at points (the open circles in Fig. 3b) which align with the
grid points in all but the normal direction to the face. In two dimensions, the interpolat
is done by defining, in each cell, first and second derivatives of the data in the tange
direction using centered differences, and then using those to interpolate the data fron
centers to the intermediate points. For example, in cellgp}s (¢° — ¢)/(2AYuse) and
Byy = (¢° + ¢ — 2¢°)/ Ay2.. However, in the cases where constructing the derivativ
would require using coarse-grid values which underlie a fine grid, the slopes are comf
using a one-sided difference and the second derivatives are set to zero (e.g., for ce
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FIG. 3. (a)Ataphysical boundary, interior and boundary valée's) are used to extrapolate to the ghost cell
(o); the ghost value and the other interior valge's) are used to construct the Laplacian at (a). (b) Locations of
coarse grid boundary condition®), tangentially interpolated valués), fine grid cells(e), and ghost cellsA’s
andJ's). (c) Domain of dependende’s and®'s) of the Laplacian at a fine celD) adjacent to the coarse/fine
interface.

dy=(¢° — )/ AYerse and ¢yy=0. If the coarse cells on both sides (in the tangentia
direction) are under fine grids, then both the first and second derivatives are set to zerc
the interpolation scheme reduces to piecewise constant.

In three dimensions the procedure is similar, although the tangential interpolatior
done in two directions simultaneously. Here the coarse grid data are used to define
quadratic function which is used to interpolate to the intermediate points. Analogou
to the two-dimensional algorithm, in the case where coarse data underlying a fine ¢
would be needed to compute a centered difference, the slope calculation in that direc
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reduces to a one-sided difference and the second derivative is set to zero. If even this
possible, the first and second derivatives in that direction are set to zero. This is don
each tangential coordinate direction separately, testing only on the four nearest neic
cells (e.9.,9i+1,j.k i1k Pi.j+1k @i.j—1k Would be used fop; j « along a face paral-
lel to z = const). The computation of the cross derivatigg,(in this case) requires the
four neighbors along the diagonals (e.@xy)i jk = (Pi+1j+1k + Pi-1j-1k — Pi—1jk

— dit1j-1k)/(AAXaseAYerse) - If any of these values is in a cell underlying a fine grid the
¢xy IS set to zero.

This stage of the interpolation is done at the beginning of the solve as opposed to at
relaxation sweep. At all but the finest level the coarse data is homogeneous becaus
residual-correction form is used within the multigrid solver, so the tangential interpolat
is a trivial operation.

Before each sweep, the data already interpolated from the coarse data (the open ¢
in Fig. 3b) are interpolated normal to each face to define values in the ghost cells
squares and triangles in Fig. 3b) analogously to the extrapolation used for the phy
boundary values. Again, for each fine grid point next to a coarse/fine interface, a para
is defined using the coarse grid value (the open circle) and the two interior values w
align with the ghost cell being filled (as in Fig. 3a). This polynomial is then evaluated at
location of the ghost cell. This normal interpolation procedure is identical in two and th
dimensions.

Note that in the upper right corner of the coarse grid region in Fig. 3b, the ghost ce
marked with a square and a triangle. This illustrates that the ghost cell values are not un
the square value will be used for computation of the operator immediately above that p
the triangle value will be used for computation of the operator immediately to the right
that point. Different coarse grid values are used to define the square and the triangle ve

The two-stage interpolation procedure described above in effect defines a specia
discretization of the elliptic operator which at the coarse/fine interface uses only interior f
grid data and coarse-grid data which does not underlie any fine grids. In fact, the depenc
of the ghost cell value on the value at which the elliptic operator is being evaluated chal
the relaxation coefficient in the Gauss—Seidel relaxation sweeps. Interpolation of the c
and fine data onto ghost cell locations is simply a convenience of implementation wi
allows greater efficiency in the relaxation sweeps and construction of the residual.

The driving concept for this special discretization is that the domain of dependence o
operator at a fine grid point adjacent to a coarse/fine interface should include only fine
values and those coarse grid values which do not underlie any fine grids. This is shov
Fig. 3c, where the points involved in the calculation of the operator at the large open ¢
are marked by closed circles. This is important because the coarse grid values undel
fine grids are defined as averages of the fine grid values, and using these to define the
cell values extends the domain of dependence of the elliptic operator inappropriately.

The resulting solution now satisfies a first-order approximation to the second-order i
operator at the fine cells adjacent to the coarse/fine interface where the stencil sees bc
coarse and fine data; a first-order approximation at all physical boundaries and a se«
order approximation everywhere in the interior of the union of grids. However, since
first-order errors are localized at the boundary of the union of grids, the overall scheme ic
second-order accurate because of the spectral properties of the discrete solution op:
In particular, these types of localized errors are well represented by eigenfunctions o
discrete elliptic operator that correspondQgh) eigenvalues of the solution operator.
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4. COMPUTATIONAL RESULTS

In this section we first identify the questions we will address computationally, in terms
convergence rates and accuracy of adaptive solutions relative to uniform grid solutions. Ir
second subsection we present results from several convergence studies in two dimen:
(Because the algorithm is identical in two and three dimensions, and the cost of dc
convergence studies in three dimensions is so much higher, we demonstrate the conver
behavior in two dimensions only.) In these studies, both the uniform grid and adapt
calculations are shown to be second-order accurate for smooth flows, and the import
of the sync projection is demonstrated.

In the following subsection, we show accuracy results for a more realistic problem, tha
abubblerising in afluid 1000 times its density. The purpose of this example is to demonst
that even for flows for which we do not expect second-order convergence because o
presence of steep gradients, if the grids are optimally placed the accuracy of the solutic
comparable to that of the solution from a uniform fine grid calculation.

Inthe fourth subsection we show results from a variable density Navier—Stokes calcula
in three dimensions and comparison of these results with experimental data. Finally, in
fifth subsection, we present some timings of the algorithm in two and three dimensions
a DEC Alpha workstation, and discuss briefly several of the design issues.

4.1. Questions

There are a number of issues we would like to address in numerical testing of
algorithm presented in the previous sections. The first is the straightforward question al
convergence rate of the solution:

(Q.1) Is the adaptive method second-order accurate for smooth flows, in the sense th
the base grid varies (with a fixed refinement ratio) both the composite solution on the en
domain, and the solution on the refined region only, converge with second-order accul
to the exact solution?

In general, the determination of the asymptotic behavior of an adaptive algorithm d
not address whether adaptivity actually improves the quality of the solution. Thus a sec
question is asked:

(Q.2) Does refinement of a region of the domain increase the accuracy of the solutio
that region, without worsening the accuracy of the solution in the non-refined regions?

In addressing the first two questions, we will perform a simple test in which a patch
fixed in time in order to evaluate convergence of the solution in the absence of any eff
due to the regridding procedure. This is not a typical use of the AMR algorithm; in practic
the flow dynamically evolves in time and the refinement adapts to the features of the fl
Thus, we ask:

(Q.3) When the refinement criteria are such that the refinement adapts to the feat
of the flow, how do the accuracy and convergence properties of the composite solu
compare to those of a uniform fine grid solution?

Second-order accuracy of the solution is only a relevant goal when the flow is sufficier
smooth; even on a single grid the method has slope limiters that locally reduce the advec
step to first-order when the gradients are too steep, in order to eliminate oscillations. Tl
for nonsmooth flows, we pose the questions:
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(Q.4) Does an appropriate refinement improve the accuracy of the solution even v
the flow is not smooth? Are the rates of convergence of the adaptive solution con
rable to those of the uniform grid solution even when those rates are less than sec
order?

A final question,

(Q.5) Is the sync projection really necessary for accuracy?
is also addressed in the next section. This question is posed here because two of the mi
presented in the literature (see [14, 29]) describe adaptive methods with elliptic solve
coarse and fine levels separately, but no elliptic synchronization. In this algorithm g
attention is paid to the elliptic synchronization, and we show in the next subsection
reasons why.

4.2. Convergence Studies

The calculations we present here demonstrate second-order convergence of the ad
method on problems with smooth initial data. These include a problem in which we
the refinement in time for the purpose of evaluating the convergence of the solution,
another for which the refinement more naturally follows the features of the flow.

Both problems are unsteady. The firstis constant density inviscid flow in a doubly peric
box for which we also demonstrate the importance of doing the sync projection. The se
is a viscous vortex merger problem, which demonstrates that the dynamic creation
destruction of grids again maintains the convergence properties of the algorithm.

In summary, with the first problem we address (Q.1), (Q.2), and (Q.5) for a simple invis
case; with the second problem we address (Q.1)—(Q.3) for a more interesting viscous
Question (Q.4) will be addressed in the next subsection.

PROBLEM 1. For the first problem, we compute the errors and convergence rates of
solution for uniform grids, base grids with one level of fagtoefinementy = 2 orr = 4,
and base grids with two levels of factor two refinement. Here we include the latter cas
demonstrate that the convergence rate is consistent as grids are recursively nested.

For the adaptive cases, we consider two different measures of the error: first, the ert
the full composite grid solution, i.e., the error of the solution over the entire domain, :
second, the error of the solution solely in the region of maximum refinement. The importe
of each measure depends on the nature of the calculation and purpose of refinement.
aim is purely to resolve a specific region or feature of the flow as well as possible and
only cares about the rest of the solution insofar as it affects the refined region, then the |
measure is most relevant. If, however, one’s goal is to compute the entire solution u
adaptivity to improve the accuracy where errors are large then the former error is n
relevant.

Ther = 2 andr = 4 cases were studied in [21] using the norm of the error on the
patch only; the norms and rates obtained here are comparable, and the conclusions ide
As in [21], for these calculations only we do not use the slope limiters for the advec
derivatives.

The initial data for the first problem are given on the periodic unit square by

u(x,y) =1—2cog2rx)sin2ry),
v(X,y) = 1+ 2sin(2xX) cog2ry).
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TABLE 1
L, and L, Errors and Convergence Rates foru in Constant Density Inviscid Calculation

L, Lo

Patch n=232 Rate n=64 Rate n=128 n=32 Rate n=64 Rate n =128

Uniform 2.668e-3 2.04 6.505e-4 2.01 1.620e-4 2.024e-2 2.04 4.923e-3 2.02 1.211«
r=2 2.290e-3 192 6.048e-4 193 1.591e-4 1.843e-2 1.90 4.933e-3 1.88 1.344
r=2,2 2580e-3 199 6.48le-4 198 1.641e-4 2.432e-2 194 6.339e-3 2.04 1.539
r=4 2.368e-3 1.92 6.265e-4 1.91 1.663e-4 2.726e-2 2.04 6.621e-3 1.96 1.698

Lz Loo

Domain n=32 Rate n=64 Rate n=128 n=32 Rate n=64 Rate n =128

Uniform 3.280e-3 2.02 8.073e-4 2.00 2.02le-4 2.120e-2 210 4.958e-3 2.03 1.213
r=2 3.245e-3 2.00 8.123e-4 2.00 2.033e-4 2.559e-2 1.82 7.254e-3 2.03 1.772
r=22 3153e-3 202 7.790e-4 200 1.947e-4 2.692e-2 192 7.125e-3 1.90 1.903
r=4 3.305e-3 2.00 8.263e-4 2.01 2.054e-4 2.776e-2 190 7.413e-3 1.88 2.016

Note Here, slope limiters are off. The upper table shows errors only in the region of maximum refinement;
lower shows composite errors over the entire domain.

The exact solution for these initial conditions is

ux,y,t) =1—2cog2r(x —t))sin(2r(y —t)),
v(X, y,t) = 14 2sin2r (X —t)) cog2x(y — t)),
p(x,y,t) = —cog4r (X —t)) — cog4nr(y —1)).

Atotal of 12 calculations are presented in Table 1; each has a base gridogells. The
row labeled “Uniform” represents uniform grid calculations; the rows labeled orr = 4
represent single level adaptive calculations, with refinement ratio of 2 or 4, respectiv
and the row labeled = 2, 2 represents the two levels of factor two refinement. In eac
adaptive case there is a single patch at each level, and the finest resolution covers the s
from (0.25, 0.25) to (0.5, 0.5) in physical space.

The calculations are run to= 0.5; the time step is determined each level 0 time ste
using the CFL number 0.75. In Table 1 we presentlth@ndL ,, norms of the errors and
convergence rates ofas calculated both on the region (0.25, 0.25) to (0.5, 0.5) (labele
“Patch”) and on the entire domain (labeled “Domain”). The error is defined as the differer
from the exact solution; the, norm of the erroein u is defined by

Note that when calculating norms of the error over the entire domain, we do not inclt
those coarse cells covered by fine cells, anchthbove depends on level. The rate betweel
the two columns of error norms is defined as,idf) /E; ), whereE, andE, are the errors
shown in the columns on the left and right sides, respectively.

From Table 1 we draw two conclusions:
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TABLE 2
L, and L, Errors and Convergence Rates foru in Constant Density Inviscid Calculation

L, L

Patch n=32 Rate n=64 Rate n=128 n=32 Rate n=64 Rate n =128

r=2 1324e-2 180 3.796e-3 1.01 1.886e-3 3.716e-2 1.09 1.740e-223 2.04le-2
r=4 224%-2 1.67 7.049e-3-1.41 1.880e-2 5.005e-2 0.51 3.524e-2-3.23 3.309e-1

L. Lo

Domain n=32 Rate n==64 Rate n=128 n=32 Rate n=64 Rate n =128

r=2 1366e-2 196 3.508e-3 1.80 1.009e-3 3.716e-2 1.09 1.740e-223 2.041le-2
r=4 1447e-2 189 3.902e-3 —.54 5.664e-3 5.005e-2 0.51 3.524e-2-3.23 3.309e-1

Note Here slope limiters are off and no sync projection is used.

e The calculated solution is converging to the exact solution with second-order accu
in the L, andL ., horms for the uniform grid and the adaptive calculations.

e When the refined grid is placed nonoptimally, as in these calculations, the errc
the refined patch is comparable to the error at the resolution of the base grid. The u
refinement is not improving the accuracy.

The second observation is not unexpected. For this problem the refined patch is pl
very poorly. At the final time flow has entered the patch and passed out the other sid
feature of the flow has been resolved over the finer grid. The adaptive algorithm ca
recover the accuracy that has been lost on the coarser grid. The second example prov
more realistic assessment of the performance of the methodology.

In order to answer (Q.5), we ran two of the above adaptive cases again, but with no
projection. Theseresults are presentedin Table 2. As we can seestAsolution generated
without a sync projection reduces to first-order accurate inLtheaorm at the resolution
increases and the,, norm reduces t®(1); for r =4 the solution actually becomes less
accurate in both norms in going from a base grichef 64 ton =128. Not surprisingly,
the maximum error is located inside the refined region adjacent to the coarse/fine inter
We conclude that the sync projection is necessary to maintain second-order accuracy
overall adaptive method. (We note here that the loss of accuracy associated with the
of synchronization between levels is also documented in [29], though for a less dran
case.)

PROBLEM 2. The first example with a single fixed refinement patch demonstrates
convergence properties of the method without the complexities associated with regrid
operations. However, it is also atypical because the refinement is not adapting to the
Our nextexample provides a more realistic demonstration of the methodology. This prot
is a constant density four-vortex calculation. To initialize the velocity field for this proble
we first place four vortices in the unit square, centered at (0.5, 0.5), (0.59(@4H5, 0.5
+ .45% +/3), and(0.455 0.5 — .45 +/3). The first vortex has strength150, the “outer”
three vortices each have strength 50, and the profile for each, centered &xounyl
is

2(1+ tanh(100(0.03— 1)),



32 ALMGREN ET AL.

TABLE 3
L, and L, Errors and Convergence Rates foru in Constant Density
Viscous Vortex Merger Calculation

L. Lo

Domain 64 Rate 128 Rate 256 64 Rate 128 Rate 256

Uniform 1.558e-2 1.98 3.940e-3 1.89 1.067e-3 2.70le-1 2.00 6.73%-2 2.72 1.020¢

Lz Loo

Domain 16 Rate 32 Rate 64 16 Rate 32 Rate 64

r=4 1.560e-2 1.98 3.944e-3 2.04 9.607e-4 2.648e-1 2.00 6.623e-2 2.21 1.433

wherer; = 1/(X — X0)2 + (Y — Yo)2. Here and in all further calculations the slope limiters
are used.

We use the vorticity as the source term for a Poisson equation, in which the field be
solved for is the stream function. (We can use the same multilevel projection methodol
already in place for the velocity projections to solve this Poisson equation.) The stre
function is computed with homogeneous Dirichlet boundary conditions on the unit squeé
and the velocity field is calculated from the stream function. This velocity field is the
projected to ensure that it approximately satisfies the discrete divergence constraint.

The calculations are run to= 0.25 with a CFL number of 0.9. For the adaptive calcu-
lations, the refinement criterion is that the magnitude of vorticity be greater than 5% of
maximum. The viscosity is set {0 = 0.0001.

The convergence results from a total of three uniform grid calculations and three adap
calculations are shown in Table 3. The uniform grid calculations have base gridsd44
128x 128, and 256« 256. The adaptive calculations each have a single level of factor fo
refinement and have base grids of 2616, 32x 32, and 64x 64. A time sequence of
the adaptive calculation with a base grid of 464 is shown in Fig. 4 showing both the
evolution of the flow as the outer vortices orbit the inner vortex and the dynamic adaptat
of the grids to follow the evolving vortical structure.

Here there is no exact solution, so we use the solution computed on ax1Z#
uniform grid as a reference solution, the difference from which defines the error of 1
coarser calculations. Because the gridding is different in each calculation, we present
the error as defined over the entire domain.

This problem clearly demonstrates second-order convergence of the algorithm. Furt
more, when the refinement criteria allow the method to adapt to the flow, the algorithm
essentially recover the accuracy of the equivalent fine grid.

4.3. Axisymmetric Bubble Rise

The next set of calculations compares the errors of a composite grid solution with
errors of a uniform fine grid solution for an underresolved flow with a very strong dens
contrast. The extreme density contrast and large density gradients were chosen so th
flow is not in the asymptotic, second-order regime for the basic projection algorithm. T



CONSERVATIVE ADAPTIVE PROJECTION 33

(a) t =0.05

(b) ¢ = 0.15

(c)t=0.25

FIG. 4. Contour plots of vorticity for the four-vortex calculation with a base grid 05684 and one level of
factor 4 refinement at times= 0.0, 0.15, 0.25.

goal here is to show that with the adaptive algorithm one can achieve accuracy compa
to a uniform fine grid even for flow that is not well-resolved at the finest level of refineme
We present data from axisymmetric calculations of a light bubble rising under gravity
a constant density background. The regridding criterion, which flags coarse grid cells
refinement whenever the density is below a critical value, is such that all of the bubbl
always at the finest resolution.
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(a) t = 0.0 (b) t = 0.01 (c) t = 0.022

FIG.5. Contour plots of density for the bubble calculation with a base grid of 3@ and one level of factor
4 refinement at times= 0.0, 0.01, 0.022

The initial conditions are a zero velocity field and a density field

p(r,z,t=0) = lerpz+pl;pztanh(5ooo(\/r2+(z—1)2— Ro))

2

ina 0.01 x 0.02 domain, wherd?; = 0.0025 is the radius of the bubble. Here= 999.2
andp, = 1.225, the densities of water and air, respectively, in MKS units. The viscosi

u = 0.0011377 is that of water. Contour plots of the time evolution of the density fie
from the calculation with a base grid of 3632 and one level af = 4 are shown in Fig. 5;
these show the rise of the bubble and the moving fine grid. Contour plots from the unifc
grid calculation at the same times are indistinguishable.

Here again we do not have an exact solution; instead the calculation is first done
a uniform 256x 512 grid, and this is taken as the reference solution, the difference frc
which defines the error. Shown in Table 4 arelthaorms of the errorsiip, u, v, evaluated
on the entire domain from several calculations. These calculations include three unif

TABLE 4
L, Errorsin p, u, andv on the Entire Domain as Calculated Using a Uniform
256 x 512 Grid as a Reference Solution

0 u v

16x 32 32x64 64x128 16x32 32x64 64x128 16x32 32x64 64x 128

Uniform  .3377 .2281 .1330 6.025e-5 2.921e-5 1.116e-5 8.460e-5 2.967e-5 1.083¢
r=2 .2315 .1343 2.921e-5 1.116e-5 2.936e-5 1.08le-5
r=4 .1362 1.126e-5 1.135e-5
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grid calculations (with base grids of 2632, 32x 64, and 64x 128), and three adaptive
calculationsy = 2 using base grids of 1& 32 and 32x 64, andr = 4 using a base grid
of 16 x 32. Note that the calculations along the same diagonal have the same resol
at the finest level. Only the error relative to the uniform 256612 calculation is shown
here. As expected because of the steep density gradient, the solution is not converging
second-order accuracy.

We first note that for this flow the density is converging at less than first-order accuracy
the velocity is converging at approximatedy(h*3) for the uniform grids. Nevertheless, the
adaptive computations are resolving the flow with the same global accuracy as the uni
grids of the same resolution as the finest grids in the refinement.

4.4. Three-Dimensional Shear Layer

Finally, we present a three-dimensional variable-density shear layer calculation. The
for the problem were chosen to model the conditions studied by Brown and Roshko
and Konrad [18] who were studying the effects of density variation on low speed st
layers. Although the experimental shear layer was unforced, we have added forcing, (
frequencies taken from Monkewitz and Huerre [22] as was done by @hiah[13] for
their two-dimensional simulations of shear layers.

The calculation was performed in a box with dimensions 51128 x 384. The base grid
was 32x 8 x 24, and there were two levels of refinement, the first by a factor of 4 and
second by a factor of 2, for an effective resolution at the fine level o268 x 96, with
AXiinest= 2. The boundary conditions were: inflowxat= 0, outflow atx = 512, slip walls
aty = 0,128, and no-slip walls a&t = —192, 192.

The computations presented here were performed at Reynolds numiddr based on
the mean flow rate and the length of the computational domain. The flow was initialize
beU(x,y,zt=0) = (up(2), 0, 0) with

Uo(2) = er Ve (1 A, tanh(?—j))

andx, = (U; — Uy) /(U1 + Uy), whereU; = 1.451 U, = 0.549, andy = 6. The density
was initialized in the domain to be(x, y, z,t = 0) = (1 + 0.02R)po(2), where

2
00(2) = pLt P2 (1 — Ar tanh(—z>>,
2 8o

with A = (o2 — p1)/(p1 + p2), Wherep, = 1, po = 7, andR was a random fluctuation
from —1 to 1, intended to break the inherent symmetries in the flow. These profiles
the same profiles as were used by Cleeal.[13], expect for the inclusion of the random
perturbation in the density field.

The inflow velocity profile as a function of time was

10

Ux=0,y,zt) = <1+ Z m; sin( fit)> Uo(Z — Zper),

i=1

where e =0.1sin( f1t) sin(0.2208932¥). The frequencies werd; =0.219, and f;
= fi_1/i for 2 <i < 10, and the magnitudes werg = 0.01,m, = 0.75m;, m3 = 0.55my,
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my = 0.44m;, andm; = 1.7m;y /i for5 < i < 10. The density of the fluid flowing in through
x =0 was defined to be (0, y, z,t) = po(Z — Zperr). These inflow profiles are also taken
from the work of Chieret al,; however, we have added a transverse perturbation in tt
form of zyer to introduce three-dimensional structure into the flow. This perturbation of tt
inflow data is intended to mimic a mild “flutter” of the splitter plate used in the experiment
For this computation the flutter oscillated in time with a zero mean and had a maximi
deflection of 5% of the finest mesh spacing. Although this perturbation is small, we fou
that without the introduction of some three-dimensional perturbation the flow evolved
an essentially two-dimensional configuration with very small transverse velocities for |
size of computational region considered here.

The flow requires about 100 coarse grid time steps for the initial perturbations to p
through the domain and the pattern of vortex formation to become established. For tt
initial cycles we adjusted the error criteria so that no level 2 grids were formed and so t
level 1 grids followed the structures. We then set the error criteria so that level 2 grids wo
be formed in the region where the two fluids were mixing and ran the computation for
additional 225 level 0 time steps. By step 200 all of the vortical structures in the probils
had been resolved on the finest level mesh from their inception.

In Figs. 6a—d we show a time sequence of density inxtecross section centered
spanwise in the domain. These “snapshots” are taken at intervals of 10 level O ti
steps; the times are: (@)= 205t =1585; (b)n=2151t=1630; (c)n=2251t=1673;

(d) n=2351t=1715. Recall that eight level-2 time steps are taken for each level-0 tir
step. Figures 6e—f show spanwise averages of the density-&05 andn = 225 in order

to calculate the spreading rate. Although itis difficult to precisely define an envelope aro
the spreading shear layer, the visual spreading 8atecalculated from these profiles is
consistent with the experimentally computed value of 21% [12] superimposed on our ¢
in these figures. In Fig. 7 we show a 3D rendering of the magnitude of vortiaity-a205

to demonstrate the spanwise structure of the flow. The region shown in this figure co\
the full distance irx but not the fullz-extent. We note that although the transverse inflow
perturbations are quite small substantial three-dimensional structures do develop.

Finally, in order to have a more quantitative comparison with the experimental data
accumulated flow statistics from= 200 ton = 325. In particular, we computed time- and
spanwise-averaged values of the mgarelocity and density and the density perturbation.
(The spanwise averaging was across the entire domain.) We note that, although the
interval corresponds to 1000 steps on the finest grid, we only accumulated data at the e
coarse grid time steps so that the statistics include only 125 time samples. These are s
by U; for the mean velocity angd, for the mean density and density perturbation. In Fig. €
the profiles are plotted on the same axes as the experimental data from [12] (for the n
values) and [18] (for the fluctuating density); the experimental values are shown as m
values with error bars which represent the observed spread in the data. The velocity pr
matches the experimental data well. The density profile lies above the experimental da
the center of the profiles. By examining the statistical data earlier in the computation
found that the density profile was converging more slowly over time than the velocity profi
Consequently this disagreement may be an artifact of the small number of temporal sam
(Chienet al.[13] report needing several thousand samples to compute accurate statist
The perturbational density profile matches the overall structure of the experimental pro
The peak is well approximated and the overall shape of the profile is correct, including
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(a) t=1585 (b) t=1630

(©)t=1673 (@t=1715

(e) t= 1585 () t=1673

FIG. 6. (a)—(d) Time sequence of density ¥az cross section ay = 64 with the level-1 and level-2 grids
superimposed. (e)—(f) Spanwise average of density; superimposed for comparison is the experimentally ob
visual spreading ratéyijs = 21%. In each figure the lighter fluid is on top.

flattening and subsequent drop-off to the right of center although the values in the ce
are somewhat high.

4.5. Performance

In this subsection we look at performance data and associated issues for the ads
algorithm discussed above. In the first part of the section we present timings for one o
test problems shown in Section 4.2. In the second part we discuss the impact of sor
our design choices on the accuracy and performance of the algorithm.

4.5.1. Timings

Here we present timings on a single processor of a four-processor DEC Alpha for
constant density four-vortex problem presented in Section 4.2. In addition to the unif
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FIG.7. Three-dimensional rendering of vorticitytat 1585 with the level 1 and level 2 grids superimposed.
The domain is cropped slightly in ttedirection.

256 x 256 calculation and the calculation with a €464 base grid and = 4, we present
timings from two additional calculations: 128 128 base grid witlr =2 and 64x 64
base grid with two refined levels with=2. Each calculation has the same resolution a
the finest level. Presented in Table 5 are the number of CPU seconds required to com|
the calculation, the number of total cells advanced, and the CPU time per cell advar
as measured ips/cell. The number of total cells advanced is the sum over all levels
the number of cells advanced at that level. The ratio of CPU time per cell advancec
interesting for evaluating how the cost of the calculation scales with the size of the probl
and refinement strategy.

The timings presented in Table 5 show that the adaptive version of the algorithm wit
single level ofr = 4 increases the cost per cell by approximately 20%; the single level
r =2 increases the cost per cell by approximately 30%. Roughly speaking, this sugg
that if less than 80% of the problem domain requires the highest resolution, using a sir
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TABLE 5
Timings for Uniform Grid and Refined Grid Calculations on a Single Processor of a
Four-Processor DEC Alpha for the Four-Vortex Problem Presented in Section 4.2

CPU time
Cells advanced
Total(s) us/cell Number
Uniform 256 x 256 1389. 161 8650752
Base grid 128« 128 r = 2 378.6 211 1794496
Base grid 64x 64,r = 2,2 256.1 236 1085056
Base grid 64x 64,r = 4 241.3 195 1239232

level ofr =4 refinement is faster in overall time than a uniform fine grid calculation (e
well as requiring less total memory).

It is interesting that the three-level calculation, although it advances the fewest num
of cells, takes longer than thre=4 calculation. (There are fewer total cells advancec
because the regridding algorithm allows for less total area at the finest resolution u:
two factors of refinement by 2 than one factor 4.) The reason this occurs is that althol
both calculations spend approximately the same amount of time in the MAC project
and nodal level projection, the three-level calculation spends almost twice as long in
sync projections and sync solves. In both casesNfdime steps at level 0, there ahe
level (0—1) sync projections and level 0 MAC sync solves; for the three-level case, howe
there are additionally i@ level 1 sync projections and sync solves. While the level (0-1
sync projection is less costly for= 2 than forr = 4, the expense of the additional level
outweighs this factor.

The efficiency of the multigrid solvers is the single largest factor in determining tt
overall efficiency of the code. In the timings discussed above, the multigrid tolerances w
specified to be 10'2 for the MAC projections, 16° for the MAC sync solves, 102 for the
nodal level projections, and 1 for the nodal sync projections. These were the ratio of th
final residual to original residual in thHe,, norm for the elliptic equation to be considered
solved. The difference between the tolerances for the level solves and those for the
solves is dictated by the requirements of solvability; similarly, in practice the tolerances
the sync solves at levels > 0 must be smaller than those at level O for the level O syn
solves to be solvable on a domain with Neumann or periodic boundaries.

4.5.2. Design Issues

In this section we address the question of why subcycling in time is worthwhile in terr
of accuracy and efficiency of the algorithm. In the case of no-subcycling, such as usec
Minion [21], there are no elliptic synchronization operations necessary because the elli
solves are done as composite solves.

A direct comparison of approaches is not practical. We would require substantial ac
tional implementation effort and software redesign to implement a single step algoritt
Also, since our implementation has substantial additional capability compared to Minio
code, a direct timing comparison with his code is not possible. We can, however, m
a reasonable estimate of the relative performance of our algorithm versus a single
version based on the same methodology by comparing timings for the nodal project
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(A full multilevel nodal projection is used for initialization; hence, we can measure
performance.)

Before discussing the detailed timing it is worth reviewing the pattern of nodal projecti
during a time step with subcycling. For a three-level computation during a coarse time
the algorithm requires one level 0 nodal projectiolevel 1 nodal projections, and level 2
nodal projections. The synchronization requiresultilevel solves over levels 1 and 2 and
one multilevel solve over levels 0 and 1. A single time step algorithm requires one multile
time step over all three levels for each time step; howevesteps are required to reach the
same final time. We note also that because of the complication of the stencils at coarse
interfaces, the multilevel solves are more costly than solves at a single level.

The problem we have chosen for comparison is a three-dimensional shear-layer si
to the example of the previous section with a fixed pattern of grids. For this the base
was 40x 8 x 24 with two levels of =4 refinement. From the initialization we measured th
time for a single 0-1-2 projection as 258 s. Thus, 16 steps of a single step algorithm w
require 4128 s for the nodal projections. For a single step of the subcycling, the code req
2606 s for nodal projections. Thus, the nodal projections for a nonsubcycling version of
algorithm would require approximately a 60% increase in computational time, compe
to the subcycling version. Since the execution pattern is similar for the MAC projecti
and the advection steps, we would expect this comparison to be a reasonable estimat
complete nonsubcycling version of the algorithm.

We also note that the use of subcycling versus nonsubcycling has a nonnegligible effe
accuracy for the types of advection schemes we are using. In particular, these types of e
upwind methods perform best at CFL numbers approaching one. For one-dimens
advection tests, dropping the time step by a factor of 4 increases the error by approxim
20% for a discontinuous profile and approximately 50% for a smooth profile on very co:
grids. On finer grids the disparity is increased so that for a discontinuous profile the €
is a factor of 2 larger and for a smooth profile the error is larger by a factor of 4. Th
smaller time steps lose sufficient accuracy that a factor of 2 finer spatial grid is require
achieve the same accuracy in the solution. Additional reductions in the CFL further rec
the accuracy of the scheme. Although this effect may be reduced when additional phy
processes are introduced, we nevertheless expect subcycling to produce better rest
advectively dominated flows than a nonsubcycling version. In particular, as illustrate
the previous section, on unrefined portions of the domain our algorithm retains (at least
accuracy of a uniform coarse grid solution at a comparable resolution. Without subcyc
we would expect a degradation in the unrefined portions of the flow.

5. CONCLUSIONS AND FUTURE WORK

We have described here a conservative adaptive projection method for time-depel
incompressible flow which conserves advected quantities and maintains free-stream p
vation across coarse/fine interfaces. The levels in the adaptive mesh hierarchy are re
in both space and time. The fractional step character of the projection algorithm reqt
that we solve hyperbolic, parabolic, and elliptic PDEs in an adaptive framework at diffet
stages of the algorithm. The ability of the methodology to handle these prototype equa
allows for generalization to a much broader set of equations governing low Mach nun
flows with more realistic physics.
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Future directions for this work include the following: improvement to the multigric
solvers for greater efficiency in the case of strongly varying coefficients (i.e. density jum,
and optimization for running on vector and/or parallel computing platforms; developme
of partial refinement strategies, in which the grid is refined only in one or two coordinz
directions; and extension to a quadrilateral grid framework for body-fitted gridding.
addition, we are exploring the development of automatic error estimation techniques
can effectively control the grid placement. This methodology will also be used to study &
validate numerical models of subgrid-scale processes in various physical application
order to understand their scale dependence.

Finally, we are extending the algorithm to include a more general divergence constr:
V- (oU) = Q. This will provide a framework for modeling more general low Mach numbe
flows such as low speed combustion and the anelastic model of the atmosphere.

APPENDIX: PROJECTION STENCILS

Restriction, divergence, and the elliptic operdtqe are all defined at nodes of the grid
and thus involve complicated stencils at coarse/fine interfaces. We build up these stel
using a finite-element assembly process involving the coarse and fine cells immedia
surrounding each interface node. The spatial extent and general form of the stencils ir
is shown in Fig. 1 for a refinement ratio= 4.

The finite-element basis functions for the 2D nine-point stencils have a bilinear fol
on each cell, the 2D five-point stencils are linear on each of two triangles in each c
and the 3D seven-point stencils do not have an obvious geometric interpretation—they
essentially an extension of the 2D five-point stencils into three dimensions. The detail
integration within each cell, however, are not of primary interest to us here. What we n
is the contribution each cell makes to a difference stencil, and a procedure for assemt
the contributions with the appropriate weights for each interface node.

The divergence stencils in 2D for uniform parts of the grid look like

(D] = 1 [-11 1 1 1
S \2Ax |[-1 1]’2Ay |[-1 —-1])°
where the velocity components are defined on the four cells surrounding each node.
gradient stencil ] is just the transpose of this, taking a scalar quantity on nodes al
returning a vector quantity on cells. Because the gradient stencil covers only one cel

like interpolation, does not require special treatment at interfaces.) BredRingyp| into
individual cells is trivial. The contribution of the cell value to the lower right of the node

for example, is
1 o o0 1 0o O
01~ (g5 [0 1) 28y [0 1))

With the contributions from the other three cells we then have
[D] =[D--]+[D-+] +[D4-] +[D44]

in the grid interiors. These stencils for divergence are correct for both the bilinear and lin
triangular basis functions and extend to 3D in a straightforward manner. For axisymme
calculations a small correction is required; this will be presented at the end of this appen
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At coarseffine interfaces we define divergence only at coarse nodes. The sum ove
cells covered by the basis function can be expressed as

[D]o=wi Z [DC]O+r1d< Z D], + Z x(p) Z [Df]p>

0 | ces0) feSi(0) peF(0) feSt(p)

Hered is the spatial dimension (2 or 3),represents the coarse interface nodgdatoy)

in 2D), where we are evaluating the stencil, dn) is the set of fictitious fine nodes
(at(px, py) in 2D) on the coarseffine interface betweesnd its neighboring coarse nodes
St (0) and (o) are the sets of fine and coarse cells surroundijnmgspectively. In 2D the
weight function

(= L= 1P =0 13y =0y

capturesthe linear form of the basis function along each interface edge. (Note that thisw
function resembles, but is not identical to, the bilinear basis funetipny, = max(yx, 0)

in the coarse grid and along the interface, but within the fine gidrops to 0 across the
width of a single fine cell.) In 3D the weight function has a similar form:

o(py = TP =D = lfyg—oyixr ~Ip =0

The factorw, represents a weight for the entire stencil. In 2D it is the integral of the ba
functionyr, normalized so that a coarse node has weight 1:

wo—z + > o +ZX(D)Z

ce&(O) feSf(O) peF (o) feSf(p)

In 3D, analogously,

o= 3 i+ Y it Y am Y o

ce&(O) feSt(0) peF (o) feSt(p)

For the linear operatdr,, we have several different stencils. Bilinear basis functions
2D give a nine-point stencil derived from integrals over four adjacent cells. Each of th
four integrals gives a similar “unit cell” contribution, such as the following for the low:
right cell:

0 [0 0 0 4 [0 0 O
+_ —
0 —2 2|+ 0 —2 -1

2 2
6AX* 19 1 1] |0 2 1

[(DoG)s] =

As with divergence, we build up the stencil in uniform parts of the mesh by simply add
four unit cells together:

[(DsG)] = [(DoG)-_] + [(DaG)_4] + [(DoG)+_] + [(DoG).s-].
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On coarseffine interfaces we again sum over the cells where the basis function fo
interface node has support:

1 1
[(DoG)lo=— | > [(DoG)o+ 5 | > [(PoG)ilo

(0]

ce%(0) feSt (0)
+ > x(@ Y [(DoG)ily
peF(0) feSt (p)

Note that the distinction between® and o is only relevant on coarser levels of a
multigrid structure, as these directional coefficients were introduced as part of the multic
coarsening scheme. In other cases, including all applications of the interface stencils
havesc® = o =0 = 1/p.

The five-point formula obtained from linear basis functions over triangles differs fro
the nine-point formula only in having a different unit cell:

Jw [0 0 0] 4 [0 0 O
[(DoG)y- ] == |0 1l +>=1]0 -1 0
28 g 0 of Mo 1 o

The extension of this formula to 3D to obtain the seven-point stencil is straightforward.
Full-weighting restriction in a uniform part of the mesh assigns to each coarse nod
weighted sum of the values at all fine nodes within the four surrounding coarse cells (el
in 3D). For each coarse node at the coarseffine interface there is a smaller set of nearb
nodes, with the remainder of the coarse value coming from the interface node itself. If
defineG(0) as the set of fine nodes—not interface nodes—not morertfiae cells away
from o in any direction, we can express the restriction of a quastitgfined on level as

1
(If’ls)0 = WeS + a Z x (P)Sp.
peG(o)

Note that lettings be a constant provides an alternate definitiowgf
For axisymmetric problems in 2D we scale the difference stencils byhich here
denotes radius, rather than refinement ratio) to put them in conservative form. Correc
terms are required to correctly account for théependence in the finite element integrals.
Here we present only the form of the stencils associated with bilinear elements.
Divergence becomes

1 |- 1 Ar —
(D] = [ — r- ry T r ry + 1 1 ’
2Ar | —r_ 1y | 2Az | —r_ —ry4 122Az |-1 1

wherer_ andr, are defined at cell centers. Note that, except for the correction term, t
stencil is the same as would be obtained by replacing the vectoMibigr vV . The stencil
breaks up into individual cells for assembly at the coarse/fine interface just as the Carte
grid stencils do.
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Gradients also requires a correction term,

.
G L[ty L[t 1], A (11
“\2Ar | -1 1|'2Az|-1 -1 1raz| 1 -1 ’

where E] andr are both defined at a cell center.

For the linear operatdr , we redefiner asr/p and use the same multigrid coarsenin
formulae as before. The stencil then looks like the Cartesian grid stencil with a sr
correction term, the contribution from the lower right cell now being

,0 [00 0] @ [OO O ,@ar [0 00
[(D(1/p)G)y-]= 5|0 -2 -2|4+—"—]|0-2-1|+—-—= [0 10
B6Ar 0-1 1 6AzZ 02 1 12 Az 0-10

The other unit cells have a similar correction, except for the signs. In the upper right
like this one, the correction opposes the main difference term, while in both left cells
correction has the same sign as the main difference. In all four cases the effect is to
the effectiver for the cell toward the node where the stencil is being evaluated.
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