
Redesigning CAM-SE for Peta-Scale Climate Modeling
Performance and Ultra-High Resolution on Sunway TaihuLight

Haohuan Fu
Tsinghua University, China

National Supercomputing Center in

Wuxi, China

haohuan@tsinghua.edu.cn

Junfeng Liao
Tsinghua University, China

National Supercomputing Center in

Wuxi, China

liaojf08@gmail.com

Nan Ding
Tsinghua University, China

National Supercomputing Center in

Wuxi, China

dingnan0701@gmail.com

Xiaohui Duan
Shandong University, China

sunrise.duan@mail.sdu.edu.cn

Lin Gan
Tsinghua University, China

National Supercomputing Center in

Wuxi, China

lingan@tsinghua.edu.cn

Yishuang Liang
Tsinghua University, China

National Supercomputing Center in

Wuxi, China

liangys@mail.bnu.edu.cn

Xinliang Wang
Tsinghua University, China

National Supercomputing Center in

Wuxi, China

clarencewxl@gmail.com

Jinzhe Yang
Imperial College London, UK

National Supercomputing Center in

Wuxi, China

jinzheyang@gmail.com

Yan Zheng
National Research Center of Parallel

Computer Engineering and

Technology, China

zyzhengyanzy@263.net

Weiguo Liu
Shandong University, China

weiguo.liu@sdu.edu.cn

Lanning Wang
Beijing Normal University, China

National Supercomputing Center in

Wuxi, China

wangln@bnu.edu.cn

Guangwen Yang
Tsinghua University, China

National Supercomputing Center in

Wuxi, China

ygw@tsinghua.edu.cn

ABSTRACT

The Community Atmosphere Model (CAM) is ported, redesigned,

and scaled to the full system of the Sunway TaihuLight, and pro-

vides peta-scale climate modeling performance. We refactored and

optimized the complete code using OpenACC directives at the first

stage. A more aggressive and finer-grained redesign is then applied

on the CAM, to achieve finer memory control and usage, more effi-

cient vectorization and compute and communication overlapping.

We further improve the CAM performance of a 260-core Sunway

processor to the range of 28 to 184 Intel CPU cores, and achieve a

sustainable double-precision performance of 3.3 PFlops for a 750 m

global simulation when using 10,075,000 cores. CAM on Sunway

achieves the simulation speed of 3.4 and 21.5 simulation-year-per-

day (SYPD) for global 25-km and 100-km resolution respectively;

and enables us to perform, to our knowledge, the first simulation

of the complete lifecycle of hurricane Katrina, and achieve close-to-

observation simulation results for both track and intensity.
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1 JUSTIFICATION FOR ACM GORDON BELL
PRIZE

First refactoring and redesign of the entire Community Atmo-

spheric Model (over half million lines of code) for Sunway Taihu-

Light, achieving 3.4 SYPD for 25km global atmospheric simulation

and close-to-observation simulation of hurricane Katrina lifecy-

cle; a sustainable double-precision performance of over 3.3 PFlops

(750-m resolution) of the dynamical-core using 10,075,000 cores.

2 PERFORMANCE ATTRIBUTES

The following table shows the major performance numbers updated

in the recent months, and some other highlights of this work.

3 OVERVIEW OF THE PROBLEM

People say, “a storm may arise from a clear sky”. Predicting the

weather and climate has been one of the most sophisticated prob-

lems in the world that relates to so many different factors and

disciplines. While ancient scholars mostly built their prediction
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Performance
Content

Attributes

Sustainable 3.3 PFlops using 10,075,000 cores

performance (improved from previous 1.6 PFlops)

Simulation year 3.4 SYPD for ne120 (25-km horizontal resolution)

per day (SYPD) 21.5 SYPD for ne30 (100-km horizontal resolution)

Refactoring efforts

CAM original total is 754,129 LOC

We modified 152,336 LOC

We further added 57,709 LOC

Category of Time-to-solution, scalability,

achievement and peak performance

Extreme event Simulate the lifecycle of hurricane Katrina

simulation with close-to-observation accuracy

Type of method Explicit

Results reported
Whole application with I/O

on basis of

Precision reported Double precision

System scale Measured on full-scale system

Measurement Timers

systems based on observations, since the 1950s, the numerical sim-

ulation approach has taken off, and demonstrated its effectiveness

in making predictions, and providing scientific support for various

issues ranging from extreme weather and climate disaster mitiga-

tion [1] to everyday life planning.

During this long process that originates from the first numerical

program that John von Neumann and Charney wrote on ENIAC

(often considered as the first computer in history) [2] to today, we

see the numerical simulation tool has grown from a simple solver

of barotropic equations to one of the world’s most complicated

software projects (such as Community Atmospheric Model [3],

Community Earth SystemModel [4], etc.) that possessmillions lines

of code, and involve hundreds or even thousands of contributors

from various research institutions and organizations.

Along with the development process of such weather and climate

system model, the demands for computing power are also keeping

on increasing. With more and more scientific understanding con-

verted into software modules, more and more grids in the model

to push the resolution from a few hundred kilometers to a few

kilometers, and the increased accuracy requirement that increases

the ensemble sizes, the climate models nowadays can easily occupy

all available resources of high-end computing facilities.

While the demands from the science side continue to grow,

the HPC architecture roadmap somehow has diverted. Most of

the leading-edge supercomputers coming out in recent years are

equipped with heterogeneous architectures in the form of many-

core chips (Tianhe-2 [5], Titan [6], etc.). One extreme example is

the Sunway TaihuLight announced in 2016, which provides a peak

performance of 125 PFlops with over 10 million cores [7].

This architectural change brings tough challenges for program-

ming. Both the computing architecture and the memory hierarchy

are changed radically. For example, each Sunway processor is pro-

viding the parallelism at the level of 260 cores in one chip, and

each of the cores still has wide vector units to form another level

of parallelism. Inside the computing cores, the cache is replaced by

an user-controlled scratchpad memory for the purpose of meeting

the hardware and power constraints at such a level of computing

density. These radical changes require a total different design and

programming philosophy when conducting a numerical problem.

Therefore, it is becoming almost impossible for well established

numerical codes, such as the millions lines of code in the climate

domain, to gain performance benefits, if any, from the newly built

supercomputers. The heavy code legacy is one impediment, but

the broad spectrum of sciences related to the hundreds of physics,

chemistry, or even economic schemes woven into the model have

made it even more difficult to achieve sustainable development

of both science and computation in climate system models. As a

result, most of the existing work still mainly targets at some parts

of the models, such as the dynamical core [8–10] or certain specific

physics schemes [11]. We only see a few work [12] that manages

to port the complete models, which are still far from the level of

complexity of global atmospheric models.

To explore the possible solutions for such a difficult situation, and

more specifically, to achieve an efficient utilization of the Sunway

TaihuLight for climate-kind applications, in our work, we pick CAM

[3] as our target application, and perform an extensive refactor or

even redesign process for both the dynamical core and the physics

schemes in such an extremely complicated software program. With

over hundreds of modules in such a complex model, we have at least

20 to 30 kernels that contribute a meaningful portion (although

usually only 2% to 5%) to the total run time. Therefore, to gain

any meaningful performance improvement, we have to port and

optimize the entire model, which brings challenges at a completely

different level from partial kernel optimizations.

As the first step, we take OpenACC-based refactoring as the ma-

jor approach, and apply source-to-source translator tools to exploit

the most suitable parallelism for the CPE cluster of SW26010 that

powers Sunway TaihuLight, and to fit the intermediate variable

into the limited on-chip fast buffer. Combining the OpenACC-

refactored code with the projected performance upper bound based

on the memory capacities (assuming bandwidth as the major con-

straint), we then derive a more aggressive fine-grained optimization

workflow that maps the original OpenACC directive description of

parallelism into a more flexible Athread code, to enable finer mem-

ory control and more efficient vectorization. Among the 754,129

lines of code (LOC) from the original CAM model, around 152,336

LOC have been modified, and 57,709 LOC are newly added.

As far as we know, this would be the first reported effort that

migrates a scientific application at such a level of complexity to a

completely different hardware architecture. Our effort results in

a fully ported CAM model on Sunway TaihuLight that supports

25-km resolution using 1,872,000 cores, and provides a simulation

speed of 3.4 simulation years per day (SYPD). The further fine-

grained optimization for the CAM-SE dynamic core part manages to

scale to 10,075,000 cores for a 750-m global simulation, and provides

an unprecedented performance of 3.3 PFlops in double-precision.

Besides the significant performance improvements, CAM on

Sunway also enables us to perform, to our knowledge, the first

simulation of complete lifecycle of hurricane Katrina, and achieve

close-to-observation simulation results for both track and intensity.

With the significantly improved performance of CAM-SE on

Sunway TaihuLight as the major contribution of our efforts, we

also take this opportunity to investigate the potential programming
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challenges and solutions that a lot of other large-scale scientific

applications would face during the transition to the Exascale era,

which is just another couple of years away from now.

4 CURRENT STATE OF THE ART

4.1 Atmospheric Modeling

Ever since the first numerical atmospheric program running on

ENIAC (the first electronic digital computer) [13], atmospheric re-

search has made a rapid progress with the technical revolution of

computers, and is no doubt among the major consumers of the

world’s most powerful supercomputers. Based on the powerful

supercomputers, many pioneering works have been made by dif-

ferent research groups. Satoh et. al targeted at the Nonhydrostatic

Iscosahedral Atmospheric Model (NICAM) and achieved 3.5-km

and 7-km global simulations [14] based on the Earth Simulator, and

870-m global resolution [15] on K computer. In US, the CAM-SE

dynamics core supports up to 12.5-km resolution with a simulation

speed of around 4.6 SYPD across over 172,800 CPU cores on Jaguar

[3], while the Weather Research and Forecasting (WRF) model pro-

vides a single-precision performance of 285TFlops on 437,760 cores

of Blue Waters [16].

In the recent years, as the heterogenous architecture that in-

volves many-core accelerators is becoming the mainstream for

modern HPC systems, we see a lot of efforts that intend to over-

come the tough climate modeling difficulties by using those new

architectures. Early researches are mostly focusing on the stan-

dalone physics scheme, and have achieved good speedups over

their CPU counterparts. For example, in the study of using GPUs

to accelerate the famous Weather Research and Forecast model

(WRF), some efforts have been made in porting different modules,

such as the chemical kinetics modules [17] and the microphysics

scheme [18], and managed to obtain speedups of 8.5× and 70×,

respectively. The work in [9] focused on the porting of the short-

wave radiation parameterization of CAM and achieved a speedup

of 14×; while the work in [19] ported the microphysics module

of Global/Regional Assimilation and Prediction System (GRAPES)

with the speedup of 140×.

Compared with the physical schemes that usually only contain

high density arithmetic kernels, the dynamical core parts generally

require interactions and communications across different grids, and

are thereby more difficult to deal with. In recent decades, we also

see quite a lot of works on accelerating the dynamical cores on

GPU devices, such as the efforts on NIM [20], GRAPES [11], CAM-

SE [21], HIRLAM [22], and NICAM [23]. The achievable speedups

for those works are around 3 to 10 times when compared against

the parallel CPU solutions.

Thanks to the performance boosts delivered by the 125 PFlops

Sunway TaihuLight Supercomputer, some successes have been

made towards fully exploiting the huge computing capacity, such

as the work by Yang et. al, [10] that scales an implicit solver for the

3D Euler equations to the 10 million cores of Sunway TaihuLight,

and achieves a sustained performance of 8 PFlops, and the work

by Qiao et. al, [24] that simulates the realistic surface wave and

achieves 45.43 PFlops in ultra-high resolution of (1/100) degree.

Until now, we only see a few models that is completely ported

onto the GPU platform. One example is the GPU-based accel-

eration of ASUCA, a next-generation high resolution mesoscale

atmospheric model developed by the Japan Meteorological Agency

(JMA) [25]. The speedup of 80-fold is obtained when compared

against a single CPU core, with an excellent scalability for up to a

few thousands of nodes. Another example is the complete porting

of the Princeton Ocean Model (POM) onto GPU devices [12], which

performs a manual porting and optimization onto 4 GPUs, and

achieves an equivalent performance to 408 CPU cores.

The COSMO regional weather model used by MeteoSwiss has

been rewritten (dynamical core part) and refactored (physics part)

through domain and data structure specific tools (STELLA[26], Ope-

nACC), achieving the considerable performance acceleration[27].

Our work differs from the above efforts from mainly two folds:

one is the target application, the Community Atmospheric Model,

which presents the complexity level of over half million lines of

code, and hundreds of major functions or kernels, in contrast to the

existing works that mostly focus on kernels or solvers; the other

one is the target platform of Sunway TaihuLight, which puts the

further requirement of scaling the redesigned code to the parallel

level of over 10 million cores (with the totally different architecture

of SW26010 being another challenging factor).

4.2 Exploring Solutions for Exascale

With the planned Exascale computing systems coming in another

3 to 5 years, the applications for Exascale have clearly become a

focus for HPC-related research in different countries.

Hardware-software co-design used to be considered as a po-

tential solution that resolves the current mis-match between the

existing software and the evolving hardware. However, if you do

look into the two elements of the problem, they do not yet show

a likely trend towards converging. One side is the software in the

form of millions lines of legacy code that accumulates the scien-

tists’ previous discoveries, and the other side is the future Exascale

machines that would most likely adopt completely different archi-

tectures to satisfy the performance target, and to resolve the power

and heat constraints. In other words, both sides still have their

own challenges to resolve, and are unlikely to converge. Mean-

while, considering the broad spectrum of scientific applications

that a supercomputer generally needs to support, and the lack of

commercial elements in their nature, it is not quite possible to see

fully customized large scale supercomputers in supercomputing

centers, such as the series of Anton machine [28, 29] (supported by

an financial investment institute), or the deep learning domain [30]

(backed by hundreds of Internet companies).

Therefore, considering all these different factors, software re-

design by itself becomes the only feasible way to scale the science

with the emerging HPC technologies. One example is the recently

announced project called NWChemEX Exascale Computing Project

[31] that aims to develop a new version of the widely used computa-

tional chemistry code, NWChem [32]. Led by the Pacific Northwest

National Laboratory (PNNL), the large amount of original NWChem

code will be completely redesigned and re-implemented in C++,

so as to be better optimized on the upcoming Exascale supercom-

puters. As such, there are at least 15 representative applications,

such as the ALPINE project and the ExaSky project, which would

be redesigned in algorithms, scalability and overall performance to

meet the Exascale computing supercomputers [33].



SC17, November 12–17, 2017, Denver, CO, USA H. Fu et al.

Figure 1: The architecture of the many-core SW26010 CPU

While these projects are still in the initialization stage, in this

paper, we report our concrete efforts for CAM-SE on Sunway Tai-

huLight. We should argue that the challenge in our case is even

tougher, as the Sunway processor is using a completely new hard-

ware architecture with the software ecosystem just being built up.

Our target is not only to make it work on Sunway TaihuLight, but

also to scale the code to the massive number of cores in the system

and to achieve peta-scale computing performance.

5 SUNWAY TAIHULIGHT SUPERCOMPUTER

5.1 System Overview

Announced in June 2016 as the fastest supercomputer in the world,

the Sunway TaihuLight has kept the record ever since. The peak per-

formance is over 125 PFlops, and the Linpack performance is over

93 Plops. The supercomputer is equipped with China’s homegrown

many-core processor SW26010 which has 260 cores.

The machine takes a two-level approach to build the network.

Inside a supernode with 256 processors, all the processors are fully

connected through a customized network board. Above the su-

pernode, the central network switches process the communication

packets. Through such a two-level network topology, all the 40,960

nodes (10,649,600 cores) are connected efficiently.

Not only the performance outperforms all the existing super-

computers, the overall power efficiency of TaihuLight is also out-

standing, providing a power efficiency of 6.06 GFlops / watt.

5.2 The SW26010 Many-Core Processor

Figure 1 provides the general architecture of the many-core hetero-

geneous processor. The 260 cores on each SW26010 are grouped

into 4 core-groups (CGs), with 65 cores in each CG.Within each CG,

there are one management processing element (MPE), one cluster

of 8×8 computing processing elements (CPE), and one memory

controller (MC).

The MPE is a complete 64-bit RISC core that supports both user

and system modes. While also capable of performing computa-

tions, the MPE is generally used for handling management and

communication functions.

The CPE, on the contrary, is a 64-bit RISC core that only sup-

ports the user mode, with the design goal to maximise the aggre-

gated computing power and to minimize the complexity of the

micro-architecture. Organized as an 8×8 mesh, the cluster of CPEs

supports low-latency register communication among the CPEs, to

achieve low-cost data sharing schemes within the cluster.

As for the memory, each MPE has a 32KB L1 instruction cache,

a 32KB L1 data cache, and a 256KB L2 cache for both instruction

and data. Each CPE has a 16KB L1 instruction cache, and a 64KB

SPM, (also called the Local Data Memory (LDM)), which serves the

same function as the L1 cache, but in a user-controlled way.

The MPE and the CPEs within the same CG share the same mem-

ory which is controlled by the MC. The 4 CGs are connected using

network on chip (NoC). Each SW26010 processor provides a peak

performance of over 3 Tflops, a power efficiency of 10 GFlops/W,

and connects to 32 GB memory with a bandwidth of 132 GB/s.

While providing a high computing performance and high power

efficiency, the memory size and the memory bandwidth is relatively

limited as a compromise.

5.3 The Programming Environment

The parallel programming model of TaihuLight can be described as

”MPI + X”, where X denotes OpenACC or Athread. In most cases,

each CG corresponds to one MPI process. For the MPE and 64 CPEs

within each CG, we use Sunway OpenACC or Athread to exploit

in-CG parallelism.

The Sunway OpenACC compilation tool supports OpenACC 2.0

syntax and targets the CPE clusters over shared memory. This

customised version of OpenACC supports the management of par-

allel tasks, the abstraction of heterogeneous code, and the different

ways of data transfers. Combined with the specific features of the

SW26010 architecture, a number of syntax extensions has been

made based on the original OpenACC 2.0 standard, such as finer

control of multi-dimensional array buffering, multi-dimensional

array transpose, etc.

The second option, Athread, is a lightweight threading library

specifically designed for the SW26010 processor and its predeces-

sors, which is also the underlying implementation for OpenACC.

Similar to the POSIX threads, Athread allows a program to control

multiple different flows of work that overlap in time.

While Sunway OpenACC provides an easy-to-use interface for

porting programs onto the Sunway architectures, the constraint

is that a number of performance-related programming interfaces

(vectorization, DMA operation control, etc.) is not yet supported. In

contrast, the Athread interface requires much more programming

efforts, but also provides the option to fully exploit the performance

potential of the Sunway architecture through fine-grained controls.

6 COMMUNITY ATMOSPHERE MODEL (CAM)

Climate models are indispensable and ubiquitous tools for simu-

lating past, present and future climates, understanding the Earth’s

global climate system and predicting the effects of climate change.

In order to support studying the geophysical fluid dynamics of

global atmosphere and ocean at the beginning, climate models are

integrating a variety of fluid-dynamical, physical, chemical and

biological procedures across different time scales and spatial scales.

CAM is the most important and computationally consuming

component in CESM, and it has long been a killer application on su-

percomputers [34]. It is also one of the state-of-the-art and widely

used coupled system models, which has been developed and main-

tained for over 30 years by NCAR with a large code base for more

than one million five hundred thousand LOCs. In the trend of
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higher resolution and more complex physics parameterizations,

CAM is now consuming more computing power than ever. The

performance scalability of CAM has been a vital issue for achieving

acceptable performance on current or future large-scale computing

systems [35].

Generally, CAM is characterized by two phases: the dynamics

and the physics. These two phases are executed in turn during

each simulation time-step. For the physics, it approximates sub-

grid phenomena such as clouds, precipitation processes, long/short-

wave radiation, and turbulentmixing. For the dynamics, it expresses

the evolutionary equations for the atmospheric flow. The dynamical

core of CAM-SE uses a second-order accurate N-stage Runge-Kutta

method which is implemented as a combination of the RK2 and

Leapfrog schemes [3].

We use CAM-SE which includes a spectral element (SE) dy-

namical core option from NCAR’s High-Order Method Modeling

Environment (HOMME) [3].

7 INNOVATIONS REALIZED

7.1 Overview

This work manages to migrate the complete CAM-SE (both the

dynamical core and the physical scheme parts) to the completely

different hardware architecture of Sunway TaihuLight, and man-

ages to scale the performance of the model to 10 million cores.

Our major contributions are as follows:

• For both the dynamical core and the physics parts, we take

OpenACC-based refactoring as the major approach, and apply

source-to-source translation tools to exploit the most suitable

parallelism for the CPE cluster, and to fit the intermediate vari-

able into the limited on-chip fast buffer.

• Based on the OpenACC-refactored code of CAM-SE, we further

derive a fine-grained optimization workflow using Athread, to

achieve finer memory control and more efficient vectorization.

• For the modules with heavy data dependency and inadequate

parallelism, we apply the register communication feature of the

Sunway architecture to expose more parallelism for the increased

number of cores within each processor.

• For the communication between neighbour elements, we re-

design the boundary exchange part to add the feature of compu-

tation and communication overlapping, and to avoid unneces-

sary memory copies, which nearly doubles the performance of

CAM-SE in large-scale runs.

For the first step of OpenACC-based refactoring, when compar-

ing the original ported version using only MPEs and the refactored

version using both the MPE and CPE clusters, we achieve up to 22x

speedup for the compute-intensive kernels. For the 25-km resolu-

tion CAM global model, we manage to scale to 28,800 MPEs, and

1,872,000 CPEs, and achieve a simulation speed of 3.4 simulation

years per day (SYPD).

Moreover, the fine-grained Athread approach combined with the

register communication schemes can further improve the major

kernels in CAM-SE by another 10 to 15 times. The completely

redesign version of CAM-SE can scale to the full size of Sunway

TaihuLight, providing a performance of 3.3 PFlops at the 750 m

resolution global simulation.

7.2 OpenACC-based Refactoring of CAM-SE

We use the Sunway OpenACC compiler (a customized version that

expands from the OpenACC 2.0 standard) as the major tool to

achieve a suitable mapping of CAM onto the new Sunway hetero-

geneous many-core processors. Due to large code base developed

over the last few decades, and the general demand from climate

scientists to maintain a same source, we try to minimize the manual

refactoring efforts (to only the dynamical core part), andmainly rely

on the source-to-source translation tools to achieve an automated

and efficient porting.

Besides, compared with GPU and other many-core accelerators,

both the on-chip fast buffer and the available memory bandwidth

of the Sunway processor are relatively limited (detailed in Section

5), which makes our porting significantly more challenging. A

large part of our tools and optimization strategies would focus on

minimizing the memory footprints.

Through a careful refactor of the SE dynamical core, we manage

to combine the distributed loops in the major computational func-

tions into aggregated multi-level loops, and expose a suitable level

of both parallelism and variable storage space for the CPE cluster

architecture.

For the physics parts, which includes numerous modules with

different code styles by different scientists, we design a loop trans-

formation tool to identify and expose the most suitable level of

loop body for the parallelization on the CPE cluster. In addition,

we also design a memory footprint analysis and reduction tool,

and a number of customized Sunway OpenACC features, to fit the

frequently-accessed variables into the local fast buffer of the CPE.

7.3 Athread-based Fine-grained Redesign

While the OpenACC-based refactoring manages to migrate all the

major modules of CAM onto the SW26010 architecture, the limi-

tations of the OpenACC approach place performance constraints

on quite a few major kernels. As shown in Table 1, for the most

time consuming kernel euler step, the OpenACC version is only
1.5x faster than the Intel single-core performance. For the ker-

nel compute and apply rhs, with data dependency, the OpenACC
version is even 6x slower than Intel single-core version.

Such results clearly demonstrate a few major constraints that

come with the OpenACC approach:

• With a focus on minimizing the code modificatoins needed, the

OpenACC approach in many cases removes the option to make

algorithmic adjustments or to expose certain low-level interfaces

for finer control of either computing or memory operations.

• Threading overhead becomes a huge issue for programs with a

complicated set of modules and no clear hot spots (e.g. CAM).

• Using directives only, apparently, makes it impossible for us

to perform aggressive algorithmic or data structure related op-

timizations, which are in many cases the only way to make

utilization of Sunway’s different architecture.

Meanwhile, looking at the CAM software itself, there is also a

number of elements that call for redesign rather than simple porting

of the code, such as design patterns that work perfectly for previous

architectures but could bring disasters for many-core accelerators

like Sunway:
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Table 1: Key kernels of dynamics and their timing cost (s) of 6,144 processes over different computing platforms..

Key kernels Description Intel MPE Acc

compute and apply rhs compute the RHS(right hand side), accumulate into velocity and apply DSS 12.69 92.13 75.11

euler step construct strong stability preserving (SSP) second order Runge-Kutta method (RK
SSP method)

15.88 175.73 10.18

vertical remap compute the vertical flux needed to get back to reference η-coordinate levels 11.38 39.99 16.17

hypervis dp1 horizontal regular viscosity operator applied to the momentum and temperature
equations

4.95 12.71 3.13

hypervis dp2 horizontal hyper viscosity operator applied to the momentum and temperature
equations

3.81 9.05 1.32

biharmonic dp3d compute weak biharmonic operator 9.35 36.18 4.43

• Difficulty in data locality: the original CAM code adopts the

same data layout for both vertical and horizontal computations,

which would work for the traditional cache hierarchy, but do

not fit to the 64-KB LDM buffer and its philosophy of requiring

users to manage their own cache.

• Computation patterns that are unfriendly to vectorization: with

a lot of previous optimizations focus on minimizing the total

number of operations, we lose regularity in data and instruction

layout, leading to inefficient vectorization.

• Absence of overlapping schemes to hide communication in com-

putation partially or completely. HOMME mainly uses third-

order RK methods to solve dynamics equations, leading to 3 sub-

cycles edge packing/unpacking and boundary exchange. Such a

pattern could incur serious communication overhead in large-

scale runs.

Based on the above considerations, in our work, we decide to take

a more aggressive fine-grained redesign approach, and to rewrite

CAM. By doing so, we manage to take advantages of Sunway’s

architecture rather than just making use of the parallelism itself.

By taking careful algorithmic adjustment into considerations and

adopting the Athread programming interface, with the OpenACC-

refactored version as the starting point, we then perform two steps

to achieve an optimized Athread version.

The first step is to rewrite the OpenACC Fortran code to the

Athread C version. A typical example is shown in Algorithm 1 and

2. Algorithm 1 is the original parallelization method using Ope-

nACC, while Algorithm 2 illustrates our Athread rewrite version

of Algorithm 1. The customized OpenACC compiler only supports

single collapse for multiple levels of loops, and we cannot insert

code between two loops once it is collapsed. Therefore, in Algo-

rithm 1, the copyin instruction can only take place in the cycle of

q. As a result, every time when the q loop is executed, it reads all

related arrays. Nevertheless, even if the next loop reuses the same

array, it reads the data again, which increases the bandwidth usage

so significantly that it becomes the inevitable bottleneck.

On the contrary, the Athread provides flexible customization on

memory reuse or other behaviours. If the next loop requires the

same piece of data as the current one, user defines the memory

to keep the data for the next loop. In our case, by applying such

scheme, total data transfer size has been decreased to 10% compared

with the OpenACC solution, and it is no longer a bottleneck.

The second step is to perform manual vectorizations for certain

code regions. We can specifically declare vectorized data types

and write vectorized arithmetic operations, so as to improve the

vectorization efficiency of the corresponding code regions.

Algorithm 1 Euler Step Acc

Require:
elements : elements
nets, nete, col, row : the row and column id of that core

!$ACC parallel loop collapse(2)
for ie ← nets + col to nete do

for q ← 1 to num tracers do
t ← s + 32
!$ACC copyin(elements(ie).derived dp(s .. t)
…//And other non q related arrays
!$ACC copyin(elements(ie).qdp(q, s .. t)
for s ← 1 to vlayers , step 32 do

for k ← s to t do
..//computation

Algorithm 2 Euler Step Athread on CPEs

Require:
elements : elements
nets, nete, col, row : the row and column id of that core

for ie ← nets + col to nete , step 8 do
s ← row ∗ vlayer per core
t ← (row + 1) ∗ vlayer per core
DMA-get(elements(ie).der ived dp(s ..t ))
..//Same for other non q related arrays
for q ← 1 to num tracers do
DMA-get(elements(ie).qdp(q, s ..t )))
for k =← s to t do
..//vectorized computation

DMA-put(elements(ie).qdp(q, s ..t )))

7.4 Register Communication-based
Parallelization Scheme

The SW26010 has no coherent cache to exchange data among the

CPEs, instead, it supports the register communication operations.

From Figure 1, by using register communications, data can be di-

rectly exchanged between the LDMs of the two CPEs that belongs

to the same row or the same column within tens of cycles.

Such data exchange mechanism among different CPEs provides

an important option for data reuse among different CPE threads,

and, in many cases, provides more parallelism to fit to the increased

number of cores.

To make an efficient utilization of the register communication

feature, we apply a column-wise decomposition to assign different

portions to different CPEs. In the 3Dmesh of CAM-SE, each column

is called an element (Figure 2), which is further divided into a 4 by

4 grid at each level, and multiple layers (128 in our case) to simulate

the atmospheric dynamics. The resulting configuration of CPEs is

also shown in Figure 2.
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Figure 2: (a) The partition of 3D mesh of CAM. In our

Athread parallelization, in order to support convenient reg-

ister communication among CPEs, we divide the 128 layers

into 8 groups. Each group of 16 levels is processed by one

CPE. (b) The parallel scan and sum operation on CG for 3D

mesh of CAM. CPE Ci, j corresponds to the computation of

layer range [16 × i, 16 × i + 15]. pk is the geopotential height

of the kth layer, ak is the pressure differences between two

neighbouring layers k and k − 1.

In a lot of cases, we need to scan the element and compute

the summation results along the column axis. We take the scan

and summation case in the compute and apply rhs kernel as an
example of how the data dependency is minimized using our par-

allelization scheme and the register communcation feature. Since

the layers are equally partitioned, each CPE processes a group of

16 layers. pk is originally computed sequentially along the column:
pk = pk−1 + ak , and p0 is the initial geopotential height. If we
only calculates the accumulative pressure difference for current

layers within the CPE, it is parallel friendly. Figure 2 illustrates our

three-stage accumulation algorithm.

Stage 1, Local Accumulation: Each CPE computes the local

accumulation sum of its own layers.

Stage 2, Partial Sum Exchange: Each CPECi, j which is not in
the first row waits for the p16×i−1 from Ci−1, j by blocking register

reading, once the sum is get, it computes p16×i−1 +
∑15
j=0 ai+j and

sends it to Ci+1, j , if Ci, j is not in the last row.
Stage 3, Global Accumulation: Computes all the atmospheric

pressures within each CPE.

7.5 Shuffle and Register Communication-based
Array Transposition

Another major difficulty for achieving efficiency for the kernels

on the Sunway architecture is the switch of array axis during the

different loops in a same function. As we do not have a large-size

cache, accessing the data elements in a transposed manner can

bring significant performance penalties in such cases.

To achieve an efficient solution for array transposition inAthread,

we propose a shuffle and register communication-based approach,

which achieves fast transposition on small matrices using shuffle

instructions of registers, and then uses register communication

scheme to achieve larger matrix transposition.

Fig. 3 provides an example for the transposition of a 4 by 4 matrix

using progressive register level shuffle operations.

The instruction is Shuffle(a,b,mask), as is shown in the top left of

the figure. a and b are two 256-bit registers which contain 4 double-

precision floating numbers. The mask provides the information of

which 2 numbers from each register are being taken to the new

register, and the first two numbers come from a, while the other

two numbers are from b. In our example, it’s position 0 and 2

of A (corresponding value a0 and a2), and position 0 and 1 of b
(corresponding value b0 and b1).
The bottom left part of the figure shows a 4 by 4 matrix transpo-

sition by using 8 shuffle operations, colored arrows end in a same

row of that matrix denotes one shuffle operation.

The right part shows how we schedule larger matrix transposi-

tion by using register communication, each Ci j denotes a 4 by 4
sub matrix in LDM. We transpose matrix among n CPEs by n − 1

phases, 1 to n − 1. In Phase k , CPE i exchange a sub matrix with
CPE i ⊕ k , thus each phase contains a set collision free exchange
among the all these CPEs, the arcs connecting two CPEs denotes a

exchange between the two CPEs.

7.6 A Redesigned bndry exchangev

The bndry exchangev subroutine is the major part of communica-

tion within CAM. The subroutine comes with a good abstraction

design to hide the complexity of communication from normal users,

and has achieved good scalability to a large scale. However, the

option to computation and communication overlapping is not con-

sidered. While in a normal setup, the communication time is not

the biggest part in the total run time, for the cases with millions

of cores, the communication time contributes to around 23% of the

total run time of prim run (the dynamic part).

Therefore, in our redesigned bndry exchangev subroutine, we

add the feature of computation and communication overlapping.

We divide the elements of one process to two parts, the inner part

and the boundary part. The boundary part consists of elements that

are involved in bndry exchangev. We compute the boundary first,

and then start the asynchronous MPI communcation on the MPE

with an MPI wait in the end. We apply the same strategy to all the

three halo exchanges in the Euler step, and reduces the run time of

HOMME by 23% in the best cases.

Moreover, the abstraction design of the communication part also

leads to unnecessary memory copies in certain cases. In the original

design of HOMME, the exchanged data items from both MPI mes-

sages and intra-node memory copies are all copied into the same

pack and unpack memory buffer, to achieve a unified interface for

all related halo-exchange operations. However, such a design also

sacrifices performance by performing redundant memory copies, as

data items would always aggregate to the pack and unpack buffers,

and then forwarded to the corresponding elements for the computa-

tion afterwards. In our case, we keep most of the unified interfaces

for the convenient programming for future code development. For
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Figure 3: Two levels of our transposing scheme among CPEs, and it contains intra CPE and inter CPE transposing.

the unpack procedure, instead of the original data flow from receive

buffer to pack buffer, and then to the corresponding elements on

the boundary that needs the data, we identify the boundary-related

data in the very beginning, and fetch the data directly from receive

buffer to the corresponding elements. Such a optimization to the

memory copy would again reduce the run time of the dynamical

core of CAM by another 30%.

8 PERFORMANCE RESULTS

8.1 Metrics and Experiment Configurations

8.1.1 Flops Measurement. We analyze and collect the total num-

ber of double-precision (Flops) arithmetic operations using three

different ways (1) manually counting all double-precision arithmetic

instructions in the assembly code, or the original code if necessary;

(2) using hardware performance monitor of the Sunway Taihu-

Light supercomputer, PERF, to collect the retired double-precision

arithmetic instructions on the CPE cluster; (3) running the same

MPE-only version of the very original code on an Intel platform, and

using Performance API (PAPI) for total amount of double-precision

arithmetic operations.

The result from the third method is higher, while the other two

methods are almost identical with each other. Platform difference

is probably the main explanation to the difference, therefore, we

apply the second method (PERF) for counting the double-precision

arithmetic operations.

8.1.2 Simulation Year per Day (SYPD). SYPD refers to Simulated

Year per Day, which is commonly used for measuring simulation

speed. In our experiments, we use the simulation time for every

simulation day tD as the basic measurement unit. By analyzing tD
of several runs with simulated period over years, we find that tD
varies with negligible differences. Therefore, we compute tD as the
mean of all the measurements of the simulations, and compute the

value of SYPD based on tD .

8.1.3 Experiment Configuration. For the cubed-sphere mesh

used in CAM-SE, the computational domain consists of six patches,

each of which contains different amount of mesh cells. For exper-

iments in this work, we choose six different dimension sizes, as

shown in Table 2.

In the CAM-SE, the resolution is defined as the number of spec-

tral elements ne along the edge of each cube face. For example,

ne256 = 256 × 256 × 6 represents the configuration of 256 spec-
tral elements along the edge of each cube face (6 cube faces in

total), which corresponds to the 12.5 km horizontal resolution. We

conduct one-week simulation for each case and use the average

time-to-solution of 3 runs as the reported performance.

Table 2: Meshsize Configuration of Different Problems

problem size horizontal vertical # elements

ne64 64 × 64 × 6 128 24,576

ne256 256 × 256 × 6 128 393,216

ne512 512 × 512 × 6 128 1,572,864

ne1024 1024 × 1024 × 6 128 6,291,456

ne2048 2048 × 2048 × 6 128 25,165,824

ne4096 4096 × 4096 × 6 128 100,663,296

8.2 Simulation Validation

Figure 4: 30-year climatological atmospheric surface tem-

perature simulated by (a) CESM on Intel (control run) and

(b) CESM on Sunway TaihuLight (test run).
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Our validation experiment uses the CESM1.2 F PRESTENT DAY

compset with activated CAM, which applies the CAM-SE dynam-

ical core and CAM5 physics suite, with the horizontal resolution

NE30 (48,602 grid points) and 30 vertical levels. The land compo-

nent uses activated CLM4. The ocean and sea-ice components use

climatological sea surface temperature and sea ice data.

Figure 4 shows the 30-year climatological atmospheric surface

temperature, simulated on Intel cluster (control run) and on Sunway

TaihuLight (test run), respectively. We observe almost identical

patterns for the simulations on these two completely different hard-

ware architectures.

8.3 Performance Speedups

Figure 5: Speedups of different kernels based on 6144 MPI

processes for Intel Xeon E5 2680 V3 and SW26010.

Figure 5 shows the speedup of different kernels (as shown in

Table 1) for using 6,144 MPI processes, based on Intel CPUs (Xeon

E5 2680 V3) and Sunway processors respectively. The performance

speedups are sitting on top of each bar, with the Intel CPU perfor-

mance being the basic reference. For each kernel, we demonstrate

the results using one Intel CPU process, using one MPE, using

both the MPE and the 64 CPEs with OpenACC directives, and the

Athread version that further applies all the optimizations.

The figure shows that compared with the performance using one

Intel process, the performance of using one MPE is around 2-10

times slower. Applying the OpenACC directives would improve

the performance by 3 to 22 times, only scaling the performance of

64 CPEs to the range close to a single Intel core.

Only throughAthread redesigns, we can expose all the performance-

sensitive codelines, and achieve significant performance improve-

ments through fine-grained description of the compute andmemory

access operations. Even compared with the OpenACC version, the

Athread optimization can further improve the performance by up

to 50×. Compared with the a single Intel core, the performance

of 64 CPEs is also multiplied by another 7x to 46x. These results

demonstrate that, for the migration to completely different architec-

ture of the current 100-Pflops and future Exascale supercomputers,

redesign at a fine-grained level is a meaningful step to go.

Figure 6 shows the performance improvements for the entire

CAM model, described in SYPD. The left panel shows the results

of ne30 with three different versions. As a complex model that
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Figure 6: The performance improvements for the entire

CAMmodel in ne30 and ne120. ori refers to the original ver-

sion based on MPE, openacc refers to the usage of OpenACC

directive, and athread refers to the further usage of Athread.

involves kernels accelerated as well as parts that are inherently

serial, the speedup is not as good as in standalone kernels. However,

with the number of processes increasing from 216 to 5400, we

can still observe reasonable performance benefits from OpenACC

refactoring and Athread redesign. For different process numbers,

OpenACC can generally bring 1.4 to 1.5 times performance benefits,

while Athread can further improve by another factor of 1.1 to 1.4

times. The fastest simulation speed achieved for ne30 (100-km

resolution) is 21.5 SYPD when using 5400 processes. In the right

panel of Figure 6, we show the performance results of ne120 (the

OpenACC version). 3.4 SYPD is observed at 28800 processes.
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Figure 7: Strong scalability simulation using ’ne256’ and

’ne1024’ configurations of HOMME. exp refers to the mea-

sured result, while ideal refers to the theoretical scaling.

8.4 Scaling Results for HOMME

Figure 7 shows the results of strong scalability for HOMME model

based on the Sunway TaihuLight supercomputer. We perform the

experiments for two different problem sizes, i.e., ne256 (total num-
ber of elements is 393,216) and ne1024 (total number of elements
is 6,291,456). The number of Sunway processes (or CGs) increases

from 4,096 all the way to 131,072 for ne256 (the number of cores
ranging from 266,240 to 8,519,680). The sustainable performance

is increased from 0.07 PFLops to 0.64 PFlops, with the parallel ef-

ficiency of over 21.7% at 131,072 processes. For ne1024, due to
the surge of total elements and memory limitation, the number

of processes start from 8,192 (532,480 cores). We can observe that

the sustainable performance is increased from 0.18 to 1.76, with

the parallel efficiency of around 51%. The drop of efficiency from
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ne1024 to ne256 is mainly due to the decreased number of elements,
as well as the decreased portion of computing in the total time.

Figure 8 shows four different groups of experiments for the weak

scaling simulation. The number of elements per process is fixed to

be 48, 192, 650, and 768 for the four groups respectively, and the

number of processes is gradually increased to the full machine.

In Figure 8, the four experiments (element size of 48, 192, and

650, 768 in each process) demonstrate very good scaling efficiencies.

For the element size of 48, 192, 768, the number of processes are

increased from 512 all the way to 131,072 (corresponding to 33,280

to 8,519,680 cores), and the parallel efficiencies at the largest run

are 88.3%, 92.3% and 92.2%, respectively. Between different problem

sizes, the increase of the elements in each process generally leads

to less overhead caused by the communication, and thus obtains

better parallel efficiency. For the problem size of 650, however, we

are able to further extend the largest number of processes to be

155000, which corresponds to 10,075,000. The parallel efficiency at

this poit is 98.5%, and the sustainable performance is 3.3 PFlops.
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Figure 8: Weak scalability, elements in eachprocess are fixed

to be 48, 192, 650, 768, respectively.

8.5 Performance over Other Dynamical Cores

Table 3 shows our simulation speed compared with other dynamical

cores for the experiment configuration in the benchmarks for the

Next Generation Global Prediction System (NGGPS) evaluation

[35] in US. Our redesigned HOMME outperforms the speed of FV3,

and MPAS for the 12.5 km scenario. For the extreme case of 3 km

simulation, the performance advantage is even better, and is 2.1

times and 4.5 times better than the FV3 and MPAS, respectively.

The result also echoes what we see in the scaling experiments,

i.e. the efficiency in high-resolution case is generally better than

that in low-resolution cases, due to the limited number of elements

assigned to each CG. In high-resolution cases, we have enough

compute to assign to the 65 cores in each CG, and can therefore

achieve a better performance.

9 SIMULATION OF HURRICANE KATRINA

Using the redesigned CAM model on Sunway, we manage to simu-

late the hurricane Katrina with fine accuracy in both the track and

Table 3: The simulation time of our redesigned HOMME

over other dynamical cores reported in the evaluation for

the next generation global prediction system (NGGPS) [35].

dynamical core our work FV3 MPAS

12.5 km simulation for 2-hour prediction workload

Number of MPI Processes 131,072 110,592 96,000

run time 2.712 s 3.56 s 7.56 s

3 km simulation for 30-min prediction workload

Number of MPI Processes 131,072 110,592 131,072

run time 14.379 s 30.31 s 64.80 s

the intensity. This is, to the best of our knowledge, the first work

to simulate the life cycle of Katrina using a global climate model.

Katrina was an extraordinarily powerful and destructive hur-

ricane that devastated Gulf Coast of the United States in August

2005, causing thousands of deaths and damages estimated as nearly

200 billion US dollars [36]. It was the costliest and one of the five

deadliest hurricanes that ever stuck the United States.

Tropical cyclones such as Katrina are significantly under-resolved

at traditional GCM grid spacings of 50−300 km [37]. Research indi-

cates that approximately 50 km or smaller horizontal grid spacing

is necessary to simulate tropical cyclones observed in the climate

system [38]. Due to the high requirement on resolution, most exist-

ing efforts are using regional weather prediction models for tropic

cyclones simulation, instead of the global climate model that are too

complicated to guarantee good time-to-solution. However, regional

weather prediction models have to face the challenges such as the

required lateral boundary conditions (LBCs) which may introduce

additional errors through the use of a non-global domain. In this

work, by using Sunway TaihuLight, we manage to simulate Katrina

achieving both fine accuracy and good time-to-solution.

As shown in Figure 9 (b), the ne120 test with a horizontal res-
olution of 25 km perfectly captured the horizontal structure of

Katrina, showing distinctive spatial distribution features of the cy-

clone through both upwelling flux and wind fields, while the ne30
(100 km) test failed to simulate hurricane Katrina (Figure 9 (a)). The

ne120 test produced an excellent track with the positions nearly
identical to observation, during the entire duration of hurricane

Katrina (Figure 9 (c)) with the final landfall over Texas coast, except

for slightly deviation towards east during the initial 24-hour period.

The time series of the simulated cyclone maximum sustained wind

(MSW) also agrees well with the observed evolution of Hurricane

Katrina during the period from 1800 UTC of 23 August to 1200 UTC

of 31 August, 2005 (Figure 9 (d)).

With our efforts of CAM over Sunway TaihuLight, high resolu-

tion atmospheric simulation can be achieved both efficiently and

effectively, which might be a possible and potential way to conduct

seamless weather and climate simulations and predictions.

10 IMPLICATIONS

People also say, “the only constant is change itself”. From vec-

tor machine, to IBM/Intel clusters, from single core, multi-core,

to many-core, computer architecture, as well as the programming

model, changes constantly. Researchers can choose either to adapt



Redesigning CAM-SE for Peta-Scale Performance and Ultra-High Resolution SC17, November 12–17, 2017, Denver, CO, USA

(a) (b) (c) (d)

Figure 9: (a) Model simulated upwelling longwave flux and wind field at 1800 UTC of 28 August, 2005 from CESM ne30 (100
km); (b) Model simulated upwelling longwave flux and wind field at 1800 UTC of 28 August, 2005 from CESM ne120 (25 km); (c)

Observed track of Hurricane Katrina from US National Hurricane Center accompanied by simulated tracks from CESM ne120;
(d) Time series of observed and CESM ne120 predicted maximum wind (kts).

their problems to the newest general-purpose supercomputers, or,

in rare cases, to customize a supercomputer for a specific kind of

problems. The first option is usually the majority. As the super-

computers supported by national research organizations generally

need to serve a wide spectrum of scientific problems, with different

requirements for architectures, the new systems can only be built

based on a general thinking to improve the computing performance

and power efficiency. Therefore, we see very few special customized

systems (usually with private or commercial sources of funding sup-

port), such as Anton [28] and Anton 2 [29] for molecular dynamics,

and various deep learning processors [39].

In recent years, with the newly announced supercomputers al-

most all taking a heterogeneous many-core architecture, we see a

huge challenge for existing scientific applications to achieve con-

vincing performance improvements on these latest supercomputers.

Take the CAM model as an example. With over three decades of

development, the code has already gone through architectural tran-

sitions from Cray Vector Machines to IBM, and to most recent Intel

clusters, and has accumulated million lines of legacy code that were

possibly written in different decades. Another difficult is that for

such a complicated model with so many different modules, we

see no hotspots, or hundreds of hotspots. Therefore, we need to

perform redesign of the entire software package to achieve any

meaningful performance benefits.

In this work, we perform extensive optimizations for porting the

CAM to the Sunway TaihuLight supercomputer. Porting an entire

atmosphericmodel differs significantly frommigrating just modules

or kernels. Specifically, for the case of CAM, profiling results show

only very few kernels above the threshold of occupying over 4% of

the total execution time. For example, the most time-consuming

kernel euler step from Table 1 only accounts for 3.1% and 7.4% of the

total run time for ne256 and ne4096 respectively. The implication is
that we have to either redesign the entire model, or the performance

benefits would only marginal. Besides, considering the distributed

and complicated communication pattern in such a complex model,

the speedup for the entire model, which might not be as exciting

as the speedups reported for single kernels, does demonstrate the

tremendous efforts we put into the redesign process. A large part

of our redesign and optimization ideas can also be applied to other

platforms, e.g. using shuffle or transposing to increase locality,

using fused memory operation to achieve better bandwidth, using

vertical layer division to increase parallelization, and using hybrid

parallelization to hide communication overhead.

The OpenACC-based refactoring manages to scale the CAM

model to 1,560,000 cores, with a simulation speed of 3.4 SYPD

at the resolution of 25 km. With Athread-based fine-grained re-

implementation of the HOMME dynamical core, we can further

improve the performance of a CG (1 MPE + 64 CPEs) to the range

that is equivalent to 7 to 46 Intel CPU cores, and to achieve a

sustainable double-precision performance of 3.3 Pflops for a 750-m

global simulation when using 10,075,000 cores .

To the best of our knowledge, this would be the first reported

effort that migrate a scientific application at such a level of com-

plexity to a completely different hardware architecture, and scale

to over 10 million cores. This was also the first reported effort that

manage to simulate the life cycle of a real-world Tropical cyclones,

the hurricane Katrina, using a global climate model.

Experimental results show that our optimization reduces major

bottlenecks from the original legacy of over million lines of codes,

for example, data dependency, network bandwidth, memory control,

etc. By refactoring and redesigning the whole framework, from top

to bottom, the limitations for CAM are largely removed. Porting

CAM, or other numerical applications with similar legacy problem,

to the TaihuLight, or the soon-arriving Exa-scale supercomputers

in the future, is applicable and feasible.
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