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In this paper we present a method for solving the equations governing time-
dependent, variable density incompressible flow in two or three dimensions on an
adaptive hierarchy of grids. The method is based on a projection formulation in which
we first solve advection–diffusion equations to predict intermediate velocities, and
then project these velocities onto a space of approximately divergence-free vector
fields. Our treatment of the first step uses a specialized second-order upwind method
for differencing the nonlinear convection terms that provides a robust treatment of
these terms suitable for inviscid and high Reynolds number flow. Density and other
scalars are advected in such a way as to maintain conservation, if appropriate, and
free-stream preservation. Our approach to adaptive refinement uses a nested hierarchy
of logically-rectangular girds with simultaneous refinement of the girds in both space
and time. The integration algorithm on the grid hierarchy is a recursive procedure
in which coarse grids are advanced in time, fine grids are advanced multiple steps
to reach the same time as the coarse grids and the data at different levels are then
synchronized. The single grid algorithm is described briefly, but the emphasis here
is on the time-stepping procedure for the adaptive hierarchy. Numerical examples
are presented to demonstrate the algorithms’s accuracy and convergence properties,
and illustrate the behavior of the method. An additional example demonstrates the
performance of the method on a more realistic problem, namely, a three-dimensional
variable density shear layer. c© 1998 Academic Press
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1. INTRODUCTION

In this paper we develop a local adaptive mesh refinement algorithm for variable density,
constant viscosity, incompressible flow based on a second-order projection method. The
equations governing this flow are:

Ut + (U · ∇)U = 1

ρ
(−∇ p+ µ∇2U + HU ), (1)

ρt +∇ · (ρU ) = 0, (2)

ct + (U · ∇)c = k∇2c+ Hc, (3)

∇ ·U = 0, (4)

whereU = (u, v, w), ρ, c, and p represent the velocity, density, concentration of an ad-
vected scalar, and pressure, respectively, andHU = (Hx, Hy, Hz) represents any external
forces. Hereµ is the dynamic viscosity coefficient,k is the diffusive coefficient forc, and
Hc is the source term forc. In general one could advect an arbitrary number of scalars,
either passively or conservatively.

The development of the single grid second-order projection methodology for the incom-
pressible Navier–Stokes equations is discussed in a series of papers by Bell, Colella, and
Glaz [6], Bell, Colella, and Howell [7], and Almgren, Bell, and Szymczak [4]. The method
discussed here is an adaptive version of the algorithm presented by Almgrenet al. [4],
generalized to include finite amplitude density variation as originally discussed in Bell and
Marcus [8]. The details of the single grid algorithm are discussed in Puckettet al. [23].
The basic methodology presented in those papers was motivated by a desire to apply higher
order upwind methods developed for hyperbolic conservation laws to incompressible flow.
In particular, they use a specialized version of the unsplit second-order upwind method-
ology for the convective terms in Eqs. (1)–(3) that was introduced for gas dynamics by
Colella [16]. The upwind methodology provides a robust discretization of the convective
terms that avoids any stability restriction other than the CFL constraint for inviscid flow.

The focus of this paper is on developing a local adaptive mesh refinement (AMR) ver-
sion of the basic projection methodology. This algorithm uses a hierarchical structured
grid approach first developed by Berger and Oliger [10] for hyperbolic partial differential
equations. In particular, AMR is based on a sequence of nested grids with successively
finer spacing in both time and space. Increasingly finer grids are recursively embedded in
coarse grids until the solution is sufficiently resolved. An error estimation procedure based
on user-specified criteria evaluates where additional refinement is needed and grid gener-
ation procedures dynamically create or remove rectangular fine grid patches as resolution
requirements change.

The approach to adaptive gridding used here has been demonstrated to be highly suc-
cessful for gas dynamics by Berger and Colella [9] in two dimensions and by Bellet al. [5]
in three dimensions. Steinthorsenet al. [27] generalized this approach to the compressible
Navier–Stokes equations in two dimensions. Skamarock and Klemp [26] have successfully
implemented an adaptive scheme with subcycling in time for the compressible formulation
of the equations governing atmospheric flows.

For incompressible flow, Howell and Bell [17] presented a two-dimensional nonconserva-
tive adaptive algorithm, based on the Bell, Colella, and Glaz projection formulation, which



        

CONSERVATIVE ADAPTIVE PROJECTION 3

did not subcycle in time. This version used an exact projection which introduced substantial
complication at coarse/fine boundaries because of local decoupling of the projection.

Minion [21] has developed an adaptive projection method for the two-dimensional in-
compressible Euler equations with constant density on locally refined grids. In this approach
all grid levels are advanced with the same time step which is determined by the data at the
finest level. Minion uses the treatment of the convection terms discussed in Bell, Colella,
and Howell [7] in which a MAC projection is used as an intermediate step in the convec-
tion algorithm in order to enforce incompressibility at the half-time level. He also uses an
approximate cell-centered projection based on the MAC projection to enforce the divergence
constraint at the end of the time step.

Almgrenet al. [1, 3] developed a two-dimensional, variable density adaptive version of
the approximate projection formulation developed by Almgren, Bell, and Szymczak [4]. The
methodology presented in these papers used nonconservative difference approximations of
the convective terms and did not incorporate an intermediate MAC projection. Since the
treatment of convection was nonconservative a simplified synchronization between levels
of refinement was used. Almgrenet al.[2] present a generalization of this approach to three
dimensions.

Clark and Farley [14] and Stevens [28, 29] present methods for solving the anelastic
formulation of the equations governing the atmosphere on an adaptive hierarchy of grids.
(The anelastic equations are analogous to the incompressible Navier–Stokes equations but
with a different constraint, namely,∇ · (ρ0(z)U )= 0, whereρ0 is a given function of altitude
that represents atmospheric stratification.) In [14], there is no temporal refinement; in [28,
29], an adaptive projection method is used with subcycling in time. Both of the above
algorithms use a staggered representation of velocities, with arbitrary integer factors of
refinement and different types of difference approximations than presented here.

In both methods there is two-way nesting, in that coarse-grid data are used as boundary
conditions for fine grid operations, then fine-grid data are averaged down onto coarse-grid
data at the end of a time step. However, there is no elliptic synchronization step to enforce
both the Dirichlet and Neumann matching conditions for the elliptic pressure solve at the
coarse/fine interface. As documented in [29] and this paper, there is a loss of accuracy
associated with not satisfying both matching conditions.

There are also a number of adaptive algorithms for incompressible flow based on an
unstructured grid approach. The reader is referred to Ramamurti, L¨ohner, and Sandberg [25],
Ramamurti, Sandberg, and L¨ohner [24], and the references cited therein for some discussion
of this approach.

The methodology presented here is based on the approximate projection algorithm de-
veloped in Almgren, Bell, and Szymczak [4]. The goal of this work is not simply to develop
an adaptive algorithm for the incompressible Navier–Stokes equations, but to provide the
basis for adaptive algorithms for more general low Mach number flow models. Examples
of these types of models include the anelastic equations for atmospheric flow, with modules
for moisture physics and radiation, and low-speed combustion models,where the divergence
constraint is inhomogeneous, with modules for reaction kinetics and thermal radiation and
conduction. The characteristics of these more general low Mach number flows suggest
additional desirable features for the flow algorithm which have influenced the design pre-
sented here. First, the nonlinearity of the additional physics modules, particularly as related
to exothermic reactions, make conservation of advected species an important considera-
tion. Second, the additional computational requirements of these more general models may
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require that not all regions of interest are refined to the finest available level. For this reason,
we want the method to perform as well as possible on coarser levels.

As in our previous work [1, 2, 3] the method presented here uses subcycling in time;
this allows all levels to be advanced at the same CFL number, where the performance of
upwind advection algorithms is optimal. However, unlike earlier versions of the adaptive
algorithm, we now use an intermediate MAC projection so that the advection velocity used in
evaluating the convective terms in Eqs. (1)–(3) satisfies the divergence constraint (Eq. (4)).
This permits conservative differencing to be used to advance advected quantities which
guarantees conservation on each grid individually. In addition, we have paid special attention
to the synchronization step of the algorithm so that the overall method is conservative for
density (and other conservatively differenced scalar fields) and free-stream-preserving in
the sense that constant scalar fields with no source terms remain constant independent of
grid refinement patterns and the velocity field.

Before describing the adaptive algorithm we will briefly review the basic fractional step
scheme for a single grid. In the third section we describe, in detail, the recursive time-
stepping procedure for the adaptive algorithm and other aspects of the adaptive algorithm.
The fourth section shows convergence results and presents computational examples illus-
trating the performance of the method.

2. SINGLE GRID PROJECTION ALGORITHM

In this section we review the basic fractional step scheme for the case of a single uniform
grid. The reader is referred to [4, 6] for a more detailed description. In this algorithm,
velocity, density, and concentration are defined at cell centers at integer times and are
denoted byUn

i, j,k, ρ
n
i, j,k, andcn

i, j,k, respectively. Pressure is specified at cell corners and is

staggered in time; thus, pressure is denoted bypn+1/2
i+1/2, j+1/2,k+1/2.

2.1. Advection-Diffusion Step

In the first step of the fractional step scheme, we solve the advection–diffusion equations
Eqs. (2)–(3) for the updated density and concentration, and we compute an intermediate
velocity field from Eq. (1) without strictly enforcing the divergence constraint on velocity.
In the second step, we project this intermediate field onto the space of vector fields which
approximately satisfy the divergence constraint.

For the advection–diffusion step we solve the conservative forms of Eqs. (1)–(3). This
leads to a natural definition of face fluxes that are used to handle refluxing across coarse/fine
grid boundaries in the adaptive algorithm. In particular, we solve

U ∗ −Un

1t
= −[∇ · (UU )]n+1/2+ 1

ρn+1/2

(
−∇ pn−1/2+ µ

2
(∇2Un+∇2U ∗)+ Hn+1/2

U

)
,

(5)

ρn+1− ρn

1t
= −[∇ · (ρU )]n+1/2, (6)

and

cn+1− cn

1t
= −[∇ · (cU)]n+1/2+ Hn+1/2

c + k

2
(∇2cn +∇2cn+1) (7)
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for the intermediate velocityU ∗ and the updated densityρn+1 and concentrationcn+1.
We note here that the same conservative discretization is used to represent convective and
conservative differences because the advection velocities are discretely divergence-free.
(This equivalence would not be true in the more general low Mach number case.) The
method uses an unsplit second-order upwind predictor–corrector scheme for evaluating the
advective derivatives in Eqs. (5)–(7). For this step the pressure gradient is evaluated attn−1/2

and is treated as a source term in Eq. (5), withρn+1/2 ≡ 1
2(ρ

n + ρn+1). The forcing term
HU in the momentum equation and the source termHc in the concentration equation are
centered in time to preserve second-order accuracy.

In the predictor we first extrapolate the normal velocities to cell faces attn+1/2 using
a second-order Taylor series expansion in space and time. The time derivative is replaced
using Eq. (1). For face(i + 1

2, j, k) this gives

ũL ,n+1/2
i+1/2, j,k ≈ un

i, j,k +
1x

2
ux + 1t

2
ut

= un
i, j,k +

(
1x

2
− un

i, j,k

1t

2

)(
un,lim

x

)
i, j,k +

1t

2

(
−(v̂uy)i, j,k − (ŵuz)i, j,k

+ 1

ρn
i, j,k

(−(Gx p)n−1/2
i, j,k + µ1hun

i, j,k + Hn
U,x,i, j,k

))
, (8)

extrapolated from(i, j, k), and

ũR,n+1/2
i+1/2, j,k ≈ un

i+1, j,k −
1x

2
ux + 1t

2
ut

= un
i+1, j,k −

(
1x

2
+ un

i+1, j,k
1t

2

)(
un,lim

x

)
i+1, j,k +

1t

2

(
−(v̂uy)i+1, j,k

− (ŵuz)i+1, j,k + 1

ρn
i+1, j,k

(−(Gx p)n−1/2
i+1, j,k + µ1hun

i+1, j,k + Hn
U,x,i+1, j,k

))
,

(9)

extrapolated from(i + 1, j, k). Here,1h is a standard, five-point in 2D, seven-point in 3D,
cell-centered approximation to the Laplacian andG = (Gx,Gy,Gz) is a discretization of
the gradient operator which defines a cell-centered gradient from a node-based pressure
field.

Analogous formulae are used to predict values for ˜v
F/B,n+1/2
i, j+1/2,k andw̃D/U,n+1/2

i, j,k+1/2 at the other
faces of the cell. In evaluating these terms the first derivatives normal to the face (in this case
un,lim

x ) are evaluated using a monotonicity-limited fourth-order slope approximation [15].
The limiting is done on each component of the velocity at timen individually.

The transverse derivative terms (v̂uy and ŵuz in this case) are evaluated by first ex-
trapolating all velocity components to the transverse faces from the cell centers on either
side, then choosing between these states using the upwinding procedure defined below. In
particular, in they direction we define

Û
F

i, j+1/2,k = Un
i, j,k +

(
1y

2
− 1t

2
vn

i, j,k

)(
Un,lim

y

)
i, j,k, (10)

Û
B

i, j+1/2,k = Un
i, j+1,k −

(
1y

2
+ 1t

2
vn

i, j+1,k

)(
Un,lim

y

)
i, j+1,k. (11)
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Values are similarly traced from(i, j, k) and (i, j, k + 1) to the (i, j, k + 1/2) faces to

defineÛ
D

i, j,k+1/2 andÛ
U
i, j,k+1/2, respectively.

In this upwinding procedure we first define a normal advective velocity on the face
(suppressing the(i, j + 1

2, k) spatial indices on front and back states here and in the next
equation):

v̂adv
i, j+ 1

2 ,k
=


v̂F , if v̂F > 0, v̂F + v̂B > 0,

0, if v̂F ≤ 0, v̂B ≥ 0 or v̂F + v̂B = 0,

v̂B, if v̂B < 0, v̂F + v̂B < 0.

We now upwindÛ based on ˆvadv
i, j+ 1

2 ,k
:

Ûi, j+1/2,k =


Û

F
, if v̂adv

i, j+1/2,k > 0,

1/2(Û
F + Û

B
), if v̂adv

i, j+1/2,k = 0,

Û
B
, if v̂adv

i, j+1/2,k < 0.

After constructingÛ i, j−1/2,k, Û i, j,k+1/2, andÛ i, j,k−1/2 in a similar manner, we use these
upwind values to form the transverse derivatives in Eqs. (8) and (9):

(v̂uy)i, j,k = 1

21y

(
v̂adv

i, j+1/2,k + v̂adv
i, j−1/2,k

)
(ûi, j+1/2,k − ûi, j−1/2,k)

(ŵuz)i, j,k = 1

21z

(
ŵadv

i, j,k+1/2+ ŵadv
i, j,k−1/2

)
(ûi, j,k+1/2− ûi, j,k−1/2).

The normal velocity at each face is then determined by an upwinding procedure based
on the states predicted from the cell centers on either side. The procedure is similar to that
described above, i.e. (suppressing the(i + 1/2, j, k) indices),

ũn+1/2
i+1/2, j,k =


ũL ,n+1/2, if ũL ,n+1/2 > 0 andũL ,n+1/2+ ũR,n+1/2 > 0,

0, if ũL ,n+1/2 ≤ 0, ũR,n+1/2 ≥ 0, or ũL ,n+1/2+ ũR,n+1/2 = 0,

ũR,n+1/2, if ũR,n+1/2 < 0 andũL ,n+1/2+ ũR,n+1/2 < 0.

We follow a similar procedure to construct ˜v
n+1/2
i, j+1/2,k andw̃n+1/2

i, j,k+1/2.
The normal velocities on cell faces are now centered in time and second-order accurate,

but do not, in general, satisfy the divergence constraint. In order to enforce the constraint
at this intermediate time, we apply the MAC projection (see [7]) to the face-based velocity
field before construction of the conservative updates. The equation

DE→C

(
1

ρn
GC→EφMAC

)
= DE→C

(
Ũ

n+1/2

1t/2

)
(12)

is solved forφMAC, with homogeneous Neumann boundary conditions on all physical bound-
aries except for outflow, whereφMAC is set to zero to enforce the “no tangential acceleration”
criterion. Here

DE→C

(
Ũ

n+1/2

1t/2

)
≡ 1

1t/2

ũn+1/2
i+1/2, j,k − ũn+1/2

i−1/2, j,k

1x
+ ṽ

n+1/2
i, j+1/2,k − ṽn+1/2

i, j−1/2,k

1y

+ w̃
n+1/2
i, j,k+1/2− w̃n+1/2

i, j,k−1/2

1z
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andGC→E = −(DE→C)T so that

(
GC→E

x φMAC
)

i+1/2, j,k =
(
φMAC

i+1, j,k − φMAC
i, j,k

)
1x

with GC→E
y andGC→E

z defined analogously.
(In axisymmetric coordinates,DE→C would be defined by

DE→C

(
Ũ

n+1/2

1t/2

)
≡ 1

1t/2

(r ũn+1/2)i+1/2, j − (r ũn+1/2)i−1/2, j

r i1r
+ ṽ

n+1/2
i, j+1/2− ṽn+1/2

i, j−1/2

1z
,

wherer is the distance from the axis of symmetry.GC→E would be unchanged.)
The face-based advection velocityUADV is then defined by

UADV = Ũ
n+1/2− 1t

2ρn
i+1/2, j,k

(
GC→E

norm φ
MAC
)
,

whereGC→E
norm is the gradient operator in the normal direction to each face. Here and in

Eq. (12),ρ on the faces is averaged geometrically from the cell centers at timen. (We note
also that incorporating1t/2 into Eq. (12) definesφ as a pressure correction, which clarifies
coarse/fine boundary conditions in the adaptive algorithm.)

At this point the predictor step is performed for the tangential velocity components,
density, and concentration. The extrapolation of the normal velocity components from cell
centers to all cell faces has been described above; the tracing of density, concentration,
and tangential velocity components is analogous with the time derivatives replaced using
Eqs. (1)–(3).

Now let S={U, ρ, c}. Time-centered values̃Sn+1/2 at each face (i.e., ˜ρn+1/2, c̃n+1/2, and
Ũ

n+1/2
including the normal velocity component) are determined by upwinding, as

S̃i+1/2, j,k =


S̃L , if uADV

i+1/2, j,k > 0,

1/2(S̃L + S̃R), if uADV
i+1/2, j,k = 0,

S̃R, if uADV
i+1/2, j,k < 0.

We define the conservative update terms in terms of the advective fluxes,Fadv
S =UADVS̃n+1/2:

[∇ · (SU)]n+1/2
i, j,k = DE→C

(
Fadv

S

)
.

Using this approximation we now computeρn+1 from Eq. (6):

ρn+1 = ρn −1t DE→C
(
Fadv
ρ

)
.

For later convenience, we define now the viscous and diffusive fluxes corresponding to our
discretization of1h = DE→CGC→E:

Fvisc
U = Fvisc

Un + Fvisc
U ∗ =

µ

2

(
GC→E

norm Un,` + GC→E
norm U ∗,`

)
,

Fdiff
c = Fdiff

cn + Fdiff
cn+1 = k

2

(
GC→E

norm cn,` + GC→E
norm cn+1,`

)
.
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Equations (5) and (7) require solution of parabolic equations for each component of the
intermediate velocityU ∗,(

1− µ1t

2ρn+1/2
1h

)
U ∗ = Un −1t DE→C

(
Fadv

U

)
+ 1t

ρn+1/2

(
−Gpn−1/2+ 1

2
DE→C

(
Fvisc

Un

)+ Hn+1/2
U

)
,

and for the concentrationcn+1:(
1− k1t

2
1h

)
cn+1 = cn −1t DE→C

(
Fadv

c

)+ 1t

2
DE→C

(
Fdiff

cn

)+1t Hn+1/2
c .

These parabolic solves are described in more detail in Section 4.
The upwind method is an explicit difference scheme and, as such, requires a time-step

restriction for stability. We use the standard CFL condition, modified to account for the case
where the initial velocity is very small (or zero) but the accelerations may be large:

1t ≤ min

min
i, j,k

(
1x

|ui, j,k| ,
1y

|vi, j,k| ,
1z

|wi, j,k|
)
,min

i, j,k

√
21x

|HU,i, j,k − (Gp)i, j,k|/ρi, j,k

 .
We note here that since the viscous terms are not included in defining the states used in the
transverse derivatives (Eqs. (10)–(11)) there is an additional stability constraint on the time
step for largeµ or k which can require that the maximum CFL be reduced to 1/2 (see [20]).
Also, we note that in three dimensions we have not included full corner coupling in the
advection algorithm; consequently, we require CFL to be less than 0.8 in three dimensions.

The velocity fieldU ∗ computed using Eq. (5) does not, in general, satisfy the divergence
constraint. The projection step, as described in the next subsection, approximately enforces
this constraint.

2.2. Discretization of the Projection

In the projection step, a vector field decomposition is applied toV = (U ∗ − Un)/1t
to obtain the new velocity field,Un+1, and an update for the pressure. In particular, ifP
represents the projection then

Un+1−Un

1t
= P(V) (13)

1

ρn+1/2
∇ pn+1/2 = 1

ρn+1/2
∇ pn− 1

2 + (I − P)(V).

Note that the vector fieldV we project is notU ∗, it is an approximation toUt . This
distinction is significant when the projection is not exact. Discretely, the projection is
computed by solving for the appropriately weighted gradient component ofV which we
denote by(1/ρ)Gφ. We determineφ by solving

Ln+1/2
ρ φ = DV,

where D is a discrete nodal approximation to the divergence operator andLn+1/2
ρ φ is a

second-order accurate nodal approximation to∇ · ((1/ρn+1/2)∇φ).
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In two dimensions the projection discretization can be derived directly from the variational
form ∫

1

ρ
∇φ(x) · ∇ψ(x) dx =

∫
V · ∇ψ(x) dx ∀ψ(x), (14)

wheredx is the volume elementdx dy, or r dr dθ , as appropriate. If this variational form
is used in conjunction with standard piecewise bilinear or piecewise linear (on a standard
triangulation of a mesh) finite element basis functions, the resulting discrete problem cor-
responds to standard nine-point and five-point discretizations ofLn+1/2

ρ , respectively. (In
this paper we use the nine-point discretization for all two-dimensional problems.) We then
define

Un+1−Un

1t
= V − 1

ρn+1/2
Gφ, (15)

whereGφ is the cell average of∇φ and

pn+1/2 = pn−1/2+ φ.

We note that this is not a discrete orthogonal projection; in fact,DUn+1 6= 0. However,
the projection as defined by Eqs. (13) and (14) is a discrete orthogonal projection onto a
larger velocity space (in the finite element sense) which is then averaged onto the grid.
The resulting approximate projection satisfies the divergence constraint to second-order
accuracy and the overall algorithm is stable. The reader is referred to Almgrenet al. [4] for
a detailed discussion of this approximation to the projection.

In three dimensions a 27-point discretization of the projection can be derived using
trilinear basis functions; however, the derivation of an analog to the five-point scheme does
not extend directly. Standard approaches to dividing a cube into tetrahedra lead to directional
biases in the discretization which are undesirable. Instead, to avoid the computational work
associated with the 27-point discretization we use a standard seven-point finite difference
analog to the five-point discretization in two dimensions to approximateLn+1/2

ρ . The details
of these stencils are given in the Appendix.

2.3. Initialization of the Data

Specification of the problem must include values forU, ρ, andc at time t = 0 and a
description of the boundary conditions. The pressure is not initially prescribed and must be
calculated in an initial iterative step.

To begin the calculation, the initial velocity field is first projected to ensure that it satisfies
the divergence constraint att = 0. Then an initial iteration is performed to calculate an
approximation to the pressure att =1t/2. If this process were iterated to convergence and
the projection were exact, thenU1 ≡ U ∗ in the first step, because the pressure used in
Eq. (5) would in fact bep1/2, not p−1/2. However, in practice we typically perform only a
few iterations, since what is needed for second-order accuracy in Eq. (5) is only a first-order
accurate approximation topn+1/2, which in a standard time step is approximated bypn−1/2.

In each step of the iteration we follow the procedure described in the above two subsec-
tions. In the first iteration we usep−1/2 = 0. At the end of each iteration we have calculated
a value ofU1 and a pressurep1/2. During the iteration procedure, we discard the value of
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U1, but definep−1/2 = p1/2. Once the iteration is completed, we use the value ofp−1/2 in
Eq. (5) along with the values ofU0, ρ0, andc0.

3. ADAPTIVE MESH REFINEMENT

In this section we present the extension of the algorithm described above to an adaptive
hierarchy of nested rectangular grids. In the first subsection we describe the creation of the
grid hierarchy and the regridding procedure used to adjust the hierarchy during the com-
putation; in the second we describe the initialization procedure used to begin a multilevel
calculation. The third and fourth subsections contain an overview of, then the details of
the time step algorithm for the grid system that subcycles in time, focusing on the syn-
chronization between different levels of refinement. In the fifth and sixth subsections we
discuss the spatial discretization of the single-level and multilevel elliptic operators used in
the algorithm.

3.1. Creating and Managing the Grid Hierarchy

The grid hierarchy is composed of different levels of refinement ranging from coarsest
(`= 0) to finest(`= `max). Each level is represented as the union of rectangular grid patches
of a given resolution. In this implementation, the refinement ratio is always even, with the
same factor of refinement in each coordinate direction, i.e.1x`+1=1y`+1=1z`+1=
(1/r )1x`, wherer is the refinement ratio. (We note here that neither isotropic refinement
nor uniform base grids are requirements of the fundamental algorithm; see the section on
future work.) In the actual implementation, the refinement ratio, either 2 or 4, can be a
function of level; however, in the exposition we will assume thatr is constant. The grids are
properly nested, in the sense that the union of grids at level`+ 1 is contained in the union
of grids at level̀ for 0≤ ` < `max. Furthermore, the containment is strict in the sense that,
except at physical boundaries, the level` grids are large enough to guarantee that there is a
border at least one level` cell wide surrounding each level` + 1 grid. (Grids at all levels
are allowed to extend to the physical boundaries so the proper nesting is not strict there.)

The initial creation of the grid hierarchy and the subsequent regridding operations in
which the grids are dynamically changed to reflect changing flow conditions use the same
procedures as were used by Bellet al.[5] for hyperbolic conservation laws. The construction
of the grid hierarchy is based on error estimation criteria specified by the user to indicate
where additional resolution is required. The error criteria are currently based on tracking
features of the flow such as vorticity or density gradients; however, more sophisticated
criteria based on estimating the error can be used (see, e.g., [9]). Given grids at level` we
use the error estimation procedure to tag cells where the criteria for further refinement are
met. The tagged cells are grouped into rectangular patches using the clustering algorithm
given in Berger and Rigoustsos [11]. These rectangular patches are refined to form the grids
at the next level. The process is repeated until either the error tolerance criteria are satisfied
or a specified maximum level is reached. The proper nesting requirement is imposed at this
stage.

At t = 0 the initial data is used to create grids at level 0 through`max. (Grids have a
user-specified maximum size; therefore more than one grid may be needed to cover the
physical domain.) As the solution advances in time, the regridding algorithm is called every
k` (also user-specified) level` steps to redefine grids at levels`+ 1 to `max. Level 0 grids
remain unchanged throughout the calculation. Grids at level`+ 1 are only modified at the



           

CONSERVATIVE ADAPTIVE PROJECTION 11

end of level` time steps, but because we subcycle in time, i.e.,1t`+1= (1/r )1t`; level
`+ 2 grids can be created and/or modified in the middle of a level` time step ifk`+1 < r .

When new grids are created at level`+1, the data on these new grids are copied from the
previous grids at level̀+1 if possible, otherwise interpolated in space from the underlying
level` grids.

We note here that while there is a user-specified limit to the number of levels allowed, at
any given time in the calculation there may not be that many levels in the hierarchy; i.e.,
`max can change dynamically as the calculation proceeds, as long as it does not exceed the
user-specified limit.

3.2. Initialization of the Multilevel Data

As in the single grid projection method, we must first project the given velocity field to
approximately enforce the divergence constraint and iterate with the initial data in order to
define an initial pressure field. For accuracy, the initial projection is done as a full multilevel
composite solve over all levels as described in Section 3.5. As a result, the velocity resulting
from this projection satisfies the divergence constraint toO(h2), not only at each level, but
also at all the coarse/fine interfaces. After the projection all quantities other than pressure
are averaged down from fine grids onto the coarser cells underlying them to ensure that any
level` data, 0≤ ` < `max, is the average of the finer values overlying it.

For the iteration used to define the initial pressure, we compute the time step on the
finest level currently defined and iterate all levels with that time step (1t`max), i.e. without
subcycling. Here, however, the velocity is advanced on each level without being projected
at that level; i.e.,U ∗,`, but notU1,`, is defined for 0≤ ` ≤ `max. One multilevel composite
projection is then done on the field(U ∗ − U0)/1t`max to compute the pressure update on
all levels simultaneously. Here again the constraint is approximately satisfied not only on
each level but also at all the coarse/fine interfaces. As in the single grid case, during the
iteration procedure the values ofU1 computed by the projection are discarded and the new
value of pressure is used for the next iteration. When the iteration is complete, the regular
time-stepping procedure (i.e., with subcycling) is begun.

3.3. Overview of Time-Stepping Procedure

There are two approaches to solving a system of equations on a composite hierarchy of
grids like those presented here. The first is to solve the system on the composite hierarchy
at each time step using a combination of multilevel operations. This approach requires
that every level be advanced with the same time step. The second approach is to advance
each level independently at its own time step(1t`+1= (1/r )1t`), requiring no interlevel
communication other than the supplying of Dirichlet data from a coarse level to be used
as boundary conditions at the next finer level and then to synchronize the data at different
levels at some specified interval. The algorithm is this paper is based on the latter approach
for reasons detailed further in a later section.

The adaptive time-step algorithm can most easily be thought of as a recursive procedure,
in which to advance level̀, 0≤ ` ≤ `max the following steps are taken:

• Advance level̀ in time as if it is the only level. Supply boundary conditions for the
velocity, density, concentration, and pressure from level`− 1 if level ` > 0, and from the
physical domain boundaries.
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• If ` < `max

—advance level(` + 1) r times with time step1t`+1= (1/r )1t`. Use boundary
conditions for the velocity, density, concentration, and pressure from level`, and from the
physical domain boundaries;

—synchronize the data between levels` and`+1, and interpolate corrections to higher
levels if`+ 1< `max.

Before describing the steps of the synchronization in detail, we first discuss, in general
terms, how to synchronize the data at different levels so that the solution as computed on
each level sequentially can most closely approximate the solution which would be found
using composite solves. The nature of the synchronization depends on the nature of the
operator; however, during the advance of each level, for each operator we supply Dirichlet
boundary data for the fine grids from the next coarser grid. Thus implies that the values at
both levels are consistent, but the computed fluxes at the coarse/fine interfaces are not. It is
this mismatch in fluxes which accounts for the discrepancy between solutions.

For hyperbolic equations the correction of flux discrepancies, which we summarize below,
is discussed in detail in Berger and Colella [9]. For simplicity, we first assume that the coarse
and fine grids use the same time step and that we have computed fluxes on the coarse grid,
and on the fine grid using coarse-grid data for boundary conditions. Because the operator is
local and the discretization is explicit, the mismatch affects the solution only adjacent to the
coarse/fine interface. We make the assumption that the fluxes as calculated on the fine grid
are more accurate than those calculated on the coarse level. Thus, we replace the coarse grid
flux at a coarse/fine interface with the average of the fine grid fluxes in the coarse grid update.
This corrects the coarse grid values immediately adjacent to but “outside” the fine grids and
represents a composite update to the solution. When generalized to the subcycling case, the
fine-grid fluxes used to update the coarse boundary cells are averaged in time as well.

For a self-adjoint elliptic operator,∇ · β∇φ, there are also fluxes,β∇φ, associated with
each face which are differenced to discretize the operator. Again we solve on each level
separately with only Dirichlet data from the coarse grid, which generates a mismatch be-
tween the coarse and fine level fluxes at the interface. In this case we are matching Dirichlet
data but allowing a mismatch in the Neumann data, whereas a composite solution would
satisfy both matching conditions at the interface. Unlike the hyperbolic case, here we must
solve an auxiliary elliptic equation with the flux mismatch as a source term in order to
correct the solution. Furthermore, although the source is localized along the coarse/fine
interface, the correction modifies the entire solution on both coarse and fine grids. In the
context of the projection method with subcycling, we compute the temporal average of
the fine grid fluxes to compute the flux mismatch that forms the source term for the el-
liptic correction. Similar considerations are used for parabolic equations which are solved
implicitly in the method.

With these general principles in mind we can now discuss the specific sources of mismatch
in the adaptive algorithm and briefly describe how each is corrected. The specific details of
these corrections are described in the following subsection.

After the level` + 1 data have been advanced to the same point in time as the level`

data, there are four mismatches in the composite solution which require correction in the
synchronization step:

(M.1) The data at level̀ that underlie the level̀+ 1 data are not synchronized with the
level`+ 1 data.
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(M.2) The composite advection velocity computed from the MAC projection, defined
as the time-averaged (over a level` time step) level̀ + 1 advection velocity on all level
`+1 faces, including thè/(`+1) interface, and the level` advection velocity on all other
level` faces, does not satisfy the composite divergence constraint at the`/(`+1) interface.
This mismatch results in spatially constant advected quantities with no source terms not
remaining constant.

(M.3) The advective and diffusive fluxes from the level` faces and the level̀+ 1 faces
do not agree at thè/(`+ 1) interface, resulting in a loss of conservation.

(M.4) The composite new-time velocity, defined as the level`+ 1 new-time velocity on
all level`+1 cells, and the level̀new-time velocity on all level̀ cells not underlying level
`+ 1 grids, does not satisfy the composite divergence constraint at the`/(`+ 1) interface.

The aim of the synchronization steps is to correct the effects of each mismatch. As in the
hyperbolic case (see, e.g., [9, 10]), (M.l) is easily corrected by averaging the level`+1 data
onto the level̀ data beneath. We denote this correction by (S.l). Velocity and scalar data at
the new time are averaged from the fine grids onto the coarse level in a simple cell-centered
averaging procedure. The level` + 1 pressure is then averaged in time onto the level`

nodes, such that the pressure at a level` node underlying a level̀+ 1 node is defined to
be the average over time of ther level ` + 1 values at that node defined within the single
level` time step just completed. This is consistent with the understanding, as described in
the next subsection, that pressure is defined over a time interval rather than at a specific
time.

The second mismatch, (M.2), is discretely manifest as a nonzero difference between the
coarse and the effective time-averaged fine advection velocities at the coarse/fine inter-
face. This difference results from not having satisfied the elliptic matching conditions at
the coarse/fine interface during the MAC solve. As discussed earlier, an elliptic solve is
necessary to correct for the mismatch. We perform a level` “MAC sync solve” (S.2) forδe,
with the right-hand side defined as the divergence of the mismatch between the level` and
the time averaged level`+ 1 advection velocities. The correction velocity field is defined
as the inverse-density-weighted gradient ofδe and is used to re-advect velocity and scalars
at level`. These “re-advection corrections,” as well as the interpolation of these corrections
to all higher levels, are combined with the refluxing corrections to modify the solution as
described below.

In the case of zero viscosity/diffusivity, the re-advection corrections described imme-
diately above and the correction for (M.3), which is simply the hyperbolic refluxing step
described earlier, are added directly to the new-time solution. The refluxing corrections
modify the solution only on the coarse-grid cells immediately outside the fine grids; the
re-advection corrections modify the solution at all cells at level` and higher.

However, in the case of nonzero viscosity/diffusivity, the modification of the solution
by the re-advection and refluxing corrections requires solving additional elliptic equations
(S.3).

In the single grid projection algorithm, advective and diffusive fluxes are not added di-
rectly to the solution update; rather, they form part of the right-hand sides for the parabolic
solves associated with the Crank–Nicolson discretization of the diffusive terms in the ve-
locity and scalar update equations. Similarly, in the synchronization step, the advective and
diffusive flux mismatches, as well as the re-advection corrections, define the right-hand
sides for the refluxing solves. The solutions to the elliptic refluxing equations at level`will
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modify the new-time velocity and scalar data on all grids at level`, and the interpolation
of these corrections will modify the new-time data on all grids at all higher levels. These
corrections to the velocity field are not divergence-free, however, and must be projected
before they can be added to the new-time solution.

The fourth mismatch, (M.4), arises from enforcing only Dirichlet conditions in the level
projections. The mismatch is manifest as a nonzero composite residual at the interface
found using a multilevel stencil which sees both the coarse and fine data adjacent to the
interface. We can fix (M.4) using a composite (two-level) nodal projection, called the “sync
projection,” with the right-hand side defined by the composite residual at the interface
between levels̀ and`+ 1; exactly how this residual is calculated will be discussed in the
following section. Computationally, we take advantage of the linearity of the projection
to combine the right-hand side from the composite residual with the divergence of the
corrections to the velocity field resulting from the re-advection and refluxing steps so that
only one multilevel sync projection is necessary.

In the next subsection we will discuss the details of advancing a single level of data
when it exists within an adaptive hierarchy of grids and then describe the quantities which
must be accumulated on the coarse/fine interface over the level` time step to capture the
mismatches. Following that we will give the details of the synchronization steps described
above.

3.4. Details of Time-Stepping Procedure

Assume now that we are advancing level`, 0 ≤ ` ≤ `max, one level` time step. Let
Un,`, ρn,`, andcn,` be the velocity, density, and concentration at timen1t` on the level̀
grid, where1t` is the time step of the level̀grid. Let A` be the area of a face at level`,
and letVol` be the volume of a grid cell at level`. LetφMAC,` beφMAC as computed by the
MAC projection on level̀ , andGpn−1/2,` be the lagged pressure gradient at level`. Define
S= {ρ, c}.

3.4.1. Advancing a Single Level

To advance the data on level`one level̀ time step, we follow the time-stepping procedure
as described for the single grid algorithm in the previous section. We can distinguish two
types of operations used to advance the data at a level: those that can be done one grid at a
time, and those that must be done at all grids at a single level simultaneously. All advection
operations other than the MAC projection are done grid by grid; the MAC projection,
parabolic solves, and nodal projection must be done on all grids at a level simultaneously.
Boundary conditions for these projections and solves, and the interpolation and solution
procedure for these equations, are discussed in Sections 3.5 and 3.6.

Boundary conditions for the explicit level` operations are implemented by filling “ghost
cells” of each fine grid. These ghost cells are filled by copying from other fine grids, where
possible, otherwise by interpolating from underlying coarse grids or imposing physical
boundary conditions, as appropriate.

When a coarse/fine boundary does not coincide with a physical domain boundary for
the level` advection step, level̀ − 1 velocity and scalar data are interpolated linearly
in time and conservatively in space to fill the ghost cells outside the fine grids. (A three-
cell-wide zone of ghost cells is needed to compute fourth-order slopes; otherwise just a
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one-cell-wide zone of ghost cells is needed.) A linear-in-time profile for velocity implies
a piecewise-constant-in-time profile for pressure, since the pressure gradient, as a forcing
term, correlates with change in velocity over time. Thus in the advection step, the lagged
pressure gradient,Gpn−1/2,`−1, is considered constant in time over the previous level`− 1
time step, and in the MAC solve,φMAC,`−1 is considered constant over the level`− 1 time
step and is interpolated spatially to provide boundary conditions forφMAC,` where necessary.

3.4.2. Computing the Coarse–Fine Mismatch

Over the course of a level̀ time step, we must accumulate several quantities at the
`/(` + 1) interface in order to correctly capture the mismatches at the end of the level`

time step. We refer to the face- or node-based data structures that contain these quantities
as registers. The velocity and flux registers accumulate the mismatch between the level`

and level(`+ 1) face-based advection velocities and fluxes, respectively. The sync register
accumulates the node-based composite residual which will be used in the right-hand side
for the sync projection.

These registers are defined only on the`/(` + 1) interface and are indexed by level`
indices. Note that ind dimensions, one level̀ face containsr d−1 level (` + 1) faces; the
sums over faces below should be interpreted as summing over all level(`+ 1) faces which
are contained in the level` face. The sums overk should be understood as summing over
ther level (`+ 1) time steps contained within a single level` time step.

At the end of the level̀ time step, the velocity register(δU `) holds the area-weighted
difference between the MAC-projected advection velocity at level` and the time average
over one level̀ time step of the space average over the area of the level` face of the
MAC-projected advected velocity at level`+ 1:

δU ` = −A`UADV,` + 1

r

r∑
k=1

∑
faces

(A`+1UADV,k,`+1).

The advective flux registers for velocity(δFadv,`
U ) and scalars(δFadv,`

S ) contain the time
step- and area-weighted difference between the advective fluxes calculated at level` and
the time average over the level` time step of the space average over the area of the level`

face of the advective fluxes at level`+ 1:

δFadv,`
U = 1t`

(
−A`Fadv,`

U + 1

r

r∑
k=1

∑
faces

(
A`+1Fadv,k,`+1

U

))

δFadv,`
S = 1t`

(
−A`Fadv,`

S + 1

r

r∑
k=1

∑
faces

(
A`+1Fadv,k,`+1

S

))
.

The viscous/diffusive flux registers for velocity(δFvisc,`
U ) and scalars(δFdiff,`

S ) are defined
analogously, but with the viscous/diffusive fluxes rather than advective fluxes:

δFvisc,`
U = 1t`

(
−A`Fvisc,`

U + 1

r

r∑
k=1

∑
faces

(
A`+1Fvisc,k,`+1

U

))

δFdiff,`
c = 1t`

(
−A`Fdiff,`

c + 1

r

r∑
k=1

∑
faces

(
A`+1Fdiff,k,`+1

c

))
.
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We note here that the signs of the quantities added to the flux registers actually depend
on the orientation of the normal facing away from the fine grid. We follow the convention
below that the signs are given for the faces at which the fine grid is in the direction of the
lower coordinate indices.

In accumulating the composite residual to be used in the right-hand-side for the sync
projection, we must keep in mind that the nodal projection is not an exact projection. If we
defined the composite residual as the composite divergence ofUn+1 on levels̀ and`+ 1
at the end of the level̀ time step, then even if the composite divergence constraint had
been satisfied exactly by the solution of the level projections, the residual would not be zero
because of the approximate nature of the projection. Hence, in order to capture only the
mismatch at the coarse/fine interface and not the “approximateness” of the projection, the
composite residual is defined as a time-averaged residual that measures the extent to which
the level projections fail to satisfy the equations defining the composite projection at the
coarse/fine interface, but not the extent to which the projection is nonexact. The composite
residual has the form

Res`S−P = Dcoarse

(
V` − 1

ρn+1/2,`
Gφ`

)
+ 1

r

r∑
k=1

Dfine

(
Vk,`+1− 1

ρnk+1/2,`+1
Gφk,`+1

)
,

where the divergence operatorDcoarseis defined to include only that contribution to the usual
nodal divergence operator which comes from the level` side of the`/(` + 1) interface,
andDfine is defined to include only that contribution to the divergence which comes from
the level(`+ 1) side of the interface. The fine grid contribution is computed along the fine
nodes of the interface and averaged onto the coarse nodes. HereV`, as in the single grid
projection, is the vector(U ∗,` −Un,`)/1t`.

3.4.3. Synchronization of Data

The first synchronization step, (S.1), was described in the previous subsection. Here we
give the details of (S.2)–(S.4).

The mismatch, (M.2), is captured in the velocity registerδU `; the divergence ofδU `

defines the right-hand side for the level` MAC sync solve (S.2). We solve

DE→C

(
A`

ρn+1/2,`
GC→E(δe`)

)
= D̃

E→C
(δU `)

on all grids at level̀ for the correctionδe`. Recall thatδU ` is defined only at the coarse/fine
interface; hereD̃

E→C
is defined to be the MAC divergence operator evaluated only on the

level` cells adjacent to the interface but not underlying any level`+1 grids. (At level̀ cells
underlying level(`+1) grids the right-hand side is zero.) Boundary conditions on physical
no-flow boundaries are homogeneous Neumann(∂(δe)`/∂n = 0); on outflowδe`= 0. If
` > 0, the boundary conditions forδe` are given as homogeneous Dirichlet conditions on
the level(`− 1) cells outside the level̀ grids. We then define the correction velocity field
from δe`:

U `
corr =

−1

ρn+1/2,`
GC→E(δe`).
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We now use the correction velocity field to define flux corrections at all level` faces.
Because of memory considerations we do not store all the time-centered face states, so we
must redefine these on all level` faces. That is, we recreatēUn+1/2,` and S̄n+1/2,` using
UADV,` for upwinding, identically to the procedure immediately following the level`MAC
projection. The flux corrections,Fcorr,`

U = U `
corrŨ

n+1/2,`
and Fcorr,`

S = U `
corr S̃

n+1/2,`
, are

then defined.
Because we must diffuse the re-advection and refluxing corrections before adding them

to the new-time solution and because even for inviscid flow the corrections to the new-time
velocity field do not satisfy the divergence constraint, we do not add them directly to the
solution. Rather, the divergence of the re-advection flux corrections is added to the advective
and viscous/diffusive flux mismatches to define the cell-centered right-hand sides for the
refluxing solves (S.3):

RHS`Vsync= −DE→C Fcorr,`
U − 1

1t`Vol`

(
δFadv,`

U + 1

ρn+1/2,l
δFvisc,`

U

)
RHS`Ssync= −DE→C Fcorr,`

S − 1

1t`Vol`
(
δFadv,`

S + δFdiff,`
S

)
.

Then, we solve for the correction to the solution,V`
syncandS`sync:(

1− µ1t

2ρn+1/2,`
1h

)
V`

sync= RHS`Vsync
,(

1− k1t

2
1h

)
S`sync= RHS`Ssync

.

If ` > 0, we must now modify the level(` − 1) velocity registers and flux registers to
account for the corrections to the solution due to the re-advection corrections, as well as
the diffused corrections. This is analogous to the accumulation of advective and diffusive
fluxes while advancing of a single level. To do this, we set

δU `−1 := δU `−1+ 1

r

∑
faces

(
A`U `

corr

)
δFadv,`−1

U := δFadv,`−1
U + 1

r
1t`−1

∑
faces

(
A`Fcorr,`

U

)
,

δFvisc,`−1
U := δFvisc,`−1

U + 1

r
1t`−1

∑
faces

(
µ

2
A`GC→EV`

sync

)
,

δFadv,`−1
S := δFadv,`−1

S + 1

r
1t`−1

∑
faces

(
A`Fcorr,`

S

)
,

δFdiff,`−1
S := δFdiff,`−1

S + 1

r
1t`−1

∑
faces

(
k

2
A`GC→E S`sync

)
.

We can now add the corrections to the scalar fields,

Sn+1,` := Sn+1,` +1t`S`sync,

and if `< `max, we interpolate the correction onto the fine grids atall finer levels,q,
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` < q ≤ `max using conservative interpolation:

Sn+1,q := Sn+1,q +1t`Interpcons

(
S`sync

)
.

This completes the synchronization steps for scalar quantities.
The sync projection, (S.4), must account for the mismatch, (M.4), and also for the cor-

rections now stored inV`
sync. In order to correct for just the mismatch, (M.4), we would

solve

Ln+1/2
ρ φSP

1 = Res`S−P,

whereRes`S−P is the field we have accumulated on level` nodes by taking one-sided
divergences at levels̀and`+1. Here we would do a composite solve on levels` and`+1
to create a solution on both levels. We would then subtract (1t`/ρn+1/2)GφSP

1 from the
new-time velocity field at both levels.

To project the corrections stored inV`
sync, we would interpolateV`

sync to level ` + 1 to
defineV`+1

sync, take a composite divergence and solve

Ln+1/2
ρ φSP

2 = D(Vsync)

for φSP
2 on a composite grid. Then we would define1t`Vproj as the contribution toUn+1,

whereVproj = PVsync= Vsync− (1/ρn+1/2)GφSP
2 .

Given that, in general,Res`S−P 6= 0, and the contributions inVsync are not already
divergence-free, we merge the above procedures, and we see that the field we want to
add to the existing new-time velocity field is1t`(−GφSP

1 + Vproj), which is equivalent to
adding1t`Vsync and subtracting(1t`/ρn+1/2)G(φSP

1 + φSP
2 ). We note that if we define

φsync= φSP
1 + φSP

2 , then

Ln+1/2
ρ (φsync) = Res`S−P + D(Vsync),

and thus, in practice we need not separateφSP
1 from φSP

2 . Rather we solve the above, and
add the corrections to the velocity and pressure fields:

Un+1,` := Un+1,` +1t`
(

V`
sync−

1

ρn+1/2,`
Gφ`sync

)
Un+1,`+1 := Un+1,`+1+1t`

(
V`+1

sync −
1

ρn+1/2,`+1
Gφ`+1

sync

)
pn+1/2,` := pn+1/2,` + φ`sync

pn+1− 1
2r ,`+1 := pn+1− 1

2r ,`+1+ φ`+1
sync.

In the above solution,ρn+1/2,` ≡ 1/2(ρn,` + ρn+1,`), andρn+1/2,`+1 is the weighted
average over the level` time step of the density at level`+ 1.

If ` > 0 we must account for the correction to the level` velocity field in the composite
residual for the(`− 1)/` sync projection. We do this by adding a contribution toRes`−1

S−P,

Res`−1
S−P := Res`−1

S−P +
1

r
Dfine

(
V`

sync−
1

ρn+1/2,`
Gφ`sync

)
,
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where the contribution inDfine comes only from the level̀ grids and is defined only at
nodes on the(` − 1)/` interface which are not also at level` + 1 (i.e., which are not at a
physical boundary). This modification of the level` data will be seen by the level(`− 1)
data through the next level(`− 1)/` sync projection.

If `+1< `max, we then interpolate the node-based pressure correctionφ`+1 using bilinear
interpolation, and interpolate the cell-based velocity correction,V`+1

sync, using conservative
interpolation, onto fine grids atall finer levels,q, `+ 1< q ≤ `max:

Un+1,q := Un+1,q +1t`Interpcons

(
V`+1

sync −
1

ρn+1/2,`+1
Gφ`+1

sync

)
pn+1− 1

2r q−` := pn+1− 1
2r q−` + Interpbilin

(
φ`+1

sync

)
.

We note here that in previous work (see [2]) we had believed that solving the equations
above on the level̀ grids alone would be sufficiently accurate since bothVsyncandResS−P

are defined at coarse grid resolution. In a single-level solve,Vsyncandφsyncwould be defined
only at level̀ and corrections at levels̀+ 1 and higher would be defined by interpolation.
While it is true that the source for the equation is at coarse grid resolution, if solved on a
composite hierarchy the behavior of the solution on the fine grid away from the coarse/fine
interface is not well represented on the coarse grid. As a result we have decided to use the
composite grid solve despite the additional CPU expense.

Computational examples have borne out that in some but not all cases, the effect of using
the multilevel rather than single-level solve is nontrivial. One can show analytically that the
increased accuracy is most significant when there is significant variation in the right-hand
side for the level̀/(`+1) sync projection along the level`+1 boundaries. In one dimension
the solution to Laplace’s equation is linear, and hence, linear interpolation of the solution
from a coarse to fine grid is exact. For two and three dimensions the Green’s function is
proportional to the log or the inverse, respectively, of the distance from the source; these
functions are not well approximated near the source by linear interpolation.

3.5. Details of the Nodal Projections

The AMR time-stepping scheme requires projection solutions on single levels (“level pro-
jection”) and pairs of levels (“sync projection”), and for initialization it requires a projection
on all levels at once. We compute these solutions using a multigrid algorithm adapted to the
AMR grid hierarchy. The main complications involve the choice of coarse/fine interface
stencils and the need to support refinement ratios of 2 or 4 between levels.

A mathematical description of the projection operator is given in Section 2.2. The essential
point is that we must solve

∇ ·
(

1

ρ
∇φ
)
= RHS (16)

for φ over some subset of the AMR levels for some right-hand sideRHSdetermined by the
needs of the time-stepping algorithm. In what follows we abbreviate the elliptic operator
as Lρ , and we often work in residual-correction form so that the equation to be solved
Lρe= r .

Equation (14) defines compact stencils for the elliptic operator in the grid interiors. The
same finite-element integral provides the somewhat more complicated stencils used on the
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coarse/fine interfaces. This is in contrast to some other multilevel methods, e.g. FAC [19],
which derive the relationships between coarse and fine data from the multigrid algorithm
itself. An advantage to the finite-element formulation is that, if used consistently for both
the elliptic operatorLρ hoand the divergenceD, the right-hand side of (16) is always in the
range of the elliptic operator. Thus no compatibility correction is required, even for singular
problems with periodic or Neumann boundary conditions.

Figure 1 shows the spatial extent of the stencils for the 2D nine-point discretization for
a refinement ratio of 4; the 2D five-point and 3D seven-point discretizations are similar. In

FIG. 1. Stencils at grid edges and corners, shown for a refinement ratio of four. On the left, the stencil for
∇ ·1/ρ∇φ usesφ values defined at nodes (solid circles) andρ values defined at cells (open circles). Also, the
divergence stencil for∇ · V usesV defined at these same (open) cell positions. On the right are the stencils for
restricting residuals to the coarse grid.
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the interiors of the coarse and fine levels each finite element basis function is associated
with a node of the mesh and extends over the four adjacent cells. On the interfaces the basis
functions are associated with coarse nodes only, with values at the intermediate fine nodes
linearly interpolated from the coarse nodes.

In the diagrams on the left side of the figure, a value at the central node is computed using
values at the indicated surrounding nodes and cells. For divergenceDV of a velocity field
V , velocity values at cells marked with open circles are used. Likewise the linear operator
expressionLρφ involvesρ at these same cells andφ at the nodes marked by solid circles.
The diagrams on the right side show the nodes involved when averaging residuals from the
fine level down to the coarse level. A residual computed on an interface node represents a
basis function with less area and, hence, less weight than a full coarse node. In the restriction
step of a multigrid solve this value is combined with nearby fine grid values in order to
produce a correctly weighted coarse-grid value.

Equations for the difference and restriction stencils are presented for both two and three
dimensions in the Appendix. In 2D there are only the five basic geometric configurations
shown, not counting rotations and reflections. In 3D, however, the number is much larger,
and a more general element assembly process becomes necessary.

Specifying the stencils at all points in the domain defines the linear system; now we
consider the separate question of how to solve it. In preparation for a multigrid solve, we
start with the levels of the AMR structure on which we want the solution and construct new
levels between and below (i.e., coarser than) the active AMR levels so that adjacent pairs
of levels are related by a factor of 2. There new levels are for use by the multigrid solver
alone; they do not participate in any other part of the adaptive algorithm. Each new level is
created by coarsening the next finer level above it and will not communicate with coarser
AMR levels below it in any way.

Figure 2 may make the relationships between levels more clear. The top picture shows a
multigrid V-cycle (cf. [30]) for a level projection—all coarse levels are obtained by coarsen-
ing the grid structure of the single active AMR level. The bottom picture shows a multilevel
cycle involving three AMR levels with a factor of four refinement between each level.

FIG. 2. In the multigrid V-cycle (top), operations apply only to interior points of a level. In the multilevel cycle
(bottom) two operations are defined that cross the coarse/fine interface—computing the residual and restricting it
to the coarse grid. Dotted lines show AMR levels, other levels are used only by the multigrid algorithm.
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We continue to denote AMR levels bỳ, with a particular subset of levels̀lo ≤ ` ≤ `hi

being active in a given multilevel solve.We similarly denote the multigrid levels bym,
0 ≤ m ≤ mhi . Since the layout of multigrid levels depends on which AMR levels are
currently active, it will typically be different for each invocation of the solver. Letm= m(`)
be the multigrid level corresponding to a given AMR level. Note that whilem(`hi ) = mhi ,
generallym(`lo) 6= 0.

A multigrid V-cycle for the linear systemLm
ρ em= r m, wherem is either identical to or

coarsened from an AMR level`, has the following recursive form:

BeginV-cycle
(
Lm
ρ , e

m, r m, `, ν1, ν2
)

:
If (m= 0) then

Solve
(
Lm
ρ , e

m, r m
)

Else if(`− 1≥ `lo andm− 1= m(`− 1))
Relax

(
Lm
ρ , e

m, r m, ν2
)

Else
Relax

(
Lm
ρ , e

m, r m, ν1
)

r m−1 := I m−1
m

(
r m − Lm

ρ em
)

em−1 := 0
V-cycle

(
Lm−1
ρ , em−1, r m−1,m− 1, `, ν1, ν2

)
em := em + I m

m−1em−1

Relax
(
Lm
ρ , e

m, r m, ν2
)

Endif
End V-cycle

The “Relax” operation consists of two or more(ν) iterations of red–black Gauss–Seidel,
while the “Solve” operation on the coarsest level uses a diagonally preconditioned conjugate
gradient routine. All operations take place on the domainÄ` consisting of all grids at level
`. (Ä without a superscript represents the computational domain as a whole.) Boundary
conditions on∂Ä`− ∂Ä are Dirichlet conditions from level̀−1, while on∂Ä` ∩ ∂Ä they
are physical boundary conditions for the edge of the computational domain. Before each
relaxation or residual computation, it is necessary to update ghost nodes around the border
of each grid from the boundary conditions or from neighboring fine grids. After relaxations
it is also necessary to synchronize the nodes shared by adjacent grids. We perform these
updates quickly using optimized grid-to-grid copy operations.

There are two motivations for including the coarse-level conjugate gradient “Solve”
operation. One is that the coarsest multigrid level may consist of hundreds of cells spread
over many grids and, thus, may not be small enough to solve by Gauss–Seidel relaxations
alone. The other is that for problems with large discontinuities in density, Gauss–Seidel
relaxations may converge too slowly even on a small grid.

To complete the description of the multigrid scheme, we must specify the restriction
and interpolation operators and show how the linear operator itself is applied on coarsened
grids. Restriction is the simplest. We use a “full-weighting” method, where each fine node
provides an equal contribution to the coarse grid residual. The residual thus behaves as if it
were a conserved quantity in the multigrid system. In 2D the stencil for this is

[
I m−1
m

] = 1

16

 1 2 1
2 4 2
1 2 1

 .
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In the multilevel algorithm to follow, we also have to deal with restriction at coarse/fine
interfaces. The details are more complicated, but the same conservation arguments apply.
The actual stencils we use appear in the Appendix.

Next we address the coarse grid operators themselves. For the sake of brevity in this
section we will not present formulae for the various difference stencils here; those can be
found in the Appendix. What all of these stencils have in common is a dependence on a
coefficient 1/ρ in the four cells surrounding each node (eight cells in 3D). We call this
coefficientσ , so that the elliptic operation becomes∇ · σ∇φ. For axisymmetric (r − z)
problems we can useσ = r/ρ, instead, which gives us the same stencils as in the Cartesian
grid case except for a small (second-order) correction.

Sinceσ is analogous to conductivity, we coarsen it by doing an arithmetic average
transverse to each “flux” and a harmonic average parallel to the flux. This gives us separate
σ ’s for each coordinate direction on the coarser grids. For thex-direction in 2D the result is

σ
(x),m−1
i /2, j/2 =

1
1

σm
i, j+σm

i, j+1
+ 1

σm
i+l , j+σm

i+1, j+1

,

with an analogous expression forσ (y),m−1
i /2, j/2 in the y-direction. For still coarser grids we use

the same formula, using values ofσ (x),m−1 to computeσ (x),m−2 and values ofσ (y),m−1 to
computeσ (y),m−2.

The linear operators on the coarsened grids then take the same form as the operators on
the fine grids, using these coarsened coefficients. More elaborate coarsening strategies may
be added to the algorithm in the future to give better performance with large discontinuities
in density, but this one has provided adequate multigrid convergence for most of our present
applications.

Having introduced the directionalσ ’s, we can now present the operator-dependent in-
terpolation stencils required by the multigrid algorithm. Like theσ ’s themselves, these
formulae work with both the five-point and nine-point linear operators in 2D, and an ob-
vious extension applies to the seven-point operator in 3D. (For simplicity, we present the
formulae as if we were computingem+1 := I m+1

m em.) We first inject the points that coincide
with their coarse equivalents,

em+1
2i−1/2,2 j−1/2 = em

i−1/2, j−1/2;
then we weight the points offset in thex-direction using the coefficients for differences in
that direction,

em+1
2i+1/2,2 j−1/2

=
(
σ
(x),m+1
2i,2 j−1 +σ (x),m+1

2i,2 j

)
em+1

2i−1/2,2 j−1/2+
(
σ
(x),m+1
2i+1,2 j−1+σ (x),m+1

2i+1,2 j

)
em+1

2i+1+1/2,2 j−1/2

σ
(x),m+1
2i,2 j +σ (x),m+1

2i,2 j+1 +σ (x),m+1
2i+1,2 j +σ (x),m+1

2i+1,2 j+1

,

and use a similar formula for points offset in they-direction. Finally, the points offset in
both thex- andy-directions are defined by the composite formula

em+1
2i+1/2,2 j+1/2

{
(
σ
(x),m+1
2i,2 j + σ (x),m+1

2i,2 j+1

)
em+1

2i−1/2,2 j+1/2+
(
σ
(x),m+1
2i+1,2 j + σ (x),m+1

2i+1,2 j+1

)
em+1

2i+1+1/2,2 j+1/2

= +(σ (y),m+1
2i,2 j + σ (y),m+1

2i+1,2 j

)
em+1

2i+1/2,2 j−1/2+
(
σ
(y),m+1
2i,2 j+1 + σ (y),m+1

2i+1,2 j+1

)
em+1

2i+1/2,2 j+1/2}
σ
(x),m+1
2i,2 j + σ (x),m+1

2i,2 j+1 + σ (x),m+1
2i+1,2 j + σ (x),m+1

2i+1,2 j+1+ σ (y),m+1
2i,2 j + σ (y),m+1

2i+1,2 j + σ (y),m+1
2i,2 j+1 + σ (y),m+1

2i+1,2 j+1

.
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Since the interpolation stencils do not extend past the borders of each coarse cell, no
special multilevel stencils at coarse/fine interfaces are required in the multilevel algorithm.
We do, however, use ordinary linear interpolation instead of the operator-dependent stencils
along the interfaces, since the interface stencils forLρφ assume a linear profile between
coarse nodes.

A multilevel cycle for the linear systemL`ρφ
` = RHS` is as follows:

BeginMultilevel cycle(L`ρ, φ
`,RHS`, r m(`+1), `, ν1, ν2) :

m := m(`)
r m := (RHS` − L`ρφ

`)

If (` < `hi) then r m := I ``+1r
m(`+1) onÄ`+1+ ∂Ä`+1

If (` = `lo) then ν := ν1 elseν := 0
em := 0
V-cycle(L`ρ, e

m, r m,m, `, ν, ν2)

φ` := φ` + em

If (` > `min)

r m :=
{
(r m − L`ρem) onÄ`

RHS` − L`−1,`
ρ φ`−1,` on ∂Ä` − ∂Ä

φ`−1
old := φ`−1

Multilevel cycle(L`−1
ρ , φ`−1,RHS`−1, r m, `− 1, ν1, ν2)

em := I ``−1(φ
`−1− φ`−1

old ) onÄ` + ∂Ä`
φ` := φ` + em onÄ` + ∂Ä`
r m := (r m − L`ρem

)
em := 0
V-cycle(L`ρ, e

m, r m,m, `,0, ν2)

φ` := φ` + em

Endif
End Multilevel cycle

This cycle is repeated as many times as necessary for convergence. All operations take
place onÄ`, including points of the physical boundary∂Ä but not including points of∂Ä`

bordering the coarser levelÄ`−1 unless otherwise noted.

3.6. Details of the Cell-Centered Level Solves

The cell-centered solves required by the adaptive projection algorithm as presented here
are all single-level solves; the MAC projection, the MAC sync solve, and the parabolic
solves done for the Crank–Nicolson representation of the diffusive terms all involve the
same type of spatial discretization. The discretization yields a cell-centered right-hand
side and a cell-centered solution (by contrast to the projections described in the previous
subsection in which both the solution and the right-hand side are defined at nodes). The
construction of the right-hand sides for the MAC projection and the parabolic solves has
been defined in Section 2 and for the MAC synchronization step in Section 3.4. Here we
focus on the discretization of the operator and the solution procedure.

The goal in each case is to solve an equation of the form(α(x)−∇ · (β(x)∇))φ = RHS
on the union of grids at a single level with boundary conditions for the union of grids given
by physical boundary conditions on∂Ä ∩ ∂Ä` and by data from level̀ − 1 elsewhere.
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The discretization of the variable-coefficient elliptic operator uses a standard, five-point in
2D, seven-point in 3D, cell-centered finite difference approximation in the interior of the
grids. In particular, the discretization can be viewed as computing the MAC divergence of
face-based fluxes,β(x)∇φ. The only complication in these solves, aside from performance
issues, is that of maintaining sufficient accuracy at the boundary of the union of grids at a
level. In this subsection we describe how the stencils at these boundaries are defined.

We solve this system using standard multigrid methods (V-cycles with red–black Gauss–
Seidel relaxation and a conjugate gradient solver at the bottom of the V-cycle) as shown in
Fig. 2a. The restriction operator is volume-weighted averaging; the multigrid interpolation
is piecewise constant.

At each level of the V-cycle (i.e. each multigrid levelm), each red or black relaxation
sweep is performed on all grids sequentially, with the boundary conditions effectively
imposed once per sweep. For convenience, the boundary conditions are represented in the
operator at any given point as Dirichlet values in the ghost cells immediately outside the
fine grids. For a given fine grid, each ghost cell value can be copied from another fine grid,
or defined using physical boundary conditions or the coarse grid data as well as interior
data. In the latter two cases, interpolation or extrapolation of the data is usually required to
define a value at the ghost cell location.

Physical boundary conditions are typically defined as either Neumann or Dirichlet data
on∂Ä (as opposed to at the center of the ghost cell just outside the domain). In the case of
Dirichlet data, an extrapolation procedure is defined which fits a parabola through the value
at the boundary and the two interior grid values along a line normal to the boundary. When
used in the stencil for the elliptic operator this gives a second-order approximation to the
normal derivative at the boundary. In Fig. 3a, the linear operator at point (a) is evaluated
using values at the cells marked with the small open or closed circles (the closed circles are
legitimate fine grid values; the small open circle is the value at the ghost cell for (a)). The
value in the ghost cell is evaluated by the extrapolation procedure defined above, using the
data at the large open circle on the boundary as well as the data at the cell values marked by
large open circles. For Neumann data, the extrapolation procedure defines a parabola passing
through the two interior values and with the given normal derivative at the boundary in order
to define a value in the ghost cell. This again gives a second-order accurate approximation
to β(x)(∂φ/∂n); in both cases the second-order flux results in first-order local truncation
error in the definition of the elliptic operator.

To supply boundary conditions from the coarse data before a red or black sweep, the data
are interpolated onto the ghost cells immediately surrounding the fine grid. (See Fig. 3b for
a 2D example; in this the thickest lines represent the boundaries of individual fine grids.
Note that at the fine–fine interface shown; nothing special is done other than a copy from the
other fine grid.) The interpolation is done in two stages: first the coarse grid data (the large
closed circles in Fig. 3b) are interpolated tangentially to the coarse/fine interface, so that
coarse grid data are defined at points (the open circles in Fig. 3b) which align with the fine
grid points in all but the normal direction to the face. In two dimensions, the interpolation
is done by defining, in each cell, first and second derivatives of the data in the tangential
direction using centered differences, and then using those to interpolate the data from cell
centers to the intermediate points. For example, in cell (b),φy ≡ (φc − φa)/(21ycrse) and
φyy ≡ (φc + φa − 2φb)/1y2

crse. However, in the cases where constructing the derivatives
would require using coarse-grid values which underlie a fine grid, the slopes are computed
using a one-sided difference and the second derivatives are set to zero (e.g., for cell (c),
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FIG. 3. (a) At a physical boundary, interior and boundary values (s’s) are used to extrapolate to the ghost cell
(◦); the ghost value and the other interior values(•’s) are used to construct the Laplacian at (a). (b) Locations of
coarse grid boundary conditions(d), tangentially interpolated values(◦), fine grid cells(•), and ghost cells (1’s
andh’s). (c) Domain of dependence(•’s andd’s) of the Laplacian at a fine cell(s) adjacent to the coarse/fine
interface.

φy≡ (φc − φb)/1ycrse andφyy≡ 0. If the coarse cells on both sides (in the tangential
direction) are under fine grids, then both the first and second derivatives are set to zero and
the interpolation scheme reduces to piecewise constant.

In three dimensions the procedure is similar, although the tangential interpolation is
done in two directions simultaneously. Here the coarse grid data are used to define a bi-
quadratic function which is used to interpolate to the intermediate points. Analogously
to the two-dimensional algorithm, in the case where coarse data underlying a fine grid
would be needed to compute a centered difference, the slope calculation in that direction
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reduces to a one-sided difference and the second derivative is set to zero. If even this is not
possible, the first and second derivatives in that direction are set to zero. This is done for
each tangential coordinate direction separately, testing only on the four nearest neighbor
cells (e.g.,φi+1, j,k, φi−1, j,k, φi, j+1,k, φi, j−1,k would be used forφi, j,k along a face paral-
lel to z = const). The computation of the cross derivative (φxy in this case) requires the
four neighbors along the diagonals (e.g.,(φxy)i, j,k ≡ (φi+1, j+1,k + φi−1, j−1,k − φi−1, j,k

− φi+1, j−1,k)/(41xcrse1ycrse). If any of these values is in a cell underlying a fine grid then
φxy is set to zero.

This stage of the interpolation is done at the beginning of the solve as opposed to at each
relaxation sweep. At all but the finest level the coarse data is homogeneous because the
residual-correction form is used within the multigrid solver, so the tangential interpolation
is a trivial operation.

Before each sweep, the data already interpolated from the coarse data (the open circles
in Fig. 3b) are interpolated normal to each face to define values in the ghost cells (the
squares and triangles in Fig. 3b) analogously to the extrapolation used for the physical
boundary values. Again, for each fine grid point next to a coarse/fine interface, a parabola
is defined using the coarse grid value (the open circle) and the two interior values which
align with the ghost cell being filled (as in Fig. 3a). This polynomial is then evaluated at the
location of the ghost cell. This normal interpolation procedure is identical in two and three
dimensions.

Note that in the upper right corner of the coarse grid region in Fig. 3b, the ghost cell is
marked with a square and a triangle. This illustrates that the ghost cell values are not unique;
the square value will be used for computation of the operator immediately above that point,
the triangle value will be used for computation of the operator immediately to the right of
that point. Different coarse grid values are used to define the square and the triangle values.

The two-stage interpolation procedure described above in effect defines a specialized
discretization of the elliptic operator which at the coarse/fine interface uses only interior fine-
grid data and coarse-grid data which does not underlie any fine grids. In fact, the dependence
of the ghost cell value on the value at which the elliptic operator is being evaluated changes
the relaxation coefficient in the Gauss–Seidel relaxation sweeps. Interpolation of the coarse
and fine data onto ghost cell locations is simply a convenience of implementation which
allows greater efficiency in the relaxation sweeps and construction of the residual.

The driving concept for this special discretization is that the domain of dependence of the
operator at a fine grid point adjacent to a coarse/fine interface should include only fine grid
values and those coarse grid values which do not underlie any fine grids. This is shown in
Fig. 3c, where the points involved in the calculation of the operator at the large open circle
are marked by closed circles. This is important because the coarse grid values underlying
fine grids are defined as averages of the fine grid values, and using these to define the ghost
cell values extends the domain of dependence of the elliptic operator inappropriately.

The resulting solution now satisfies a first-order approximation to the second-order linear
operator at the fine cells adjacent to the coarse/fine interface where the stencil sees both the
coarse and fine data; a first-order approximation at all physical boundaries and a second-
order approximation everywhere in the interior of the union of grids. However, since the
first-order errors are localized at the boundary of the union of grids, the overall scheme is still
second-order accurate because of the spectral properties of the discrete solution operator.
In particular, these types of localized errors are well represented by eigenfunctions of the
discrete elliptic operator that correspond toO(h) eigenvalues of the solution operator.
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4. COMPUTATIONAL RESULTS

In this section we first identify the questions we will address computationally, in terms of
convergence rates and accuracy of adaptive solutions relative to uniform grid solutions. In the
second subsection we present results from several convergence studies in two dimensions.
(Because the algorithm is identical in two and three dimensions, and the cost of doing
convergence studies in three dimensions is so much higher, we demonstrate the convergence
behavior in two dimensions only.) In these studies, both the uniform grid and adaptive
calculations are shown to be second-order accurate for smooth flows, and the importance
of the sync projection is demonstrated.

In the following subsection, we show accuracy results for a more realistic problem, that of
a bubble rising in a fluid 1000 times its density. The purpose of this example is to demonstrate
that even for flows for which we do not expect second-order convergence because of the
presence of steep gradients, if the grids are optimally placed the accuracy of the solution is
comparable to that of the solution from a uniform fine grid calculation.

In the fourth subsection we show results from a variable density Navier–Stokes calculation
in three dimensions and comparison of these results with experimental data. Finally, in the
fifth subsection, we present some timings of the algorithm in two and three dimensions on
a DEC Alpha workstation, and discuss briefly several of the design issues.

4.1. Questions

There are a number of issues we would like to address in numerical testing of the
algorithm presented in the previous sections. The first is the straightforward question about
convergence rate of the solution:

(Q.1) Is the adaptive method second-order accurate for smooth flows, in the sense that as
the base grid varies (with a fixed refinement ratio) both the composite solution on the entire
domain, and the solution on the refined region only, converge with second-order accuracy
to the exact solution?

In general, the determination of the asymptotic behavior of an adaptive algorithm does
not address whether adaptivity actually improves the quality of the solution. Thus a second
question is asked:

(Q.2) Does refinement of a region of the domain increase the accuracy of the solution in
that region, without worsening the accuracy of the solution in the non-refined regions?

In addressing the first two questions, we will perform a simple test in which a patch is
fixed in time in order to evaluate convergence of the solution in the absence of any effects
due to the regridding procedure. This is not a typical use of the AMR algorithm; in practice,
the flow dynamically evolves in time and the refinement adapts to the features of the flow.
Thus, we ask:

(Q.3) When the refinement criteria are such that the refinement adapts to the features
of the flow, how do the accuracy and convergence properties of the composite solution
compare to those of a uniform fine grid solution?

Second-order accuracy of the solution is only a relevant goal when the flow is sufficiently
smooth; even on a single grid the method has slope limiters that locally reduce the advection
step to first-order when the gradients are too steep, in order to eliminate oscillations. Thus,
for nonsmooth flows, we pose the questions:
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(Q.4) Does an appropriate refinement improve the accuracy of the solution even when
the flow is not smooth? Are the rates of convergence of the adaptive solution compa-
rable to those of the uniform grid solution even when those rates are less than second-
order?

A final question,
(Q.5) Is the sync projection really necessary for accuracy?

is also addressed in the next section. This question is posed here because two of the methods
presented in the literature (see [14, 29]) describe adaptive methods with elliptic solves on
coarse and fine levels separately, but no elliptic synchronization. In this algorithm great
attention is paid to the elliptic synchronization, and we show in the next subsection the
reasons why.

4.2. Convergence Studies

The calculations we present here demonstrate second-order convergence of the adaptive
method on problems with smooth initial data. These include a problem in which we fix
the refinement in time for the purpose of evaluating the convergence of the solution, and
another for which the refinement more naturally follows the features of the flow.

Both problems are unsteady. The first is constant density inviscid flow in a doubly periodic
box for which we also demonstrate the importance of doing the sync projection. The second
is a viscous vortex merger problem, which demonstrates that the dynamic creation and
destruction of grids again maintains the convergence properties of the algorithm.

In summary, with the first problem we address (Q.1), (Q.2), and (Q.5) for a simple inviscid
case; with the second problem we address (Q.1)–(Q.3) for a more interesting viscous case.
Question (Q.4) will be addressed in the next subsection.

PROBLEM 1. For the first problem, we compute the errors and convergence rates of the
solution for uniform grids, base grids with one level of factorr refinement,r = 2 orr = 4,
and base grids with two levels of factor two refinement. Here we include the latter case to
demonstrate that the convergence rate is consistent as grids are recursively nested.

For the adaptive cases, we consider two different measures of the error: first, the error of
the full composite grid solution, i.e., the error of the solution over the entire domain, and
second, the error of the solution solely in the region of maximum refinement. The importance
of each measure depends on the nature of the calculation and purpose of refinement. If the
aim is purely to resolve a specific region or feature of the flow as well as possible and one
only cares about the rest of the solution insofar as it affects the refined region, then the latter
measure is most relevant. If, however, one’s goal is to compute the entire solution using
adaptivity to improve the accuracy where errors are large then the former error is more
relevant.

The r = 2 andr = 4 cases were studied in [21] using theL2 norm of the error on the
patch only; the norms and rates obtained here are comparable, and the conclusions identical.
As in [21], for these calculations only we do not use the slope limiters for the advective
derivatives.

The initial data for the first problem are given on the periodic unit square by

u(x, y) = 1− 2 cos(2πx) sin(2πy),

v(x, y) = 1+ 2 sin(2πx) cos(2πy).
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TABLE 1

L2 and L∞ Errors and Convergence Rates foru in Constant Density Inviscid Calculation

L2 L∞

Patch n = 32 Rate n = 64 Rate n = 128 n = 32 Rate n = 64 Rate n = 128

Uniform 2.668e-3 2.04 6.505e-4 2.01 1.620e-4 2.024e-2 2.04 4.923e-3 2.02 1.211e-3
r = 2 2.290e-3 1.92 6.048e-4 1.93 1.591e-4 1.843e-2 1.90 4.933e-3 1.88 1.344e-3
r = 2, 2 2.580e-3 1.99 6.481e-4 1.98 1.641e-4 2.432e-2 1.94 6.339e-3 2.04 1.539e-3
r = 4 2.368e-3 1.92 6.265e-4 1.91 1.663e-4 2.726e-2 2.04 6.621e-3 1.96 1.698e-3

L2 L∞

Domain n = 32 Rate n = 64 Rate n = 128 n = 32 Rate n = 64 Rate n = 128

Uniform 3.280e-3 2.02 8.073e-4 2.00 2.021e-4 2.120e-2 2.10 4.958e-3 2.03 1.213e-3
r = 2 3.245e-3 2.00 8.123e-4 2.00 2.033e-4 2.559e-2 1.82 7.254e-3 2.03 1.772e-3
r = 2, 2 3.153e-3 2.02 7.790e-4 2.00 1.947e-4 2.692e-2 1.92 7.125e-3 1.90 1.903e-3
r = 4 3.305e-3 2.00 8.263e-4 2.01 2.054e-4 2.776e-2 1.90 7.413e-3 1.88 2.016e-3

Note: Here, slope limiters are off. The upper table shows errors only in the region of maximum refinement; the
lower shows composite errors over the entire domain.

The exact solution for these initial conditions is

u(x, y, t) = 1− 2 cos(2π(x − t)) sin(2π(y− t)),

v(x, y, t) = 1+ 2 sin(2π(x − t)) cos(2π(y− t)),

p(x, y, t) = −cos(4π(x − t))− cos(4π(y− t)).

A total of 12 calculations are presented in Table 1; each has a base grid ofn×n cells. The
row labeled “Uniform” represents uniform grid calculations; the rows labeledr = 2 orr = 4
represent single level adaptive calculations, with refinement ratio of 2 or 4, respectively,
and the row labeledr = 2, 2 represents the two levels of factor two refinement. In each
adaptive case there is a single patch at each level, and the finest resolution covers the square
from (0.25, 0.25) to (0.5, 0.5) in physical space.

The calculations are run tot = 0.5; the time step is determined each level 0 time step
using the CFL number 0.75. In Table 1 we present theL2 andL∞ norms of the errors and
convergence rates ofu as calculated both on the region (0.25, 0.25) to (0.5, 0.5) (labeled
“Patch”) and on the entire domain (labeled “Domain”). The error is defined as the difference
from the exact solution; theL2 norm of the errore in u is defined by

‖e‖2 =
√∑

i, j

h2e2
i, j .

Note that when calculating norms of the error over the entire domain, we do not include
those coarse cells covered by fine cells, and theh above depends on level. The rate between
the two columns of error norms is defined as log2(El/Er ), whereEl andEr are the errors
shown in the columns on the left and right sides, respectively.

From Table 1 we draw two conclusions:
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TABLE 2

L2 and L∞ Errors and Convergence Rates foru in Constant Density Inviscid Calculation

L2 L∞

Patch n = 32 Rate n = 64 Rate n = 128 n = 32 Rate n = 64 Rate n = 128

r = 2 1.324e-2 1.80 3.796e-3 1.01 1.886e-3 3.716e-2 1.09 1.740e-2−.23 2.041e-2
r = 4 2.249e-2 1.67 7.049e-3−1.41 1.880e-2 5.005e-2 0.51 3.524e-2−3.23 3.309e-1

L2 L∞

Domain n = 32 Rate n = 64 Rate n = 128 n = 32 Rate n = 64 Rate n = 128

r = 2 1.366e-2 1.96 3.508e-3 1.80 1.009e-3 3.716e-2 1.09 1.740e-2−.23 2.041e-2
r = 4 1.447e-2 1.89 3.902e-3 −.54 5.664e-3 5.005e-2 0.51 3.524e-2−3.23 3.309e-1

Note. Here slope limiters are off and no sync projection is used.

• The calculated solution is converging to the exact solution with second-order accuracy
in theL2 andL∞ norms for the uniform grid and the adaptive calculations.
• When the refined grid is placed nonoptimally, as in these calculations, the error in

the refined patch is comparable to the error at the resolution of the base grid. The use of
refinement is not improving the accuracy.

The second observation is not unexpected. For this problem the refined patch is placed
very poorly. At the final time flow has entered the patch and passed out the other side; no
feature of the flow has been resolved over the finer grid. The adaptive algorithm cannot
recover the accuracy that has been lost on the coarser grid. The second example provides a
more realistic assessment of the performance of the methodology.

In order to answer (Q.5), we ran two of the above adaptive cases again, but with no sync
projection. These results are presented in Table 2. As we can see, ther = 2 solution generated
without a sync projection reduces to first-order accurate in theL2 norm at the resolution
increases and theL∞ norm reduces toO(1); for r = 4 the solution actually becomes less
accurate in both norms in going from a base grid ofn= 64 to n= 128. Not surprisingly,
the maximum error is located inside the refined region adjacent to the coarse/fine interface.
We conclude that the sync projection is necessary to maintain second-order accuracy of the
overall adaptive method. (We note here that the loss of accuracy associated with the lack
of synchronization between levels is also documented in [29], though for a less dramatic
case.)

PROBLEM 2. The first example with a single fixed refinement patch demonstrates the
convergence properties of the method without the complexities associated with regridding
operations. However, it is also atypical because the refinement is not adapting to the flow.
Our next example provides a more realistic demonstration of the methodology. This problem
is a constant density four-vortex calculation. To initialize the velocity field for this problem,
we first place four vortices in the unit square, centered at (0.5, 0.5), (0.59, 0.5),(0.455, 0.5
+ .45∗ √3), and(0.455, 0.5− .45∗ √3). The first vortex has strength−150, the “outer”
three vortices each have strength 50, and the profile for each, centered around(xi , yi ),
is

1
2(1+ tanh(100(0.03− ri )),
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TABLE 3

L2 and L∞ Errors and Convergence Rates foru in Constant Density

Viscous Vortex Merger Calculation

L2 L∞

Domain 64 Rate 128 Rate 256 64 Rate 128 Rate 256

Uniform 1.558e-2 1.98 3.940e-3 1.89 1.067e-3 2.701e-1 2.00 6.739e-2 2.72 1.020e-2

L2 L∞

Domain 16 Rate 32 Rate 64 16 Rate 32 Rate 64

r = 4 1.560e-2 1.98 3.944e-3 2.04 9.607e-4 2.648e-1 2.00 6.623e-2 2.21 1.433e-2

whereri =
√
(x − x0)2+ (y− y0)2. Here and in all further calculations the slope limiters

are used.
We use the vorticity as the source term for a Poisson equation, in which the field being

solved for is the stream function. (We can use the same multilevel projection methodology
already in place for the velocity projections to solve this Poisson equation.) The stream
function is computed with homogeneous Dirichlet boundary conditions on the unit square,
and the velocity field is calculated from the stream function. This velocity field is then
projected to ensure that it approximately satisfies the discrete divergence constraint.

The calculations are run tot = 0.25 with a CFL number of 0.9. For the adaptive calcu-
lations, the refinement criterion is that the magnitude of vorticity be greater than 5% of its
maximum. The viscosity is set toµ = 0.0001.

The convergence results from a total of three uniform grid calculations and three adaptive
calculations are shown in Table 3. The uniform grid calculations have base grids of 64× 64,
128× 128, and 256× 256. The adaptive calculations each have a single level of factor four
refinement and have base grids of 16× 16, 32× 32, and 64× 64. A time sequence of
the adaptive calculation with a base grid of 64× 64 is shown in Fig. 4 showing both the
evolution of the flow as the outer vortices orbit the inner vortex and the dynamic adaptation
of the grids to follow the evolving vortical structure.

Here there is no exact solution, so we use the solution computed on a 1024× 1024
uniform grid as a reference solution, the difference from which defines the error of the
coarser calculations. Because the gridding is different in each calculation, we present only
the error as defined over the entire domain.

This problem clearly demonstrates second-order convergence of the algorithm. Further-
more, when the refinement criteria allow the method to adapt to the flow, the algorithm can
essentially recover the accuracy of the equivalent fine grid.

4.3. Axisymmetric Bubble Rise

The next set of calculations compares the errors of a composite grid solution with the
errors of a uniform fine grid solution for an underresolved flow with a very strong density
contrast. The extreme density contrast and large density gradients were chosen so that the
flow is not in the asymptotic, second-order regime for the basic projection algorithm. The
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FIG. 4. Contour plots of vorticity for the four-vortex calculation with a base grid of 64× 64 and one level of
factor 4 refinement at timest = 0.0, 0.15, 0.25.

goal here is to show that with the adaptive algorithm one can achieve accuracy comparable
to a uniform fine grid even for flow that is not well-resolved at the finest level of refinement.
We present data from axisymmetric calculations of a light bubble rising under gravity in
a constant density background. The regridding criterion, which flags coarse grid cells for
refinement whenever the density is below a critical value, is such that all of the bubble is
always at the finest resolution.
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FIG. 5. Contour plots of density for the bubble calculation with a base grid of 16× 32 and one level of factor
4 refinement at timest = 0.0, 0.01, 0.022.

The initial conditions are a zero velocity field and a density field

ρ(r, z, t = 0) = ρ1+ ρ2

2
+ ρ1− ρ2

2
tanh

(
5000

(√
r 2+ (z− 1)2− R0

))
in a 0.01× 0.02 domain, whereR0 = 0.0025 is the radius of the bubble. Hereρ1 = 999.2
andρ2 = 1.225, the densities of water and air, respectively, in MKS units. The viscosity
µ = 0.0011377 is that of water. Contour plots of the time evolution of the density field
from the calculation with a base grid of 16× 32 and one level ofr = 4 are shown in Fig. 5;
these show the rise of the bubble and the moving fine grid. Contour plots from the uniform
grid calculation at the same times are indistinguishable.

Here again we do not have an exact solution; instead the calculation is first done on
a uniform 256× 512 grid, and this is taken as the reference solution, the difference from
which defines the error. Shown in Table 4 are theL2 norms of the errors inρ, u, v, evaluated
on the entire domain from several calculations. These calculations include three uniform

TABLE 4

L2 Errors in ρ, u, and v on the Entire Domain as Calculated Using a Uniform

256× 512 Grid as a Reference Solution

ρ u v

16× 32 32× 64 64× 128 16× 32 32× 64 64× 128 16× 32 32× 64 64× 128

Uniform .3377 .2281 .1330 6.025e-5 2.921e-5 1.116e-5 8.460e-5 2.967e-5 1.083e-5
r = 2 .2315 .1343 2.921e-5 1.116e-5 2.936e-5 1.081e-5
r = 4 .1362 1.126e-5 1.135e-5
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grid calculations (with base grids of 16× 32, 32× 64, and 64× 128), and three adaptive
calculations,r = 2 using base grids of 16× 32 and 32× 64, andr = 4 using a base grid
of 16× 32. Note that the calculations along the same diagonal have the same resolution
at the finest level. Only the error relative to the uniform 256× 512 calculation is shown
here. As expected because of the steep density gradient, the solution is not converging with
second-order accuracy.

We first note that for this flow the density is converging at less than first-order accuracy and
the velocity is converging at approximatelyO(h1.3) for the uniform grids. Nevertheless, the
adaptive computations are resolving the flow with the same global accuracy as the uniform
grids of the same resolution as the finest grids in the refinement.

4.4. Three-Dimensional Shear Layer

Finally, we present a three-dimensional variable-density shear layer calculation. The data
for the problem were chosen to model the conditions studied by Brown and Roshko [12]
and Konrad [18] who were studying the effects of density variation on low speed shear
layers. Although the experimental shear layer was unforced, we have added forcing, using
frequencies taken from Monkewitz and Huerre [22] as was done by Chienet al. [13] for
their two-dimensional simulations of shear layers.

The calculation was performed in a box with dimensions 512× 128× 384. The base grid
was 32× 8× 24, and there were two levels of refinement, the first by a factor of 4 and the
second by a factor of 2, for an effective resolution at the fine level of 256× 64× 96, with
1xfinest= 2. The boundary conditions were: inflow atx = 0, outflow atx = 512, slip walls
at y = 0, 128, and no-slip walls atz= −192, 192.

The computations presented here were performed at Reynolds number 2× 104 based on
the mean flow rate and the length of the computational domain. The flow was initialized to
beU (x, y, z, t = 0) = (u0(z), 0, 0) with

u0(z) = U1+U2

2

(
1+ λv tanh

(
2z

δ0

))
andλv = (U1−U2)/(U1+U2), whereU1 = 1.451,U2 = 0.549, andδ0 = 6. The density
was initialized in the domain to beρ(x, y, z, t = 0) = (1+ 0.02R)ρ0(z), where

ρ0(z) = ρ1+ ρ2

2

(
1− λr tanh

(
2z

δ0

))
,

with λr = (ρ2 − ρ1)/(ρ1 + ρ2), whereρ1 = 1, ρ2 = 7, andR was a random fluctuation
from −1 to 1, intended to break the inherent symmetries in the flow. These profiles are
the same profiles as were used by Chienet al. [13], expect for the inclusion of the random
perturbation in the density field.

The inflow velocity profile as a function of time was

U (x = 0, y, z, t) =
(

1+
10∑

i=1

mi sin( fi t)

)
u0(z− zpert),

where zpert= 0.1 sin( f1t) sin(0.22089323y). The frequencies weref1= 0.219, and fi
= fi−1/ i for 2≤ i ≤ 10, and the magnitudes werem1= 0.01,m2= 0.75m1, m3= 0.55m1,
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m4= 0.44m1, andm1= 1.7m1/ i for 5≤ i ≤ 10. The density of the fluid flowing in through
x= 0 was defined to beρ(0, y, z, t)= ρ0(z− zpert). These inflow profiles are also taken
from the work of Chienet al.; however, we have added a transverse perturbation in the
form of zpert to introduce three-dimensional structure into the flow. This perturbation of the
inflow data is intended to mimic a mild “flutter” of the splitter plate used in the experiments.
For this computation the flutter oscillated in time with a zero mean and had a maximum
deflection of 5% of the finest mesh spacing. Although this perturbation is small, we found
that without the introduction of some three-dimensional perturbation the flow evolved to
an essentially two-dimensional configuration with very small transverse velocities for the
size of computational region considered here.

The flow requires about 100 coarse grid time steps for the initial perturbations to pass
through the domain and the pattern of vortex formation to become established. For these
initial cycles we adjusted the error criteria so that no level 2 grids were formed and so that
level 1 grids followed the structures. We then set the error criteria so that level 2 grids would
be formed in the region where the two fluids were mixing and ran the computation for an
additional 225 level 0 time steps. By step 200 all of the vortical structures in the problem
had been resolved on the finest level mesh from their inception.

In Figs. 6a–d we show a time sequence of density in thex-z cross section centered
spanwise in the domain. These “snapshots” are taken at intervals of 10 level 0 time
steps; the times are: (a)n= 205, t = 1585; (b)n= 215, t = 1630; (c)n= 225, t = 1673;
(d) n= 235, t = 1715. Recall that eight level-2 time steps are taken for each level-0 time
step. Figures 6e–f show spanwise averages of the density atn = 205 andn = 225 in order
to calculate the spreading rate. Although it is difficult to precisely define an envelope around
the spreading shear layer, the visual spreading rate,δvis, calculated from these profiles is
consistent with the experimentally computed value of 21% [12] superimposed on our data
in these figures. In Fig. 7 we show a 3D rendering of the magnitude of vorticity atn = 205
to demonstrate the spanwise structure of the flow. The region shown in this figure covers
the full distance inx but not the fullz-extent. We note that although the transverse inflow
perturbations are quite small substantial three-dimensional structures do develop.

Finally, in order to have a more quantitative comparison with the experimental data we
accumulated flow statistics fromn = 200 ton = 325. In particular, we computed time- and
spanwise-averaged values of the meanx-velocity and density and the density perturbation.
(The spanwise averaging was across the entire domain.) We note that, although the time
interval corresponds to 1000 steps on the finest grid, we only accumulated data at the end of
coarse grid time steps so that the statistics include only 125 time samples. These are scaled
by U1 for the mean velocity andρ2 for the mean density and density perturbation. In Fig. 8
the profiles are plotted on the same axes as the experimental data from [12] (for the mean
values) and [18] (for the fluctuating density); the experimental values are shown as mean
values with error bars which represent the observed spread in the data. The velocity profile
matches the experimental data well. The density profile lies above the experimental data in
the center of the profiles. By examining the statistical data earlier in the computation we
found that the density profile was converging more slowly over time than the velocity profile.
Consequently this disagreement may be an artifact of the small number of temporal samples.
(Chienet al. [13] report needing several thousand samples to compute accurate statistics.)
The perturbational density profile matches the overall structure of the experimental profile.
The peak is well approximated and the overall shape of the profile is correct, including the
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FIG. 6. (a)–(d) Time sequence of density inx-z cross section aty = 64 with the level-1 and level-2 grids
superimposed. (e)–(f) Spanwise average of density; superimposed for comparison is the experimentally observed
visual spreading rate,δvis = 21%. In each figure the lighter fluid is on top.

flattening and subsequent drop-off to the right of center although the values in the center
are somewhat high.

4.5. Performance

In this subsection we look at performance data and associated issues for the adaptive
algorithm discussed above. In the first part of the section we present timings for one of the
test problems shown in Section 4.2. In the second part we discuss the impact of some of
our design choices on the accuracy and performance of the algorithm.

4.5.1. Timings

Here we present timings on a single processor of a four-processor DEC Alpha for the
constant density four-vortex problem presented in Section 4.2. In addition to the uniform
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FIG. 7. Three-dimensional rendering of vorticity att = 1585 with the level 1 and level 2 grids superimposed.
The domain is cropped slightly in thez-direction.

256× 256 calculation and the calculation with a 64× 64 base grid andr = 4, we present
timings from two additional calculations: 128× 128 base grid withr = 2 and 64× 64
base grid with two refined levels withr = 2. Each calculation has the same resolution at
the finest level. Presented in Table 5 are the number of CPU seconds required to complete
the calculation, the number of total cells advanced, and the CPU time per cell advanced
as measured inµs/cell. The number of total cells advanced is the sum over all levels of
the number of cells advanced at that level. The ratio of CPU time per cell advanced is
interesting for evaluating how the cost of the calculation scales with the size of the problem
and refinement strategy.

The timings presented in Table 5 show that the adaptive version of the algorithm with a
single level ofr = 4 increases the cost per cell by approximately 20%; the single level of
r = 2 increases the cost per cell by approximately 30%. Roughly speaking, this suggests
that if less than 80% of the problem domain requires the highest resolution, using a single
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FIG. 8. Mean velocity and density profiles and fluctuating density profile for the three-dimensional shear
layer. The error bars on the mean profiles denote the experimental data band from Brown and Roshko [12]; the
error bars on the fluctuating density profile denote the experimental band from Konrad [18].
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TABLE 5

Timings for Uniform Grid and Refined Grid Calculations on a Single Processor of a

Four-Processor DEC Alpha for the Four-Vortex Problem Presented in Section 4.2

CPU time
Cells advanced

Total(s) µs/cell Number

Uniform 256× 256 1389. 161 8650752
Base grid 128× 128, r = 2 378.6 211 1794496
Base grid 64× 64, r = 2, 2 256.1 236 1085056
Base grid 64× 64, r = 4 241.3 195 1239232

level of r = 4 refinement is faster in overall time than a uniform fine grid calculation (as
well as requiring less total memory).

It is interesting that the three-level calculation, although it advances the fewest number
of cells, takes longer than ther = 4 calculation. (There are fewer total cells advanced
because the regridding algorithm allows for less total area at the finest resolution using
two factors of refinement by 2 than one factor 4.) The reason this occurs is that although
both calculations spend approximately the same amount of time in the MAC projection
and nodal level projection, the three-level calculation spends almost twice as long in the
sync projections and sync solves. In both cases, forN time steps at level 0, there areN
level (0–1) sync projections and level 0 MAC sync solves; for the three-level case, however,
there are additionally 2N level 1 sync projections and sync solves. While the level (0–1)
sync projection is less costly forr = 2 than forr = 4, the expense of the additional level
outweighs this factor.

The efficiency of the multigrid solvers is the single largest factor in determining the
overall efficiency of the code. In the timings discussed above, the multigrid tolerances were
specified to be 10−12 for the MAC projections, 10−8 for the MAC sync solves, 10−12 for the
nodal level projections, and 10−10 for the nodal sync projections. These were the ratio of the
final residual to original residual in theL∞ norm for the elliptic equation to be considered
solved. The difference between the tolerances for the level solves and those for the sync
solves is dictated by the requirements of solvability; similarly, in practice the tolerances for
the sync solves at levels̀> 0 must be smaller than those at level 0 for the level 0 sync
solves to be solvable on a domain with Neumann or periodic boundaries.

4.5.2. Design Issues

In this section we address the question of why subcycling in time is worthwhile in terms
of accuracy and efficiency of the algorithm. In the case of no-subcycling, such as used by
Minion [21], there are no elliptic synchronization operations necessary because the elliptic
solves are done as composite solves.

A direct comparison of approaches is not practical. We would require substantial addi-
tional implementation effort and software redesign to implement a single step algorithm.
Also, since our implementation has substantial additional capability compared to Minion’s
code, a direct timing comparison with his code is not possible. We can, however, make
a reasonable estimate of the relative performance of our algorithm versus a single step
version based on the same methodology by comparing timings for the nodal projection.
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(A full multilevel nodal projection is used for initialization; hence, we can measure its
performance.)

Before discussing the detailed timing it is worth reviewing the pattern of nodal projections
during a time step with subcycling. For a three-level computation during a coarse time step
the algorithm requires one level 0 nodal projection,r level 1 nodal projections, andr 2 level 2
nodal projections. The synchronization requiresr multilevel solves over levels 1 and 2 and
one multilevel solve over levels 0 and 1. A single time step algorithm requires one multilevel
time step over all three levels for each time step; however,r 2 steps are required to reach the
same final time. We note also that because of the complication of the stencils at coarse-fine
interfaces, the multilevel solves are more costly than solves at a single level.

The problem we have chosen for comparison is a three-dimensional shear-layer similar
to the example of the previous section with a fixed pattern of grids. For this the base grid
was 40×8×24 with two levels ofr = 4 refinement. From the initialization we measured the
time for a single 0-1-2 projection as 258 s. Thus, 16 steps of a single step algorithm would
require 4128 s for the nodal projections. For a single step of the subcycling, the code required
2606 s for nodal projections. Thus, the nodal projections for a nonsubcycling version of the
algorithm would require approximately a 60% increase in computational time, compared
to the subcycling version. Since the execution pattern is similar for the MAC projections
and the advection steps, we would expect this comparison to be a reasonable estimate for a
complete nonsubcycling version of the algorithm.

We also note that the use of subcycling versus nonsubcycling has a nonnegligible effect on
accuracy for the types of advection schemes we are using. In particular, these types of explicit
upwind methods perform best at CFL numbers approaching one. For one-dimensional
advection tests, dropping the time step by a factor of 4 increases the error by approximately
20% for a discontinuous profile and approximately 50% for a smooth profile on very coarse
grids. On finer grids the disparity is increased so that for a discontinuous profile the error
is a factor of 2 larger and for a smooth profile the error is larger by a factor of 4. Thus,
smaller time steps lose sufficient accuracy that a factor of 2 finer spatial grid is required to
achieve the same accuracy in the solution. Additional reductions in the CFL further reduce
the accuracy of the scheme. Although this effect may be reduced when additional physical
processes are introduced, we nevertheless expect subcycling to produce better results on
advectively dominated flows than a nonsubcycling version. In particular, as illustrated in
the previous section, on unrefined portions of the domain our algorithm retains (at least) the
accuracy of a uniform coarse grid solution at a comparable resolution. Without subcycling
we would expect a degradation in the unrefined portions of the flow.

5. CONCLUSIONS AND FUTURE WORK

We have described here a conservative adaptive projection method for time-dependent
incompressible flow which conserves advected quantities and maintains free-stream preser-
vation across coarse/fine interfaces. The levels in the adaptive mesh hierarchy are refined
in both space and time. The fractional step character of the projection algorithm requires
that we solve hyperbolic, parabolic, and elliptic PDEs in an adaptive framework at different
stages of the algorithm. The ability of the methodology to handle these prototype equations
allows for generalization to a much broader set of equations governing low Mach number
flows with more realistic physics.
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Future directions for this work include the following: improvement to the multigrid
solvers for greater efficiency in the case of strongly varying coefficients (i.e. density jumps)
and optimization for running on vector and/or parallel computing platforms; development
of partial refinement strategies, in which the grid is refined only in one or two coordinate
directions; and extension to a quadrilateral grid framework for body-fitted gridding. In
addition, we are exploring the development of automatic error estimation techniques that
can effectively control the grid placement. This methodology will also be used to study and
validate numerical models of subgrid-scale processes in various physical applications in
order to understand their scale dependence.

Finally, we are extending the algorithm to include a more general divergence constraint
∇ · (σU )= Q. This will provide a framework for modeling more general low Mach number
flows such as low speed combustion and the anelastic model of the atmosphere.

APPENDIX: PROJECTION STENCILS

Restriction, divergence, and the elliptic operatorLρφ are all defined at nodes of the grid
and thus involve complicated stencils at coarse/fine interfaces. We build up these stencils
using a finite-element assembly process involving the coarse and fine cells immediately
surrounding each interface node. The spatial extent and general form of the stencils in 2D
is shown in Fig. 1 for a refinement ratior = 4.

The finite-element basis functions for the 2D nine-point stencils have a bilinear form
on each cell, the 2D five-point stencils are linear on each of two triangles in each cell,
and the 3D seven-point stencils do not have an obvious geometric interpretation—they are
essentially an extension of the 2D five-point stencils into three dimensions. The details of
integration within each cell, however, are not of primary interest to us here. What we need
is the contribution each cell makes to a difference stencil, and a procedure for assembling
the contributions with the appropriate weights for each interface node.

The divergence stencils in 2D for uniform parts of the grid look like

[D] =
(

1

21x

[−1 1
−1 1

]
,

1

21y

[
1 1
−1 −1

])
,

where the velocity components are defined on the four cells surrounding each node. (The
gradient stencil [̄G] is just the transpose of this, taking a scalar quantity on nodes and
returning a vector quantity on cells. Because the gradient stencil covers only one cell it,
like interpolation, does not require special treatment at interfaces.) Breaking [D] up into
individual cells is trivial. The contribution of the cell value to the lower right of the node,
for example, is

[D+−] =
(

1

21x

[
0 0
0 1

]
,

1

21y

[
0 0
0 −1

])
.

With the contributions from the other three cells we then have

[D] = [D−−] + [D−+] + [D+−] + [D++]

in the grid interiors. These stencils for divergence are correct for both the bilinear and linear
triangular basis functions and extend to 3D in a straightforward manner. For axisymmetric
calculations a small correction is required; this will be presented at the end of this appendix.
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At coarse/fine interfaces we define divergence only at coarse nodes. The sum over the
cells covered by the basis function can be expressed as

[D]o = 1

wo

 ∑
c∈Sc(o)

[
Dc
]

o +
1

r d

( ∑
f ∈Sf (o)

[
D f
]

o +
∑

p∈F(o)

χ(p)
∑

f ∈Sf (p)

[
D f
]

p

) .
Hered is the spatial dimension (2 or 3),o represents the coarse interface node (at(ox, oy)

in 2D), where we are evaluating the stencil, andF(o) is the set of fictitious fine nodesp
(at(px, py) in 2D) on the coarse/fine interface betweeno and its neighboring coarse nodes.
Sf (o) andSc(o) are the sets of fine and coarse cells surroundingo, respectively. In 2D the
weight function

χ(p) = (r − |px − ox|)(r − |py − oy|)
r 2

captures the linear form of the basis function along each interface edge. (Note that this weight
function resembles, but is not identical to, the bilinear basis functionψo. ψo = max(χ, 0)
in the coarse grid and along the interface, but within the fine gridψo drops to 0 across the
width of a single fine cell.) In 3D the weight function has a similar form:

χ(p) = (r − |px − ox|)(r − |py − oy|)(r − |pz− oz|)
r 3

.

The factorwo represents a weight for the entire stencil. In 2D it is the integral of the basis
functionψo normalized so that a coarse node has weight 1:

wo =
∑

c∈Sc(o)

1

4
+
∑

f ∈Sf (o)

1

4r 2
+
∑

p∈F(o)

χ(p)
∑

f ∈Sf (p)

1

4r 2
.

In 3D, analogously,

wo =
∑

c∈Sc(o)

1

8
+
∑

f ∈Sf (o)

1

8r 3
+
∑

p∈F(o)

χ(p)
∑

f ∈Sf (p)

1

8r 3
.

For the linear operatorLρ we have several different stencils. Bilinear basis functions in
2D give a nine-point stencil derived from integrals over four adjacent cells. Each of these
four integrals gives a similar “unit cell” contribution, such as the following for the lower
right cell:

[(DσG)+−] = σ
(x)
+−

61x2

0 0 0
0 −2 2
0 −1 1

+ σ
(y)
+−

61y2

0 0 0
0 −2 −1
0 2 1

 .
As with divergence, we build up the stencil in uniform parts of the mesh by simply adding
four unit cells together:

[(DσG)] = [(DσG)−−] + [(DσG)−+] + [(DσG)+−] + [(DσG)++].
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On coarse/fine interfaces we again sum over the cells where the basis function for an
interface node has support:

[(DσG)]o = 1

wo

 ∑
c∈Sc(o)

[(DσG)c]o + 1

r d

 ∑
f ∈Sf (o)

[(DσG) f ]o

+
∑

p∈F(o)

χ(p)
∑

f ∈Sf (p)

[(DσG) f ] p

 .
Note that the distinction betweenσ (x) and σ (y) is only relevant on coarser levels of a
multigrid structure, as these directional coefficients were introduced as part of the multigrid
coarsening scheme. In other cases, including all applications of the interface stencils, we
haveσ (x) = σ (y) = σ = 1/ρ.

The five-point formula obtained from linear basis functions over triangles differs from
the nine-point formula only in having a different unit cell:

[(DσG)+−] = σ
(x)
+−

21x2

0 0 0
0 −1 1
0 0 0

+ σ
(y)
+−

21y2

0 0 0
0 −1 0
0 1 0

 .
The extension of this formula to 3D to obtain the seven-point stencil is straightforward.

Full-weighting restriction in a uniform part of the mesh assigns to each coarse node a
weighted sum of the values at all fine nodes within the four surrounding coarse cells (eight
in 3D). For each coarse node at the coarse/fine interface there is a smaller set of nearby fine
nodes, with the remainder of the coarse value coming from the interface node itself. If we
defineG(o) as the set of fine nodes—not interface nodes—not more thanr fine cells away
from o in any direction, we can express the restriction of a quantitys defined on level̀ as

(
I `−1
` s

)
o
= woso + 1

r d

∑
p∈G(o)

χ(p)sp.

Note that lettings be a constant provides an alternate definition ofwo.
For axisymmetric problems in 2D we scale the difference stencils byr (which here

denotes radius, rather than refinement ratio) to put them in conservative form. Correction
terms are required to correctly account for ther -dependence in the finite element integrals.
Here we present only the form of the stencils associated with bilinear elements.

Divergence becomes

[r D ] =
(

1

21r

[−r− r+
−r− r+

]
,

1

21z

[
r− r+
−r− −r+

]
+ 1r

121z

[
1 −1
−1 1

])
,

wherer− andr+ are defined at cell centers. Note that, except for the correction term, this
stencil is the same as would be obtained by replacing the vector fieldV by rV . The stencil
breaks up into individual cells for assembly at the coarse/fine interface just as the Cartesian
grid stencils do.
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Gradients also requires a correction term,

[Ḡ] =
(

1

21r

[−1 1
−1 1

]
,

1

21z

[
1 1
−1 −1

]
+ 1r

12r1z

[−1 1
1 −1

])T

,

where [Ḡ] andr are both defined at a cell center.
For the linear operatorLρ we redefineσ asr/ρ and use the same multigrid coarsening

formulae as before. The stencil then looks like the Cartesian grid stencil with a small
correction term, the contribution from the lower right cell now being

[(r D(1/ρ)G)+−] = σ
(r )
+−

61r 2

0 0 0
0 −2 −2
0 −1 1

+ σ
(z)
+−

61z2

0 0 0
0 −2 −1
0 2 1

+ σ
(z)
+−1r

12r+1z2

0 0 0
0 1 0
0 −1 0

 .
The other unit cells have a similar correction, except for the signs. In the upper right cell,

like this one, the correction opposes the main difference term, while in both left cells the
correction has the same sign as the main difference. In all four cases the effect is to shift
the effectiver for the cell toward the node where the stencil is being evaluated.
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