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The von Neumann paradox for the diffraction of 
weak shock waves 

By P. COLELLA AND L. F. HENDERSONt 
:\Iail Stop L-:l I (j LawrE'neE' Lin'rmo]"(' National Lahuratory. P.O. Box ~O,l~. LiYE'l'l11orE'. 

CA 9et!);")O. URA 

(ReeeivE'd 18 Noyember 1988 and in rt'vised form 2:3 ,rUIlE' 1989) 

"'p present results from our eX]Jerinwnts with the irregular l'efledion of shock wavps 
in argon. \Ve eompare the data with the results we obtained llullH'riealiy; the 
assnmptiollfl for the computational eoclt' were that. we had ullsteady. two
dimenRional, compressible, inviseid, flow of a perfect gas. \VIll'll precautions were 
taken to reduce the effects of the gas viscosity on the experimental data, we obtained 
very good agreement bdweell the numerieal and the experiment.al results for the 
ramp Maeh number and the trajectory path triple-point angle, but there were 
discrppaneies with the wave-angle data. The diserellaneies were ascribed to the 
scnsit ivity of tIl!' data to both viscosity and to a singularity. \Ve silow that t.here arc 
actually two weak irregular wave reflect.ions. namely a elassie Mach reflection (MR) 
and a 11e\Y type, t.hat we call a von Neumann reflection (NR). The structure of the 
NR is discussed in some det.aiL and so are the transition criteria for the various wa\Te 
systems. 

1. Introduction 
The regular reflection (RR). and t.he irregular, or Mach reflection (MR.), of a plane 

shock wan' i at a rigid surface was first discussed comprehensively by von .Keumann 
(1 H43). He assumed that all the wayps were shock" \yhieh obeyed the Rankine 
Hugoniot (HH) jump conditions. and all were of negligible ('UITature ami 
thickness. Alt.hough the theory was dcYcloped for a gt'lll'ral equation of sta te. he gan' 
most attention to air which he assumed to be a perfect. gas. 

He fOlllld that transition between HR ancl .MR., denoted by, HH::;;:": .iVIR, could be 
brought about by a continuous change in a system parameter. such as, for example, 
the corner angle e, or the inverse ~trcngth of i, ~i == I~J 1'1' where P is the pressure aml 
the subscripts 0. J. refer to conditions upst.ream and downstream oh (figure 1). When 
Iw studied the conditions for transition, he found it Ill'ccssary to distinguish between 
a st.rong and a weak incident shock i, because ~i determined the nature of the 
transition criterion. Using a property of thc polar diagram. he was able to give a 
rigorous definition of the boundary between strong and weak shocks. In the special 
casp of a perfect gas. the crit.ical value of g; = gel" depended only on the ratio of 
specific heats 11 == ('r,lev , (table 1). HO\vever, all alternative defillition which j" 

physically more satisfact.ory has been given by Henderson & SieW'llthakr (1980). III 
this case. i is strong if the flO\v dowllstream of its rcflected shock r, is supersonic at, 
or near. transition, but it is weak when this flow is subsonic. Hence the strong/weak 

t Pf'rmanent addrf'RR' Department of ME'f'hanieal Engillf'ering. linin'l'l'ity of S~'dlley. N~\V 
200G. Australia. 
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Frol'HE t, .\Ia('h rl'llpdioll ('al1~pd hy tlH' r1ith'ldillll of a ldmll' ~h(wk (11'''' " ('"llll",(,~"j"ll ('(ll'II('I', 

(0) ('0IH'11\'(' ('()]'JIPI' 1ll()(I"I, (h) ~~'Ill11l('tri(,l1l \n,dll(' llJ()(1P1 d('~ill'I('rll() ]'('(\111'(' tl1\' l'fl'r'('t, ()f\'i~(,(\~jly 
partj"ltiarly at the ('onWI', I, ill('idl'l1i ~llo('k: 1', rPilp!,!p,j "IHI('k: ", ~Iach ,,11I\('k: ("I. "Illliact 
diR(,Olltil1uity: fI, ('(H'lwr angl(': ,\', trnjpetory path l1nlllp ,,1' \yaH' tril'k· jl()int : .1/", ~h«(('k ~\;H'h 

1l11lllhn of :I\a('h ~h()('k alollg thp rnllll' ~lIl'fa('f': II, allgle of ill('idpll<'(' Ill' i \,'jllt n'~I){'d to tlli' (,d: 

Ii" Inn'!' anu:lp of" with rt's!'pet 10 th(' ('d, 

bOlllldary j" at the ~()lli(' tl(l\\ ]loint. The t \\0 ddinitiolls <In' l'lmw together for a 
}wrfed gas (spc tablcs 1 alld 2). 

For \\THi< sllOck" \'on ;\;(,lllllHlln ('otH'ltukd that tnlll"itioll took plHI'p at thl' 
dPlacllllll'nt point. f.;uhsl'ljw'lltly. I{ortlllng 8.' Tayloj' (UJH2). ]ll'opospd inkt('ad that 
tran"ition OI'(,UJTPd at the :;':ollie' point. Ad Ilally. tilt'f'!' two (,l'itl']'iH an' too do:,,!' 
togptlwl' for pl'!,,,pnt day experillll'ntal kchniq\lf'N to di"tillgui:;.:1; Iwt\n'(,ll tlll'llL ":1) 

they will he I'pfclTed to gPllPl'it:ally as the ,,:olli(,/dda('hllH'llt point criterioll. By 
('ollira"t. WIH'1l wa,.: ktrong. VOll l'\CUllltlllll ;,;ugg<,:;.:jpd that tlw 111l'('ilalli"ni 
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TA flLg 2. Separation conditionR hehn"Pl1 ~tl'()ng and IH'nk ~h(lcl{f; fiJI' M2 = 1 
(after Hendel'ROn & Sipgenthnler) 

equilibrium point \\n" the correel criterion and it i" 110\\' also called the \'on ~('umanll 
jloint, 

Whell hi" theory wn" compared with experimental data obtained from shock 
wnves in gasps. the agreement was generally satisfactory provided that 1: was a strong 
shock. This ('onelusiol1 applied t.o both stationary and self-similar (psendostatiollary) 
Hom'. for both I'eguln], and Mu('h ]'Pt1ed.iolls. (131('akl1e.\' & Tau b 1 !lJfl· Kawamura 8.: 
Saito l!)5ti; llplHlnson & Lozzi 1!l7;"i. H170; Henderson & Gray 1!lH2: Hornung 8.: 
I(ohiwmn 1 !l82). For st.rong shoc·k reflection in Rteady Rta.te fiow. l'xjlprilllPnt" showed 
dearly that till' VOIl NClllllHlllJ ]Joint \VaR til(' eOl'reet transition criterion (l\Iiilder 
lUil: Pantnzapol, BellPt 8.: ;;';oustre lfl72: Hpnderson & Lozzi 1\)7;'), 197D: Hornung 
& Kyehakott' ifl77. Homung. Oertel & Sanr\pman 1!l7H). 'I'll(' omme conclusion applied 
to I'Pl'tflin self-similar systems sllf'h as t.win l'l'-l'lltry con('an' ('orIH'I'S (HpndeI'son 8.: 
Lozzi Ul7 i"i), hut !lot nE'cesRaril.\' to all self-Ri mila r f4,Y:'4temR, part iculady to a plant' 
slJOek i diffracting on'!' a8ingle ('(Hl('al'(' (compre"siou) ('orner. In t.his laFit ca"e, ",hiell 
haFi lWPIl extell:o:in'ly "tudied, eXjlPrinH'nt indicate" that regular l'!'ilcdiOl1 apparently 
pt'1'8ists !lot only beyond the von Neumann point but evell beyond the Fionie/ 
ddflellll1ent poinL that is. into a region wherE', aceording to t.he von N('umann 
tl1l'ory. JU{ is impossiblp. 

\\']WI1 i was n \\'('a" shock, the ('ited references ngain "hmn'd that til(' theory agrc('d 
\\(·11 with l'xpCrinH'llt for RH. ex('('pt t.hat 011('(' more HR apparcntly persistn] 
hf'\'olHl tIl{' sonic/dptachmPllt point. For weak .1la('h I'f'fied·ion the t/wor.\' almost 
always faikd to agree \\'ith l'xperiment, In fact. if i is sufficiently weak the nm 
~ellma llIl theory has n(lphysi(~ally realistic solutions for l\lR (Henderson 1 !lS7) ('\'en 
though experiments show that MR-like phenomena do ill fact {'xist. This suggests of 
cOllr:o:e that till' physieal model of weak MR. used h.\- VOl! Neumanll is tl1('11 ilH'oJ'n'd. 
'1'1](' apparent lWl'sistell(,(, of either HR or l\lH into regions of parametl'l' spa('e 
(I' x ~i x H). for \\'hich the thpor.v has no physically rpulistie solutioll;'; j" defined he]'(' 
to Iw the 'nJl11\Pumann paradox'. The term \I'as first used by Bil'khofl' (H)!j(). p. 24. 
1st edition) although in a more l'estrietcd f1PllS(, than by us, 

TIlt' ohjcct of thp prPRl'llt paper is to Rtudy the paradox with particular attention 
to the \\'C'ak irl'Pglllfll' rdlection, Fir~t. we prTfJPnt the resliits of ollr PXjWrilllcnt" \\'ith 
\\'(,flJi: shocks diffl'H d illg oyer CO/H'a \'(' (compres"ion) ('orners (figu n' 1). In order to 
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keep the physie8 as simple as p08sible, WE' s('[('!'ted argoll to \w the compressihle 
medium. which of {'olll'se eliminated tile effects of molecular vibration. rotation. and 
C'lU'1I1 ieal reactions (.J ohallnesell & Hodgson 1 H79). Se(,01](l1y. we presellt til<' results 
of our compntations of the flmy fields of the E'xperinwllts. For weak shock8. tlU' flow 
downstream of an irregular \\'it'"(' system is h,\' definition subsonic. so the \"()I] 

Xeumann tlwo)'y of it ean olily lw applied to thl' immediate vit'illity of thE' shock 
triple point. Om calculatiuns. !toweyt'r, deal ",ith the cntin' fl()w fil'ld. Like \'011 

Neumanll. we assumed that the gas\\'as perfeet and in viscid and that tIl(' incident 
i, and '\laeh 8. shock \"aves WE're of llegligiblE' thicklll''''S. In spite of this. our 
calculations arp l110re gelleral, not only \)('cause we COlllput(' the entin' flow field. but 
::1.1so bccauRf' we only rC'qllirf' the reflection J' to o]wy the HH .iump conditions. In 
particular. this allows r to be either a shock of twgligible thiekt](,sf' alaI CUl'vatlin'. <]" 

aRsUlnecl b.' VOll NE'umann. or. for example a sul)('riti('al (,()lllpn'SRioll of tinite 
thickness which spems to ()(TUr ill SOIll£' part;,; of ;,;ome flow fields. 

Although the numerical data were found to agree with E'xperiment within the 
limits of experinwlltal error there were small systematic diserepaneieR. These were 
aRcrilwc1 to shock-boundary-layer inh'raction effeet.R arising from the viscosity ofthe 
argon. In ol'dpt' to tE'st this i(ka some of the COllen n' {'OI'lH'r modd ('xpcriments (tigul'(' 
10) were repeated with s)'mml'iric wedge mo(kl" (figure 1 b). These were designed to 
greatly rE'ducp the sh(wk-bolllldary-layer interactioll at the C'OIH'an' (~orl1er. Rome of 

the diserepanciE's then vanished completely, while oth('l's \\'ere substantially reduced. 
Finally we shall pn'sent evidence that there arc two types of weak irregular 

refleetion. OnE' is a ('Iassieal Mach reflection (l\1R) and till' other is a new t~'pe whos!' 
reflected dis! urhance is not a "hoek in til(' ITgion of its intcradioll with tht' 
incident/lURch "hocks, but is H curved band of um,teady. self,similar. ('olllrn'e""ioll" 
of finitE' thickrlPss. Th!' flow downstream of the reflection is nOll-uniform ncar the 
interaction region. We shall diseuss the transitioll conditions betweell th(' yal'lOUR 
phenomena. 

2. The experiments 

TheRe \WI'(' dOl1E' at the Plliv('!'sity of Rydllcy in a conventiollnl sllock tube which 
has \wen described elsewhere (Ht'nderRon & Gray 1(81). The COllca\'(' ('OI'l1e1' model 
user! is illuRtrated in figure 1 (a). The working section nftlw tube was filbl with argon 
fol' all the experiments. so thE' ratio of specifie heats was a constant. ')1 =~. The 
inverse shock strE'ngth ~i "'as also held constant for a parti('ular series of experiments. 
Thc only vHl'iahl(' parameter was the eorner angle 0, and it "'as ehanged in dis(,J'd(' 
steps bptw('cl1 j he sonie/dl'tadnnent point 0 = (j*. and the glancing incidence point 
(1 = OQ. so ()* ~ (1 ~ O. Evidplltl,Y. the vahlE'S of the parametE'r sd (I'. ~i' 0) completely 
RppcifiC'cl a particular flow field and its associatcd wave system at a given instant. By 
table 2. an irregular ",,\"st(,111 was w(,llk when ~i > ~('l' = 0.30375. that j". when t.he 
shoek l\Jaeh numbcl' .M; of': wasMi < 1.HS:3. The incideut wave speE'd was llH'asured 
hy piezoelPctl'ie transdueel's. and t.he wan' sYf.:tt'ms were photographed with a 
convE'ntional "chliel'el1 apparat liS. 

'I'll(' angle /11 between tllP l'pficeied wave 1'. and the eontact diR('ontil1l1ity ed. and 
;1" bet·\H'en ed and the 1\1ach shock 8 were measurpd from t.hE' photographs. Thp 
contact discontinuity and all the waTt'S except i are {'m'n,d near the triple point so 
there was somE' uncprtainty about where to draw the tangents at this point for the 
purposE' of angle measurement. Accordingly the experimental ('ITOI' was a littk larger 
for thesE' "cak f.:hock systems than they are for stmng systems 'I' here the way!'s art' 
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FW{'IlIC~, ('()]npnl'is(lIl of til!' \'0\1 ;\f'lIIllHlln t,lH'or,\' of weak }\\fl<'h rpfi"dioll with t'-"IH'!'inH'llts ill 

argon. I' = *. <s) = (lAOn, (,1/,) = 1.4,7. (II, h) ExperilllPl1tnl data till' ('olwa\'e ('nnw!' IllOdf'ls, spe 

ligllJ'(' t ((f), (I'. d) r~xl'f'l'illH'lltHI datil fol' s.nl111lf'tl'ieHl (lOll' \'isl'",ity pffpcts) IlIOd,'le, Sf'"~ figlll'e 1 (/,). 
:\'1'. "Oil :\"'UIlHlllll lill·"l'." of weak ~ll:: It:\'. regioll of \'011 :\"'UIlHlIlIl I'efip"tioll (:\It) 1I'llI'n' /1, > 
tIT, c." expprillH'lltal dnta ]loint, 1';xl'l'riIlH'lli ill ('(TOrS Hn' 1I".l.>:ligihle for H. and ± :!,()O :lpl'roximah·I., 

j(II' (;11 -11,), 

eitlwl' locally straight. or l1early so. \Yc also measured the ~ln('h numlwJ' JIll' of the 
:\Ia!'!\ shock nlong lhe sloping ramJl whert' it is locally II 11 01'11 Ja 1 Nh()dc and the 
inlj(·etOl'Y path Hngle X oft,lll' iripk poillt. '1'1)(' allgit' X mlN llleHSlltTd HS indicatcd ill 
figUl'P 1, that iN ()Il til(' assnmptioll that the traj('dory path of tIl(' tripl(· point pasNed 
through the corner. Tilt' 1I1)('prfaillty ill the flll'HRUl'L'lllellt:-: of (Jill' xl is signifl(·HIlt.I,v 
iPss thnll for tl1P wavc allgles (Pi' Ps) and we eonsider the fonner to 1)(' the 1110st 
l'cliahk and robust of all our data. The f'(':mlts for tweln experiments ",ith an 
H\prage <~) = OAO(i, OJ' <J1li> = 1.-17. are presenipd ill figures 2(0, I)) Hnd :3(11. b). alld 
f(ll' ('out' eX]Wrillwnt;,< with <~) ~ n.!!l!L or <J1l) = J ,O:I[i, are Pl'cs('llkd ill figures 4, (a) 

Hlld -1(11). 
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FWI'HE :~, ('olllpariRoll of the fillite diffe]'('ll<'p ('()d~' ('ail'l1lati()l1~ of weak iregulal' I'ptkdiollR with 
pXJl{'riIlH'llt~ ill argoll. j' = *. <~) = 0...1-06, <Jl,) = 1.47. (a. b) ('OIl<'a\'~' ('OI'IlPI' 1l1Odei ('xl'pl'illwlltai 
data. (('. d) i'YJ1lll1etl'iPH i (lm\' "iR(,oRit~, effpdR) 1I1Ot/pl e1ata. +. 1l1l1llPl'i('a I data fmlll tlw ('odp uRing 
tlw "nllw (I'. ~,. m 1l1PflRUJ'Pc\ ill tlw PXPPl'illH'lltR. EX]lprillwlltai t'lTOrR arp TH',e:lil-(ihip for 0 . .l/" ±O.02. 
X± I.z;"j°. Hlll1 Illllllhpr1< of thp f'xIH'l'inH'lltR in (II. b) an' HI. H2. 84. 8f). Hn. Hi. 1110. 

3. The computations 
3.1. The e({lIation8 

\\,p cOIiRidcI'ed the unsteady EllIeI' ecpmtiOllR and the COlltillllity equation for the flow 
of a pPl{eet. ('OlIl]lJ'Cssible. illyiR('id. gas in t.wo dinH'llsiol1s. tbul'. 

(Ip (1(111 <'/)1' 
--+.~ +~ . = O. 
(if c.r (·jf 

(IpU (i(/)/(2 + 1') O(plll') 
-.-+ .--+--=0 

("" (1.1' (I!J . 

(~I!/' i'J(pw') 2(J!/'~ + I') ---- + --+ --.-- = 0 
iii 0.1' <'.1/ . 

( 1 ) 

2pl' 0(pUI' + liP) (I(pt'e + ,,1') -+----+ =0. 
0t C,l' ax 

",h('\'(' Ii is t.he density/I, I'. the ;(: and y yl'lo('ity components. and e is the total energy 
PPI' ullit maSf-:. The 1)l'('RRun' I' Illay be obtailled fmm the equati()]] of state. 

(~) 
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iJ.2. The Jlllmeril'(tl lIIethud 

TIl(' ('I)(](' was developl'd at the La\\TPIHT Li\'('l'morc National Lahorator,\' (LL.:\'L) 
and I'UII Oil 11 eray 2 ('Otllp"ter. It mws a finite ditrprcllce method baNr·d Oil a 
l'edanl!uial' grid in r'onjuIH'tinn with a high(']',ordf'l' (''(tetlsion of UOdllIlOY'S ml'ihod 
of a t.VJlP fin~t illtt'odIH'f'd by \'Hll Lr'ct' (1m!)), and Colella & \V()(lr!ward (J OS4). Tlw 
llH'thod is ae('unli(' to sP('ond ()]'dl'l' in spar~(' and tillH'. and capturr',; "I](l<"iz wavps alld 
ot\Wl' rlis('unt inuitir'" with millinlHl 11llIl1Pl'i('al ()\'('l'kho()t aIHI di""ipatiol1. E:\lI'Il"j\,1' 
UfW has 1)('('11 madc of thiN lllethod to (,olll)Hlte nnsteady Nh()('k reHer'tioll" ill gasps 
involving ('olllplex interactions betW('t'1l diN('ontilluities alld smooth WUVPN: it gives 
good agrl'ement with experiment (WoodwlIrd & Colella IfJH4: Glaz 1'/ rd. [!lSfi). 

The version (If the method 'iNed hy us iH a singl!' N('P UI1Rpiit llH'tilod as dCHcrii)('<l 
h.\' ('olplla (lilS4), Tht' lHIll1l'1'iC'CI! tluxps 011 thp fa(','." of the finitt, diff"I"'lH'P pells an' 
illl COlllIHlted and differenced Nilllultaneously ratlH'1' than a pail' at a linw for (,:l('l! 

eoordillatl' direetioll, aC" iH done ti)l' the oppraior split \'('l'"iOI1 of t.he e()(jp (Colella & 
WO(JCh'i\J'(! 1084), 

Naturally we wanted to obtain as aCClIl'Hte and detailed a pictl11'E' as posNihk of the 
Rhock interactioll I'PgiOll, so WI' explored two OtlH'1' t('('hniqucs \rhil'h \\'('1'(' nillll'd al 
il1cl'casing Olll' l'I's.dutioll in til(' lH'ighbollrhoocl of tIl(' reHection P(lillt and tlw triple 
point. One (If the III was loeal I'dilwment of til(' fillite diffl'l't'n'T 1l](',,11. \\,hi .. h i" :1 

Nimplifiecl forlll of the ideaR in BergeI' & ('oldla (1\187). At allY l!iH'll time the dCllsity 
of tllp tinite ditferen('(' "clls was inel'ea.~('d by an integer fitt'till'. called th .. rdiw'lllent 
rat.io. in (,Hdl coordinate diJ'('ct.ioll, \Vhilr, the Nizl' of the H'etallgular regioll I,hidl was 
fmbjed to rcfinement "HS fixed, the refined region was JlloI'eel ill sueh a \lily t hat the 
il1('irjpnt and ~Ia('h sh()('kN in tl\(' lwighbourhood of the reflcdillg \\<\11. j'{'IlIUilH'rl 

('('l1t1'e<l Oll tJI(' rl'fin('d region. Tlw 0-:('('01](1 techlliqll(, illvolved trackillg thE' ineid"ll1 
Nho('k i, using th .. algorithm 01'( 'lH'rll & Colella (IB87). In this <'a,w i lIas l'('jH'('R('llh'd 
by a polygonal curvp whil'h lllrwed through the finite difli:'rellce 111('8h \\'ith tIl!' 
HankillcHugoniot jUllljl conditiolls, providing the flux !)()undm',v ('o/Hlitions fol' Hw 
finite diffl'l'elH'C calculatiol1s. The ('Puplillg behind til(' tracked front \\'aN fully 
"OIlNl'ITat.in' alld (,lllployed finite \'(J\mlle diffc'!'('fl!'ing on pititPl' silk of the fl'Ont in 
('('1\1" intt'l'st'C'il'd hy tIl!' tradz('d fr()nt. ThiN Pllahled ItS to ('Ol.llflut .. diNI'(llltilllliti(,N 
IIhi('h \\'('1'(' eapillt'('d on the TIllit(, ddfPl't'lH'C' grid \\'hi('h int{'l's('pted t Ii(' tf'l1l'kl'd front. 
in particular. we treated tilE' t.ransition to l\'1nch rt'tl .. cti()ll as the fOl'lllHtioll and 
propagatioll of a kink along the incident NIl()dz with til(' rdh'ckd wavp and till' slip 
line ('olnputpd as eapturcrl st l'uettll'('S Oil thl' jinit.p difh'l'('1l<'l' grid. 

The liSP of hoth of these adnptin' tnchlliqtH'S imprrwed tile ('('solutioll of tht' tillitp 
difh'ren('e eal<'ltiatioll ill seH'nl1 W11.n'. lVlpRh re!ifll'llH'llt enabled Ui-< to f()('118 the grid 
l'('sO\utiOll on tl\(' NI11aIl-se(11(' stl'lIdmns in the neighbourhood oftll(' l'('(\(;dioll point. 
For exa mple. when (,Olnputing the trallNitioll 1){'t\\TCIl l'('glllnr and .'I1a('h rpflp('t iOl1, 

we \1'('1'(' ahle to obtain lVbwh shocks wbo"p height was only to;;, of the maximum 
vertical lwight of the I'Plkctl'cl wave. It would ha\'(' beel! prohibitively (''(P('IlNiH' to 
resolve 81lC'h sf.rul't·n1'('8 011 a uniform grid. Front t.raekillg c!ilninatpd SOIlW d.\'l1iHlli(' 
t'ang\' prohlpllls aRsr)('iatcd with finit(' diift'J'f'I1('(' calculatiolls of Nh.wk". particularly 
111 HlP prpS(,IH'P of' discont.inuiti('N ill til(' lllCHh Npa('ing. 

3.:1. The ('(ill1putations 

These \H'],(' organized as though WP W('J'(' doillg a typical sPl'ies of ('x)lt'l'iJlll'llt:-; with 
a (,OIllPH's8ion ('ornpl' ill a sIwek t.ulw (figu1'() 1 a): t.hat i,.:. both (I', £J \\'('1'(' held 
"OllNtant whilp the (,Ol'lH'l' angle fI was \'aripd ill di'<('!'d·(' stt'ps. TIH'1l ~i ,,'aN dlHllf.':t'd 
to a !H'W valli(' and the series \\i\N r('peated. 
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Run no. 81 82 84 85 86 87 100 

fT 14.58 19.30 2H.27 34.60 38.68 44.48 47.55 

~; 0.403 0.414 0.406 0.409 0.405 0.400 0.400 
M, 1.48 1.46 1.47 1.47 1.47 1.4R 1.48 

,ran' rpflpction KR. KH KR. ~IR MR. MH M.R 

TABLE 3. MpaRllrcd yalues of the injlut parameters for shock wayes j'(,flecting off concavp 
corners in argon, y = §. <g,) = 0.406. <ill,) = 1.47 
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FIlWHE 4. Comparison of the finite differencp code ealclliations of wpak irregular reflections with 
experiments in argon. y =~. <g) = 0.91H. OJ) = 1.0a5. (n. b) Concave corner model experimental 
elata. (c. d) Syml1lPtl'ical (low yis('osityl model data. For otllPr symbols ane! information see the 
ell ption to fign I'P 3. 

The first series was designed to validate the code by direct comparison with 
experiment. The gas was assumed to be argon with a constant ratio of specific heats, 
y = i- In order to make the comparison as accurate as possible. we llsed exactly thl:' 
same input datil (y. ~i' 0) in each computation as had been used in the experiments, 
(table 3). \Vp calculated (.MII' X), and then comparf'd the results with expl:'riment. 
(figures 3a and 3&) vVe also caleulated (ftl,fJS) from the von Neumann theory and 
compared these results with experiment (figures 2a and 2&). 

The seeond series was for <~i) = O.91H, or <Mi ) = 1.035. and there were four 
I:'xperimental points to compare with oUJ' calculations as shown in figures 4(0) and 
4(b). The von Neumann theory ofl\ll~ has no physically acceptable solutions for this 
"pries. The third series was for g; = 0.889737, or JI; = 1.0483, for ,vhich we had olle 
experimental point with e = 10°, For all three series i was a weak shock in the sense 
defined by both von Neumann and Henderson & Siegenthaler (tables 1 and 2). 

Example of the field calculations corresponding to experiments with run numbers 
85 and 81 are presented in figures 5 and 6. and in figure 7 we present our results for 
~i = 0.889737 amI e = 10°. Thc figure show the dPIU.:ity contour" for the entire flow 
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field in each case, as well as enlargements of t he densi ty, pressure , and entropy 
contour plots in the interaction zones . The 'ripple' not iceable in most of the 
enlargements is due to a reflection condition we imposed at the top boundary , 
consequent ly, it is no more t han an artefact of the calculations. It is not present for 
the timesteps in figures 5 (a) , 6 (a), 7 (a). Plots are also shown ofthe trajectory of the 
triple point. F or each timestep, we plottcd the location of t he topmost point on t he 
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)'Pfiedioll witll l'un tlllllllwr 8fi in argon. y = *. gr = OAtH), Ill, = 147. () = :l4,liO°, (II) j)(,llsity 
('()IltOU!'R for thp entire lipid. (b) EnlargPIlIPllt of density (~()llto\ln; in siwek intl~l'a('tioll l'('gion, ((:) 
Enlal'!!('llwnt of ]lreR,~\I1'P ('oniollrs, (d) ElllarlU'llIellt of entrop,l' (,Oil j O\lI'S, (f') TrnjedOl''y of th" triple 
point ill tllP (.L iI)-plane, 
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tracked incident sIwek for which t.he post-"ho('ked "tate differed from the "tate 1)('hil1 d 
tIl(' incident "hoek. Also plotted as a solid li]]e is a lincHr least.-squan's fit to the t r iple
point trajectory defined by these points. 

Thc assessment of the nUllwl'ieal aeeuraC',v of the solutions obtained here is 
substant ially simplified by the self-similarity of the problem. If the solution is self
similar, we expect that running the calculation for longer timC's should be tIll' same 
as rdining t.he grid. In faet. this is rigorously C'OJ'reet at. the (li s{'rete level in the ease 
of a uniform grid , in the sense that the solut.ion depends on the spatial and temporal 
incrcments ~;l' . ~y . ~l only in the ratios ~:r/ ~t . ~y/ ~t . Our general approa ch has been 
to Ui'C the finei't mesh that we could afford , and to monitor self-similarity by 
comparing t he l'E'Rlllts at differcnt times. T he 1l11merieal triple-point tra.jeetories arc 
exa mples of such comparisons ; OUI' plots of the triple-point locations computed by 
the algorithm at pvery tinwst.ep is equivalent t.o producing t.he triple-point Iocatiolls 
for a continuum of mei'h spacingi'. The convergen ce of the disnrete triple-point 
trajectories to a str aight line indicatei' that OUI' Ilumerica l calculationi' are converging 
to a self-similar solution to the equations. \Ve hnn' also performed other diagnosti cs, 
i' lwh as eornpa ring eontour ploti' of the solution at different timeR. and have seen 
similar convergellce of the wave patterlls . 
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4. Discussion 
4.1. Comparison (d the numerical results lI'ith e:rpeTi men! 

Af~ already explailled the most robust comparison was with til(' (Mn-X) data (figurps 
:3a. 1) . .fll. h). Tht' agreelllellt of the llullwrical data +. with t.he experimental data 0. 
is generally good for the (illo i ) = 1.47 results shown in figures 3(0) amI :j(b). Incked 
the agreelllPllt is within the limits of experimental error and comput.ational 
ullcprtainty. Howeyel' in spite of this. 01('1'e is a small systematic discTPpancy. 1'11(' 
results shown ill figures 4(0) and 4(b) arc for 1l1lICh weaker incident shock!' (iII i ) = 

I .O:~5 and here also the agreement is good. 1 n this ease the data is span;e and tlwl'e 
is no sign of a s:vstematic discrepancy. 

We formed tIll' h.\'pothe8i8 that the discl'epaney evident, in figures 3 (a) and 3 (b) was 
elm' to the Yis('()f~ity of Hll' argon, kading to shock-boundary-layer intc·raetions. 
Another viflcOHS effect waR duc to the (negative) (lisplaeement height ofthe boundary 
layer along the ramp. It was estimated to he only 0.02 !lUll at 5 cm downstream of 
the Mach Rhock, which made it immeasurably small. Our calculations, of course, \wre 
based on tilE' aSRl1lt1ption that the gaR \\'afl inyiscicl. The tint plate forllling the 
upstream part of the corner was 30 em long and the ReYlloldH number there wml 

about Re ~ 4 x 106 . A new serieR of models were designed to reduec the effects of 
yiReosity, a typical one is illustrated in figure 1 (b). Whilc this design yirtually 
eliminated shock-houndary-Iayer effectR at, the corner. therc were still some reRidunl 
side,,-all boundary-layer effectH. The NHtne numerical data is ('ompan'd with tlw 
experimelltal data from these symllletrieal or 'low viseosit.v effects' models in figurefl 
:1(1'. d and 4t. d). Cknerally, agreement i!' now excellent with ltO fligns of any 
sYRtetnatic diRcrepancy. Thus when I)J'ecHntiollfl Hl'p taken to minimize tlw dfedR of 
yiseoHity. the llulllerieal l'l':"ults agree \\'j th experiment. \Ye coneluck that these 
resnltR validate the code. 

4.2. Comprrrison of flip t'Oll ~Vrltl/l(rnn theory ofiliR lI'ith pxperimrllf 

Tht' YOIl ~eUlnunn theory !Jas phYflieall,'- acceptable flolution04 of ]UR for til!' (J.11i) = 

1 A7 Reries. but, not for the weaker series (Mi) = 1.035. It is impossible to calculate 
(;1[I/'X) from this theory. so it is lHwcflsary instead to eaJeulate the wave angles (/11: 
fis) to ('ollllJal'e with experiment.. The data for the concan' corner models are 
presented in figmes 2 (a) and :2 (b). Although the thl'Ol'y approaches agn't'IllPnt with 
experiment near t.ransition to RR, (j --'r (j*, there i" an inereasingly large discrepancy 
ill the other direction a:" () becomeH smallt·1'. For the experimental data it will be 
notiC'!'cl that tllt' 1"!:'fleeted wave angle /11 iR alwa~Ts Rllch that (31 ~ ~n:: thereforE' b!l 
e;rperilllcnt the l'eflcd.pc\ wan' r is never inclined forward of ttw triple point: it mlwt 
always be either a baekwanl facing siwek iii < ~n:, or. at most, a normal shock, 
(31 = In:· 

Thl' sam(' ('ompariROllS are made wit.h the symmetrieal model data in figures 2 (c) 
and 2 (d). For lil < ~n: it will 1)(' noticed that the discrepancies are reduced b.,' about 
half compared with the cOllcan' corncl' data (figureR 2a and 21)). This d('mollstratpH 
tIl(' sensitivity of the angle data to viscous effcc:ts and indeed to small variat.ionfl in 
the system parameters. A part from thiR observation, the conclusions are the sallle as 
befon'. These comdderation:-: suggested the following hypothc;':('fl to us. 

(0) When PI < ~n:, for thl' \'()j) Neumann theory. thcll it will agree with ('xpl'riment. 
prm'ided that the effectR of viscoNity can bp sufficiently reduced in the experiments. 

(h) When iJi > ~n:, for the theory, that is when the reflpe!ed wave is required to be 
ineiincd forward of the triplp point. thell the theory \\·ill no/ agt'l'l' with l,xlwriment. 
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(c) \\'1]('11 the theory has llO ph,vsically ac('cptahlc solutions, for example the 
solutions llla~' be unreal. or may require the reflected wave to be an expansion shock_ 
then here also it will not agree with experimenL 

If the h~'pothesf's are true then then> mnst be at least two irrpgulal' reficrtions. 
These are a elassical Mach l'efil'ction as described by the von l\ellinann tl]('ory but 
rt'stricted to /3, ~ ~n:, and to solutiolls that are ot.herwise physically realistic. and 
another system which we will name a 'von Neumann reflection' (NR). which exists 
when the theory fails. Ckarly the transit.ion condition foJ' MR-+ NR, is 

According to the hypotheses the experiments listed in tabk 3 for the (ili;> = 1.47 
series. and with run numbers 81-84 are von Neumann reflections while 85-100 are 
weak l\lach reflections. This may be veritit'd by inspection of figure 2 using table 3 
and equation (3). All ofthe expcriments in the (111;> = 1.035 seriC': arc \'on Neumann 
retkdions. A schlieren photograph of a weak l\lR from Tun number Hi) is presented 
in figure 8. A similar photograph of an NR fol' which t.he theory requircs /31 > ~n: iR 
presenkd in figure n (nm number 81). Finally a photograph of an ~R for which the 
theory haR no real solutions is presented in figure 10. 

4.3. C'ompar£80n of the von Neumann theory of 11fR with the numeriral data 

We shall now test hypothesis (a) of the prc,"ious section. \Ve "hall make an indirect 
comparison with ex])('riment. Rinee we ha H already validated the code by RllOwing 
that the numerical data from it are in good agreement 'with experiment (figures :3 and 
4,), then by comparing the von Neumann theory ,'lith the code data it may be 
determ ilwd indin'etly if the Hll'Ol',\" agrees ,,·ith experinwut. For exa rnple the pressure 
ratio 1'2/ I~) across tlw incident Hnd reflected shocks call be calculated for t 1H' values 
of (I'. ~i' ()) COlT!'s]Jouding to experiments 85--100 using both the cone and the von 
l\cmnann theory. The results are shown in table 4 and they agree within 1 %. vYe fiud 
that thi~ romparison is robust (not sensitive to ~mall variations in the s~'Rtem 
IlHl'amdel'R or to viR('osity). Till' Rtreamlinl' direction angle 82 of the tiow c!o\Yl1l-1tream 

of the reflected siwek ean be found in the same way (table 4). In thiR ease the emj!, 
displays more sl'llsitivity which ('a uses some uneertainty in 82 , Ne\"(~rthelcss the 
result!' do bracket the von Kel1lnal111 nata. Therefore the data shown in table 4 
supports h,\'pothesis (a). 

4.4. The strucilu'e (d the von J.VelUnann reflection NR 

Hypotheses (b) and (c) will be considered here together. An MR will be replaced by 
an NR whenever tlw von Neumann theory either requin's that /31 > ~n: or ",hell it has 
no physically acccptahle solutiolls. At first glanc!' the photographs of an NH (tigUl'!'s 
D and 10) appear t.o be thm:e of a typieallVIR. However careful examination revealR 
Rome important differenees. Thus thl' incident and Mach shocks appear to be a single 
wave with a smoothly turning tangent Ilcar the triple point, whereas all l\JH (figure 
8) has a Rlope discontilluity betwecn those two shocks at the triple point. Fur1hermore 
the contact discontinuity has a quite sharp appearance in the MR, but a fuzzy 
appearance in NR as though it was a dist.ributed shear layl'r rather than a shear 
diReontinuity. The cont.ours plotted from the code calculatiOlll-l show a similar 
behaviour. For example the d!'tailed entropy eontcmn: for the 1\1 n of experiment 85 
(figure 5d) display a concentrated band of entropy emanting from the triple point. 
Hnd a clearly defined entropy jump across the reflected shock. The curvature of the 
Mach sIwek near the triple point is also noticeably large. On the ot.her hand, the 
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FWlfRE 8. Schlieren photograph of a weak Mach I'E'fieetioll over a concave comer motit'l in 
argon for fUll number 85. y =~. ~i = 0.409. Mi = 1.47, () = 34.(30. 

FIGURE 9. Rd11ieren photograph of a von Neumannl'efiedion over a concave corner model in argon 
for fUll number 81. Tn this case the theory of weak ]\TR requires that fi, > In. ')' = &. ~,= 0.403. 
ill, = 1.48. () = 14 .58° 
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FJ(l!.' R~~ 10. Rchlierell phot.ograph of a von Neumann reflection over a concave model in argon for 
whi('h Mach reflection has 110 physically a('eep t able solutions . y = i , {;; = 0.889, M; = 1.05. () = 10°. 

Run no . 85 86 87 100 

(1° :l4.nO :J8.68 44.48 47.55 
~; 0.409 0.405 O.40() 0.400 
;11; 1.47 1.47 1.48 1.48 
1'21 l~, data from COlli pu tel' code 4.()()84 4.6:397 5.4(j[2 5.888 
P21 l~, data fro trl \ ' 011 Neumann theory 4.1191 4.n167 5.4:347 5.9a15 
8~ data frolll C'omputel' ('ode 17 .oa- I 9.01 12.n:H4.71 G.U2-8 .25 a. I !)- 4.78 
8~ data fro III von Neumann theory 17.HO la.(H 7.12 :U8 

TABLr~ 4. Comparison of the VOI1 Neumann theory with the computer eode 

contours corresponding to the N R of experiment 81 (figure 6d) display a smoothly 
distributed band of entropy with no sign of an entropy jump across the refledion 
c\'en though it obeys the RH conditions. \Ve presume t.hat the jump is too small to 
bl' res()l\'(~d by the caleulations. The curvature of the Mach shock is now much 
smaller than that shown in figure 5 (d) , and the triple point has now become 
somewhat indefinit.c.t \Ve infer that the reflectio]) is not a shock but a smoothly 

t Tn that f' vpnt.. w t' eal culat!:'d X a.t tIl!:' poin t where the leading edge of t.he refieetioll first 
eneolllltt'l'!:'d i. 
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distributed ,·wlf-simiiar eOfllrll'C'ssioll ill til(' region w]1('l'e it interacts \\'itl1 till' 
ineid('nt/~Iach Rhocl\f'. Evidenee of the self-f'imilarity in tlw region is found in till' 
linear eharacter ofthe triple point trajedor.vexcept for the immpdiate ,-it'inily ofthe 
('orner (figure Ge). 

The conclusions remain the "Hille when the ineidellt shoek is so weak that there are 
no real solutions to the VOIl Xeumann theory (hypothesis (e)). In the example showll 
in flgure i (d) the smoothness of the field is evident and so also is the finik ('un-atm'P 
of the Maeh silOek. It is also l'vi(knt in figure i ((') for tIl(' pressure ('OlltcJHrS hm\' the 
l'ellpction Rtf'epens into a shoek as it retl'eatR from the illcidentlJia('h shock 
intpradiol1 ZOIlP. 

-1.:;. Belllu'iolll' rd 111P il'l'eglilar I'("jfprtioll s lIerrF theil' 11'((/l8ilioll /31 = ~rr 
RUPPOf:W that initially wp havp a weak }lIB. tl)(,11 it follow" I).\' hypotlwsi;;: (a) thai 
/31 ~ !rr, the rdkctpd "ave is a shock and then' i" a ,\'cll-ddin{'d triple point, The 
"trpamlim' detlcdion angle O2 across the rdlPdec] ,'"hO('1i: ('an be calculated from (A,nw" 
1 Hi5:j). 

0(P.)=0 b, -l{ ... 1'2/1'1 1 . [(1+P2)(J1J2-1)-(Pjl)1-1)l~} (4) 
2 2 1+ ,11 yJJi-1'2/1'1- t 1'2/P1+p2 .' . 

,yherp p2 == (y-1)/(,),+1). and M] is till' free-st,ream Mach nUmh(T IH'tW(,(,1l the 
incident anel reflected shoc'ks, Now tIl(' reflectpel wavp becomes It normal "hock u;;: the 
systcm approaelws the transitioll III -"~rr, and at this condition 1'2 = 1'1/' sa.\', Tlwn 
with JJ l' ,)\) held COllstant we may obtain from (-\.) "it hout difficulty, 

(fi ) 

So the stream!illP dil'l'etion ehanges rapidly with 1'n'SSU1'e as transition is approached. 
ME -, Xl{. Thi" partly explains why the !,n';;:sm(' data if-; so robust whiIP tIl<' 
streamline delieetion data is so sensitivp (table 4). These quantities are of COlll'Se 

ultimatel.\' functions of the "ystCll1 parameters (y. ~i' (J). The waV(' angles (/1 1, /J,) n Iso 
show marked sensitivity as ME ~ Xl{, (figure 2) whieh is (,\'idently. at least ill part. 
another manifestation of the singularity (5) sinee they are also function" of tl1(' "HIlle 

parameters. Howe\'er, the experimental data for (iJl,f3,,) shown in figul'<' 2 also "l]()w 
marked sensitivity to the d'fcct" of yis('()f-;ity whpreas the (ill n' X) data do !lot (figllre 
:3), Indeed the expprimellts indicate that sensitivity to YiRcosity i" till' dominant 
effect f()r mo;;:t of Ow range of iJl <!rr data in figU1T 2, l1w "cIl;;:iti\'ity duf' to tIl<' 
"ingulnrity is IH'l'sulllahly mostly confined h) Lhe Yi('init,\' of tlU' transition point 
/31 = ~rr, 

A dYl1all1i('allllPchanism for the formation of the di"tl'ihutnl reflected ('olJ1pn'ssioll 
in NH j" "llggt'sted hy the way in which the thn'l'-04hoek t1WOl',\' fails. Given the triplt, 
point trajectory pHl h ill MH, one can liRe the tlwory to caiclilate thl' entire family of 
reflected shocks that satis(v P2 ~ PI/' and assuming that .JIH solutiolls exist in the:\'H 
parametpr spaee t}WI1 these ;;:hock" mllRt be forward facing, /11 > ~rr, If \n' ]lOW 

override this condition and impose till' 1'equirenwnt that the refledl'cI sh()('k" must he 
backward facing in order to conform with experiment (figure 2), thell WI' find that (he 
fIow dirpetion 0 .. , downstream of the Mneh shoek divergeR from that o~ downstream 
of the refleeted shock (figure 11), This suggpsts t.hat in NR tIll' flow hl'hind tlw :\Iach 
"hock aets like a distributed sink of liuid whieh weakens the relledion nnd turns it" 
dirpetioll of propagation. 'I'll(' result is that it 1wC'omp" a cliRtributpc\ ('ol1lprt'ssiol1 
when' it j" near the incidpnt/Maeh "h(wks (colllpare figU1'cs;; and i). The self-04imilnr 



Thl' rOil .\'1'1111/(/1111 purado,}' ./rJl' the d(flmttioll (~r /I'mI.' sh(H'k IIYtl'fS !H 

FrOPlm t j. TllP stTPalllliliP c!i\'PI',i.(P1H't' Ileal' the shock triple point. 

n'llwity veetoI' normal to the kading edge of the reflection is either ;4onic or ;4ubsonie: 
\\f' do !lot have enough evidelll'C' to malw a definit.e determinat.ion. But as alread.v 
uot('d the cOlnpression docs "te('}ll'll into a ;4hock as it. retreat.s from the in(,idcnt/Mach 
I'4ho('kl'4. 'I'll(' distance over which thi" bappCtl;4 i;4 typically quite small and ifl only jmd 
ddl'dahll' ill (Ill' ]'('.<;1i11s I'4J]()"'11 in figure 7 (c). which is (lJj(' of ou]' most finely reRoln·d 
tlllllwri('ni Nt !lilies of a \Tl'y wcak KR system. \YP pXjwc:ted the di;4tanee to scale ,vit.h 
t Iw din'I'f.(Plll'I' of tIl(' "h'I':\lnlinp angipfl near the interactioll l'('gion. which iR it.self 
typi('ally qllill' fllIlalL It \\ill be note(] that there IHP large ('Un'alm8S of the reflection 
ill this J'1,,,,i()n. just aN t h('l'(' is in ~lR nea]' t.1l<' i I'Hlll'4itio/1 j\1 H.~ ~R. This iR most. 
('\'i<!Pllt in the' 1'1'l';':"l1],(, ('(jilt Olll's(figllJ'e 7 c) wheJ'(' thp din'ction oUhe reflection turns 
sharply in the \l'lticaJ dircction n" it npproaehes the incidclIt/11ueh Rhocks. Finall,\' 
\\(' J'l'lllnrk that the meehanifllll is hoth im'iscid, and eompat.ible \vith self-silllilarity. 

"LH. ('oJ/ditiolls 1ft tran8ifioll 

J..Ii.!. JIH~XH 

Thi;4 tran"itioll has alrcady \)('l'll disl'l1SNl'd and its eritcrion which is giYen by 
equatio1l (:~). IiI = ~n hnR bC(,ll noted. Whell it may be assumed that the reflection 
"YfltPlll i;4 p]'()p,l,l2nting in n lwrfel't gal' t!JPIl (:1) I'Hn 1)(, Il1OJ'(' ('OIlH'nientiy l'xpreflsed 
ill t{'l'llJfI of tl](' '''.\'"h'lll pnl'amderfl (I'. ~i' 0) as fo]\tmN (Hl'llc'iPl'SOIl H)87). if ,1' == sin2 

(1/". WIH'l'l' (I)" j" t 1](' angle of incidence of the in('ident "ho('k to th(' flurfaee \\·hen the 
I'efieded \I'nn' is i1 IW 1'111 n I siwek and e at this point i;.: On = tIT-II)". then 

('2 == 2Yl(y+l)+(y-l)~i](l-~iJl(y+l)+(Y+:~)~i]. 

( 't == - { ('y + 1 ) 2 (3 I' + 1) + (y + 1) (y~ + 3')' 2 + 31' - 3) ~i 

(ti) 

(7a) 

+ (2'y4 + 3y" - !ly2 - i iiI' + :1) ~; + (1'4 + 21':1- 4')'2 + 101' - j ) ~t}, (7 Ii) 

('0 == ICy + j ) + ('y - 1) Si]3, (7 c) 

and \\'here til(' negative branch of (Ii) Pl'Oyi(iPN the root of physical signific(lJH'l'. 

FUI tl:l 



U2 1'. ('olella a/lll 1,. P. Hpniler8011 

(il) 

0.10 ,------,---,--,--,--.----'l 
0.09 

(h) 

0.12 

1l.(IK 

0.07 

0.06 
tan,\' 

II.IIS 

0.04 -

om -

11.1)2 -

0.01 

34 36 38 40 

0* = 50.744 

42 44 46 48 50 
(I (deg.) 

0.11 

0.10 -

0.09 

(l.U~ -

l'lIl X 0.07 1-' IUl6 -

o.()~ -

0.04 - ~ ~ro -
~oo -

0.
0

1 _-,-I ---'----"-I __ I._--L..L.l __ .L . ..L.....L.l -

10 12 14 16 IR '2() 22 24 26 2R 30 
I) icleg.) 

VmI'RI'; 1:2. C\lIll]lutalioll (If tlw reguial'--il'f'{'gular trnn~iti()l1 point for \\eak "hllt'iz \I<n'eK. (II) Data 
,.;elp('t~d frolll pjt,h~r figurp,.; :3(11) or :Hrl) for l\'I[{. HR. with a lilwar ('lIlT(' of llPst lit, (/I) 

('oll1}lutati(lllai dat.a fOJ' ilir~··R,n.. for y = 1. S, = (!.i'lSni:17. jlf, = 1.04SB, fJ = 100 with a quadratic 
t'OlTPiFltioli I'urn'. Tin' ('lll'\'P j" tel'lilinat"d at till' ]loint 'll"IH'n, tan,\' j" " Illininllllll. i.I'. Ii:;:; :lO.;2". 

4.n.2 . .LlJR .,. RR 

In thi" "aR(, the J,(,;';llltR from the ('ode alld HlP PX]Wl'illll'nt" "liow that tilt' 11011-

dillll'm;ionul height tan X of the Maeh 1:Ihol'l< approaches zero (i t" tralJ1:Ii tioll point) 
linearly aN (J inereaR<.'R. This is dell1onstrat<.'c\ in figure 12 (a). whieh is a replot of the 
MT data from figure :3 (d). Aftpl' extrapolating to t.he value of () for I\'hirh tan X = 0 
we gl't (J ~ 401 which is app1'Oximatl'ly equal to f1 = 50.7440. obtained for tIll' 
sonil'/dPlal'lll1H'llt point ealt-ulated frolll the von :\f'limallll theory. 

4.ti.3. NH"RR 

The data for NH is l'cploth'd fl'Olll figU1T +(d) in figurt' 12(li), WI' obtaillcd a least
S<)I11\n'S quadrat i" fit. t.o til(' data, whieh IlWHUI:I. of ('Olll'l:lP. that tall X appl'(l,Whl'N Z(,l'() 

quadrat.ically with inCl'('aNing () ill the ease of i\H. The fit to the data was cut off at 
tIl(' minimulll computed vallie of tall,\', thiR was at (}.::::: 30.2° (·oIl1Jlarcd to the 
R(mil'/detaehment I'alue of (j = :30.417;~o. 

We 8(,(' that for the ill\'('n-W trallRitiull Ill{ " ;'\IL tlWl'C i" illitially a Hry 1:110\\ 

gJ'Owth in til(' height of the Marh shock (tanx) with d(,I'l'('a8ing O. Thi8 may help to 
fW('otlllt for the appan'nt pel'sistpllC'(, of RH into the NH parameter 8pace. III other 
won]:.;;. the height oftlw l\Jneh "hoek ma.\' 1", too small for it. to 1)(' (lptieally J'('soivabll' 
until () bns be('olll(' a fel\' dcgn'f's RmalJer than tl1(' "ollil,/ddaehll1pnt trilJl"iti()ll HlIgil' 
{}*. C'ertai lily there iN lIO "ign of tIll' persist.ence in figure 12 (Ii) when' the fit termilla tes 
almost exactly at ()* 

5. Conclusions 
(1) Our ('mIl' calculations oftlw flows in weak. irregular, refieetiollN wen' basp(l Oil 

the ('ontinuity. and 8ulel' l'cplatiolls for tIl(' lHlstcad,\'. tw()-dimpl1sional ('()Jnpn'Rsible. 
invi,,('id. fiow (If a jlE'rfed ga". ",hpJ'(' all t.he Wal'('8 were J'('quired t() 8atisfy tll(, 



The von N(mmann parado:r Jar the dijJmrtion oj uH'al.: .slw!'k U'UIW:8 0:3 

Rankine- Hugo!1iot jump conditions. The comparison lwtwet'll HlP nUlIllTical and 
the experimental data for the ramp shock Mach number .;J[n' and the triple-point 
trajectory path anglo X, gave excellent agreement cRpeeially when preea utiOllR wen' 
taken to reduce the effccts of viscosity on thc experimental data (figureR 3 and 4). It 
waR ('oJ]('lu(kd that the comparison validated the ('ode. 

(2) It is impossible to ealculate (J'J,f w X) from the inviRcid vOIl Neumann theory of 
weak .MH in order to compare with experiment. So we calculated the wave angles (/i1 . 

Ps) to make the eomparison and it revealed large discrepancies (figure 2). Thc 
experiments showed firstly that thp refleded wave was never iudined forward oftlw 
triple point. PI ~ ~1t, and secondly that the data was sensitive to viscous effeds. We 
concludcd that t.he von Neumann theory .nlUld agree with experiment (or very 
nearly so) if the following conditions were met, 

(a) The t1wory sat.isfiecl, Pl ~ ~1t. 
(b) The theory provided real solutions, and did not require therp to be allY 

expansion shocks ill t.he wave system. 
(c) Precautions were taken to minimize the effeuts of viscosity on the experimental 

data. 
Further ('videnee to Rupport t.he validity of the von Neurnann theory under theRe 

conditions waR pnn-ided by comparing it with tlw numerical results. In particular wp 
found that the theory agreed within 1 % with the code for the pressure P2 
downstream of the reflected shock. It also agrcf'd with the streamline direct.ion data 
82 (t.able 4), although these data showed sellsitivity to variations in the parameters 
()" ~i' 0) especially ,,,hen /31 0!rr. This waR traced to a singularity at this condition of 
the f"(JrIn, 

which explailwd wh~' t.he pressure data was rohllst while Ow angle data waN sem:itive. 
On the otlwr hane!' the experimental data showed that the angle data (/31 , Ps) was 
semdtivp to tlIP effrrts of viscosity, whilP t.he (M", X) werp insrl1siti\"e (rohust). 

(3) \Vhen the von Neumann theory failed, it. was concluded that the weak Mach 
reflection was transformed into a new type of irregular reflection which we ealled a 
von Neumann reflection (NR). In t.his system the incident and Mach Rhocks appear 
to form a single wave with a continuously turning tangent. The retleet.ion is a 
smoothly distributed and apparently self-similar pressure clisturhal1l'c near its 
interaction region with t.he incident/Maeh shocks, but it Rteepel1S int.o a f'hoek as it. 
retreats from them. 

This \York was performcd under the auspices of the Uf) Department of Energy at 
the La wrenee Livermore N atiollal La.bomtory ulldt'l' cunt.met W -7 4()5-]~ng-48. 
Partial support under eontrad \V-7405-Eng-48 \\"as provided by the Applied 
l\lathematical Seiences Program of the Office of Energy HeRearch. 
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