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A FRONT TRACKING METHOD FOR COMPRESSIBLE FLAMES 
IN ONE DlMENSION* 

JAMES HILDITCHT AND PHILLIP COLELLA T 

Abstract. A numerical method is presented for the treatment of one-dimensional compressible flames. The 

method consists of a conservative front tracking algorithm for use near the flame and a high-order finite difference 
scheme for capturing the hvdrodynamics throughout the rest of the domain. The results presented show that the method 

effectively models the interaction of gas dynamics with both deflagration and detonation waves. This approach has 
the advantage that it can be generalized to more than one dimension. 
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1. Introduction. There are two principal approaches for the treatment of discontinuities 
in high-resolution numerical solutions of hyperbolic conservation laws. The first. front cap­
turing. represent, discontinuities as steep gradients resolved over a small number of finite 
difference cells. This method typically employs diffusion termS - either introduced by the 
truncation error in the method or by an explicit viscous term - to suppress numerical os­
cillations near the discontinuity. In front tracking. the discontinuity is treated as an internal 
boundary in the flow field (see [ 171 for a survey). The behavior of the tracked front is governed 
by the Rankine-Hugoniot relations and appropriate entropy conditions. Away from the front. a 
higher-order finite difference scheme is used to update the solution in time. The combination 
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FIG. I. Premixedflame. 

of front tracking and high-resolution finite difference methods produces a globally conser­
vative method that has proven successful in several applications including multidimensional 
modelling of high Mach number gas dynamics and modelling of combustion systems in the 
incompressible regime (see [II]. [16]. [22]). 

An application that yields itself to analysis using frant tracking is the study of deflagratian 
and detonation waves in a compressible flow field. There has been much \vork in the area 
of front tracking applied to detonations (see, e.g., [3], [5], [7J. [8J) but little in the area 
of compressible flames. In [I 9J both deflagrations and detonations in one dimension were 
tracked using a moving mesh method. Extension of their work to multiple space dimensions. 
however. is nontrivial. Although the approach outlined here is applied to a one-dimensional 
reacting flow, the method may be generalized to multiple dimensions. aUf approach uses a 
volume of fluid tracking methad that has the ability ta effectively represent large defonnations. 
changes in the topology of the front, and complex geometries [41. [211. When applied in that 
context. the Riemann solution may be modified to include more complex physical phenomena 
such as curvature effects [6J. We will not comment further on these except to say that the 
current formulation does not restrict computation to one dimension. 

Physically, the scenario to be modelled is a combustion wave travelling through a one­
dimensional premixed reacting medium. If one assumes the combustion wave to be infinitely 
thin, the front tracking method can be used to handle the reacting front. The numerical scheme 
maintains a sharp discontinuity at the flame: however. since we do not compute the internal 
structure of the flame resulting from diffusional effects and finite rate chemistry. the flame 
speecI mmt now be modelled. 

This paper demonstrates the successful appl ication of the front tracking algorithm to 
systems of hyperbolic conservation laws for reacting gas flow. The present focus is not on 
understanding the mechanisms of transition from deflagration to detonation oron the validation 
of empirical flame speed laws. but rather on formalizing the procedure necessary to implement 
the algorithm so that future studies might yield physically instructive results. 

2. Problem description and modelling considerations. 
Pln'sical pmblem. Consider the propagation ofa reacting fronl through a one-dimensional 

premixed medium (see. e.g .. [181. f24]"- In general. the upstream conditions (pressure. tem­
perature. velocity. reactant concentrations) are known and one is interested in determining the 
flame speed and downstream conditions. For example. in Fig. I. in a reference frame where 
the flame is stationary_ temperature (and other properties) is a function of position. The flame 
thickness Of and flame speed S( are functions of the diffusiyc transport and the energy release 
due to chemical reactions. 

Model. On length scales where the hydrodynamic effects are dominant. the problem can 
be simplified by neglecting dissipative effects and treating the flame as infinitely thin. The 
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reaction then becomes: Reactants ==? Products. The reaction is irreversible and the flame is 
modelled as a discontinuity which converts reactants to products and releases chemical energy 
equal to the heat of reaction. With this assumption. the problem is reduced to solving the 
one-dimensional compressible flow equations with an additional conserved scalar equation 
for the chemical energy. For simplicity. the ratio of specific heals is constant across the flame. 

(I) 

(3) 

(4 ) 

(5) 

Compressible flo\\" equatiollS. 

(j 

Chemical ellergr eqllation. 

aO at 
-+-=0. at ax 
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u­

E=e+q+-:;-. 

(l i) 
-:;-(pq) + -;-(plIq) = O. 
dt clx 

Equatioll olstate. 

p = (y - I)(!e. 

The symbols are defined in the Appendix. While the chemical energy is a conserved scalar 
on either side of the combustion wave. its value is changed at the flame front as energy is 
converted from chemical energy to internal and kinetic energy. 

Rankine-Hugolliot relations. Consider the hyperbolic system of equations that describes 

the current system. For an arbitrary surface of discontinuity in a flow field. the fluxes of 
conserved quantities must be equal entering and leaving. Stated more formally. for a system 

of equations of the form given by ( I). and a discontinuity travelling at speed. s. one can write 

s[ Ui J = [Fi J where [Vi 1 == UiL - [jiR is defined as the jump in the ith element of vector V 
across the discontinuity. These equations are called the Rankine-Hugoniot relations and in 
this system represent the conservation of mass. momentum. and energy. 

Detol1atiol1s l'erSIiS def/agratiol1s. There are two types of combustion \vaves of interest 
in this model: weak deflagrations and strong (or in the limit, Chapman-]ouguet (C])) det­
onations. \Ve exclude the possibilities of weak detonations and strong def1agrations based 
on both physical (see r 18]) and mathematical arguments (see [ 12 J. [ 15]). The relation of the 

characteristic directions to the trajectory of the reaction front determines whether a unique 
solution exists (see r 15]). For a strong detonation the characteristic directions are similar to 
the case for a nonreacting shock (Fig. 2) /\ counting argument can he used to illustrate the 
uniqueness of the solution. 

The detonation is a discontinuity separating two known smooth states U / (L t) and 
U/I(x.t), At some short time later iit we are interested in finding the states on either side 
of the detonation VI (XI (t -+- 81). ! ..L clrl and U R (x I (! + (ll). I -+- (it) and the detonation speed 
\(1 ,,L (ll) where the position of the discontinuity is denoted by Xi' The jump in chemical 
energ\ 6.q is specified. so we are left with seven unknown quantities. The Rankine-Hugoniot 
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strong detonation weak deflagration 

front front 

supersonic 

FIG. 2. RelaTion bcrIVcell clwracteristic directiolls and the parh of the rc([clioll jiollt. Strong detonatiol! case. 
like tlwr,!(>r a shock. is coml'lcle/r derermined. The weak defiagratioll case has OIlC degree (>(indetermillacr. 

relations provide three equations and for a strong detonation the information carried along 
the four characteristic directions intersecting the detonation provide four additional equations 
which uniquely determine the solution. For a CJ detonation, in addition to the three Rankine­
Hugoniot relations, three characteristics intersect the discontinuity from the left and the C] 
detonation propagates at the speed of sound. We have 

for strong detonations: 
(6) 

for CJ detonations: 

slUi] = [Fj ], 

dU 
lk. - =0 

da k • 

dU 
11:·_ =0. 

da k 

S=UL+CL· 

1= 1,2.3. 

k = +R. -R. OR. +L. 

k = +R. ·-R. OR. 

The equations describing the behavior of the solution along characteristics imply that the 
part of the vector U picked out by the kth left eigenvector II: does not change along the kth 
characteristic trajectory al:. "C' and •. R" indicate whether the characteristic approaches the 
discontinuity from the left or the right. 

In contrast to the unique solution in the detonation case. a weak deflagration has one 
degree of indeterminacy. Again. we are interested in determining seven unknown quantities. 
The Rankine-Hugoniot relations provide three equations and the intersection of three char­
acteristics (+L - R. OR) with the deftagration provide three additional equations: one more 
equation is needed to uniquely determine the solution. In this case. we specify the speed of 
the flame. relative to the fluid velocity, to remove the indetem1inacy and close the system. For 
laminar combustion. the flame speed is determined primarily by the balance of the effects of 
chemical energy release and diffusive transport on length and time scales that are small relative 
to the hydrodynamic scales. In principle. the flame speed in that regime could be computed by 
solving a two-point boundary value problem for the traveling wave solution of the compress­
ible Navier-Stokes equations. In the case of turbulent combustion. the flame is no longer one 
dimensional. but can be modeled as such in a quasi-one-dimensional approximation. In both 
regimes. it has been found that the flame speed can be parameterized as a power law function 
of the temperature of the fluid immediately in front of the flame (see [ I J. 12]. [201. [23 j). We 
have 

(7) ( P')IJ 
Sf = lIo + k ~ .. 

Po 

Here. the \alues of k and Q are determined by fitting them to experimental flame speed data. 
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x 

FIG. 3. Gas drnal11ics Riemanll SO/Utioll: Siwek IlIbe. 

3. Solution procedure. The solution procedure utilizes the front tracking method of 
Chern and Colella [9J and the Riemann problem solution of Teng. Chorin. and Liu [23], [I OJ. 
A summary of the basic techniques is presented here. For more details. one should consult 
the original works. 

Riemanll problem solution. In order to implement the front tracking algorithm we need 

to calculate the speed of the tracked front and the fluxes passing through it. It is in this 
context that the solution to the Riemann problem must be discussed. In general. one is given 

a hyperbolic system of equations with initial data of the form given by (8). We are interested 
in finding the solution at later times. We have 

(8) 
ilU (IF 
-+-=0. 

Cit ax 

x < O. 

x> O. 

Gas dynamics. The solution to the Riemann problem is well known for the gas dynamics 

equations [3x3 system]. We will use this example to illustrate some of the ideas involved 
in solving the general Riemann problem. Differences introduced in the case of reacting gas 
dynamics will then be discussed. 

The solution to the gas dynamics Riemann problem consists of three waves: a left-moving 
gas wave, a right-moving gas wave. and a contact discontinuity travelling at the local fluid 
velocity. The gas waves can be either shocks or centered rarefactions. A typical solution for 
a shock tube is shown in Fig. 3. 

First consider shocks. For a known right state U I and pressure behind the shock P,! > PI. 
the state behind the shock is completely determined through the Rankine-Hugoniot jump 

conditions. For P = (PI + P2)/2. r = I/p. 

[ul = YIl[rJ. 

IPJ = -W2Irl. 

(9) Ie] = -Plrl. 

H'- = - 1+ - . _, }' PI (' . (}J + 1) ( Po - PI) '.) 

rl 2)1 PI. 

The Rankine-Hugoniot jump conditions represent conservation of mass. momentum. and 
energy across the discontinuity. If we view Ll2. Pc and the shock speed s = 1/1 + H:rl as the 
unknowns. then the jump conditions provide the three equations necessary to solve the system. 

Now consider rarefactions. For a known right state Uland pressure behind the rarefaction 
Pc < PI. the state behind the rarefaction is determined by the equations of isentropic gas 
dvnamics. In particular. for a y-Iaw gas. the r- Riemann invariant is constant. 
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Strong Detonation C -J Detonation 

FIG. 4. DelOnatiol1 Riemann solution. 

2cI 2C2 r- = Uj .- _.- = u)-
)'-1 - y-I 

(10) 

/p 
I 

c= /y-. 
'v p 

Thus. the velocity and density behind a rarefaction can be determined uniquely. 
The solution to the gas dynamics Riemann problem is found by employing the fact that 

velocity and pressure are continuous across a contact discontinuity. First. guess the pressure 
between the two gas waves P*. Determine whether the left and right waves are shocks or 
rarefactions and calculate the velocity using either (9) or (10). Pressure is iterated on until the 
velocities match across the contact discontinuity: lIi = 1I~. 

Reacting gas dynamics. The Riemann problem for reacting gas dynamics is more com­
plex. Consider a reacting front separating two constant states with one side burned; the other 
is unburned. In the detonation case. a unique solution exists. However, for deflagrations 
whose velocity is specified by a given flame speed law. in addition to the detonation solution. 
there may be zero. one. or more than one solution involving a deftagration. We resolve this 
ambiguity by choosing the weakest combustion wave (in tern1S of pressure jump) that satisfies 
the conservation conditions. 

In the detonation case. the solution to the Riemann problem is similar 10 that for the 
nonreacting gas dynamics (see Fig. 4). For a strong detonation P; > Pc J, the CJ detonation 
pressure, we see a right-moving detonation. a left-moving gas wave. and a contact discontinu­
ity. We use the Rankine-Hugoniot jump conditions across the detonation in a similar manner 
to the treatment of a shock for the gas dynamics case. The jump condition~ now contain 
information about the chemical energy as well: 

( I I ) 

where !3. H R is the heat of reaction. 
For a CJ detonation PR < Pc J. the pressure at the detonation is known (P = Pc J J. and a 

rarefaction fan connects the detonation to U ~. The state behind the left gas wave is calculated 
as in the nonreactive case and the contact discontinuity provides the matching condition that 
closes the system. Again. guess P' and iterate until iI'R = lI L. The front speed is calculated 
as part of the Riemann solution. The reduced flux. needed for the tracking algorithm. is based 
on the state ahead or the detonation Fj = F(U R) - sU g . 

The defiagralion case is more complicated because it consists of four waves: left and 
right gas waves, a contact discontinuity. and a deflagration. The speed of the deflagration 
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must be specified by a flame speed law. e.g .. (7). A typical solution is presented in Fig. 5. The 
pressure in front of the deflagration Po is guessed and the solution is again iterative. The gas 
waves are dealt with in the usual way w'ith the deftagration treated using Rankine-Hugoniot 
jump conditions for the specified flame speed. The difficulty occurs due to the possibility of 
more than one solution or no solution at all. The iteration is designed such that it picks out 
the weakest deftagration wave when multiple solutions exist. In the event that no solution 
containing a deflagration can be found. a detonation is assumed to exist. The information 
provided to the front tracking algorithm consists of the flame speed and the reduced flux 
F, = F(Uo) - sUo. 

Front tracking. The strategy of front tracking is to treat a discontinuity as an internal 
boundary in the flow field using the solution to the Riemann problem to determine its speed 
and the fluxes passing through it. A conservative update of the solution is then performed. In 
order to maintain numerical stability near the tracked front as fractional cell size gets arbitrarily 
small. incremental values of the conserved quantities are redistributed according to the method 
of characteristics, Fig. 6 illustrates the finite difference cells in the neighborhood of the tracked 
front. 

The location of the front at time 11 ,0.1 is denoted by x'j and the cell containing the front is 
labelled if' The solution at time nb.1 is known. The procedure for advancing the solution in 
time consists of the following steps: 

I. Compute fluxes using a finite difference method for all cells in the domain. We 
will employ a second-order Goduno\' algorithm to calculate the fluxes (see r 13]. [14]). The 
numerical flux is a function of the solution in nearby cells. For stencil width I. 

( 12) F,-i-'" = FW!'-,., ,.'. U:~r)' 

In the case that an edge is within r cell lengths of the tracked front. the values of the arguments 
of Fi+ 1i2 corresponding to cells on the opposite side of the tracked front are evaluated using 
the value ut. In particular, we do not mix burned and unburned \'alue~ in computing fluxes 
at cell edges. For edges to the right of the front. we use U~ to fill in the missing arguments of 
the flux function. 
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2. Update interior cells. For cells not in the neighborhood of the front (i.e .. i = I ... i7 -
2. if + 2 ... N. where N is the number of cells in the domain). perform a conservative update 
of the solution. 

(13 ) Un+ 1 = Un + - F I - Fl. ,j,t ( ) 
1 ',j,X 1-:: 1+" 

3. Update the front position. Calculate the representative left and right states 

(141 An (All) F = U" _L + Un I - ~ . 
L L 6. t ijn-] 6.x . , 

We compute U R similarly. We use these values to calculate the solution to the Riemann 
problem determining the speed of the front s and the flux through the front Ff = F( U) - sLi. 
This will be described in more detail in the next section. 

( 15) 

(16 ) 

Move the front 

Xr+] =X;' + s!J.r. 

4. Make a first pass at updating the solution near'the front. Define 

oA;h = (Al- l\l+IW? + 6.t (Fi! .. _~ - Ff) . 

8MR = (A~ - A~+I)U; + bt (Ff - Fir .. +±). 
(51'.1 is defined such that the conservative update formula for ULand URis 

( 17) 
A ,,~I ",,+1 _ \,,+1 [I" -L .. \1 1\s Us - 1 S S' Of s· 

S=L.R. 

Note that this equation is unstable for a Courant-Friedrichs-Lewy (CFL) condition based on 
6.x since AT"I can become arbitrarily small. We break 3M into two parts in order to update 
the solution in a way that is both con'servative and stable. 

(18 ) 5M, =~. 51\1, + I '" ~ 5Mr = 5Mr 1 + 5Mr o. 
\"+1 (1\11+1) 

. 6.x· ,j,x"') .).-

8M] can be added to update the solution in a stable manner 

( 19) 
I I 

U~+I = U~ + ---+-1 oMs.1 = U~ + -iSMs '. .. N~ . ",j,x 

5. Redistribute 8 Ms.'. in cells near the front to maintain conservation. The general proce­
dure is to perform an eigenvalue decomposition of the vector 8 Ms.". The parts are distributed 
to where they would be propagated according to the method of characteristics. There is an 
important difference in the treatment of combustion waves. however. where we assume the 
characteristics starting from the left of the front (burned side) reflect off the front so that 
distribution of conserved quantities corresponding to these parts occurs only in the burned 
region. This is essential to insure both that fuel is not burned twice and that the unburned state 
contains no burned gas. We allow characteristics to cross the flame from the right (unburned 
side). corresponding to fuel being consumed slightly before it normally would. Algebraically. 
this is expressed 

(20) '\' k J elMs, = L 0'.1" S· 
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a~ = l~ ·8Ms.? 

r~ = rkCUs). 

Ii = lk(Us), 

k = -.Op.Oq,+. 
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where rk and [k are the kth right and left eigenvectors and c! is the corresponding expansion 
coefficient. The propagation of the components are determined by the eigenvalues ),k. Notice 
there are four eigenvectors for this system: two travel at the fluid velocity. carrying jumps in 
density and chemical energy. For this system. the left and right eigenvectors are 

-'- Il-l 1I ('U 2+ q -E) ('/I I') 1 I] 
/- = 2" y =t= -;: + ey . - C)I =t= ~ .. cy' - cy . 

I [P 0 .., 
(21) /0(' - --(1l~+q-E).lI.-l.1J. 

ey p 

(22) 

lO(1 = [-*.0.0. ~J. 

,[ P ]T rC== 1.1I±c.E± p.q 

rO(' = [I. /I. E - e. qjT. 

rO(1 = [O.o.p.pf. 

and Jc± = II ± c ),lirO(1 = II. 

The part of 15 1'1'1 S.2 that is carried by each characteristic is defined: 

(23) 

In the case of a deflagration front. we represent the redistribution process by the characteristic 
diagram in Fig. 7. Note that the +. L characteristic is reflected back into the burned region as 
discussed above. 

\Ve define 8Mt' and 8M~)! for redistribution behind and in front of the discontinuity: 

(24) 
8M~)1 = 8/1.1;. 

()Mt = ,5tH{ + 8MZl' + 8Mi'l + (SAlt + 8M/( + ,) 
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We then distribute these quantities near the front: 

, I) [/n+1 := (U n.+! + __ 8MtO! , 
- 1)",--1-1+) Ii "'-~1+1 \tot R 

~ J R 

(25) 

1 ' 
U"+ 1 '= (u n+ 1 + -8Mtol ) R' R A~ R . 

R , 

[l"-'-I := (U II + 1 + .. _l_i5/w tOI ) , 
1,.",,-1 Ir.~I-1 Alot L 

L 

U"-'-I := (u n+! + _1_8MtOI) , 
L L A lOt L 

L ' 

where 

(26) 
A IOI _ A,,+I , A,. 

R - R -r- L).", 

ATI = A~+I + .6. x , 

and ":=" in (25) represents assignment in place. A similar calculation is performed in the 
detonation case, except that all four characteristics cross from unburned to burned. 

(27) 
8Mtl = 15M;: + 8IHil

{)..:.. 8M~" + 8f1.f[ + 8M R + 8M~P + M\4~" + 8M~, 
8Myt = 0. 

4. Results and discussion. The front tracking algorithm has been implemented for solv­
ing one-dimensional reacting gas flow problems. Results are shown in Figs. 8-/1 for two 
different sets of flame speed constants. For each case the initial data represents an ignition 
problem. 

[)efiagratioll. First consider the deflagration problem (Figs, 8-9) on the domain [0, 1.6]. 
A solid wall exists at x = 0, allowing gas waves to reflect off of it The boundary at the other 
end is open, \Ve use 800 grid points in the x-direction (.6.x = 2.0e - 3) and the time step is 
determined by the CFL stability condition (.6.t = 0.91 max(lli + cl, III - el». The initial data 
IS 

• unburned (x < 0,075 and x > 0.(81): P(x, 0) = J.O:p(x,O) = l.O:q(x.O) 

20.0: u (x. 0) = 0.0 . 
• burned (0.075 < x < 0.08 I): P(x. 0) = 1.4072: p (r. 0) = 0.2082: q(x. 0) 

0.0: 11 (x .0) = 0.0. 
The flame speed constants are k = 0.095 and Q = 2.0. The burned state. obtained from 

the Riemann solution. is found behind a detlagration given left and right states equal to the 
unburned state above. The velocity is set to zero. however. since at early times we assume the 
effects of the left and right flame cancel. 

The behavior of the system is shown at early times in Fig. 9 to illustrate the interaction of 
the hydrodynamics with the deflagration. Shock waves are labelled "s": deflagration waves, 
'T' We first see two deflagrations propagating in opposite directions, each preceded by a 
shock wave. A short time later. the left-moving shock reflects off the closed end of the tube 
and decelerates the flame when the two waves collide (point D). The shock passes through the 
left flame and overtakes the right-moving flame causing the right-moving flame to accelerate 
(point A). It is this process of shock waves overtaking the right-moving flame and causing an 
increase in pressure that results in transition to detonation in this model. For the present flame 
speed constants. however. transition is not observed. Figure 8 shows the temperature contours 
for this problem at longer times. 
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Deflagration: Temperature 

Time 

Dist:.mc~ 

x = 3.20 
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FIG. 8. Temperature COlltours/or k = 0.095. Q = 2. (I) and (2) dellote the locatioll (}f preS.I'IIr(' cross sectiolls 
shmnl in Fig. 12. 

Deflagration: Temperature (early time) 

1= 0.180 

Time 

DiqancL' 

, = 0,80 

FIG. Y. Earir time beh{/\-;orfr,,' k = OJ195. Q = 2. TemperallIre COlltOlirs. I'oilll D lllOr/;s dealemfion (lj'the 

lefi flol1le. I'oilll .4 morks accelerafio/l oi fhe ri.~htfl(/lIIc. 
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t = 0.491 

Time 
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Detonation: Temperature 

Distance 
x = 1.60 

FIG. 10. TemperallIre contollrsfor k = 0.10. Q = 2. Transilion 10 delona/ion oCCli rs at poinl t. ··s·· indicates 
(I shock: "f'. indicates af/ame. 

Detonation: Pressure 
t = 11.491 ,--_______ .,.-_-,-__ ---. 

Time 

Dis[;'InCC 

X = 1.60 

FIG. 1 I. Pressure ("11/1/01l".\" .fin k = 0.10. Q = 2. Note the strong rare/ilctionjilll trailing the CJ detonarion. 

(3, dellotes the localion (~ra pressure cross section SllO~\.'!1;'l Fig. 12. 
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Detonation. For the detonation problem. we consider a smaller domain [0. 1.61 since 
the phenomenon of interest occurs relatively quickly. 'We again use 800 grid points (L\X 

2.0e - 3) and the CFL condition determines the time-step size. The initial data is 
• unburned (x < 0.075 and x > 0.(81): PCx. 0) = 1.0: p(x. 0) = 1.0: q(x. ()) 

20.0: /I (x. 0) = 0.0 . 
• burned m075 < x < 0.08]): P(x.O) = 1.5075: pC\". 0) = (J.2233: q(x. 0) 

0.0: II (X. ()) = 0.0. 
The flame speed constants are k = 0.10 and Q = 2.0. The burned state is obtained from the 
Riemann solution with the current configuration. We track two opposite··moving combustion 
waves. 

The early time behavior of the present case (Figs. 10-] ] ) is similar to that seen in Fig. 9. 
The left··moving shock reflects off the closed end of the tube and overtakes the right-moving 
deflagration. The right combustion wave accelerates. but is still a deflagration. Another shock 
overtakes the right-moving deflagration at point "C and transition to detonation occurs. The 

detonation travels faster than the local speed of sound and the strong rarefaction fan trailing it 
indicates that it is a CJ detonation. 

Figure 12 presents cross sections in time of the pressure field. The approximate location 
of these cross sections is shown in Fig. 8 for the deflagration cases ( 1) and (2) and in Fig. j I 
for the detonation case (3). Note the different scales. Graph I2( 1) illustrates the pressure 
field at early times. There is a substantial increase in pressure behind the shock and a slight 

decrease in pressure across the flame. At latertimes (2), we see a fairly strong shock at x ;:::; 1.0 
followed by a rarefaction fan. A second weaker shock precedes the flame creating a small 
jump in pressure. The sharp pressure decrease at x ;:::; 0.7 marks the flame. The detonation 
pressure field (3) is significantly different. We see a shock wave at., ;:::; 1.15 followed by a CJ 

detonation producing an order of magnitude jump in pressure. A rapid expansion follows the 
detonation. 

5. Accuracy. We have analyzed the accuracy of the numerical scheme in a number of 
ways. The most obvious of these compares the computed solution for an unsupported C] 
detonation to its known analytical solution. Thus. we compute 

(28) 

for two val ues of II (= L\.\. L\X ~ l. The convergence rate is found by comparing the solution 
from successively refined grids. The scheme is evaluated for two sets of initial data: 

L7 (x . OJ = L~'R . _ Discontinuous. 
(29) UCJ (U {{l. x < -'front. 

[J (x. 0) = Li (x. OJ)]\. all x. Continuous. 

As shown in Table J. for discontinuous initial data we observe first-order accuracv for the 

scheme. This is to be expected since the finite difference scheme will resolve discontinuities 
to first order at best. For initial data obtained from the analytical solution at an early time. the 
numerical result is better than second-order accurate. The algorithm is designed such that for 
tracked waves with constant states on both sides of the front. the calculated front position is 
exactly equal to the analvtical resull. 

In an effort to determine the accuracy of the algorithm for more complex problems. 
we examine the convergence of both the front location and overall solution as the grid is 
refinedo A classical convergence study is performed on the overall solution. The norm of 
the en'or is calculated b\ comparing data from successively refined grids: L\ol' = 1//1 for 
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Pressure: Deflagration 
Presrure 

200 1' ('---1'\ 11" 0.02215 , . 

'5t~ \ ,J 
XX w-3 100 I I 

0,00 50.00 100.00 150.00 200.00 250.00 

Pressure: Denagration 
Pressure 

~ir~ , 

.....;t= 0.48712 

i 
-; 

J 
X 

0,00 0.50 1.00 1.50 2.00 2.50 3.00 

Pressure: Detonation 
Pressure 

~oo~ 

~ 
10' 0.47014 

""1 
--1 3000 , 

:::t J 

j 
0.00 I I X 

0.00 0.50 1.00 1.50 

FIC'. 12. Pressure(icld (rop to /JollomL ! I) early lime defiagratioll: (2) lale lime deflagralirJl1: (3) CJ dclollalioll 

TABLE I 

Accuracy re/ali,,!' 10 kllOl\'ll so/utioH-C} delollaliul? 

Initial data 

Discontinuous 

Continuous 

400-exact 

1.612E-3 

2.206E5 

800-exact L I rate 

7.724E-4 1.06 

3.431 E-6 2.6(, 

n = 200.400.800. [600.3200. A small time step!::,.t = 0.08!::"x is used to insure stability as 
reflected shocks increase the sound speed. Thus. we compute 

(30) 

for each grid. Asymptotically. these differences are proportional to the errors on the coarser 
grid. We evaluate the convergence for a test problem similar to the detlagration case examined 
in 8,4. The same initial states are used with the two front locations arranged to insure that at least 
one cell exists between the tracked fronts for the coarsest grid: Xu = 0.1 175. xr R = 0.1275. 

The accuracy is checked at an early time t = 0.12 before the flame is overtaken by a 
reflected shock and at a later time t = 0.32 after the reflected shock has passed through the 
flame (Figs. 13 and 14). At both times. the solution is converging at a rate slower than first 
order. a reasonable result given the complexity of the problem (Table 2). The data in the 200 
cell case is not in the asymptotic region and therefore the 0.209 convergence rate is most likely 
an anomaly. 



FRONT TRACKING COMPRESSIBLE FLAMES 

Tuno Deflagration: Accuracy Test 
! = 0.32 

Distance 
x= 1.0 

769 

FIG. 13. Dellsilv contour plot fi)r accuracy lest problem. ,1t I "" 0.17. shock overtakes the flame. Ermr is 
emLu(lfed af f = 0.12 and t = 0.32. "f" marks righl I11m'illl< flame: "s" illdicates shock. 

Dt'nsiry 

3.60 

340 

_~.20 

.'.m 

c.so 

2.60 

2AO 

2.20 

],(XI 

I.BO 

1.(,0 

lAO 

1.20 

I.IXI 

o.~{) 

(1.60 

OAf\-

o.]!) 

(l.(}o 

Density Profiles 

n.:::!) j,O(l 

t = O. !2 
i":;-"(iJT" 

x 

FIC,. 1':+. Dell.\it\ profiles al r = O.ll and I = O.1,'2jiil· accuracY res! pm/J/el7l. For I = 0.12, Ihe lc/i'I7lOl'illg 
flam,' is localcd al x ~ ll.02: Iii,. righl·mm'iJlg.!luJ7Ie {fIX ~ 0.24. Ar I = D.32. lize righrflame is locared lIf.r ~ D.oO. 
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TABLE 2 
Error/or defla/?rat;o!1 ill a compiexf/oll'/ield. 

Time 200-400 Rate 400-800 Rate 800-1600 Rate 1600-3200 

I = 0.12 6.88E-3 0.209 5.95E-3 0.722 3.6IE-3 0.561 2.4-IE-3 
r = 0.32 7.53E-2 0.C.71 4.73E-2 0.869 2.59E-2 0.665 1.61,E-2 

E:ror/dx 

1$0 

1.611 

1.40 

J.2() 

I.{¥) 

!I.SO 

0.6(1 

0.·1(1 

020 

-o.m -

·(un 

·0.611 

O.lX, 50m 

Error in Front Location 

.- ..... /R.J\ / .,/ 
:~-~"~"" 

2(}()"'~(~) I t\ I 

4i~'~'~liii--- (8 I 

R-' k\}(}-Th'(~T"' iC) 

](XJ.(XI 150.m 2(XlIX) 250.IXI .'m.w 

FIG. 15. Ermr illj/lInt /oCGIiOI1 scaled b,' cu. Note Ihal before sfwck ol.crra!;esflwlie ar r ~ 0.] 7. lhe error is 
(1/1 order o(ma/?l1itllde smaller than ~x. Also. observe the oscillalOn- bel/m'ior o{rile en,II: 

The convergence of the front location (right-moving flame) is also examined (Fig. 15). 
We plot (Xr" - Xf,2n) / (DXn ) for times when xf.n is defined. For short times corresponding to 
the first case above. the error in the front location is an order of magnitude smaller than the 
grid spacing. After the shock passes through the flame at t ~ 1.6. the error increases but still 
is on the order of one grid cell. One should note the oscillatory behavior of the error. This may 
be due to the corrective effect of the tracking algorithm: as mass and energy are redistributed 
behind the flame a local high energy region is created causing an increase in front speed. The 
bulk states near the flame cannot support that speed so the flame speed decreases until a local 
low energy region is created and the process repeats in reverse. Further. it is this feature of 
the error that makes a classical convergence study offront location impossible. That is. while 
the error in the front position. on average. decreases with grid refinement the error at a given 
time for successively refined grids does not monotonically go to zero. The osci llations have 
different amplitudes and frequency for each grid resulting in arbitrary cancellation of error. 
Again note that these errors are small (Fig. 16) 
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6. Conclusions. We have looked at the front tracking method applied to one-dimensional 
reacting gas flow. The results accurately represent the interaction of gas dynamics waves with 
detonations and deflagrations that can be modelled by flame laws of a form similar to (7). The 
current method produces results that are qualitatively similar to the results that Teng. Chorin, 
and Liu [23] obtained using a different numerical method. The present work has the advantage 
that it can be generalized to more than one dimension and has the potential to include adaptive 
mesh numerical techniques. Such extensions will be investigated in future work. 
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