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In this paper we describe a second-order projection method for the time-dependent, incom­
pressible Navier-Stokes equations. As in the original projection method developed by Chorin, 
we first solve diffusion-convection equations to predict intermediate velocities which are then 
projected onto the space of divergence-free vector fields. By introducing more coupling 
between the diffusion--{;onvection step and the projection step we obtain a temporal discretiza­
tion that is second-order accurate. Our treatment of the diffusion-convection step uses a 
specialized higher order Godunov method for differencing the nonlinear convective terms that 
provides a robust treatment of these terms at high Reynolds number. The Godunov procedure 
is second-order accurate for smooth flow and remains stable for discontinuous initial data, 
even in the zero-viscosity limit. We approximate the projection directly using a Galerkin 
procedure that uses a local basis for discretely divergence-free vector fields. Numerical results 
are presented validating the convergence properties of the method. We also apply the method 
to doubly periodic shear-layers to assess the performance of the method on more difficult 
applications © [989 Academic Press, Inc. 

1. INTRODUCTION 

In this paper we develop a second-order projection method for the incom­
pressible Navier-Stokes equations 

VI + (V· V) V=BL1V-Vp+F 

V·V=O 

(1.1 ) 

( 1.2) 
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on a domain Q, where U represents the velocity field, p represents the hydro­
dynamic pressure, and F represents any external forces. We denote the x and 
y components of velocity by u and v, respectively. Typical initial and boundary 
conditions for (1.1 )-( 1.2) involve specifying an initial velocity field and specifying 
Dirichlet or Neumann conditions for velocity; no boundary conditions are required 
for pressure. Orthogonality of the pressure gradient with divergence-free vector fields 
effectively eliminates pressure from the system while enforcing (1.2); in fact, specify­
ing pressure boundary conditions overdetermines the system. (See Ladyzhenskaya 
[1] and Fujita and Kato [2] for a discussion of the theory.) This orthogonality 
property is reflected in the Hodge decomposition which states, in its simplest form, 
that a vector field V can be uniquely decomposed into a divergence-free component 
Vd that satisfies Vd. n = 0 and the gradient of some scalar ¢. Furthermore, if we 
integrate by parts we find that 

Consequently, the Hodge decomposition defines, by means of suitable density 
arguments, an orthogonal projection P on L 2 such that P V = Vd• (See Temam [3 ] 
for a more detailed description of the structure of the projection.) By using this 
projection we can interpret (1.1 )-( 1.2) as an evolution equation for velocity within 
the space of divergence-free vector fields. 

One of the central issues in the design of numerical methods for the 
Navier-Stokes equations is the development of an appropriate discrete form of the 
incompressibility constraint (1.2). The first primitive-variable numerical method, 
developed by Harlow and Welch [4], attempts to enforce the incompressibility 
constraint (1.2) by deriving a Poisson equation for the pressure, taking the 
divergence of (1.1). Unfortunately, since there are no physical boundary conditions 
for pressure, some type of artificial boundary condition is required. The subsequent 
literature contains considerable discussion of possible pressure boundary condi­
tions. Gresho and Sani [5] provide a critical survey of these issues and discuss the 
relationship of different pressure boundary conditions to the original system of 
equations. 

Krzywicki and Ladyzhenskaya [6] proposed a difference scheme that more 
closely reflects the analytic structure of the equations. In essence they show that by 
simultaneously discretizing (1.1) and (1.2) they obtain a method that converges to 
weak solutions of the Navier-Stokes equations while avoiding any artificial 
pressure boundary conditions. Chorin, in a series of papers [7-9], developed a 
practical numerical method based on a discrete form of the Hodge decomposition. 
This method, known as the projection method, computes an intermediate vector 
field that is then projected onto divergence-free fields to recover the velocity in 
(1.1). The calculation of the discrete Hodge projection involves discretizing (1.2) 
and using the resulting discrete operator and its adjoint to form the projection. The 
accuracy with which the divergence-free condition is represented depends only on 
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the truncation error in the approximation to (1.2). In particular, the determination 
of an explicit pressure boundary condition is not required. Similar ideas were also 
discussed by Temam [10]. Chorin's error estimate [8] shows that his method is 
O(Llt + Llx2 ) for a periodic box in two and three dimensions. Since the method is 
only first-order accurate in time, it requires a fairly restrictive time step to achieve 
acceptable accuracy. Furthermore, the situation is considerably complicated by the 
presence of boundaries. This complication arises because the projection does not 
commute with the Laplacian appearing in the viscous terms in the presence of 
boundaries. Chorin analyzes a version of his scheme that introduces a first-order, 
local error at the boundaries by imposing homogeneous boundary data for the 
intermediate field. For this modified scheme he proves O(Lltl/4) accuracy. (The 
heuristic arguments in Section 2 as well as computational evidence suggest that the 
modified scheme is, in fact, first-order accurate in time for velocity.) 

Chorin, in [7, 8], also introduces a more practical version of his scheme for 
problems with boundaries. This version uses an inhomogeneous boundary condi­
tion for the intermediate velocity field. Kim and Moin [11] use this version of 
Chorin's algorithm, replacing the treatment of the nonlinear terms with a second­
order explicit Adams-Bashforth scheme and using the staggered grid system of 
Harlow and Welch [4]. They provide computational evidence that their scheme is 
second-order accurate. Van Kan [12] proposes another second-order generaliza­
tion of the projection method. His method is based on first discretizing the spatial 
terms using the Harlow and Welch staggered grid. This reduces the partial differen­
tial equations to a system of differential algebraic equations. He then develops a 
second-order integration technique of projection-type for this system. Van Kan's 
analysis assumes fixed bounds on the operators that represent the spatial discretiza­
tion of the differential equations so that his analysis is not valid if the spatial and 
temporal discretizations are simultaneously refined. 

In this paper we present a new projection method that is second-order accurate 
in space and time provided LIt = O(Llx, Lly). This method is motivated by a desire 
to apply higher order upwind methods developed for inviscid, compressible flow to 
the incompressible Navier-Stokes equations. In particular, the method incorporates 
a specialized version of the unsplit second-order Godunov methodology introduced 
for gas dynamics by Colella [13]. The Godunov method provides a robust 
discretization of the convective terms that avoids any cell Reynolds number 
stability restriction for high Reynolds number flow. The overall algorithm is based 
on a time-step procedure that is similar to van Kan's method although it is 
motivated by different considerations. (Van Kan's time-stepping strategy is not 
directly applicable because of some technical incompatibilities with the Godunov 
procedure.) 

For the description of the algorithm in this paper, we will restrict our attention 
to homogeneous Dirichlet boundary conditions and assume that there are no 
external forces. We will also assume that the mesh spacing is uniform in the x and 
y directions. These restrictions are not inherent limitations of the method; they have 
been adopted here for clarity of exposition. In the next section we discuss the time-
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stepping procedure in a semi-discrete setting and provide a heuristic argument that 
the semi discrete form is second-order in time under suitable assumptions. In Section 3 
we describe the approximation of the nonlinear diffusion-convection equation (1.1). 
The diffusion terms are discretized using a standard cell-centered difference 
approximation. The nonlinear convection terms are treated using an explicit 
second-order Godunov method based on ideas similar to those discussed in Colella 
[13], van Leer [14], and Bell, Dawson, and Shubin [15]. The method provides 
a second-order discretization for smooth flow and selectively introduces dissipation 
near discontinuities by means of a "monotonized" slope computation. This avoids 
any cell Reynolds number restrictions and allows the method to be applied to the 
incompressible Euler equations without introducing spurious oscillations or 
instabilities, even for discontinuous data. The description of the method is com­
pleted in Section 4 where we discuss the numerical approximation of the projection 
P. The discrete form of the projection is based on a finite-difference Galerkin for­
malism introduced for the steady state Navier-Stokes equations by Stephens et al. 
[16]. The fifth section of the paper contains numerical results. The first set of 
results validates the second-order convergence of the method when applied to 
smooth flow for Stokes flow, Reynolds number 100, and the incompressible Euler 
equations. The method is then applied to the study of doubly periodic shear layers. 
These computational results serve to demonstrate the capabilities of the method on 
more difficult problems. 

2. TEMPORAL DISCRETIZA nON 

In this section we describe, in a semi-discrete form, the time stepping strategy for 
the projection method. Before discussing the semi-discrete form, we first review the 
basic analytic underpinning of projection methods. The projection form of the 
equations is suggested by reorganizing the terms in (1.1) to obtain 

(2.1 ) 

If we assume temporal smoothness, (1.2) implies that VI is divergence free. There­
fore, if we apply the projection P to (2.1) we find that 

(2.2) 

In this form, we have completely eliminated the pressure from the equations. The 
absence of initial or boundary conditions for pressure is not surprising since the 
mathematical theory of the Navier-Stokes equations says that they are not needed; 
in fact, specifying initial or boundary data for pressure overdetermines the problem. 

As in the original projection algorithm, the numerical form of the projection 
method involves a two-step process in which an auxiliary vector field is computed 
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and then some type of discrete projection is applied. In the original algorithm [8] 
the auxiliary vector field is a linear combination of the velocity at the new time level 
and the gradient of the pressure. In van Kan's algorithm [12], the auxiliary field 
contains a pressure update rather than the pressure itself. Although operationally 
similar to van Kan's approach in the sense that our time discretization can be inter­
preted as a pressure correction, our time-stepping strategy is actually based on an 
iterative procedure that converges to a modified Crank-Nicholson scheme. The 
modification arises because we assume, for the purposes of the temporal discretiza­
tion, that the nonlinear convection terms at the half time-level are explicitly com­
putable to second-order accuracy from velocity data at t n and the current 
approximation to Vp; they are not the average of the convective terms evaluated at 
tn and tn + I. (See Section 3 for a discussion of this procedure.) 

Ideally, what we would like to compute is 

At 
(2.3 ) 

or, equivalently, 

(2.3a) 

V· Un + 1 =0. (2.3b) 

Equation (2.3) is a Crank-Nicholson approximation to (2.2) which is clearly 
second-order accurate in time. While it is possible to actually compute this directly 
using the discrete Galerkin ideas discussed in Section 4, the resulting linear system 
that must be solved is poorly conditioned. Instead, we have adopted an iterative 
strategy that, from a linear algebraic standpoint, involves the solution of symmetric, 
positive-definite systems corresponding to discretizations of second-order elliptic 
operators. 

The iterative procedure describes an iteration for determining the gradient part 
of the right-hand side of (2.3a), namely, 

If we denote by Vpn + 1/2, k the kth iterate approximating (2.4), we then define U*,k 
by 

(2.5) 

One we have computed U*,k, we obtain the next iterate for (2.4) by evaluating the 
right-hand side of (2.3a) with un + I replaced by U*,k. We now apply the projection 
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to separate this vector field into an update of the approximations of U, and 
Vpn + 1/2. More precisely, we update the iteration by computing 

U,,+I.k+I_Un e 
-----+ Vp"+ 1/2.k+ 1=_ A(Un + U.· k ) -i(U, V) Ur+ 1/2 (2.6) 

At 2 ' 

where un + I.k + I is divergence free; or, equivalently 

-----=p -A(un+ U·· k )_ [(U.V)UJ"+1/2 
Un+l.k+I_U" (I: ) 

At 2 
(2.6a) 

Vp" + 1/2.k + I = (I - P) GA( un + U··k) - [( U . V) UJ" + 1/2). (2.6b) 

We next want to examine the behavior of the iteration scheme defined by (2.5) 
and (2.6). The basic approach is to compa.re the iterates to the Crank-Nicholson 
solution defined by (2.3). We first discuss the convergence of the iteration scheme 
for one time step and show that the iterates converge to a single step of the 
Crank-Nicholson scheme (2.3). We then discuss the global properties associated 
with using a single step of the iteration for each time step. Our discussion will be 
essentially a formal one. In particular, we will not address issues such as smooth­
ness and other considerations needed to construct actual proofs. 

Before discussing the convergence properties in detail, we first state our assump­
tions on the Godunov procedure used to compute [( U . V) Ur + 1/2. This is 
complicated by the need for a projection in the predictor step of the Godunov 
procedure. However, since the required projection need only be approximated to 
first-order accuracy, we avoid the computational expense of a second projection by 
approximating its effect using the computed pressure at t"· 1/2. For the purposes of 
discussing the temporal accuracy of the time-step strategy we assume that the 
Godunov procedure satisfies the estimate 

where Vp and Vq are the pressures associated with U and V, respectively. 
A straightforward truncation error analysis of the method presented in the next 
section can be used to verify the required formal error estimate. 

We now compare the behavior of the iterates defined by (2.5), (2.6) with the 
result of one step of Crank-Nicholson. We use the same initial data for each 
scheme which we denote by U" and Vpn- 1/2 and initialize the pressure iteration 
with Vpn + 1/2.0 = Vpn - 1/2. Combining (2.3a) and (2.5) yields 

(2.8 ) 

where Un+ I is the solution to (2.3). If we now combine (2.3a) and (2.6) and use 
(2.8) to eliminate un+ 1_ U··k, we obtain 
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(2.9 ) 

If we apply the projection to remove the divergence-free component of (2.9), wc 
obtain 

Vpn+l/2_Vpn+l/2,k+I=(I_P)t:~t A (1- £~t A)-I (Vp n+I/2,k_Vp n+I/2). (2.10) 

The convergence properties of the iteration now depend on the operator on the 
right-hand side of (2.10). However, this operator is bounded with norm one and it 
is contractive so that Vpn + 1/2,k ...... Vp" + 1/2 as k ...... (fJ,(When discretized, the numeri­
cal approximation of the operator in (2.10) is a contraction mapping with norm 
strictly less than one,) 

Although the iteration defined by (2,5) and (2.6) converges to a second-order 
temporal discretization, we do not want to iterate to convergence at each step. 
Computational evidence presented in Section 5 demonstrates that the method is 
second-order accurate with only one step of the iterative scheme for each time step. 
Standard truncation error analysis is not suitable for studying the behavior of the 
method because it fails to properly address potential accumulation of error in the 
pressure approximation, Instead, we will compare the solution obtained using 
(2,5)-(2,6) with the Crank-Nicholson solution. This approach is similar to van 
Kan's [12]; however, we will not assume Lipschitz continuity of the differential 
operators so that our analysis remains valid if we refine spatially as well as 
temporally, In the remainder of this section we will show that, in the absence of 
boundaries, one step of the iteration scheme described above is sufficient to obtain 
second-order temporal accuracy for velocity, provided the solution is sufficiently 
smooth, We will also indicate where the difficulties in the analysis arise in the 
presence of boundaries. 

For this discussion we let vn and Vqn+ 1/2 denote the approximate solution 
obtained using the Crank-Nicholson equations (2.3), We also drop superfluous 
superscripts letting un represent Un,l, U* represent U*,I, and Vpn + 1/2 represent 
Vpn+ 1/2,1 in (2,5) and (2.6), When using one step of the iteration we initialize the 
pressure at n + 1/2 with the final approximation at n - 1/2, Thus, Vpn + 1/2,0 = Vpn - 1/2, 

Using these definitions and combining (2.5) and (2.6) we can show that 

un + 1 un ____ + Vpn + 12 

At 
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If we now let r( = vn - un and V <5 n + 1/2 = V qn + 1(2 - V pn + 1/2, we can derive an error 
equation of the form 

+ eAt A(V<5n+1/2_V<5n 1/2)_ ELlt A(Vqn+I/2_Vqn-1/2) 
2 2 

or, rearranging terms, 

(/- e~t A )('In+1 + AtV(jn+l/2) 

= (J + e~t A) 'In - Llt( [( U . V) uy + 1/2 - [( v. V) V]n+ 1/2) 

eAt e 
- At "'2 AVc5n -1/2 - ,11 2 "2 A (Vqn + 1/2 - Vqn ... 1/2). 

In the absence of boundaries we can invert (I - (eLI t/2) A) to obtain 

'I n + 1+ AtVc5n+ 1/2 = (/_ e~t A r I (I + e~t A) 'In _ At (J _ e~t A) I 

X ([(U· V) UJn+ 1/2 - [( V· V) vy+ 1/2) 

-LIt (1- e~t LI fl ~~LlVbn- 1/2 

(2.12 ) 

If we now take norms of both sides exploiting the orthogonali ty of IJk + I and 
Vc5 n + I/ 2, we can derive 

II'In + III + A til Vb n + 1/211 ~ 111'(11 + At II V<5 n - I;211 + cAt(1I1(11 + At IIVbn - 1/211) 

+ ! eAt2 1lA(vqn + 1/2 _ Vqn - 12)11. (2.13) 

If we assume sufficient smoothness of the pressure then the last term in (2.13) is 
O(At 3 ) from which we conclude second-order accuracy of the velocity and first­
order accuracy of the pressure. 

Unfortunately, this analysis does not extend to the case in which boundaries are 
present. The basic source of difficulty, as observed by Chorin [8], is noncom­
mutativity of the various operators appearing in the equations. In the particular 
form of the analysis we are using, the difficulty appears in the computation of 
(I-(F.At/2) .1)-1 in (2.12). Because V£5 n + I/ 2 does not satisfy the boundary condi-
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tions associated with the inversion of (1- (eA 1/2) A), the derivation of the analog 
of (2.13) from (2.12) in the case with boundaries introduces an additional boundary­
layer term. Roughly speaking, the net effect of this term is to introduce an 
0(eA/)I/4) error (in L2) to the pressure approximation. This is essentially the same 
level of pollution that appears in Chorin's analysis [8]. The effect of this pollution 
on velocity is less severe. The boundary layer that is introduced is only large near 
boundaries where fIn + I vanishes. Thus, assuming suitable smoothness, the velocity 
errors are nearly orthogonal to the boundary layer term which reduces the error in 
velocity to O(eA/). 

The potential difficulties associated with boundary conditions appear to be an 
artifact of the analysis. There are several possible minor modifications to the 
algorithm that can be used to recover, formally, second-order accuracy; however, 
we have not found them to be necessary. As noted above, computational results 
reported in Section 5 clearly exhibit second-order convergence of velocity. Whether 
the analytical difficulty can be eliminated by a more careful treatment or is 
somehow "canceled" by the spatial discretization remains unknown. 

Before discussing the spatial discretizations used in the algorithm, it will be useful 
to summarize the steps in the algorithm. First, we compute [( U . V) u] n+ 1/2 from 
un and Vpn-I/2. Next, we solve the discrete form of the diffusion equations (2.5) 
with [( U . V) u]n + 1/2 and Vpn + 1/2.0 = Vpn - 1/2 treated as source terms. Finally, we 
apply the projection to the auxiliary vector field U* to decompose it into its 
divergence-free and gradient components. Initially, since we do not have initial data 
for the pressure we iterate (2.5)-(2.6) to convergence using the best available 
approximation to Vp, namely, Vpn + 1/2.k in computing [( U . V) U] 1/2. This intro­
duces a perturbation term to (2.10) but does not substantially affect convergence or 
the analysis. 

The bulk of the computational work associated with the method is spent on the 
linear algebra problems associated with the parabolic equations (2.5) and the 
projection. In each case the associated matrix problem is symmetric and positive 
definite with spectral properties corresponding to discretizations of second-order 
elliptic equations. Specific timings will be reported in Section 5. 

3. ApPROXIMATION OF DIFFUSION AND NONLINEAR CONVECTION TERMS 

In this section we discuss the spatial discretization of the diffusion-convection 
equations that form the first step of the algorithm. In particular, we solve the diffu­
sion-convection equations derived from (1.1) by treating the pressure term as a 
known forcing term (suitable lagged as described in the previous section) and by 
ignoring the incompressibility constraint (1.2). The spatial discretization is based on 
a cell-centered approximation that provides to most natural setting for Godunov­
type methods. We let ij denote the cell whose center is located at «i - 1/2) Ax, 
(j-l/2)Ay) for i=I, ... ,I;j=I, ... ,J. The right edge, top edge, and upper, right­
hand corner of cell ij are denoted by i + 1/2, j, i,j + 1/2, and i + 1/2,j + 1/2, respec-
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tively. Thus, 1/2,} and 1+ 1/2,} refer to the left and right boundaries of the domain, 
etc. Velocity unknowns are specified at cell centers and velocity boundary condi­
tions are specified at cell edges on the boundary. 

There are essentially two pieces to the spatial approximation of (2.5): discretiza­
tion of the Laplacian used to model the diffusion terms and the second-order 
Godunov procedure that is used to compute [( U . V) uy + 1/2. The discretization of 
the Laplacian is done using standard, cell-centered finite difference approximations. 
It was observed by Russell and Wheeler [17J that for self-adjoint elliptic problems, 
cell-centered differences were equivalent to a mixed finite-emement method using 
the lowest order Raviart-Thomas space and special quadrature rules. Weiser and 
Wheeler [18J exploit this relationship to show that the cell-centered difference 
approximation is second-order accurate. For the uniform grids considered in this 
paper the cell-centered approximation is equivalent to the standard five-point 
discretization of the Laplacian at interior cells; the only modifications occur for 
cells for which some edge lies on the boundary. For example, for cells bordering the 
left boundary (corresponding to index I,}) we approximate Un by 

2(U I,J- UI/2,)). 
Ax 

The reader is referred to the above papers for the construction of the approxima­
tion for more general grids and for details of the analysis. 

The computation of [( U . V UJ n + 1/2 is based on the construction of unsplit, 
second-order Godunov methods first proposed by Colella [13 J and by van Leer 
[14]. Although considerable refinement is possible (see, for example, [15, 19J), we 
have, for this paper, used one of the simplest forms of this type of scheme. Unlike 
standard upwind differencing methods, these types of schemes couple the spatial 
and temporal discretization by propagating information along characteristics. This 
approach leads to a robust higher order discretization with excellent phase-error 
properties. The procedure can be broken down into three steps: reconstruction, 
characteristic extrapolation, and flux evaluation. 

In the reconstruction step we compute a linear profile within each cell (discon­
tinuous at boundaries). The slopes for these profiles are computed by monotonized 
difference approximations, e.g., 

To compute Axu we first define an initial approximation 

(3.1 ) 

which will then be limited. The initial slope computation is modified at the boundary 
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to reflect the imposition of boundary conditions on the edges of boundary grid cells 
by taking, for example, 

The limiting step is designed to prevent the initial slopes from introducing new 
maxima and minima into the velocity field. This is accomplished by reducing the 
magnitude ofAxu so that 

IAxul ~ 2 max(lui+ l.j - Ui), lUi.) - Ui_ l,jl) 

and by setting A xU = 0 if 

(3.2) 

(3.3 ) 

At boundaries (3.2) is modified to ensure that the linear profile evaluated at the 
boundary point lies between the cell average and the specified boundary value. 

The next step in the computation of [( u· V) U]n+ 1/2 is a characteristic 
extrapolation of un to predict values of U on cell edges at time tn + 1/2. The basis 
for the extrapolation is simply Taylor series. To second-order accuracy 

(3.4a) 

(3.4b) 

(3.4c) 

U"+1/2.T-U" AyU AIU 
i.j-I/2 - v-T y.v+2' I.V· (3.4d) 

The first two quantities denote the extrapolation of U to the left side of edge­
i + 1/2,j and to the right side of edge-i - 1/2,j, respectively. The last two are the 
extrapolation of U to the bottom side of edge-i,j + 1/2 and the top side of 
edge-i,j-l/2. In these expressions Ux •v and Uy,ij are evaluated using the limited 
slopes computed in the reconstruction phase. We now use the differential equations 
to express the time derivatives in terms of spatial derivatives. In particular, for each 
cell we evaluate U, using our current approximation to the pressure to approximate 
the effect of the projection; i.e., 

(For the initial step we use Vp" + 1/2,k to approximate the effect of the projection 
instead of Vpn-l/2.) When numerically evaluating the velocity derivatives in (3.5), 
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derivatives normal to the cell edge are treated differently than derivatives transverse 
to the edge for stability reasons (see Colella [13]). In particular, normal derivatives 
are evaluated using the limited slopes whereas transverse derivatives are treated in 
an upwind manner. More precisely, if vii ~ 0, 

or, if vii < 0, 

This asymmetry in the treatment of the derivatives implies that there are actually 
two separate evaluations of the first-order derivatives in (3.5) corresponding to 
left-right edges and top-bottom edges, respectively. 

The final step in the computation of [( U . V) u]n + 1/2 is the actual computation 
of the flux differences. The exact form of the differencing is motivated by the 
relationship between the convective and conservative forms of the advection terms. 
Analytically, for divergence-free vector fields, 

(U . V) U = V . (U ® U). 

However, this relationship does not hold at In + 1/2 because of the effects of limiting 
and the approximation of the projection in (3.5) using old values of pressure. This 
introduces a variety of possibilities regarding the evaluation of [(U.V) u]n+I/2. 
Our computational experiments indicate that the best approach is to difference 
[( U . V) UJ n + 1/2 in conservative form and then subtract off the requisite terms 
needed to modify the differencing to convective form. (If these terms are not 
subtracted from the differences the scheme generates considerable high-frequency 
noise that pollutes the numerical results.) Thus, we approximate (U· V) U by 
(suppressing n + 1/2 superscripts) 

U + U '" u;+ 1/2.jU;+ 1/2,j- U;_1/2,jU;_1/2,j+ V;,j+ 1/2 U;,j+ 1/2 - V;,j_I/2 V;,j_I/2 
U ~ v y'" . Ax Ay 

1 U 1/2 - u· 1/2· --(V +V ) '+,J ,- ,J 2 ; + 1/2,j ; - 1/2,j Ax 

-~V +U )V;,j+I/2- V;,j_I/2 
2 ;,j+I/2 ;,/-1/2 Ay 

1 V;+1/2,j- V;_1/2,j 
=2(U;+1/2,j+U;-1/2,j) Ax 

1 ( ) V;,/+ 1/2 - V;,j_I/2 
+2 V;,j+I/2+ Vi,j 1/2 Ay . (3.6 ) 
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Before evaluating the flux we must resolve the ambiguities in edge values intro­
duced by (3.4). In particular, the characteristic extrapolation has defined double 
values of U for each edge corresponding to expansions from either side of the inter­
face. We will restrict the discussion to the computation of U7:l/1.j from the left and 
right states U'! + 1/2,!-- and U'! + 1/2'.R This is done by means of an upwinding proce-1+ 1/2,} 1+ 1/2,} • 

dure applied to the system that is obtained by dropping out the diffusion term, the 
pressure gradient, and the transverse flux, namely, 

U,+uux=O 

v,+ uVx=O. 

(3.7a) 

(3.7b) 

We see that u satisfies the quasilinear form of Burgers' equations and v is passively 
advected by u. This relationship to Burgers' equation motivates upwinding u based 
on 

if uL ~ 0, uL + uR ~ 0 
if uL<O, uR>O 
otherwise. 

(We suppress the temporal index and spatial indices on left and right states here 
and for the re~ainder of the discussion.) Note that this determination of U j + 1/2,j 

corresponds to the Riemann problem solution for the Burgers' equation (3.7a). The 
upwind determination for v is then given by 

{
VL 

Vi +1/2,j= ~;2(VL+VR) if Ui + 1/2,j < 0 
if U j + 1/2.j=O. 

Note that the form of the differencing in (3.6) requires a value for vj + 1/2.j even in 
"sonic" cases in which U i + 1/2,j = O. This upwind procedure is not used at bound­
aries; instead, we impose the specified boundary conditions at the t-time level. 

The Godunov method is an explicit difference scheme and, as such, requires a 
time-step restriction. A linear, constant-coefficient analysis shows that we must 
require 

(
Uij Lit vij LIt) 1 max ---;-, ---;- ~ 

ij LJX LJy 
(3.8) 

for stability. For some of the computations reported here we have had to reduce the 
time step by some safety factor in regions of high fluid strain. The time-step restric­
tion of the Godunov method is used to set the time step for the overall algorithm. 

As a final remark, we note that some minor modifications are required to the 
Godunov procedure when solving the Euler equations. These modifications stem 
from the fact that for the Euler equations we are only given U· n = 0 on the bound­
ary; the tangential component of velocity is not specified. However, boundary 
values for these quantities are formally required in the slope computation 
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(3.1)-(3.3), in the evaluation of the transverse predictor terms (3.5) and in the 
corrector differencing (3.6), consequently some modification to the procedure is 
required. For slope computations and for the predictor, we have used first-order, 
one-sided difference approximations for cells adjacent to the boundary. In the 
corrector differencing, we have used characteristic extrapolation (e.g., the predictor 
step) to define the tangential velocity on the boundary. 

4. DISCRETIZATION OF THE PROJECTION 

In this section we describe the numerical approximation of the projection. There 
are a number of possible approaches that can be used for this approximation. 
Chorin and van Kan each compute the gradient part, V,p, of a vector field V. The 
divergence-free part is then given by Vd = V - V,p. Alternatively, one may attempt 
to directly compute the divergence-free part of V. The latter approach was used by 
Stephens et al. [16] for the steady Navier-Stokes equations. Their approach is 
based on a discrete Galerkin formulation used in conjunction with a local basis for 
discretely divergence-free vector fields. For this paper we will adopt the Galerkin 
approach since the associated linear algebra problem is somewhat smaller. (The 
two approaches, of course, produce the same computational results.) 

Before discussing the specific form of the Galerkin projection we have used, 
which depends on the definition of discrete divergence and gradient operators, D 
and G, we first discuss the requirements for the construction in a general context. 
Following Chorin [8], we require that the discrete operators D and G define 
approximations to the divergence and gradient satisfying the property that 

(D V, ,p), = -( V, G,p )," (4.1 ) 

where (., ·)s and (., ·)v represent appropriate inner products on discrete spaces of 
scalars and vectors, respectively. This condition represents a discrete form of 
integration by parts and guarantees that the numerical projection is orthogonal. 
(We note that the requirement (4.1) can be relaxed, typically near boundaries, to 
improve the accuracy of the difference formula without introducing any difficulties. 
See, for example, Chorin [7] and Solomon and Szymczak [20].) 

To make this notion more precise we let Q h represent the set of mesh locations 
at which we define velocity unknowns and oQ h denote the boundary locations at 
which we specify velocity boundary conditions. The discrete divergence operator D 
maps vector fields defined on Q h == Q h U oQh to scalars defined at, possibly distinct, 
mesh locations Who The gradient operator, G, then maps from W h back to Qh. In 
terms of these definitions we require (4.1) to hold for all V defined on Q h that 
vanish on oQh and for all ,p defined on Who This condition then guarantees that for 
any vector field Vh defined on Qh, there exists a scalar ,ph defined on Wh and a 
vector field V: defined on Q h such that 

(4.2) 
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and 

(4.3 ) 

where V~' e is the extension of V~ to oQ h by zero. 
In order to construct a direct Galerkin approximation of the Hodge decomposi­

tion we want to find a local basis for 

V~=={V~:Dv~·e=o} , 

The dimension of this space is given by 

dim V~ = 2p(Qd - p( Wh ) + dim(ker G), (4.4 ) 

where J.1( .) is the number of mesh locations in its argument. Thus, to construct a 
local basis for V;; we must find (dim V~) linearly independent elements of V~. 

Computation of a local basis for vl, is not as formidable as it may appear. 
Although the situation is complicated somewhat by boundary conditions, it is 
generally the case that for any </> defined on Wh , G.l</> == (</>Y' -</>J E V~. (In the 
present case V~ is spanned by localized elements of this form; however, this is not 
always the case.) To see how this works in our particular case we first specify the 
grid system Qh' oQh, and Who As described in section three, we define velocity 
unknowns at tell centers and velocity boundary conditions at the midpoints of cell 
edges along the boundary. Thus, Q h represents the cell centers, and oQh represents 
the midpoints of edges along the boundary. We define scalars and, consequently, 
divergence at the corners of grid cells which we denote by Wh' With this mesh 
structure, G is defined by 

J. .. = </>, + 1/2,! + 1/2 + </>i+ 1/2,)- 1/2 - </>i-1/2,)+ 1/2 - </>;-1/2,)- I,~ 
o/~lj 2Ax (4.5a) 

J. .. = rP;+ 1.'2,)+ 1/2 + rP;-1/2.)+ 1/2 - rP;+ 1/2,)-1/2 - rPi- 1/2.)- 1/2 
o/y,lj 2Ay . (4.5b) 

We define the discrete divergence D from (4.1). In particular, for </> defined on Wh 

and Vh=(u, v) defined on fi h with Vh=O on OQh, we have 

1 (2U l1 2Vl1) 
--</>1/21/2 --+- - .... 

4 ' Ax Ay 
(4.6) 

581/85/2·2 



272 BELL, COLELLA, AND GLAZ 

This discrete summation by parts formula defines the discrete divergence D and 
implicitly defines the inner products for Q h and Who In particular, the term to the 
right of rP in each of the three exhibited terms gives the divergence approximation 
in the interior, along the interior of the left edge and in the lower left-hand corner 
of the domain. (Analogous expressions define the divergence at other edges and 
corners.) The weights to the left of rP in each term define the inner product on Wh ; 

namely, 1 in the interior, 1/2 on the interior nodes of boundary segments, and 1/4 
at corners. The weights for the inner product on Q h are all unity. We note that 
these inner products correspond to a tensor-product midpoint integration rule on 
Q h and a tensor-product trapezoidal rule on WhO 

We can now define a basis for V~ using D and G defined by (4.5) and (4.6). We 
let 

'I'i+ 1/2.}+ 1/2 = G~rPi+ 1/2.}+ 1/2' 

where the indices range over elements of Wh not lying on the physical boundary. 
Here rPi+ 1/2.}+ 1/2 is one at corner node i + 1/2,} + 1/2 and zero elsewhere. (Note 
that D'I'i+I/2.}+1/2=O follows trivially from (4.1)). We note that there are 
(/ - l)(J - 1) 'I"s. The sizes of Q hand Wh are /J and (/ + I)(J + 1), respectively. 
Since the G defined by (4.5) has a 2-dimensional null space, the 'I"s form a basis 
for V~. (Linear independence of the 'I"s follows from the invertibility of the discrete 
projection matrix which can be decomposed into a block-diagonal form where each 
block is an m-matrix. See Stephens et al. [16] for details.) 

To actually compute the projection of a vector field Vh defined on Qh, we note 
that the divergence-free part of Vh can be represented as a linear combination of 
basis elements; i.e., PVn = L ex i+ 1/2.}+ 1/2 'I'i+ 1/2.j+ 1/2 for some ex i+ 1/2.1+ 1/2' To com­
pute the ex i + 1/2./+ 1/2 we solve the linear system 

When appropriately scaled, Eq. (4.7) has an interesting interpretation. If we use the 
definition of the 'I"s to re-express Eq. (4.7) in terms of the rPi+ 1/2.}+ 1/2 and then 
sum by parts, we find that the coefficients of the ex's form a discretization of - L1 and 
that the right-hand side is an approximation to the vorticity (the curl of V). Thus, 
the ex's computed during the projection define a discrete stream function for the 
velocity field. 

5. NUMERICAL RESULTS 

In this section we present numerical results designed to test the capabilities of the 
numerical method presented in the previous sections. For an application of the 
techniques described in this paper to a realistic flow problem see Bell et al. [21]. 
The first set of computations measure the numerical rate of convergence in the 
presence of boundaries. For these tests we define a smooth initial velocity inside the 
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unit square satisfying homogeneous Dirichlet boundary conditions. The initial 
velocity field is defined in terms of a stream function 

'P=n I sin2(nx)sin2(ny). 

The initial velocities are then defined by 

U= -'Py , 

The normalization was chosen so that the maximum initial velocity was one. Com­
putations were performed for Stokes flow (e = 0.1 with the nonlinear terms dropped 
out), Reynolds number 100 (e=O.Ol), and for the incompressible Euler equations 
(€ = 0.). F or each case, we compute the solution on uniform grids with 
L1x = L1y = 1/2n for n = 4, 5, ... , 8. For each grid we integrate to time 0.5 with 
LIt = ~Ax. 

To estimate the convergence rate we compare the solution obtained on each grid 
with the solution obtained on the next finer grid. When the grid is refined by a 
factor of 2, each cell in the grid is split into four pieces. We let V~/~ represent the 
values of the solution obtained with Ax = h/2 averaged onto the grid with L1x = h. 
We then compute 

II V~/~ - V" 11/, 

for each grid (except, of course, the finest). Asymptotically, these differences are 
proportional to the errors on the coarser grid. Table I contains these error 
measurements along with numerical rates of convergence for each of the cases. 
Second-order convergence for each case is apparent. The deviation from second­
order for the nonzero Reynolds-number cases is most likely related to the effects of 
slope limiting in the Godunov scheme. Limiting drops the local accuracy to first 
order which can account for deviations from second-order behavior on coarse grids. 

The second example is that of a jet in a doubly period geometry for the Euler 
equations. The initial data is given by 

Stokes 
Re 100 
Euler 

16-32 

I.64E-3 
6.89E-3 
1.25E-2 

U = {tanh( (y - 0.25)/ p) 
tanh«0.75 - y)jp) 

v = (j sin(2nx), 

TABLE I 

for y~0.5 

for y>0.5 

Convergence Results 

Rate 32-64 Rate 64-128 

1.95 4.23E-4 1.97 1.08E-4 
1.85 1.90E-3 1.87 5.20E·4 
2.09 2.94E-3 2.37 5.68E-4 

Rate 

1.98 
1.92 
2.16 

128-256 

2.73E-5 
1.36E-4 
1.27 E-4 

(5.1 ) 
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where p = 1/30 and <5 = 0.05. Thus, the initial flow field consists of a horizontal 
shear layer of finite thickness, perturbed by a small amplitude vertical velocity. 
Each of the shear layers making up the boundaries of the jet evolves into a periodic 
array of large vortices, with the shear layer between the rolls being thinned by the 
large straining field there. Eventually, these thinned layers wrap around the large 
rolls. The evolution of the top and bottom layers are mirror images of one another, 
modulo translation by half the length of the box. In Figs. 1-3, we show results on 
128 x 128, 256 x 256, and 512 x 512 grids, respectively. These computations were 
run with time-step equal to half that allowed by (4.6). Shown in the plots are con­
tours of vorticity, computed by applying a second-order central difference formula 

: ['11 'l.cn:n!~)t 1: I':.:'~ 

I 
I 

I __ _ 

FIG. I. Vorticity contours for smooth shear layer on 128 x 128 grid. 
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~~--

FIG. 2. Vorticity contours for smooth shear layer on 256 x 256 grid. 

to the velocity field. At time 0.8, the vorticity is well resolved to plotting accuracy 
even of the coarsest grid. As time progresses and the shear layers between the 
vortices become thinner, the coarser grids are unable to resolve the details of the 
solution. At time 1.8, the convergence of the vorticity to plotting accuracy on the 
512 x 512 grid is in doubt. Nonetheless, the computed solution degrades gracefully 
in the underresolved regions. The principal manifestation of the lack of grid resolu­
tion is the smearing of the high-frequency components of the vorticity field. There 
is no obvious evidence of problems with large dispersive errors in the presence of 
large gradients, such as oscillations or distortions in the shape of the large vortices 
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FIG. 3. Vorticity contours for smooth shear layer on 512 x 512 grid. 

on the coarse grids. In Fig. 4 we give time histories of the integral of the kinetic 
energy 

K= f U·Udxdy 

as a function of time. Since K is an invariant of solutions to the Euler equations, 
its variation in time for computed solutions is a gross measure of the accuracy of 
the method. It is evident from the calculations that K at any given time is con­
verging to the exact answer at a rate of O(h2) as one would expect from a second-
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order method. In addition, the variation of K for any of the grids is quite modest; 
on the coarsest grid, the maximum error in K is 0.35%. For the most part, K is 
decreasing as a function of time, although in the finer grid calculations, there is a 
slight increase in K around t = 1. However, we do not find this particularly 
disturbing since the increase is small compared to the overall variation in K. 

Our final set of test calculations are for the same initial data and boundary con­
ditions as the previous ones, except that the shear layers bounding the jet are 
infinitely thin, i.e., p -+ 0 in (5.1). In addition to providing a stringent test of the 
method, this example is also motivated by the widespread practice of using finite 
difference algorithms for the Euler equations to calculate the dynamics of sharp 
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shear layers for compressible flow. Such calculations have been performed for a 
variety of physical problems, including vortex sheets formed at the leading edge of 
a delta wing, and the slip line in Mach reflection. The justification usually given for 
the physical correctness of such calculations is that if the point at which the shear 
layer is created is computed correctly, then the numerical dissipation in the finite 
difference algorithm will mimic the physical dissipation mechanisms, leading to 
results which have the correct large-scale dynamics. The capability of the present 
algorithm to compute both high Reynolds number and Euler solutions for discon­
tinuous data would permit one to examine the validity of this justification, albeit in 
a much simpler, incompressible setting. Such computations might shed some light 

, 
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FIG. 5. Vorticity contours at t = 0.3 on 256 x 256 grid for varying viscosity. 
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on this issue in the compressible case, where many of the difference schemes used 
to compute solutions to the compressible Euler equations are closely related to our 
Godunov procedure for the nonlinear terms and for which the corresponding 
compressible Navier-Stokes calculations would be prohibilitively expensive. 

In Figs. 5-8, we show vorticity plots of solutions obtained using our method for 
both Navier-Stokes and Euler with the time-step selected to be 80% of the maxi­
mum allowed by (4.6). In each figure we show results for Re == 1/8 = 5000, 10,000, 
20,000 and for Euler. The first two figures show early-time results (t = 0.3) for 
256 x 256 and 512 x 512 grids. Figs. 7-8 show results for these same grids at t = 0.6. 
At the lower Reynolds numbers, we have good agreement between the coarse and 

I 
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FIG. 6. Vorticity contours at 1=0.3 on 512 x 512 grid for varying viscosity. 
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fine grid solutions. At Re = 20,000, higher harmonics of the initial perturbation 
appear on the fine grid results which are not resolved on the coarse grid. 

The Euler results, of course, are not expected to converge to anything as Ax --+ 0. 
However, we note that for the Euler results, the characteristic wavelength of the 
small-scale structures appears to increase linearly with the mesh spacing, although 
one can still discern the original perturbation in the large-scale deflections of the jet 
which is roughly the same on both grids. In any case, the results serve to validate 
our claim that we have no cell Reynolds number stability restrictions; in particular, 
our method remains stable and non-oscillatory for l: = 0, even with discontinuous 
initial data. 
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FIG. 7. Vorticity contours at t = 0.6 on 256 x 256 grid for varying viscosity. 
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FIG. 8. Vorticity contours at t = 0.6 on 512 x 512 grid for varying viscosity. 

As a final comment concerning the performance of the method, we will briefly 
discuss some representative timings for the method on 128 x 128 grids on a single­
processor Cray XMP. Linear algebra is the dominant cost in the algorithm; conse­
quently, the choice of iterative method can lead to considerable variation in results. 
In both the periodic case and the finite domain case we solved the linear systems 
required for the heat equations when viscous terms are present using a diagonally 
scaled preconditioned conjugate gradient. For the examples with boundary condi­
tions, the projection was done using an MILU(O) preconditioned conjugate 
gradient algorithm. For the Euler equations the method required 27.9 J1.s to advance 
a grid point with 76% of the cost being the projection linear algebra. Addition of 
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the viscous term with f, = 0.01 increased the time per zone to 40.8 J1.S. For the doubly 
periodic examples the projection was computed using FFTs which reduced the 
computational cost to 12.5 liS per zone for the inviscid case. In this case, addition 
of the viscosity increased the time to 23.7 J1S per zone. 

6. COI"CLUSIONS 

In this paper we have presented a new projection algorithm for the incompressible 
Navier-Stokes equations. The algorithm maintains sufficient coupling between the 
diffusion-convection step and the projection step so that the overall temporal 
discretization is second-order accurate. The method also incorporates an explicit 
Godunov-type discretization of the nonlinear terms. The Godunov method 
provides a robust, second-order accurate discretization for smooth flows that 
remains stable for singular initial data such as vortex sheets, even in the limit of 
vanishing viscosity. The method was tested on a simple model problem to validate 
the second-order convergence of the method. The method was also used to model 
the dynamics of shear layers in a doubly periodic domain. For a smooth initial 
layer the method performed well in the absence of viscosity. The solutions appeared 
to be quadratically convergent and provided reasonable resolution of the principal 
features of the flow on the coarsest grid. When applied to a discontinuous initial 
layer the method remained stable even in the Euler limit. Furthermore, for this 
initial data the method provided acceptable resolution of viscous effects for a cell 
Reynolds number of approximately 40. 

Future work will address the extension of the method developed here to quadri­
lateral grids and to incorporate more general boundary conditions. This will allow 
us to model more complex geometries and to use boundary-layer zoning near solid 
walls to obtain better resolution of boundary-layer phenomena at high Reynolds 
number. The quadrilateral-grid version of the algorithm will then form the basis for 
the development of a local mesh refinement algorithm that will allow us to focus 
computational effort where it is required to resolve complex flow features. 

REFERENCES 

I. O. A. LADYZHENSKAYA, Mathematical Problems in the Dynamics oj' a Viscous Incompressihle Flow 
(Gordon & Breach, New York, 1963). 

2. H. FUJITA AND T. KATo. Arch. Rat. Mech. Anal. 16,269 (1964). 
3. R. TEMAM, Navier-Stokes Equations (Elsevier Science, Amsterdam, 1984). 
4. F. H. HARLOW AND J. E. WELCH, Phys. Fluids 8, 2182 (1965). 
5. P M. GRESHO AND R. L. SANI, Int. J. Numer. Methods f1uids 7, 1111 (1987). 
6. A. KRZYWICKI AND O. A. LADYZHESSKAYA, Soviet Phys. DoH 11, 212 (1966). 
7. A. J. CHORIN, Math. Comput. 22, 745 (\968). 
8. A. J. CHORIN, Math. Comput. 23, 341 (1969). 
9. A. J. CHORIN, Stud. Num. Anal. 2, 64 (1968). 

10. R. TEMAM, Arch. Rat. Mech. Anal. 32, 135,377 (1969). 



SECOND-ORDER PROJECTION ORDER 283 

11. J. KIM AND P. MaIN, J. Comput. Phys. 59,308 (1985). 
12. J. VAN KAN, SIAM J. Sci. Statist. Comput. 7, 870 (1986). 
13. P. COLELLA, "A Multidimensional Second Order Godunov Scheme for Conservation Laws," 

LBL-17023, Lawrence Berkeley Laboratory, May 1984 (unpublished). 
14. B. VAN LEER, "Multidimensional Explicit Difference Schemes for Hyperbolic Conservation Laws," 

in Computing Methods in Applied Sciences an Engineering, VI, p. 493 (Elsevier Science, Amsterdam, 
1984). 

IS. 1. B. BELL, C. N. DAWSON, AND G. R. SHUBIN, J. Comput. Phys. 74, 1 (1988). 
16. A. B. STEPHENS, 1. B. BELL, 1. M. SOLOMON, AND L. B. HACKERMAN, J. Comput. Phys. 53, 152 

(1984). 
17. T. F. RUSSELL AND M. F. WHEELER, "Finite element and finite difference methods for continuous 

flows in porous media," in Mathematics of Reservoir Simulation (SIAM, Philadelphia, 1984). 
18. A. WEISER AND M. WHEELER, SIAM J. Num. Anal. 25, 351 (1988). 
19. 1. S. SALTZMAN, "Monotone Difference Schemes for the Linear Advection Equation in Two and 

Three Dimensions," LAUR 87-2479, Los Alamos National Laboratory, 1987 (unpublished). 
20. 1. M. SoLOMON AND W. G. SZYMCZAK, "Finite Difference Solutions for the Incompressible Navier­

Stokes Equations using Galerkin Techniques," in Fifth IMACS International Symposium on 
Computer Methods for Partial Differential Equations, Lehigh University, June 19-21, 1984. 

21. 1. B. BELL, H. M. GLAZ, 1. M. SOLOMON, AND W. G. SZYMCZAK, "Application of a Second-Order 
Projection Method to the Study of Shear Layers," in 11th International Conference on Numerical 
Methods in Fluid Dynamics, Williamsburg, VA, June 27-July I, 1988. 


