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A FRONT TRACKING METHOD FOR COMPRESSIBLE FLAMES
IN ONE DIMENSION*

JAMES HILDITCH! AND PHILLIP COLELLA?

Abstract. A numerical method is presented for the treatment of one-dimensional compressible flames. The
method consists of a conservative front tracking algorithm for use near the flame and a high-order finite difference
scheme for capturing the hydrodvnamics throughout the rest of the domain. The results presented show that the method
effectively maodels the interaction of gas dynamics with both deflagration and detonation waves. This approach has

the advantage that it can be generalized to more than one dimension.
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Notation
< speed of sound it velocity
¢ internal eneray % vector of conserved quantities
E  towlenergy w mass flux through a discontinuity
£ vector of fluxes x position
i finite difference cell labe! o cigenvecior expansion coefficient
k flame speed constant v ratio of specific heats
Iy kthleft eigenvector - - Riemann invariant
n finite difterence time step label $ flame thickness
P pressure SM reduced mass
¢ chemical energy AHMy  heat of reaction
Q  fAame speed constant Ar. Ax finite difference tme step. grid spacing
r finite difference stenctl width P eigenvalue
ry  kth right eigenvector A volume fraction (length fraction in one dimension)
s. S front speed. flame speed 0 density
7 time T specific volume

T temperature

subscripts and superscripts

CJ Chapman-Jogguet ’ tot total quantity

f flame, front ~. 4 (sup) —.+ eigenmode

k eigenmode —. 0p. Oqg. + 0 state ahead of a deflagration

L. R leh ibehind). right (in front of) the tracked front 1.2 states in front of and behind gux wave

B dummy value representing L or R * state inside Riemann solution wave pattern

1. Introduction. There are two principal approaches for the treatment of discontinuities
in high-resolution numerical solutions of hyperbolic conservation laws. The first. front cap-
turing. represents discontinuities as steep gradients resolved over a small number of finite
difference cells. This method typically employs diffusion terms — either introduced by the
truncation error in the method or by an explicit viscous term — to suppress numerical os-
ctllations near the discontinuity. In front tracking. the discontinuity is treated as an internal
boundary in the flow field (see [ 17] for a survey). The behavior of the tracked front is governed
by the Rankine—Hugoniot relations and appropriate entropy conditions. Away from the front. a
higher-order finite difference scheme is used to update the solution in time. The combination
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FiG. 1. Premixed flame.

of front tracking and high-resolution finite difference methods produces a globally conser-
vative method that has proven successful in several applications including multidimensional
modelling of high Mach number gas dynamics and modelling of combustion systems in the
incompressible regime (see [11]. [16]. [22]).

An application that yields itself to analysis using front tracking is the study of deflagration
and detonation waves in a compressible flow field. There has been much work in the area
of front tracking applied to detonations (see, e.g., [3]. [5]. [7]. [8]) but little in the area
of compressible flames. In [19] both deflagrations and detonations in one dimension were
tracked using a moving mesh method. Extension of their work to multiple space dimensions.
however. is nontrivial. Although the approach outlined here is applied to a one-dimensional
reacting flow. the method may be generalized to multiple dimensions. Our approach uses a
volume of fluid tracking method that has the ability to effectively represent large deformations.
changes in the topology of the front. and complex geometries [4]. [21]. When applied in that
context. the Riemann solution may be modified to include more complex physical phenomena
such as curvature effects [6]. We will not comment further on these except to say that the
current formulation does not restrict computation to one dimension.

Physically, the scenario to be modelled is a combustion wave travelling through a one-
dimensional premixed reacting medium. If one assumes the combustion wave to be infinitely
thin. the front tracking method can be used to handle the reacting front. The numerical scheme
maintains a sharp discontinuity at the flame: however, since we do not compute the internal
structure of the flame resulting from diffusional effects and finite rate chemistry. the flame
speed must now be modelied.

This paper demonstrates the successful application of the front tracking algorithm to
systems of hyperbolic conservation laws for reacting gas flow. The present focus is not on
understanding the mechanisms of transition from deflagration to detonation or on the validation
of empirical flame speed laws. but rather on formalizing the procedure necessary to implement
the algorithm so that future studies might yield physically instructive results.

2. Problem description and modelling considerations.

Physical problem. Considerthe propagation of areacting front through a one-dimensional
premixed medium (see. e... [18]. [24]). In general. the upstream conditions (pressure. tem-
perature. velocity. reactant concentrations) are known and one is interested in determining the
flame speed and downstream conditions. For example. in Fig. 1. in a reference frame where
the flame is stationary. temperature (and other properties) is a function of position. The flame
thickness 8, and flame speed Sy are functions of the diffusive transport and the energy release
due to chemical reactions.

Model. On length scales where the hydrodynamic effects are dominant. the problem can
be simplified by neglecting dissipative effects and treating the flame as infinitely thin. The
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reaction then becomes: Reactants = Products. The reaction is irreversible and the flame is

modelled as a discontinuity which converts reactants to products and releases chemical energy

equal to the heat of reaction. With this assumption, the problem is reduced to solving the

one-dimensional compressible flow equations with an additional conserved scalar equation

for the chemical energy. For simplicity, the ratio of specific heats is constant across the flame.
Compressible flow equations.

(H il + oF =0
’ at ax
P pu
(2) U= pu |. F=| pu"+P
pE puE +upP
2
-
(3) E=e+qg+-.
Chemical energy equation.
G 0 (pg) + 0 ( ) =20
# — —— i = .
s 3 vers . ouq
Equation of state.
(3 ) P ={(y—1)pe.

The symbols are defined in the Appendix. While the chemical energy is a conserved scalar
on either side of the combustion wave. its value is changed at the flame front as energy is
converted from chemical energy to internal and kinetic energy.

Rankine—-Hugoniot relations. Consider the hyperbolic system of equations that describes
the current system. For an arbitrary surface of discontinuity in a flow field. the fluxes of
conserved quantities must be equal entering and leaving. Stated more formally. for a system
of equations of the form given by (1). and a discontinuity travelling at speed. s. one can write
s{U:} = [ F;] where [U;] = U;; — U; g 1s defined as the jump in the ith element of vector U/
across the discontinuity. These equations are called the Rankine—Hugoniot relations and in
this system represent the conservation of mass. momentum. and energy.

Detonations versus deflagrations. There are two types of combustion waves of interest
in this model: weak deflagrations and strong (or in the limit. Chapman-Jouguet (CI)) det-
onations. We exclude the possibilities of weak detonations and strong deflagrations based
on both physical (see [18]) and mathematical arguments (see [12]. [15]). The relation of the
characteristic directions to the trajectory of the reaction front determines whether a unique
solution exists (see [15]). For a strong detonation the characteristic directions are similar to
the case for a nonreacting shock {(Fig. 2). A counting argument can be used to illustrate the
unigueness of the solution.

The detonation is a discontinuity separating two known smooth states U, (x.r) and
Ug(x.r). At some short time Jater §r we are interested in finding the states on either side
of the detonation L7, (x,(t +8t).+ 4+ 51y and Ug(x/{(z + 51}. 1 & &1) and the detenation speed
s(t + §t) where the position of the discontinuity is denoted by x,. The jump n chemical
eneray Ag is specified. so we are left with seven unknown quantities. The Rankine—Hugoniot
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FiG. 2. Relarion berween characteristic directions and the path of the reaction front. Strong detonation case.
like thar for a shock. is completely determined. The weak deflagration case has one degrec of indeterminacy.

relations provide three equations and for a strong detonation the information carried along
the four characteristic directions intersecting the detonation provide four additional equations
which uniquely determine the solution. For a CJ detonation, in addition to the three Rankine—
Hugoniot relations. three characteristics intersect the discontinuity from the left and the CJ
detonation propagates at the speed of sound. We have

s{U T = [F7). i=1,2.3.
) . dU
for strong detonations: e —— =0. k=+R.—R.OR.+L.
(6) do
‘ . au
for CJ detonations: re— =0, k=+4+R.—R.0R.
do*
S=uUuy +c.

The equations describing the behavior of the solution along characteristics imply that the
part of the vector U picked out by the kth left eigenvector I* does not change along the kth
characteristic trajectory o*. **L” and “R" indicate whether the characteristic approaches the
discontinuity from the left or the right.

In contrast to the unique solution in the detonation case. a weak deflagration has one
degree of indeterminacy. Again. we are interested in determining seven unknown gquantities.
The Rankine-Hugoniot relations provide three equations and the intersection of three char-
acteristics (+L, — R. OR) with the deflagration provide three additional equations: one more
equation is needed to uniquely determine the solution. In this case. we specify the speed of
the flame, relative to the fluid velocity. to remove the indeterminacy and close the system. For
laminar combustion, the flame speed is determined primarily by the balance of the effects of
chemical energy release and diffusive transport on length and time scales that are small relative
ta the hydrodynamic scales. In principle. the flame speed in that regime could be computed by
solving a two-point boundary value problem for the traveling wave solution of the compress-
ible Navier—Stokes equations. In the case of turbulent combustion. the flame is no longer one
dimensional. but can be modeled as such in a quasi-one-dimensional approximation. In both
regimes. it has been found that the flame speed can be parameterized as a power law function
of the temperature of the fluid immediately in front of the flame (see [ 1]. [2]. [20]. [23]). We
have

P\
{7 S/' = iy + k (— .
20

Here. the values of k and Q are determined by fitting them to experimental flame speed data.
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FiG. 3. Gas dvnamics Riemann solution: Shock tube.

3. Solution procedure. The solution procedure utilizes the front tracking method of
Chern and Colella [9] and the Riemann problem solution of Teng., Chorin. and Liu [23], [10].
A summary of the basic techniques is presented here. For more details. one should consult
the original works.

Riemann problem solution. In order to implement the front tracking algorithm we need
to calculate the speed of the tracked front and the fluxes passing through it. It is in this
context that the solution to the Riemann problem must be discussed. In general. one is given
a hyperbolic system of equations with initial data of the form given by (8). We are interested
in finding the solution at later times. We have

" U L BF
) ot ax
UL. x < Q.
Ux.0) =
UR. x > 0.

Gas dynamics. The solution to the Riemann problem is well known for the gas dynamics
equations [3x3 system]. We will use this example to illustrate some of the ideas involved
in solving the general Riemann problem. Differences introduced in the case of reacting gas
dynamics will then be discussed.

The solution to the gas dynamics Riemann problem consists of three waves: aleft-moving
gas wave. a right-moving gas wave, and a contact discontinuity travelling at the local fluid
velocity. The gas waves can be either shocks or centered rarefactions. A typical solution for
a shock tube is shown in Fig. 3.

First. consider shocks. For a known right state U; and pressure behind the shock P> > P;.
the state behind the shock is completely determined through the Rankine-Hugoniot jump
conditions. For P = (P, + P23/2. 1 = 1/p.

] = W[t].

[P] = —W?t].
N le] = —P[1].
o vP/ (,}’+])(P3—P|))
W= " |1 :
Ty ( * 2y P

The Rankine-Hugoniot jump conditions represent conservation of mass. momentum. and
energy across the discontinuity. If we view w3, pz and the shock speed s = 1y + W, as the
unknowns. then the jump conditions provide the three equations necessary to solve the system.

Now consider rarefactions. For a known right state I/, and pressure behind the rarefaction
P» < P,. the state behind the rarefaction is determined by the equations of isentropic gas
dvnamics. In particular. for a y--law gas. the '™ Riemann invariant is constant.
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Strong Detonation C-J Detonation

FiG. 4. Detonation Riemann solution,

(10) Papy

Thus. the velocity and density behind a rarefaction can be determined uniquely.

The solution to the gas dynarmics Riemann problem is found by employing the fact that
velocity and pressure are continuous across a contact discontinuity. First, guess the pressure
between the two gas waves P*. Determine whether the left and right waves are shocks or
rarefactions and calculate the velocity using either (9) or (10). Pressure is iterated on until the
velocities match across the contact discontinuity: u} = 1.

Reacting gas dvnamics. The Riemann problem for reacting gas dynamics is more com-
plex. Consider a reacting front separating two constant states with one side burned: the other
is unburned. In the detonation case. a unique solution exists. However, for deflagrations
whose velocity is specified by a given flame speed law, in addition to the detonation solution.
there may be zero. one, or more than one solution involving a deflagration. We resolve this
ambiguity by choosing the weakest combustion wave (in terms of pressure jump) that satisfies
the conservation conditions.

In the detonation case. the solution to the Riemann problem is similar to that for the
nonreacting gas dynamics (see Fig. 4). For a strong detonation Pz > P, the CJ detonation
pressure, we see a right-moving detonation. a left-moving gas wave. and a contact discontinu-
itv. We use the Rankine~Hugoniot jump conditions across the detonation in a similar manner
to the treatment of a shock for the gas dynamics case. The jump conditions now contain
information about the chemical energy as well:

(1 lg] = AHxg.

where A Hg 1s the heat of reaction.

For a CJ detonation Pg < P¢,.the pressure at the detonation is known (P = P¢,).and a
rarefaction fan connects the detonation to Uy. The state behind the left gas wave is calculated
as in the nonreactive case and the contact discontinuity provides the matching condition that
closes the system. Again. guess P~ and iterate until « = ;. The front speed is calculated
as part of the Riemann solution. The reduced flux. needed for the tracking algorithm. is based
on the state ahead of the detonation Fy = F(Ug) — sUg.

The deflagration case is more complicated because it consists of four waves: left and
right gas waves, a contact discontinuity. and a deflagration. The speed of the deflagration
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FIG. 5. Deflagration Riemann solution.
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FIG. 6. Tracked fron:.

must be specified by a flame speed law. e.g.. (7). A typical solution is presented in Fig. 5. The
pressure in front of the deflagration Py is guessed and the solution is again iterative. The gas
waves are dealt with in the usual way with the deflagration treated using Rankine~Hugoniot
jump conditions for the specified flame speed. The difficulty occurs due to the possibility of
more than one solution or no solution at all. The iteration is designed such that it picks out
the weakest deflagration wave when multiple solutions exist. In the event that no solution
containing a deflagration can be found. a detonation is assumed to exist. The information
provided to the front tracking algorithm consists of the flame speed and the reduced flux
F_,‘ = F(Un) — SU().

Front tracking. The strategy of front tracking is to treat a discontinuity as an internal
boundary in the flow field using the solution to the Riemann problem to determine its speed
and the fluxes passing through it. A conservative update of the solution is then performed. In
order to maintain numerical stability near the tracked front as fractional cell size gets arbitrarily
small. incremental values of the conserved quantities are redistributed according to the method
of characteristics. Fig. 6 illustrates the finite difference cells in the neighborhood of the tracked
front.

The location of the front at time A7 is denoted by x7 and the cell containing the front is
labelled i¢. The solution at time nA¢ is known. The procedure for advancing the solution in
time consists of the following steps:

[. Compute fluxes using a finite difference method for all cells in the domain. We
will employ a second-order Godunov algorithm to calculate the fluxes (see [13]. [14]). The
numerical flux is a function of the solution in nearby cells. For stenci] width r.

i i+r

(12 Fooo=FWU ... .U ).

In the case that an edge is within r cell lengths of the tracked front. the values of the arguments
of Fi4,» corresponding to cells on the opposite side of the tracked front are evaluated using
the value U}, In particular, we do not mix burned and unburned values in computing fluxes
at cell edges. For edges to the right of the front, we use U/ to fill in the missing arguments of
the flux function.
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2. Update interior cells. For cells not in the neighborhood of the front(i.e..i = 1...if —
2.i7 +2... N. where N is the number of cells in the domain). perform a conservative update
of the solution.

— F

i+%)'

3. Update the front position. Calculate the representative left and right states

_ AI! An
(14) U =Ur~L+ur | ——i).
" Ax sn Ax,

(13) gl oy B (F. ;
- + { A,t l—i

We compute U similarly. We use these values to calculate the solution to the Riemann
problem determining the speed of the front s and the flux through the front F/ = F(U) —sU.
This will be described in more detail in the next section.

Move the front

(15 x’/'“ =Xy -+ SAL

4. Make a first pass at updating the solution near the front. Define
SMy = (] = AT+ A (Fy = FT).

(1o
SMp = (Al — AFHU + Ar (Ff - FA,,‘,VJF_{) .

I
8 M is defined such that the conservative update formula for U; and Uy is

AEUTT = AT UL+ s M.
S=L.R.

(17

Note that this equation is unstable for a Courant-Friedrichs-Lewy (CFL) condition based on
Ax since Ag*' can become arbitrarily small. We break § M into two parts in order to update
the solution in a way that is both conservative and stable.

R .

An+l 1+1
(18) SMg = A‘ 5/v15—;<1-~ AS )51»15=5/v15_|+5M5_2.

3 M, can be added to update the solution in a stable manner

(19) U;J’] :U;—{—;\T}_;—I-CSJWS_‘ ZLIg-%-—A]—\_cSMg.
s :

5. Redistribute § M > in cells near the front to maintain conservation. The general proce-
dure is to perform an eigenvalue decomposition of the vector §Ms ». The parts are distributed
to where they would be propagated according to the method of characteristics. There is an
important difference in the treatment of combustion waves. however, where we assume the
characteristics starting from the left of the front (burned side) reflect off the front so that
distribution of conserved quantities corresponding to these parts occurs only in the burned
region. This is essential to insure both that fuel is not burned twice and that the unburned state
contains no burned gas. We allow characteristics to cross the flame from the right (unburned
side}. corresponding to fuel being consumed slightly before it normally would. Algebraically.
this is expressed

(20) SMso =Yy airk.
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Fi1G. 7. Characteristics for flame problem \deflagration).

where
ak =14 - 8Ms,,
r§ = r*(Us).
A= 15Uy,
k=—.0p,0g.+.

where r* and /¥ are the kth right and left eigenvectors and o is the corresponding expansion
coefficient. The propagation of the components are determined by the eigenvalues A*. Notice
there are four eigenvectors for this system: two travel at the fluid velocity. carrying jumps in
density and chemical energy. For this system. the left and right eigenvectors are

LI u ut+q -~ E u o 1 1
F=c|l-F-t|——— . | —F- ). — —— .
21y ¢ ey ey c¢/] ey ey

Y . 1
(21) ]O/’:——|i-—(ll"+q~E).H.-—1.]<].
ey Lp

19 = [—-‘i. 0.0, l} .
o J

N P71
r¥ =|l.utc. E+x—.qg| .
o]

(22) 0p T
r’ =1lu E—e.q].

r% =10.0.p.p1".

and AT =u £ ¢ 2900 =
The part of § M > that is carried by each characteristic is defined:

24

1

(23) M = asrs.

In the case of a deflagration front. we represent the redistribution process by the characteristic
diagram in Fig. 7. Note that the +. L characteristic is reflected back into the burned region as
discussed above.

We define §M[° and SM " for redistribution behind and in front of the discontinuity:

SM = 8My.

(24) O 0 P . ] 0p [0
) /\‘7;-(" = 51\'1[" + 8ML/ + (S/WL' + 9 "I”L + oMy + 6 /\"/R“ + (SI'WR/~
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We then distribute these quantities near the front:

sl . n-H ] tot
L'/u|+1 T (Lm. 1+1 + tozSM N
R

n+1 . ( /n+l Sh tm)
to[
(25) | ’
n~Ll a+1 tot
_ uit! SM )
1 sl ( nti A!Z)I ‘
n=1 r +I ot
vy (o” AmaM )
where
A% = AR+ Ax,
(26)

i
AV = AT+ Ax,

and “:=""in (23) represents assignment in place. A similar calculation is performed in the
detonation case. except that all four characteristics cross from unburned to burned.

SMI* = SM7 + MY = SMY + 8M; +8My + 8My° + SMy' +8My

(27)
SME = 0.

4. Results and discussion. The front tracking algorithm has been implemented for solv-
ing one-dimensional reacting gas flow problems. Results are shown in Figs. 8~11 for two
different sets of flame speed constants. For each case the initial data represents an ignition
problem.

Deflagration. First consider the deflagration problem (Figs. 8-9) on the domain [0. 1.6].
A solid wall exists at x = 0, allowing gas waves to reflect off of it. The boundary at the other
end is open. We use 800 grid points in the x-direction (Ax = 2.0e — 3) and the time step is
determined by the CFL stability condition (At = 0.9 max(ju + ¢|. |« — ¢|)). The initial data
is

e unburned (x < 0.075 and x > 0.081); P(x.0) = 1.0: p(x,0) = 1.0:g(x.0) =
20.00 u(x. 0y = 0.0.

e burned (0.075 < x < 0.081): P(x.0) = 1.4072: p(x.0) = 0.2082: g(x.0) =
0.0: u(x. ) = 0.0.

The flame speed constants are & = 0.095 and @ = 2.0. The burned state. obtained from
the Riemann solution. is found behind a deflagration given left and right states equal to the
unburned state above. The velocity is set to zero, however. since at early times we assume the
effects of the left and right flame cancel.

The behavior of the system is shown at early times in Fig. 9 to illustrate the interaction of
the hydrodynamics with the deflagration. Shock waves are labelled “'s™: deflagration waves.
“f77 We first see two deflagrations propagating in opposite directions. each preceded by a
shock wave. A short time later. the left-moving shock reflects oft the closed end of the tube
and decelerates the flame when the two waves collide (point D). The shock passes through the
left flame and overtakes the right-moving flame causing the right-moving flame to accelerate
(point A). It is this process of shock waves overtaking the right-moving flame and causing an
increase in pressure that results in transition to detonation in this model. For the present flame
speed constants. however. transition is not observed. Figure & shows the temperature contours
for this problem at longer times.
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Deflagration: Temperature

g / -

1=124

Time

(D)

Distance
x=320

6.45

T0 138 256 334 411 489

FIG. 8. Temperature contours for k = 0.095. Q = 2. (1) and (2} denote the location of pressure cross sections
shown in Fig. 12.

Deflagration: Temperature {early time)

Distunce
x = .8}

1000 1.83 266 2530 431 314 597 679 7.62 845

FIG. 9. Early time behavior for k = 0.095. Q = 2. Temperature contours. Point D marks deceleration of the
left flemme. Point A narks acceleration of the right flane.



766 JAMES HILDITCH AND PHILLIP COLELLA

Detonation: Temperature

t=0.49]

Time

Distance
=1.60

T00 221 347 473 500 706 850 06.76

FiG. 10. Temperature contours for k = 0.10. Q@ = 2. Transition to detonation occurs at point t. °s” indicates
a shock: """ indicates a flume.

Detonation: Pressure
t=0.491

Time

Disuance
=160

00 037 005 30.25 44

Fic. 11. Pressure contours for k = 0.10. Q = 2. Note the strong rarefaction fan trailing the CJ detonation.
(3) denotes the location of a pressure cross section shown in Fig. 12,
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Detonation. For the detonation problem, we consider a smaller domain [0, 1.6] since
the phenomenon of interest occurs relatively quickly. We again use 800 grid points (Ax =
2.0e — 3) and the CFL condition determines the time-step size. The initial data is

e unburned (x < 0.075 and x > 0.081): P(x.0) = 1.0; p(x.0) = 1.0:g(x.0) =
20.0: u(x.0) = 0.0.

e burned (0.075 < x < 0.081): P(x.0) = 1.5075: p(x.0) = 0.2233:9g(x.0) =
0.0:u(x. 0)=0.0.

The flame speed constants are k = 0.10 and Q = 2.0. The burned state is obtained from the
Riemann solution with the current configuration. We track two opposite-moving combustion
waves.

The early time behavior of the present case (Figs. 10~11) is similar to that seen in Fig. 9.
The left-moving shock reflects off the closed end of the tube and overtakes the right-moving
deflagration. The right combustion wave accelerates, but is still a deflagration. Another shock
overtakes the right-moving deflagration at point “t" and transition to detonation occurs. The
detonation travels faster than the Jocal speed of sound and the strong rarefaction fan trailing it
indicates that it is a CJ detonation.

Figure 12 presents cross sections in time of the pressure field. The approximate location
of these cross sections is shown in Fig. § for the deflagration cases (1) and (2) and in Fig. 11
for the detonation case (3). Note the different scales. Graph 12(1) illustrates the pressure
field at early times. There is a substantial increase in pressure behind the shock and a slight
decrease in pressure across the flame. At later times (2), we see a fairly strong shock at v = 1.0
followed by a rarefaction fan. A second weaker shock precedes the flame creating a small
jump in pressure. The sharp pressure decrease at x = 0.7 marks the flame. The detonation
pressure field (3) is significantly different. We see a shock wave at x = 1.15 followed by a CI
detonation producing an order of magnitude jump in pressure. A rapid expansion follows the
detonation.

5. Accuracy. We have analyzed the accuracy of the numerical scheme in a number of
ways. The most obvious of these compares the computed solution for an unsupperted CI
detonation to its known analytical solutton. Thus, we compute

(28) Uy — ("'Iexum';l,] ! MW exaer ”L,

for two values of h(= Ax. Ax/2). The convergence rate is found by comparing the solution
from successively refined grids. The scheme is evaluated for two sets of initial data:

" U,. X > Yionts . .

Uix.00= _F front Discontinuous.
(29) UCJ(UR)- A < Xfront.

Ux.0 = U (x.001). all x. Continuous.

As shown in Table 1. for discontinuous initial data we observe first-order accuracy for the
scheme. This is to be expected since the finite difference scheme will resolve discontinuities
to first order at best. For initial data obtained from the analytical solution at an early time, the
numerical result is better than second-order accurate. The algorithm is designed such that for
tracked waves with constant states on both sides of the front. the calculated front position is
exactly equal to the analvtical result.

In an effort to determine the accuracy of the algorithm for more complex problems.
we examine the convergence of both the front location and overall solution as the grid is
refined. A classical convergence study is performed on the overall solution. The norm of
the error 1s calculated by comparing data from successively refined grids: Ay = 1/n for
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Pressure: Deflagration

Pressure
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FIG. 12, Pressure field (top to bottom). (1) early time deflagration: (2} late time deflagration: (3) Cl detonation.

TasLE |
Aceuracy relative 1o known solution—CJ detonation.

Initial data 400-exact 800-exact L rate
Discontinuous 1.612E-3 7.724E-4 1.06
Continuous 2.206E-5 3.431E-6 2.68

n = 200. 400. 800. 1600. 3200. A small time step Ar = 0.08Ax is used to insure stability as
reflected shocks increase the sound speed. Thus, we compute

(30) RER Y
i ”Uh H[_,

for each grid. Asymptotically. these differences are proportional to the errors on the coarser
grid. We evaluate the convergence for a test problem similar to the deflagration case examined
in §4. The same initial states are used with the two front locations arranged to insure that at least
one cell exists between the tracked fronts for the coarsest grid: xs; = 0.1175.x7 5 = 0.1275.

The accuracy is checked at an early time t = 0.12 before the flame is overtaken by a
reflected shock and at a later time 1 = 0.32 after the reflected shock has passed through the
flame (Figs. 13 and 14). At both times. the solution is converging at a rate slower than first
order. a reasonable result given the complexity of the problem (Table 2). The data in the 200
cell case is not in the asymptotic region and therefore the 0.209 convergence rate is most likely

an anomaly.
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Deflagration: Accuracy Test

Distance
x=10

FiG. 13, Densiry contour plot for accuracy test problem. Art =~ 0.17, shock overtakes the flame. Error is
evaluated at t = 0.12 and + = 0.32. “f" marks right moving flame: s indicates shock.

Density Profiles
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Fic. 13, Density profiles ar t = 0.12 and 1 = 0.32 for accuracy tesi problem. For t = 012, the left-moving
flame is located at x = 0.02: the right-moving flame ar v Z 024 Art = 0320 the right flume is located ar x = 0.60.
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TABLE 2
Error for deflagration in a complex flow field.

Time 200400 Rate 400-800  Rate 800~1600  Rate 1600-3200
r=20.12 6.88E-3  0.209 595E-3 0.722 3.61E-3 0.361 244E-3
r =032 7.53E-2 0671 4.73E-2 0.869 259E-2 0.6635 1.63E-2

Error in Front Location

Error/dx

(AY
- (B)
- 4Oy
= (D)

1.80

160

1.40

1.20

0.60

040

0.20

o0 —

-0.20

-0.40

-0.60

’ Time « 10°F
0.00 S0.00 10000 15000 20000 25000 3000

FIG. 15, Error in front location scaled by J.x. Note that before shock overtakes flame art = 0.17. the error is
an order of magnitude smaller than Ax. Also. ebserve the oscillatory behavior of the error.

The convergence of the front location (right-moving flame) is also examined (Fig. 15).
We plot (x;,, — xs.2,)/(Ax,) for times when x;, 1s defined. For short times corresponding to
the first case above, the error in the front location is an order of magnitude smaller than the
grid spacing. After the shock passes through the flame at + & 1.6. the error increases but still
is on the order of one grid cell. One should note the oscillatory behavior of the error. This may
be due to the corrective effect of the tracking algorithm: as mass and energy are redistributed
behind the flame a local high energy region is created causing an increase in front speed. The
bulk states near the flame cannot support that speed so the flame speed decreases until a jocal
low energy region is created and the process repeats in reverse. Further. it is this feature of
the error that makes a classical convergence study of front Jocation impossible. That is. while
the error in the front position. on average. decreases with grid refinement. the error at a given
time for successively refined grids does not monotonically go to zero. The oscillations have
different amplitudes and frequency for each grid resulting in arbitrary cancellation of error.
Again note that these errors are small (Fig. 16).
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Front Position
Time x 1073
320100
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FIG. 16. Front location versus time. Errvorin the front position is on the order of the grid spacing.

6. Conclusions. We have looked at the front tracking method applied to one-dimensional
reacting gas flow. The results accurately represent the interaction of gas dynamics waves with
detonations and deflagrations that can be modelied by flame laws of a form similar to (7). The
current method produces results that are qualitatively similar to the results that Teng. Chorin,
and Liu [23] obtained using a different numerical method. The present work has the advantage
that it can be generalized to more than one dimension and has the potential to include adaptive
mesh numerical techniques. Such extensions will be investigated in future work.
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