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Bigger problems + not enough GPU memory -> multiple GPUs

= Demand for ever finer-resolution problems
= (Can not always fit into a single GPU's memory

* GPUs have become a first-class compute citizen
 110/147 system use NVIDIA Volta chips in 2020, Top500 list!!

[1] https:/ /www.top500.org/



Highlights

* Multi-GPU SpTRSV using CUDA streams
* Up to 6x obtained for multi-GPU SpTRSV
* kernel specialization on GPUs for DAG-based computations
* (Critical path model to explain/predict the performance

* One-sided communications enabled distributed tasking on GPUs
* One-sided messaging libraries can vary substantially

» Cray's one-sided implementation is 2.7x slower than Cray's two-sided yet ETH's foMP]
is 3x faster than Cray's two-sided

» NVSHMEM is 2.3x slower than IBM Spectrum On the Summit InfiniBand network

* Need inter-node network performance improvement

* Future work
* Port to other accelerators, e.g., AMD GPU with ROC_SHMEM
* Use critical path model to identify potentially superior process mappings
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Sparse Direct Solvers

= Sparse direct solvers
= Block Jacobi preconditioning
= LU factorization (a simplified /approximate system)
= Factor once and use as a preconditioner across multiple solves
= L-and U- solve (SpTRSV)
= Shifts the focus to SpTRSV performance

= Challenging:
= Low arithmetic intensity
= Complex data dependencies
= High inter-node communication



Naive BSP SpTRSV

= Compute solution vector x from a sparse linear system, Lx=b

= Naive approach:
= solve the system one equation (row) at a time,
= can be optimized to (selectively) parallelize over column updates or row reductions
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Recast SpTRSV as a DAG

= Computation = Directed Acyclic Graph (based on level sets)

= Fach node in the DAG is a small dense matrix-vector

= Parallelism is sacrificed in the bulk synchronous approach (data dependencies satisfied,
but will not be executed until all previous levels have been executed)

" L0 | )
| |
| |
| |
- - I'@,@— oo Barrier across levels
| |
| ._H_>




SpTRSV in SuperLU: Message Driven

= A 2D block cyclic process layout
= Asynchronous communications: no barrier across levels, edges are inter-process communications
= Two types of computation: Solves (on-diagonal blocks), MatVec (off-diagonal blocks)
= Two types of communication: Block column broadcast, Block row reduction
= Typical message size: 256 -1024 bytes
* Demand high messaging performance Q
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Previous Messaging Solutions in SuperLU

» Two-sided MPI on CPUs 1]
» MPI_Isend/Recv

= One-sided MPI on CPUs 2
= Computations remain the same with the two-sided solution

= MPI_Put (non-blocking), each message= data + payload

= Payload: user-coded checksum for receivers to check data arrival

= Up to 2.4x vs. the Two-sided MPI solution from 64 to 4096 cores
with foMPIB! library on Cray Aries network

[1] Liu, Yang, et al. "Highly scalable distributed-memory sparse triangular solution algorithms." 2018 Proceedings of the Seventh SIAM Workshop on Combinatorial Scientific Computing.

Society for Industrial and Applied Mathematics, 2018
[2] Ding, Nan, et al. "Leveraging One-Sided Communication for Sparse Triangular Solvers." Proceedings of the 2020 SIAM Conference on Parallel Processing for Scientific Computing.

Society for Industrial and Applied Mathematics, 2020.
[3] Gerstenberger, Robert, Maciej Besta, and Torsten Hoefler. "Enabling highly-scalable remote memory access programming with MPI-3 one sided." Proceedings of the International

Conference on High Performance Computing, Networking, Storage and Analysis. 2013.



NVSHMEM has potential

(but bad implementations can destroy it)

Other MPI, e.g., cuda-aware MPI
X initiate communications on CPU
not good for DAG-Based computations

but may satisfy BSP computations
(stencil)

<«—Virtual Process —_—

ors
L 1
solve<<<...>>>(...) I I I I Computation

Global
Communication

MPI_Send(...)
MPI_ReCV(. . .) Barrier

Synchronization

v no limitation on #thread blocks

NVSHMEM (based on OpenSHMEM)
v’ uses GPU-initiated data transfers

-> all work can be done in one single
CUDA kernel

__device__ device_function()

{
[* computations®/
nvshmem_double put_nbi_block(...)

}

O
v provides signaling operations and
point-to-point synchronization
operations to notify receivers

X limited number of thread blocks that
can be launched




Multi-GPU SpTRSV using two CUDA streams

= Point-to-point communications can happen at any time between any two processes
with no strict barrier synchronization
= depending on the sparsity pattern and the process decomposition

= Leverage high concurrency: processes can proceed its local computations whose
data dependencies are satistied

WAIT: stream][0] Control dependencies + Send

nvshmem_malloc buffers

9 GPU memory

SOLVE: stream|[1] ! Compute + send
wait for WAIT successfully launched




Multi-GPU SpTRSV vs. cusparse_csrsv2()

to 6x speedur

~

Experimented on Summit: | | 5 1-GPU (one nolde)
= Cuda 10, Nvshmem 1.1.3 with Grdcopy 2.0 — P .
[ 112-GPU (two nodes)
I 18-GPU (three nodes) |
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* bind one process to one GPU
= Px1 process layout (column broadcast)

* use nvshmem_ double put nbi block()
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= S11s from M3DCI1

» Other matrices are from SuiteSparse Matrix Collection
= factorized via SuperLU_DIST with METIS

ordering for fill-in reduction
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speedup vs. cusparse csrsv2()
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Hl ﬂ“ﬂl HII l

nz 8.80e+08 5.18e+08  9.66e+08  8.54e+08
DAG levels 388 188 199 264




Multi-GPU SpTRSV vs. cusparse_csrsv2()
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Interesting Observations: [ 1-GPU (one node)
B 2-GPU (one node)
I 6-GPU (one node)
[ 112-GPU (two nodes)
I 18-GPU (three nodes) |
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* DG has a similar number of DAG levels with
Li but more nonzeros -> DG scales better than
Li but it’s not
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* Exploit multiple GPUs on one node,
performance is challenged when using multi-
nodes

(W)
T

speedup vs. cusparse csrsv2()
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It's important to understand what constraint the performance

= Some numerical methods lend themselves to simple performance analysis

* DAG-based SpTRSV demands more sophistication

= Solution:
* construct a critical path performance model
* assess our observed performance relative to machine capabilities.




Critical path Performance model

. . Inter-process column broadcast
" SPTRSV Characterization Inter-process row reduction

Intra-process execution order

 Initial Critical path: based on level-set using BFS

* Refined Critical path: process decomposition

=  Architecture Characterization

*  Memory bandwidth scales with the number of blocks
(GEMV /TRSV) in the same level until the aggregate
bandwidth reach the peak:

accumulated Bytes

Tmat—vec per gpu

aggrated bw broadcast reduction
* Communication: binary communication tree, latency- Qﬁiz}?
bandwidth model ggg i 3
Teomm per gpu = Z (Lnet + logzg;\):;) " SZ) + Z <log2(#in) % (Lo + B;Zwt)> O off-diag O diag

levels levels



Large number of messages of DG makes its scaling performance

worse than matrix Li.
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Interesting Observations: [ 1-GPU (one node)
B 2-GPU (one node)
I 6-GPU (one node)
[ 112-GPU (two nodes)
I 18-GPU (three nodes) |
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* DG has a similar number of DAG levels with
Li but more nonzeros -> DG scales better than
Li but it’s not
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@ 6 GPU (single node)
Li:
= 270 messages on the critical path

speedup vs. cusparse csrsv2()
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n il HII l

DG: _-___

= 1000 messages on the critical path 7 380e+08 5.186+08 9.66e+08 8.54e+08
DAG levels 388 183 199 264




SpTRSV performance differs with critical paths
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Interesting Observations: [ 1-GPU (one node)
B 2-GPU (one node)
I 6-GPU (one node)
[ 112-GPU (two nodes)
I 18-GPU (three nodes) |
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* Exploit multiple GPUs on one node,
performance is challenged when using multi-
nodes
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speedup vs. cusparse csrsv2()
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SpTRSV performance differs with critical paths

@ 6 GPU (single node)

q1- s1_mat_0_507744 9,827 8.80E+08
' . Li4244 362 188 5.18E+08
= 7,922 messages on the critical path 1
= 1.3 GB/s memory bandwidth
3 modeled communication time B modeled computation time 3 measured
180 701
Li: 60| ol .
= 270 messages on the critical path ol
= 5.2 GB/s memory bandwidth ol 50/
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