
Architectural Requirements for Deep Learning
Workloads in HPC Environments

Khaled Z. Ibrahim1, Tan Nguyen1, Hai Ah Nam1, Wahid Bhimji, Steven Farrell,
Leonid Oliker, Michael Rowan, Nicholas J. Wright, Samuel Williams

NERSC/CRD, Lawrence Berkeley National Laboratory

Abstract—Scientific machine learning (SciML) promises to
have a transformational impact on scientific exploration, by com-
bining state-of-the-art AI methods with the latest generation of
supercomputers. However, to efficiently leverage ML techniques
on high-performance computing (HPC) systems, it is critical to
understand the performance characteristics of the underlying
algorithms on modern computational systems. In this work, we
present a new methodology for developing a detailed performance
understanding of ML benchmarks. To demonstrate our approach
we investigate two emerging SciML benchmark applications from
cosmology and climate, ComsoFlow and DeepCAM, as well as
ResNet-50, a well-known image classification model. We develop
and validate performance models that explore the key archi-
tectural artifacts, including memory requirements, data reuse,
and performance efficiency across both single- and multiple-GPU
computations. Our methodology also focuses on the complexity
of data-movement across storage and memory hierarchies, and
leverages our performance models to capture key components of
runtime execution while highlighting design tradeoffs. Although
our work focuses on image-processing methods on GPU-based
HPC systems, our approach is applicable to a variety of ML
algorithmic domains and emerging AI accelerators. Overall, our
insights will help computer architects and data scientists under-
stand performance bottlenecks and optimization opportunities to
improve SciML design and system efficiency.

I. INTRODUCTION

Scientific computing has long been a driver for the acquisi-
tion of supercomputers, a $13.7B industry and growing [1].
The #2 (Summit), #3 (Sierra), and #5 (Perlmutter) U.S.
Department of Energy (DOE) pre-exascale systems in the
June 2021 Top500 List [2] were chosen through competitive
procurement that includes rigorous performance benchmarking
across a curated list of scientific applications representative
of the scientific high-performance computing (HPC) work-
load [3] [4]. Performance benchmarking is crucial to evaluate
and compare systems, and quantify platform characteristics
needed to efficiently execute the workload [5].

Scientific machine learning (SciML) is expected to trans-
form science and energy research and will be a driver for
the DOE’s future investments in HPC platforms [6]. To make
informed procurement decisions on hardware that efficiently
executes SciML workloads, similar benchmarking efforts are
required. Although machine learning involves two phases,
training to construct an accurate model and inference to
use these models for prediction, we will focus on the more
computationally expensive training phase relevant to HPC.

1Authors made equal contributions

Training performance of a machine learning model involves
carefully balancing the trade-offs of statistical efficiency (num-
ber of epochs to solution to reach a target accuracy) with
hardware efficiency (the time to execute a given epoch), where
an epoch is a full pass over the training data. The statistical and
hardware efficiency can change significantly with modifica-
tions to input data, batch size, optimizer, hyperparameters, etc.
as well as choice of framework (e.g., TensorFlow or PyTorch),
making the benchmark itself a moving target. Despite the
industry-wide trend toward hardware specialization to improve
ML performance, benchmarking activities typically focus on
statistical efficiency with time to train as the figure of merit.
Although training throughput will be the ultimate metric for a
model’s performance, we cannot ignore the need to quantify
HPC hardware efficiency. Comprehensive ML benchmarking
requires a balanced view of both statistically- and hardware-
efficient execution of the SciML workload.

In this paper, we outline an approach to benchmarking the
hardware efficiency of Deep Learning (DL) models in HPC en-
vironments to gain performance insights that can be translated
to different architectures and systems. We demonstrate this ap-
proach for two SciML HPC applications, CosmoFlow [7] and
DeepCAM [8] from the MLPerfTM HPC benchmark [9], and
a well-established image classification model, ResNet-50 [10]
from the MLPerf Training benchmark [11]. We highlight how
all three models stress or benefit from architectural features
differently, despite all coming from an “image classification”
foundation. Based on our results, we discuss insights on future
system architectures, framework optimizations, and balancing
model complexity and system characteristics. We find that:

• SciML input and activation sizes limit batching and will
ultimately mandate exploitation of model parallelism.

• AI-optimized GPUs running SciML demand more PCIe,
NVMe, and Lustre bandwidth than currently provided.

• Local NVMe used to feed SciML training workloads does
not provide clear performance benefits at scale and should
be evaluated against centralized fabric-attached storage or
strong-scaling with static partitioning of training data.

• CosmoFlow moves nearly an order of magnitude more
HBM data on GPUs than is necessary and sustains less
than 30% of peak bandwidth.

• Data scientists should structure models to exploit unused
resources to reduce time per epoch.

II. RELATED WORK

Machine learning benchmarks and implementations are pro-
liferating [12], [13]. Many modern ML benchmarks provide
a vast array of model types (e.g., image classification, object
detection, translation, reinforcement learning and recommen-
dation), frameworks (e.g. PyTorch, TensorFlow, Caffe), distri-
bution schemes, support mixed precision, synthetic and real
data, and training and inference, such as HPE DLBS [14],
DawnBench [15], MLPerf Training and Inference [11], and
HPL-AI [16]. Despite the number of features to test each
benchmark run, using only time (time-to-desired-accuracy) or
throughput (number of samples/s) as the metric of performance
makes it impossible to articulate whether performance is
driven by the model, data or hardware.

Recently, machine learning studies have augmented bench-
marking methodologies to distinguish hardware efficiency
from statistical efficiency. DeepBench [17] measures the per-
formance of hardware systems on basic ML operations: matrix
multiplications, convolutions, recurrent layers and all-reduce.
Fathom [18] breaks the execution time down by operation
type across eight common models to identify performance
similarities across models and scaling trends for each operation
type by threads. ParaDNN [19], a parameterized benchmark
suite for deep learning, provides analysis of both synthetic
models and real world models to study CPU, GPU and TPU
performance. They employed roofline models, heat maps of
FLOPs sensitivity to hyperparameters, and a wide array of
single-node analyses focusing on future TPU improvements.

Given the complexity of profiling ML workloads, tools out-
side of vendor tools like Google’s Tensorboard and NVIDIA’s
Nsight are being developed. XSP [20] uses tracing to auto-
matically create 15 different analyses (model and layer level
profiles, roofline, latency, GPU occupancy, etc.) and demon-
strates the utility for 65 ML models and 4 GPU generations.
Studies are limited to a single node, but this is a step in the
right direction. Deep500 [21] is a meta-framework to ensure
benchmark analysis is consistent, reproducible, and applicable
to distributed memory environments.

As HPC and ML are becoming more entwined, the need to
study performance beyond a single node is imperative. Appli-
cation behavior changes across scales and, in particular, when
considering the entire HPC ecosystem, including network and
I/O. Performance benchmarking for machine learning using
HPC best practices and a scientific ML workload is still
a developing area. HPC AI500 [22] provides an extensive
methodology for ML performance benchmarking, including
benchmarking rules and ranking for HPC AI systems. They
outline the 9-layers of an HPC AI system that contribute to
the system performance (e.g. hardware, OS, communication,
libraries, framework, programming model, etc.) and test one
layer while keeping the others constant. They demonstrate
their approach on a climate dataset using the RCNN model
and on ResNet-50 with ImageNet. MLPerfHPC [9] is the
first benchmark providing reference implementations of full
scientific machine learning models. MLPerfHPC includes data

TABLE I
DEEP LEARNING BENCHMARK CHARACTERISTICS

Attribute CosmoFlow DeepCAM ResNet-50
Domain Cosmology Climate General
Benchmark Parameter Semantic Image

Prediction Segmentation Classification
Data Source N-body simulation Climate simulation 2012 ImageNet
Dataset size 5.1 TB 8.8 TB 150 GB
Input shape 128x128x128 768x1152 469x387 (avg)

4 channels 16 channels 3 channels
Target shape 4 floats 768x1152 ints 1 int
tr samples 262,144 121,266 ∼1.3 M
tr files 262,144 121,266 1024
file format HDF5 to TFRecord HDF5 JPEG to TFRecord
file size 17 MB 61 MB 45 MB

staging times to account for I/O and network impacts since
SciML workloads include larger data sets than other ML
benchmarks. As more use cases of scientific machine learning
develop, so also will the number of benchmarks proliferate.
Similar to the standard ML landscape, the SciML landscape
will have much diversity and we need to be ready to charac-
terize these applications on HPC systems.

By contrast, in this paper, we take a first principals approach
to understand the ultimate performance potential of a model
and analyze end-to-end execution on a target system. Doing so
allows us to understand both GPU efficiency and the potential
for novel architectures.

III. EXPERIMENTAL SETUP

We examine two SciML deep learning benchmarks: Cos-
moFlow [7] and DeepCAM [8] in the MLPerf HPC training
benchmark suite [9] and the well-established image classi-
fication model ResNet-50 [10] from the MLPerf benchmark
suite [11]. We evaluate these benchmarks running on 1 to 64
NVIDIA V100 GPUs and observe model utilization of the
target architecture as well as the impact of system features on
model training performance. In this section, we describe the
benchmarks, target systems, and relevant environment details.

A. Deep Learning Benchmarks

Table I presents key attributes of our benchmarks. Cos-
moFlow, based on the 2018 work of Mathuriya et al. [7],
uses the distribution and structure of dark matter to predict
four cosmological parameters to describe the evolution of the
universe. The CosmoFlow model uses a 3D convolutional
neural network with five convolutional layers and three fully-
connected layers. The MLPerf reference implementation [23]
was adapted from the original work. It is written in TensorFlow
with the Keras API and uses Horovod for distributed training.

The CosmoFlow dataset was generated through N-body cos-
mology simulations by the ECP ExaLearn team [24], binned
into 3D volumetric histograms of size 5123 with four red-
shift channels and stored as HDF5 files. The data was further
processed into smaller samples of size 1283, resulting in a
dataset with 262,144 samples for training and 65,536 samples

for testing. The data is stored as uncompressed TFRecord
files [25], a recommended and optimized data format for Ten-
sorFlow. As the dataset grows, as seen in MLPerf HPC v1.0
preliminary dataset [23], gzip compression is used to reduce
total storage size, although not used in these experiments.

The DeepCAM climate benchmark, based on the 2018 work
of Kurth et al. [8] and awarded the ACM Gordon Bell Prize,
uses deep learning to identify two extreme weather phenomena
- atmospheric rivers and tropical cyclones - from background
images. This automates a process that previously required
climate scientists to use heuristic algorithms or hand-labeled
pixel masks corresponding to these climate events. The Deep-
CAM model implements Google’s optimized Deeplabv3+ [26]
encoder-decoder architecture with the Xception feature extrac-
tor (encoder) for semantic segmentation. DeepCAM partitions
the image into segments or pixel masks, analyzes and predicts
pixel segmentation masks corresponding to three classes:
atmospheric river, tropical cyclone, or background. The new
DeepCAM implementation uses PyTorch [27] and PyTorch’s
native distributed library for data-parallel training, whereas
the original Kurth et al. implementation used TensorFlow.
Yang et al. [28] provide comparisons between the DeepCAM
TensorFlow version and PyTorch versions. They demonstrate
how the framework impacts component hardware utilization,
but still result in similar convergence properties.

The DeepCAM dataset was created from the Community
Atmosphere Model (CAM5) [29] climate simulation, which
provides 16 feature channels or climate variables (water
vapor, wind, precipitation, temperature, pressure, etc.) on a
1152×768 spatial grid, with a temporal resolution of 3 hours.
Over 100 years of simulation data is stored in HDF5 files,
used for training, testing and validation.

The ResNet-50 v1.5 residual network image classification
benchmark by He et al. [10] is widely used for image
classification and as a feature extractor for computer-vision
workloads. The ResNet model was the first to demonstrate
training extremely deep neural networks (150+ layers) and
overcoming the vanishing gradient problem. The ResNet-50
v1.5 model is a 50-layer deep convolutional neural network.
ResNet-50 has been implemented in both TensorFlow and
PyTorch with numerous implementations and optimizations
that prevent direct comparisons of system performance.

The ResNet-50 dataset comes from the ILSVRC 2012
ImageNet classification challenge, consisting of 1.28 million
training images and 50,000 validation images [30]. Images are
provided in JPEG format with an average size of 469×387
RGB pixels. Images are bundled into TFRecord format for
easier handling and reading using TensorFlow.

B. Target System

All experiments in this paper use NVIDIA’s V100 (Volta)
GPU [31], however the methodology and analysis will apply
to any other GPU. The V100 provides up to: 15.7 TFLOP/s
of FP32 performance, 31 TFLOP/s of FP16 performance
when using the half2 data type, and 125 TFLOP/s of FP16
performance when using NVIDIA’s Tensor cores. This is

coupled with over 900GB/s of bandwidth to 16GB of HBM
memory and 16GB/s of host-to-device PCIe bandwidth. This
produces machine balances (thresholds to be compute-bound)
of approximately 138 FP16 FLOPs per HBM Byte, and over
7,812 FP16 FLOPs per PCIe byte.

In this paper we make use of NERSC’s “Cori GPU”
partition [32]. The Cori GPU partition is a small test bed
of 18 nodes each of which contains two 20-core Xeon 6148
(Skylake) CPUs, each of which is connected to four V100
GPUs via a pair of PCIe switches. Thus, each GPU is provided
up to 8GB/s of device-to-host PCIe bandwidth. All GPUs
on a node are interconnected via NVLINK while each node
has four dual-ported EDR InfiniBand NICs. Each Cori GPU
node is equipped with an Intel SSD DC P4500 [33] 1 TB
on-node NVMe storage device. Approximately 930 GB is
available to user programs. The NVMe is expected to achieve
a maximum 3.2 GB/s sequential read bandwidth and 279,500
IOPS random read. Cori mounts a 30.5 PB high performance
Lustre file system for temporary storage of large files with a
peak aggregate bandwidth of 700 GB/s. However, on a single
node, the bandwidth and IOPS using NVMe surpasses Lustre,
which was designed for aggregate performance.

C. Environment

In our experiments, we use the reference implementations
and only vary the batch size for each benchmark. Batch size
is frequently tuned in ML workloads because it is known
to provide speedups. However, it does not provide a large
speedup for all workloads and requires practitioners to care-
fully balance the benefit over the memory costs. On Cori GPU,
the environment we used includes:

• TensorFlow v2.5.0, compiled with CUDA 11.2.2 and
cuDNN 8.1.0 backend. We use Horovod 0.22.1 and
NCCL 2.8.4 for fast all-reduces. Our experiments use
−−amp for automatic mixed precision.

• PyTorch v1.8.0, compiled with CUDA 11.1.1 and cuDNN
8.0.5 backend.

IV. MEMORY REQUIREMENTS OF DL MODELS

Although storage capacity might seem abundant on today’s
DDR- and NVMe-augmented CPUs, machine learning models
and training can require enormous amounts of storage capacity.
Training data can be quite large (approaching 10TB) in the
case of DeepCAM, however, such data is read once per
epoch and can either be stored in the file system (bandwidth
permitting) or be partitioned among all nodes involved in
training. Conversely, the memory required for processing a
batch of samples is required by every GPU on every node.
To quantify the requirements, as part of our methodology, we
estimate the requisite HBM capacity for each GPU for both
the forward and backward passes in training and categorize
it into model parameters, buffers for input samples within a
batch, and activations.

To estimate memory requirements, we examine each layer
of the neural network and count the connections between one
layer to the next for estimating the total model parameters as

0.25%
0.50%
1.00%
2.00%
4.00%
8.00%

16.00%
32.00%
64.00%
128.00%
256.00%
512.00%
1024.00%
2048.00%
4096.00%
8192.00%

16384.00%

1% 2% 4% 8% 16% 32% 64% 128% 256%

M
em

or
y'
U
sa
ge
'(M

iB
s)
'

Batch'Size'

Model%
Input%
Ac8va8on%
Measured%

HBM%

L2%

0.25%
0.50%
1.00%
2.00%
4.00%
8.00%

16.00%
32.00%
64.00%
128.00%
256.00%
512.00%

1024.00%
2048.00%
4096.00%
8192.00%

16384.00%

1% 2% 4% 8% 16% 32% 64% 128% 256%

M
em

or
y'
U
sa
ge
'(M

iB
s)
'

Batch'Size'

Model%
Input%
Ac8va8on%
Measured%

HBM%

L2%

0.25%
0.50%
1.00%
2.00%
4.00%
8.00%

16.00%
32.00%
64.00%
128.00%
256.00%
512.00%
1024.00%
2048.00%
4096.00%
8192.00%

16384.00%

1% 2% 4% 8% 16% 32% 64% 128% 256%

M
em

or
y'
U
sa
ge
'(M

iB
s)
'

Batch'Size'

Model%
Input%
Ac8va8on%
Measured%

HBM%

L2%

Fig. 1. Space complexity as a function of batch size for CosmoFlow (left), DeepCAM (middle), and ResNet-50 (right). CosmoFlow and DeepCAM run out
of memory at lower batch sizes than ResNet-50 due to the high memory requirement for the activation. ResNet-50 activation memory requirements scale with
batch size and surpass the fixed model size. Note, the DeepCAM benchmark is hard-coded to use batch sizes of at least 2.

well as the temporary buffer size for the activation. Since the
training input buffer and model parameters persist throughout
each training iteration, we only count the activations that
cannot be immediately released. Data type is another important
factor when calculating the total memory requirement. ML
frameworks allocate key variables in the form of tensors,
a multi-dimensional array representation with the slowest
varying dimension encoding batch size and other data such
as input and output of a layer. We use the AMP (automatic
mixed precision) library, which allows users to allocate data in
half-precision tensors. Although AMP can affect conversions
of any remaining single-precision variables, we observe that
this is rare in the studied applications. As such, we assume
that all floating-point variables are 16-bit tensors. To validate
our modeling efforts, we compare these estimates against the
empirical upper bounds reported by TensorBoard.

Figure 1 plots the space complexity for these three compo-
nents (model, input, activation) as well as the peak memory
reported by TensorBoard as a function of batch size. Hori-
zontal dashed lines denote V100 L2 (red dashed) and HBM
(green dashed) capacity and can be used to infer performance
relative to the ultimate limits by batch size. As expected,
model requirements are independent of batch size while input
buffers and activations scale linearly with batch size. For
DeepCAM, batch size must be at least 2 due to the use of
batch normalization in the model architecture.

We observe that CosmoFlow and DeepCAM space complex-
ity is dominated by activations for all batch sizes. Moreover,
their activation layers are so large (1 to 3GB/sample) that
they can severely limit batch size. By comparison, ResNet-
50 requires relatively little memory for activations per sample
and can thus scale to large batch sizes. In CosmoFlow and
DeepCAM, the activation memory is dominated by the first
few layers that contain a large number of output filters.

Although model memory requirements are low for all three
models, none of the models can entirely fit in the V100 L2.
Nevertheless, parameters for individual layers can easily fit in
the L2. As ResNet-50 is a deep model with many convolutional
kernels, it has a rather large model relative to its input.

Across all three models, we see good agreement between
our estimates and TensorBoard’s measured peak memory us-
age. For ResNet-50, it is clear that for a batch size of 1, model

and activation contribute roughly equally to total memory
requirements. However, as batch size increases, TensorBoard
peak memory is highly correlated with activation size.

As SciML models continue to grow in input size and model
depth, they will either require GPUs with exponentially more
memory capacity, or implementations must exploit model
parallelism to reduce the per-GPU activation memory require-
ments. Although reducing precision (e.g. 16-bit) has been
effective in the past, it is not clear how much further potential
it holds. Hence, developers should prioritize increased memory
capacity and model parallelization.

V. COMPUTATIONAL CHARACTERISTICS OF DL MODELS

In this section, we extend our methodology to capture the
computational characteristics when mapping deep learning
workloads to GPU-accelerated node architectures. We partition
this effort into four parts. First, we analyze the compute and
HBM memory bandwidth requirements for training to gain
insight into data locality. Next we characterize the distribution
of run time and hardware efficiency. We then model and
analyze the data movement across the full system hierarchy
from NVMe to HBM. Finally, we profile execution on both
the CPU and GPU in order to identify bottlenecks and show
correlation with our performance models.

A. Compute, Memory Bandwidth, and Data Reuse

Memory capacity estimates are important for correctly siz-
ing models, inputs, and GPUs. Equally important is analyzing
GPU compute and memory bandwidth requirements toward
understanding deep learning training performance. To that end,
we construct a performance model that estimates the number
of FLOPs and HBM bytes of data movement required for each
layer, forward and backward for each model. Essentially, we
walk through the DL model making the assumptions that 1)
the relevant activations must be read and written on every layer
(no inter-layer caching of activations) and 2) the model may
be preserved in cache between layers. FLOPs are calculated
assuming all convolutions are implemented via GEMMs.

Figure 2 plots the number of FLOPs and HBM data move-
ment bytes per sample per epoch for multiple batch sizes for
CosmoFlow, DeepCAM, and ResNet-50 with predictions from
our model as open symbols and empirical observations from

1.00E+00&

2.00E+00&

4.00E+00&

8.00E+00&

1.60E+01&

3.20E+01&

6.40E+01&

1.28E+02&

2.56E+02&

5.12E+02&

1.02E+03&

2.05E+03&

4.10E+03&

1.25E-01& 5.00E-01& 2.00E+00& 8.00E+00& 3.20E+01& 1.28E+02&

GF
#

GB#

ResNet50&Predicted&(FLOPs,&Bytes)&per&Sample&

ResNet50&Measured&(FLOPs,&Bytes)&Per&Sample&

CosmoFlow&Predicted&(FLOPs,&Bytes)&per&Sample&

CosmoFlow&Measured&(FLOPs,&Bytes)&per&Sample&

DeepCAM&Predicted&(FLOPs,&Bytes)&per&Sample&

DeepCAM&Measured&(FLOPs,&Bytes)&per&Sample&

Te
ns
or
&C
or
e&

CU
DA
&C
or
es
&

BS=1&BS>8&

Fig. 2. We calculate the required FLOPs and Bytes for each training sample.
Our estimate is more accurate as batch size (BS) increases. As the results
show, it requires a large amount of compute and data movement per sample
per iteration. It’s worth noting that typical datasets may have O(105) samples,
and models require a number of iterations to converge.

NVIDIA’s Nsight Compute as closed symbols. Dotted lines are
included to denote GPU machine balance (FP32 FLOP:Byte
and TensorCore FLOP:Byte ratios).

Configurations falling below the red line lack arithmetic
intensity and are thus ultimately memory-bound. Configura-
tions falling between the red and green lines have sufficient
arithmetic intensity to fully utilize the FP32 CUDA cores,
but not the TensorCores. Results show that all three models
have sufficient arithmetic intensity to utilize the FP32 CUDA
cores, but lack the intensity to utilize tensor cores to their full
potential (bandwidth-bound).

Although measured results show the V100 GPU requires
roughly twice as many FLOPs and Bytes of data movement
for SciML compared to our modeled estimates, ResNet-50
requires up to 10× more data movement. This is not surprising
since our model does not account for caching effects or
automatic framework optimizations to choose alternatives to
GEMM-based convolutions.

One can also use these results to infer data reuse by compar-
ing Figure 1 and 2. Whereas Figure 1 suggests CosmoFlow,
DeepCAM, and ResNet-50 asymptotically require 0.72, 2.9,
and 0.042GiB of HBM per sample, Figure 2 shows they
actually move 6.4, 52, and 0.56GiB per sample. Ideally, each
byte of activation memory might be written once (forward
pass) and read once (backward pass). Unfortunately, the reality
is that the models read or write each byte 8.8, 18, and 13 times
respectively. This suggests there could be nearly an order of
magnitude reduction in data movement through improvements
in model implementation and cache architecture that would
obviate the need for increased HBM bandwidth.

B. Isolated GPU Hardware Efficiency

Whereas the previous sections discussed memory and local-
ity properties, they only offer potential performance. In this
section, we explore whether a GPU (even in isolation) can
attain either peak FP16, peak FP32, or peak bandwidth.

Traditional performance analysis has either enumerated key
kernels or presented average application performance. Unfor-

tunately, by themselves, neither is particularly informative —
enumerating kernels based on run time lack insights into effi-
ciency or potential speedup while Roofline-based approaches
[34] highlight efficiency but obfuscate run time. As a result,
computer scientists can be left at a loss, not only as to where
to focus their efforts, but perhaps more importantly, how much
performance improvement is possible.

Here we present a unified methodology for visualizing and
analyzing GPU efficiency and run time. For each kernel invo-
cation on the GPU, we compute the hardware utilization on
each hardware component. We define hardware efficiency as
the maximum hardware usage of [Tensor Cores, FP32 CUDA
cores, HBM memory bandwidth], since this indicates the
potential limit to further performance improvement. Figure 3
is a histogram of cumulative run time (blue) for 10 bins of
hardware efficiency. Each kernel invocation contributes its run
time to the bin corresponding to that invocation’s hardware
efficiency. Concurrently, we note the number of unique kernels
in each bin (red triangle).

We observe that the bulk of the run time in CosmoFlow
comes from kernels that exceed 40% hardware efficiency.
Conversely, the bulk of the run time in DeepCAM comes from
kernels that perform below 50% hardware efficiency, and from
kernels with more distributed efficiencies in ResNet-50.

To identify which bins (kernels) programmers should pri-
oritize, one can take the product of run time to hardware
efficiency (green bars in Figure 3). When the green bar is
significantly less (absolute value) than the blue bar, there is
potential for substantial speedup. When run time is dominated
by kernels with low hardware efficiency, there is substantial
potential. Conversely, when run time is dominated by kernels
with high hardware efficiency, there is little potential.

We summarize the potential speedup by comparing the
summed (total) blue and green columns of Figure 3. Overall,
we see the three models perform quite well on the GPU
attaining better than 40% utilization. Unfortunately, the largest
performance gains in applications like DeepCAM would re-
quire optimizing more than 100 kernels.

C. The Cost of Data Movement Across the Memory Hierarchy

As discussed, DL models have sufficiently high arithmetic
intensity to attain CUDA core peak performance, but often lack
the optimization necessary. As a thought experiment, we can
ask how fast a model could execute if all kernels were well-
optimized. To answer this question, we must contemplate data
movement across the full storage/memory/cache hierarchy.

Using the architectural parameters that define the bandwidth
limiting data movement, we estimate the cost of moving
various data sets involved in the computation. For instance,
the model and activation data typically reside within a GPU
when data parallelism is employed. The device bandwidth
defines the gap, the reciprocal of bandwidth that limits the data
movement. Updating or synchronizing the model is typically
limited by the interconnect bandwidth. During training, we
stream the data set samples in batches from local storage or
network storage, each with different constraints. For example,

0"

10"

20"

30"

40"

50"

60"

70"

80"

90"

0"

10"

20"

30"

40"

50"

60"

70"

80"

90"

100"

0,10" 10,20" 20,30" 30,40" 40,50" 50,60" 60,70" 70,80" 80,90" 90,100" Total"

U
ni
qu

e'
Ke

rn
el
s'

Ti
m
e'
Co

nt
rib

u2
on

'(%
)'

Range'of'Hardware'Efficiency'

%Time"(Baseline)"

%Time"(Ideal)"

Unique"Kernels"

0"

20"

40"

60"

80"

100"

120"

0"

10"

20"

30"

40"

50"

60"

70"

80"

90"

100"

0,10" 10,20" 20,30" 30,40" 40,50" 50,60" 60,70" 70,80" 80,90" 90,100" Total"

U
ni
qu

e'
Ke

rn
el
s'

Ti
m
e'
Co

nt
rib

u2
on

'(%
)'

Range'of'Hardware'Efficiency'

%Time"(Baseline)"

%Time"(Ideal)"

Unique"Kernels"

0"

20"

40"

60"

80"

100"

120"

140"

160"

180"

0"

10"

20"

30"

40"

50"

60"

70"

80"

90"

100"

0,10" 10,20" 20,30" 30,40" 40,50" 50,60" 60,70" 70,80" 80,90" 90,100" Total"

U
ni
qu

e'
Ke

rn
el
s'

Ti
m
e'
Co

nt
rib

u2
on

'(%
)'

Range'of'Hardware'Efficiency'

%Time"(Baseline)"

%Time"(Ideal)"

Unique"Kernels"

Fig. 3. Histogram of CosmoFlow (left), DeepCAM (middle), and ResNet-50 (right) kernel time (blue) and number of unique kernels (red) binned by hardware
efficiency. Potential run time assuming perfect optimization is also shown (green). Note, all results used the largest batch size and a given kernel can appear
in multiple bins as inputs can impact efficiency.

1 2 4 8 1 60 . 0 1 5 6 3
0 . 0 3 1 2 5
0 . 0 6 2 5
0 . 1 2 5
0 . 2 5
0 . 5

1
2
4
8

1 6
3 2
6 4

1 2 8

Da
ta

mo
ve

me
nt

co
st

pe
r s

am
ple

 (m
s)

B a t c h s i z e

 M o d e l + A c t i v a t i o n H B M (1)
 I n p u t N V M E (2 2 5 0) P C I e G e n 3 (5 6)
 A l l r e d u c e I B V (7 2)

C o s m o F l o w

2 40 . 0 1 5 6 3
0 . 0 3 1 2 5
0 . 0 6 2 5
0 . 1 2 5
0 . 2 5
0 . 5

1
2
4
8

1 6
3 2
6 4

1 2 8
Da

ta
mo

ve
me

nt
co

st
pe

r s
am

ple
 (m

s)

B a t c h s i z e

 M o d e l + A c t i v a t i o n H B M (1)
 I n p u t N V M E (2 2 5 0) P C I e G e n 3 (5 6)
 A l l r e d u c e I B V (7 2)

D e e p C A M

1 2 4 8 1 6 3 2 6 4 1 2 8 2 5 60 . 0 1 5 6 3
0 . 0 3 1 2 5
0 . 0 6 2 5
0 . 1 2 5
0 . 2 5
0 . 5

1
2
4
8

1 6
3 2
6 4

1 2 8

Da
ta

mo
ve

me
nt

co
st

pe
r s

am
ple

 (m
s)

B a t c h s i z e

 M o d e l + A c t i v a t i o n H B M (1)
 I n p u t N V M E (2 2 5 0) P C I e G e n 3 (5 6)
 A l l r e d u c e I B V (7 2)

R e s n e t 5 0

Fig. 4. Cost for data movement across the memory hierarchy (Byte × gap product) assuming the following limiting bandwidths: model and activation limited
by HBM BW, input samples are limited by a range (red) of PCIe Gen 3.0 (lower) and NVMe BW (upper), and allreduce is limited by the NIC BW.
Relative cost of byte transfer is given with each source of data, normalized to HMB(1): IBV (72), PCI Gen3 (56), NVME (2250). CosmoFlow data flow
is bound by streaming input samples, while DeepCAM is bound by streaming inputs and model+activation, and ResNet-50 is bound by allreduce and
model+activation. Our estimate is based on FP32 allreduce with mixed precision processing (FP16 and FP32).

if the number of samples per node is small, the data set may
fit in memory, thus alleviating the stress on the storage system.

The three deep learning models in this study have different
data movement costs associated with processing model data,
sample data, and activation data. To model the contribution
of moving these components on the overall execution time,
we used the gap component, g, in the LogGP model [35] to
weight the cost of moving each byte. This simple approach
is justified by the size of the data of each studied source,
involving at least multiple megabytes of data, making the
data movement bandwidth-limited at most levels of the mem-
ory hierarchy. Furthermore, we assume the communication
phase uses a simple ring-based allreduce. In practice,
the allreduce activity could be split into smaller pieces
to efficiently pipeline the communication and allow overlap
with the backpropagation computation. We consider only the
limiting level of the memory/storage hierarchy for each data
source in our calculation. For instance, moving data across the
cache hierarchy within the accelerator is assumed limited by
the bandwidth to the memory system because the data does
not fit in cache. In a distributed environment, the allreduce
is limited by the bandwidth to the NIC, because the on-
node interconnect bandwidth typically exceeds the NIC’s. The

movement of the training samples is limited by the bandwidth
to the storage system or the linking technology between the
host memory to the accelerator if samples fit in memory. Our
model shows only the limits for data residing in the NVMe
storage because they are predictable. For a shared Lustre-based
file system, modeling the performance per node depends on
the scale of the run and the behavior of the concurrently
running jobs in the system. We refer readers to studies for
Lustre performance characterization [36]. We note that while
samples may reside in the host memory transparently, the use
of NVMe requires an explicit staging of the samples, either
by the user or the model.

In general, our model provides a lower bound on the exe-
cution time and assumes that a) the system perfectly overlaps
transfers across the storage/memory hierarchy, b) the GPU
can always sustain peak HBM bandwidth (see Section V-B),
c) there is constant and negligible preprocessing time on the
CPU, and d) there is no inter-sample variability that would be
captured in a globally-synchronizing event like allreduce.
Despite these unaccounted-for performance influencing fac-
tors, the model highlights the relative importance of various
data movements and potential bottlenecks.

Figure 4 shows the estimated data movement cost per sam-

ple when executing the deep learning models as we increase
batch size. We use gap parameters for Cori GPU, presented
in Section III, to estimate the cost per byte for moving the
data. Note, the width of the red region indicates the mismatch
between the NVMe and PCIe bandwidths.

For CosmoFlow, we observe that the data movement for
a sample to the GPU memory could significantly affect the
execution time depending on where the data resides within
the memory hierarchy. If the data set fits in host memory,
the PCIe becomes the bottleneck. On the other hand, if the
processed samples do not fit in memory, the limits depend
on whether the samples fit in the NVMe storage or the
Lustre file system. The cost of streaming data from NVMe
is almost an order of magnitude higher than streaming the
model and activation data. The impact of allreduce on total
CosmoFlow execution time should be minimal, except if some
variability increases the perceived cost for communication.
The model shows that slight improvement is likely to manifest
if we locally batch samples together in processing

Resent-50, Figure 4(right), shows quite the opposite
relative importance of components, where the cost for
allreduce and model+activation data movement exceed
the cost of moving samples. As we increase the local batch
size, the allreduce cost yields its dominance to the
model+activation cost. Moreover, the data movement activity
is generally insignificant except at large local batch size.

DeepCAM, sits in between CosmoFlow and ResNet-50,
in terms of the relation between data movement activities.
For samples fitting in memory, the model+activation activities
dominate data movement cost. If samples need to be streamed
from storage, they likely become a significant contributor
to the data movement cost. Memory requirements preclude
exploration of batch sizes greater than four.

D. Node-Level Bottlenecks for DL Workloads

We profile single-node execution limiting training set and
epochs separating execution time into two classes: one for
the GPU activities and the other for the CPU side (including
NVMe/Lustre/PCIe). When CPU time dominates, strategies to
improve performance include reducing the GPU:CPU compu-
tational ratio, increasing NVMe/Lustre bandwidth, or offload-
ing preprocessing to the GPUs.

Figure 5 shows CosmoFlow’s execution time does not
improve significantly with increased batch size, except from a
batch size of one to two, where the execution time improves
by roughly 29%. This improvement is likely due to better
preprocessing of the samples with threaded execution. The
figure shows execution time using a large number of sam-
ples, 16K per node, exceeding what can be cached by the
memory system. The utilization of the GPU is degraded by
the inability to feed the sample data to the GPU efficiently.
Note that the GPU execution, including both computation and
communication, is only 10% of the total time. We attribute
such low utilization of the GPU system to multiple reasons. In
addition to the significant sample movement overhead across
the memory/storage hierarchy (Figure 4), the preprocessing of

1 2 4 80

2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 4 0

1 6 0

Tim
e p

er
sa

mp
le

(m
s)

B a t c h s i z e

 C P U P r o c e s s i n g
 A l l r e d u c e (G P U - N C C L)
 C o m p u t a t i o n (G P U)

u n s t a g e d d a t a s e t

1 2 4 80

2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 4 0

1 6 0

Tim
e p

er
sa

mp
le

(m
s)

B a t c h s i z e

 C P U P r o c e s s i n g
 A l l r e d u c e (G P U - N C C L)
 C o m p u t a t i o n (G P U)

s t a g e d d a t a s e t

Fig. 5. CosmoFlow: Execution time decomposition per sample (per GPU) for
unstaged data - Lustre (left) and staged data - NVMe (right). GPU activities are
a small percentage of the total execution time due to overhead of preprocessing
the sample data and the cost of feeding data to the GPU memory.

CosmoFlow data involve casting the data from integer to float
and applying a log operator to all data points. These operations
are time-consuming and are unfortunately not offloaded to the
accelerator thus exacerbating the gap.

CosmoFlow Figure 5(right) shows the performance with
staging the data to the on-node NVMe. Staging improves
the performance by up to 2.16×, clearly illustrating the
dependency of CosmoFlow on the efficiency of feeding data
to the GPU. It, unfortunately, limits the ability to shuffle
accessing samples between iterations. The performance model,
illustrated in Section V-C, suggests that tackling the samples
data movement issue would require either better machine
balance for feeding data to the GPU, or moving the sample
data compressed to the accelerator and having a decompressor
optimized for the accelerator technology.

Figure 6 shows the execution time decomposition of
ResNet-50 as we increase the local batch size. Increasing
the sample batch size by 256× improves the processing per
sample by roughly 50×. We notice that the allreduce
time dominates the GPU processing at the low batch count as
predicted by the model presented in Section V-C. The model
computation starts dominating the execution on the GPU time
at a large batch count. The CPU preprocessing of samples,
which is not captured by our model, significantly contributes to
the processing at low batch count. An optimized preprocessing
on the CPU, for instance, using NVIDIA DALI [37] should
prove essential for execution at low batch count. We also
notice the diminishing return from batching - decreasing from
an initial 2× benefit to only 20% between 128 and 256.

Figure 7, shows the dominance of the GPU compute time
and a reasonably high utilization of the GPU for DeepCAM.
As discussed in Section V-C, the model and activation data
movement cost are dominant, especially when the sample data
set fits in memory. Computationally, the arithmetic intensity
associated with the model and activation is more significant
than other sources of data movement.

When the dataset does not fit in memory, Figure 7(right),

1 2 4 8 1 6 3 2 6 4 1 2 8 2 5 6
0

1 0

2 0

3 0

4 0

5 0

Tim
e p

er
sa

mp
le

(m
s)

B a t c h s i z e

 C P U P r o c e s s i n g
 A l l r e d u c e (G P U - N C C L)
 C o m p u t a t i o n (G P U)

1 6 3 2 6 4 1 2 8 2 5 60 . 0

0 . 5

1 . 0

1 . 5

2 . 0

2 . 5

3 . 0

3 . 5

4 . 0

Fig. 6. ResNet-50: Execution time decomposition per sample (per GPU) as
a function of local batch size. Increases in local batch size decreases the
contribution of the allreduce to total GPU processing time. For small
batch sizes, the overhead of CPU processing is significant. Overall, batching
helps improve the execution time per sample as model time dominates.

we notice an increase in execution time by up to 20% for
batch size two. For a batch size of four, the performance is
not significantly affected by the size of the sample data set
or from where it is streamed. We also notice that doubling
the batch size improves the performance by up to 1.6×,
when streaming data from Lustre. The GPU processing for
DeepCAM is intensive enough to hide the incurred latency of
moving the data for GPU memory. When the data does not fit
in memory, we notice some increase in the allreduce time
because it captures variability in the I/O operations.

E. Architectural Balance and DL Workloads

The three deep learning models presented in this study
stress the system architectural features distinctively, although
they belong to the image processing (interpretation) class of
ML applications. For instance, although batching is widely
known to improve the efficiency of deep learning processing,
the amount of improvement depends on the architectural
resources that the model stresses. For CosmoFlow, which
stresses the data streaming of input samples, the improvement
with batching is minimal because the speed of feeding data to
the accelerator is a bottleneck. In contrast, DeepCAM stresses
the computational requirement as we increase batching, thus
yielding a consistent improvement. The challenge, though, is
that the memory requirement limits the batch size. Finally, for
ResNet-50, communication is a major bottleneck unless a very
large batch size is used.

Understanding these characteristics is essential to both
system architects and application/framework developers. For
example, for systems dominated with CosmoFlow-like work-
loads, limiting the accelerators per attached storage bandwidth

2 40

4 0

8 0

1 2 0

1 6 0

2 0 0

2 4 0

2 8 0

3 2 0
S m a l l d a t a s e t

u n s t a g e d

Tim
e p

er
sa

mp
le

(m
s)

 C P U P r o c e s s i n g
 A l l r e d u c e (G P U - N C C L)
 C o m p u t a t i o n (G P U)

S m a l l d a t a s e t
s t a g e d

2 4B a t c h s i z e

L a r g e d a t a s e t
u n s t a g e d

L a r g e d a t a s e t
s t a g e d

2 4 2 4

Fig. 7. DeepCAM: Execution time decomposition per sample (per GPU).
GPU processing dominate the execution time. Staging to NVMe improves the
processing efficiency over reading from Lustre, especially when the samples
storage exceeds what can fit into cache by the memory system.

would make efficient use of resources. Meanwhile, increasing
the accelerator memory for DeepCAM would allow amortizing
the latency to the slow storage system.

Developers should explore architecting the model or the
training sample size to balance resources utilization. For in-
stance, reducing the sample size processed by the CosmoFlow
model is likely to improve computational performance signifi-
cantly. Alternatively, accelerator-optimized compression of the
data could result in significant execution speedup.

VI. SCALABILITY OF DL MODELS

We study scaling characteristics of CosmoFlow and Deep-
CAM on Cori GPU to probe system architectural bottlenecks
and opportunities. Previous CosmoFlow and DeepCAM stud-
ies focused on “weak” scaling behavior, keeping the overall
number of training samples and local batch size fixed, and
scaled out the global batch size (local batch size × number
of ranks). CosmoFlow has shown good scaling behavior up to
8,192 KNL nodes on Cori, with efficiency at 77% when using
the burst buffer [7]. Kurth et al. [8] showed DeepCAM has
good scaling behavior up to 27,360 GPUs on Summit [38] and
sensitivity to input data location (NVMe versus Lustre), choice
of encode-decoder architecture and floating-point precision.
Since the original works, both CosmoFlow and DeepCAM
have been run at a variety of scales in the v0.7 MLPerfHPC
benchmark [9] runs. ResNet-50 has been studied extensively
with some notable recent scaling results from [21] and [39].
Results show optimal single-GPU throughput at a local batch
size of 256 on V100 GPUs [20] and strong scaling depends
on the choice of communication schemes [21].

We extend the previous data parallel “weak” scaling experi-
ments on Cori GPU for CosmoFlow and DeepCAM, however,
since the problem size is kept constant, we refer to this
approach as strong scaling from an HPC perspective. The
total data set is fixed and the number of samples processed
per node is reduced with the growing number of nodes. Other
ML studies [8] note that this form of scaling requires either
fixing the global batch size or searching for new optimal hyper-
parameters to optimize statistical efficiency while increasing

Fig. 8. CosmoFlow strong scaling showing time per sample per epoch for
local batch sizes 1, 4, and 16. Samples are staged to NVMe (blue) or read from
Lustre (red). The dashed lines (top) represent the perfect parallel scaling from
reading for Lustre and from NVMe. Observe the strong, superlinear scaling
for the Lustre tend lines at four nodes due to caching samples in DDR4.

batch size. Our experiments focus only on hardware efficiency,
thus we keep the hyperparameters constant. On Cori GPU, we
strong scale the training from a single node (8 GPUs) to 8
nodes (64 GPUs), and statically partition the total training
data among nodes. As an artifact of Cori GPU’s small size
(18 nodes total), we downsize the total number of training
samples to fit into the 1TB NVMe on a single node to compare
the scaling behavior when staging input data to NVMe versus
reading it from the Lustre file system. At 4 nodes, the number
of training samples per node can fit into the 384 GB DDR4
memory. Due to the small size of the ImageNet data set (150
GB), ResNet-50/ImageNet does not benefit from the use of
NVMe since the samples can fit into DDR4 memory.

Figure 8 shows CosmoFlow strong scaling using 49,152
samples. On one node, time to train per sample per GPU is
roughly 2× greater when reading from Lustre than staging to
NVMe. However, at four nodes, the performance difference
is roughly 15% since the caching effect of fitting the samples
into DDR4 reduces the benefit of staging in NVMe. With little
performance difference as a function of batch size, one should
choose the batch size that minimizes the number of epochs.

Interestingly, the same performance difference is not seen
in Figure 9’s DeepCAM results. There is roughly a 15%
performance difference for a single node between staging to
NVMe and reading from Lustre. The performance difference
is negligible at four nodes. This difference in behavior between
CosmoFlow and DeepCAM, is primarily due to the total
number of respective samples. CosmoFlow has nearly five
times the number of samples compared to DeepCAM that can
fit into NVMe due to the smaller file size. The higher number
of samples in CosmoFlow exercise the benefits of high IOPS in
NVMe over Lustre resulting in the more dramatic performance
difference. Practitioners should consider both the size of files
and number of files to optimize SciML model performance.

A. Compression Commentary

The dataset of CosmoFlow and ResNet-50 use integer-
based representations, while DeepCAM CMIP-5 dataset uses a

Fig. 9. DeepCAM strong scaling showing time per sample per epoch for
local batch size 2. Samples are staged to NVMe (blue) or read from Lustre
(red). Observe the DDR caching benefit for Lustre beyond four nodes.

floating-point-based representation. As a result, both ResNet-
50 and CosmoFlow could leverage compression techniques
to reduce the size of the dataset, allowing for staging into
node dedicated volatile memory and reducing the pressure on
I/O. The downside of such compression optimization is that
it could increase the preprocessing overhead if the decom-
pression algorithm is not particularly optimized for the target
GPU architecture. Moreover, the decompression time varies
depending on the content image. Such variability introduces
processing imbalance that is typically captured by synchro-
nization events, particularly the allreduce operation used
to estimate the model’s gradient.

VII. DISCUSSION AND CONCLUSIONS

Superficially, deep learning applications, including SciML,
seem like the quintessential target for GPUs and specialized
hardware. In this paper, we constructed a characterization
methodology that allows the analysis of the computational
characteristics of deep learning training models and assess-
ment of potential bottlenecks on GPU-accelerated supercom-
puters. To that end, we select three deep learning models
as exemplars: CosmoFlow, DeepCAM, and ResNet-50. The
first two are SciML benchmarks, while the third is a well-
studied image classification benchmark. Table II highlights the
relevant application and computational characteristics.

We find that SciML presents a number of challenges for
GPU-accelerated systems. First, the curse of dimensionality
(e.g. 3D data) coupled with batch size can result in the first few
layers of a SciML model exhausting a single GPU’s memory
capacity. A doubling of input image size in CosmoFlow or
DeepCAM would result in a 8× or 4× increase in memory
capacity requirements. Although one could wait a couple of
years for HBM memory capacity to double, it is more real-
istic to decrease batch size. Unfortunately, CosmoFlow’s and
DeepCAM’s maximum batch size is already small and further
reductions might not be possible. Rather, scientists should
pursue exploitation of automatic model parallelism to affect
intra- and inter-layer parallelization. Inter-layer parallelization
is relatively straightforward, but will likely see limited impact
on such models as the first couple of layers dominate the

TABLE II
MODEL COMPUTATIONAL CHARACTERISTICS ON V100. 1COMPARE TO

SYSTEM FLOP:(LUSTRE, NVME, AND PCIE)BYTE BALANCE.

CosmoFlow DeepCAM ResNet-50
Training set size 5.1 TiB 8.8 TiB 0.150 TiB

sample size 16 MiB 27 MiB 0.14 MiB
FLOPs/sample (measured) 247 GiF 2887 GiF 31 GiF

HBM/sample (limit) 1.44 GiB 5.8 GiB 0.084 GiB
HBM/sample (measured) 6.4 GiB 52 GiB 0.68 GiB

FLOP:sample Byte1 15,400 107,000 221,000
FLOP:HBM Byte (limit) 171 498 369

FLOP:HBM Byte (measured) 38.6 55.5 55.35
sustained HBM bandwidth 127 GB/s 270 GB/s 145 GB/s

memory capacity requirements (easy 2×). Conversely, intra-
layer parallelization will be far more difficult, but ultimately
more scalable (3D parallelization of 3D convolutions is a well-
understood and well-studied problem in the HPC community).
However, as one exploits ever more model parallelism, de-
pending on topology, the computation may become bottle-
necked on PCIe (or NVLINK) bandwidth.

Second, with approximately 1TB of NVMe and 372GB
of DDR on our test machine, it is clear that only ResNet-
50 can stage its entire training set on a single node. Failing
that, CosmoFlow and DeepCAM must either continually read
samples from the distributed file system on each epoch, or stat-
ically partition the training set among roughly a dozen nodes.
In either case, the model’s astronomically high FLOP:sample
byte arithmetic intensity and paltry machine’s FLOP:Lustre
(or FLOP:NVMe) balance become relevant. For an 1PF node
peak, CosmoFlow and DeepCAM will demand a bandwidth
of 65GB/s and 9GB/s respectively for input samples to have
any hope of attaining peak performance. Although the latter
is likely attainable over either Lustre or NVMe, the former
is only possible if the node’s partition of the training set fits
in DDR (high concurrency) and the CPUs are afforded with
sufficient PCIe bandwidth. Today, on-node NVMe capacities
are roughly an order of magnitude too small for CosmoFlow
and DeepCAM while only the highest performing CPU-GPU
interconnects are sufficient.

Practitioners wishing to preserve centralized training sets
gain statistical efficiency and simplified capacity, bandwidth,
and QoS apportionment, but must ensure network bandwidth
is commensurate with GPU performance. Conversely, those
that embrace distributed training sets free themselves of net-
work bottlenecks, but must balance the cost of increased
DDR/NVMe capacity against node concurrency, acknowledg-
ing that some SciML problems will not run at low concurrency.
In the former, the first tier (NVMe) of the three-tier hierarchy
is amalgamated in a fabric-attached form, while in the latter,
it is eliminated altogether.

Third, an idealized AI accelerator could read an input
and propagate it forward and backwards thru both model
and activations holding both on-chip. Whereas a model like
ResNet-50 might only need about 50MB of SRAM to achieve

this, models like CosmoFlow and DeepCAM would require an
unrealistic 1 to 3GB of on-chip SRAM. Even if such capacities
are not possible, one might hope an architecture could simply
write out activations once in the forward pass and read them
once in the backward pass. With V100’s roughly 900GB/s
of HBM bandwidth, such an architecture might support 154-
448 TFLOP/s of FP16 performance. In reality, CosmoFlow
on the V100 moves between 4 and 9× more data to and
from HBM. As a result, the V100’s bandwidth only supports
35-50 TFLOP/s of FP16 performance — far less than its
125 TFLOP/s peak. The aforementioned numbers assume
perfect overlap of (HBM) communication and computation
throughout the forward and backward pass. In practice, layers
are executed in a bulk synchronous manner with some layers
simply lacking the parallelism to fully utilize a V100 GPU. As
such, instead of sustaining 900GB/s of HBM bandwidth, we
observe the V100 only sustains 127-270GB/s. As the trends
in technology incentivize increasing FLOP/s over increasing
bandwidth, one should expect such discrepancies to persist.
As such, it will likely fall upon computer scientists to develop
superior implementations and/or frameworks that ensure actual
data movement is comparable to the theoretical lower bounds.

Fourth, whereas this paper was geared towards computer
scientists, computer architects, and procurement officers, we
believe this methodology would be of use to data scientists
developing machine learning models. Rather than viewing the
discussed bottlenecks as impediments, data scientists should
view them as opportunities. For example, when HBM arith-
metic intensity is low, data scientists can generally increase
the size of convolutional kernels without substantial penalty.
When data scientists find their models are bound by Lustre,
NVMe, or PCIe bandwidth, they can increase model depth
and complexity (not the sample size) without penalty. Such
changes may seem a gratuitous use of “free” FLOPs, but in
reality, they afford the designer with optimization avenues that
may decrease the number of epochs required to train and/or
increase ultimate model accuracy.

Ultimately, although the insights gained here were derived
from analysis of execution on V100 GPUs, we believe they
will apply to not only CPUs or GPUs, but also to any
specialized AI accelerators. As all three of our models were
basically image processing, one should not conclude the obser-
vations and bottlenecks will manifest on other SciML domains.
Nevertheless, we believe our modeling methodology will apply
and future work will focus on broadening our analysis.

ACKNOWLEDGEMENTS

This material is based upon work supported by the Ad-
vanced Scientific Computing Research Program in the U.S.
Department of Energy, Office of Science, under Award Num-
ber DE-AC02-05CH11231 and used resources of the National
Energy Research Scientific Computing Center (NERSC) which
is supported by the Office of Science of the U.S. Department
of Energy under Contract No. DE-AC02-05CH11231.

REFERENCES

[1] “Hyperion Research.” https://hyperionresearch.com/, 2021.
[2] “Top 500.” https://top500.org/, 2021.
[3] “What is CORAL?.” https://asc.llnl.gov/coral-benchmarks, 2021.
[4] “Benchmarking & workload characterization.”

https://www.nersc.gov/research-and-development/
benchmarking-and-workload-characterization/, 2021.

[5] M. Cordery, B. Austin, H. J. Wassermann, C. Daley, N. J. Wright,
S. Hammond, and D. Doerfler, “Analysis of Cray XC30 performance
using Trinity-NERSC-8 benchmarks and comparison with Cray XE6
and IBM BG/Q,” in PMBS@SC, 2013.

[6] N. Baker, F. Alexander, T. Bremer, A. Hagberg, Y. Kevrekidis, H. Najm,
M. Parashar, A. Patra, J. Sethian, S. Wild, K. Willcox, and S. Lee,
“Workshop report on basic research needs for scientific machine learn-
ing: Core technologies for artificial intelligence,” 2 2019.

[7] A. Mathuriya, D. Bard, P. Mendygral, L. Meadows, J. Arnemann,
L. Shao, S. He, T. Kärnä, D. Moise, S. J. Pennycook, K. Maschhoff,
J. Sewall, N. Kumar, S. Ho, M. F. Ringenburg, Prabhat, and V. Lee,
“CosmoFlow: Using Deep Learning to Learn the Universe at Scale,”
in Proceedings of the International Conference for High Performance
Computing, Networking, Storage, and Analysis, SC ’18, IEEE Press,
2018.

[8] T. Kurth, S. Treichler, J. Romero, M. Mudigonda, N. Luehr, E. Phillips,
A. Mahesh, M. Matheson, J. Deslippe, M. Fatica, Prabhat, and M. Hous-
ton, “Exascale deep learning for climate analytics,” in Proceedings of the
International Conference for High Performance Computing, Networking,
Storage, and Analysis, SC ’18, IEEE Press, 2018.

[9] “MLPerf Training: HPC.” https://mlcommons.org/en/training-hpc-07/,
2021.

[10] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 770–778, 2016.

[11] P. Mattson et al., “MLPerf Training Benchmark,” in Proceedings of
Machine Learning and Systems (I. Dhillon, D. Papailiopoulos, and
V. Sze, eds.), vol. 2, pp. 336–349, 2020.

[12] “TensorFlow Model Garden.” https://github.com/tensorflow/models,
2021.

[13] “NVIDIA Deep Learning Examples for Tensor Cores.” https://github.
com/NVIDIA/DeepLearningExamples, 2021.

[14] “HPE Deep Learning Benchmarking Suite.” https://github.com/
HewlettPackard/dlcookbook-dlbs/, 2021.

[15] “DAWNBench: An End-to-End Deep Learning Bench-
mark and Competition.” https://databricks.com/research/
dawnbench-an-end-to-end-deep-learning-benchmark-and-competition,
2021.

[16] J. Dongarra, P. Luszczek, and Y. Tsai, “HPL-AI mixed-precision bench-
mark.” https://icl.bitbucket.io/hpl-ai/, 2021.

[17] “DeepBench.” https://github.com/baidu-research/DeepBench, 2021.
[18] R. Adolf, S. Rama, B. Reagen, G.-y. Wei, and D. Brooks, “Fathom:

reference workloads for modern deep learning methods,” in 2016 IEEE
International Symposium on Workload Characterization (IISWC), pp. 1–
10, 2016.

[19] Y. Wang, G. Wei, and D. Brooks, “Benchmarking TPU, GPU, and CPU
platforms for deep learning,” CoRR, vol. abs/1907.10701, 2019.

[20] C. Li, A. Dakkak, J. Xiong, W. Wei, L. Xu, and W.-m. Hwu, “XSP:
Across-Stack Profiling and Analysis of Machine Learning Models on
GPUs,” in 2020 IEEE International Parallel and Distributed Processing
Symposium (IPDPS), pp. 326–327, 2020.

[21] T. Ben-Nun, M. Besta, S. Huber, A. N. Ziogas, D. Peter, and T. Hoe-
fler, “A modular benchmarking infrastructure for high-performance and
reproducible deep learning,” in 2019 IEEE International Parallel and
Distributed Processing Symposium (IPDPS), pp. 66–77, 2019.

[22] Z. Jiang, L. Wang, X. Xiong, W. Gao, C. Luo, F. Tang, C. Lan,
H. Li, and J. Zhan, “HPC AI500: the methodology, tools, roofline
performance models, and metrics for benchmarking HPC AI systems,”
CoRR, vol. abs/2007.00279, 2020.

[23] “CosmoFlow TensorFlow Keras benchmark implementation.” https://
github.com/sparticlesteve/cosmoflow-benchmark, 2021.

[24] “CosmoFlow datasets.” https://portal.nersc.gov/project/m3363/, 2021.
[25] “TFRecord and tf.train.Example.” https://www.tensorflow.org/tutorials/

load data/tfrecord, 2021.

[26] L. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam, “Encoder-
decoder with atrous separable convolution for semantic image segmen-
tation,” CoRR, vol. abs/1802.02611, 2018.

[27] “Deep Learning Climate Segmentation Benchmark.” https://github.com/
sparticlesteve/mlperf-deepcam, 2021.

[28] Y. Wang, C. Yang, S. Farrell, T. Kurth, and S. Williams, “Hierarchical
roofline performance analysis for deep learning applications,” CoRR,
vol. abs/2009.05257, 2020.

[29] “NCAR Community Atmosphere Model (CAM 5.0).” https://www.cesm.
ucar.edu/models/cesm1.0/cam/docs/description/cam5 desc.pdf, 2021.

[30] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet:
A large-scale hierarchical image database,” in 2009 IEEE Conference on
Computer Vision and Pattern Recognition, pp. 248–255, 2009.

[31] T. NVIDIA, “V100 gpu architecture. the world’s most advanced data
center gpu. version wp-08608-001 v1. 1,” NVIDIA. Aug, p. 108, 2017.

[32] “Cori GPU nodes.” https://docs-dev.nersc.gov/cgpu/, 2021.
[33] “Intel SSD DC P4500 Series.” https://ark.

intel.com/content/www/us/en/ark/products/99030/
intel-ssd-dc-p4500-series-1-0tb-2-5in-pcie-3-1-x4-3d1-tlc.html,
2021.

[34] S. Williams, A. Waterman, and D. Patterson, “Roofline: an insightful
visual performance model for multicore architectures,” Communications
of the ACM, vol. 52, no. 4, pp. 65–76, 2009.

[35] A. Alexandrov, M. F. Ionescu, K. E. Schauser, and C. Scheiman,
“LogGP: Incorporating long messages into the LogP model—one step
closer towards a realistic model for parallel computation,” in Proceed-
ings of the Seventh Annual ACM Symposium on Parallel Algorithms and
Architectures, SPAA ’95, (New York, NY, USA), p. 95–105, Association
for Computing Machinery, 1995.

[36] T. Patel, S. Byna, G. K. Lockwood, and D. Tiwari, “Revisiting i/o be-
havior in large-scale storage systems: The expected and the unexpected,”
in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, SC ’19, (New York, NY,
USA), Association for Computing Machinery, 2019.

[37] “NVIDIA Data Loading Library (DALI).” https://docs.nvidia.com/
deeplearning/dali/, 2021.

[38] S. S. Vazhkudai et al., “The design, deployment, and evaluation of the
CORAL pre-exascale systems,” 7 2018.

[39] Y. Ren, S. Yoo, and A. Hoisie, “Performance analysis of deep learning
workloads on leading-edge systems,” CoRR, vol. abs/1905.08764, 2019.

