
A Message-Driven, Multi-GPU
Parallel Sparse Triangular Solver

Nan Ding, Samuel Williams, Yang Liu, Xiaoye S. Li
nanding@lbl.gov

UNIVERSITY OF
CALIFORNIA

§ Demand for ever finer-resolution problems

§ Can not always fit into a single GPU's memory

§ GPUs have become a first-class compute citizen
• 110/147 system use NVIDIA Volta chips in 2020, Top500 list[1]

Bigger problems + not enough GPU memory -> multiple GPUs

[1] https://www.top500.org/ 1

§ Multi-GPU SpTRSV using CUDA streams
• Up to 6x obtained for multi-GPU SpTRSV
• kernel specialization on GPUs for DAG-based computations
• Critical path model to explain/predict the performance

• One-sided communications enabled distributed tasking on GPUs
• One-sided messaging libraries can vary substantially

Ø Cray's one-sided implementation is 2.7x slower than Cray's two-sided yet ETH's foMPI
is 3x faster than Cray's two-sided

Ø NVSHMEM is 2.3x slower than IBM Spectrum On the Summit InfiniBand network
• Need inter-node network performance improvement

• Future work
• Port to other accelerators, e.g., AMD GPU with ROC_SHMEM
• Use critical path model to identify potentially superior process mappings

Highlights

2

Acknowledgements
This research is supported in part by the U.S. Department of Energy, Office of
Science, Office of Advanced Scientific Computing Research, Scientific
Discovery through Advanced Computing (SciDAC) programs under Contract
No. DE-AC02-05CH11231 at Lawrence Berkeley National Laboratory. This
research used resources of the Oak Ridge Leadership Computing Facility at
the Oak Ridge National Laboratory, which is supported by the Office of Science
of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725.

UNIVERSITY OF
CALIFORNIA

Sparse Direct Solvers

§ Sparse direct solvers
§ Block Jacobi preconditioning

§ LU factorization (a simplified/approximate system)
§ Factor once and use as a preconditioner across multiple solves

§ L- and U- solve (SpTRSV)
§ Shifts the focus to SpTRSV performance

§ Challenging:
§ Low arithmetic intensity
§ Complex data dependencies
§ High inter-node communication

4

Naïve BSP SpTRSV

§ Naive approach:
§ solve the system one equation (row) at a time,
§ can be optimized to (selectively) parallelize over column updates or row reductions

§ Compute solution vector x from a sparse linear system, Lx=b

L
(8x8) sparse known

x
(8x1) dense unknown

b
(8x1) dense known

x =

…

1

2 3
4 5

6 7 8 9
1110

1312

161514

0 L 0

L 1

L 2

L 2

L 4

L 5
L 6

L 7 L 8

§ Computation = Directed Acyclic Graph (based on level sets)
§ Each node in the DAG is a small dense matrix-vector
§ Parallelism is sacrificed in the bulk synchronous approach (data dependencies satisfied,

but will not be executed until all previous levels have been executed)

Recast SpTRSV as a DAG

0

4 26

5 3

78

9

10

11

12

15

16

13

14

L 0

L 1

L 2

L 3

L 4

L 5

L 6

L 7

L 8

1

Barrier across levels

Parallelism inside levels
…

6

§ A 2D block cyclic process layout
§ Asynchronous communications: no barrier across levels, edges are inter-process communications
§ Two types of computation: Solves (on-diagonal blocks), MatVec (off-diagonal blocks)
§ Two types of communication: Block column broadcast, Block row reduction
§ Typical message size: 256 -1024 bytes
§ Demand high messaging performance

1

2 3
4 5

6 7 8 9
1110

1312

161514

0 L 0

L 1

L 2

L 2

L 4

L 5
L 6

L 7 L 8

2x2 process decomposition

P0 P1

P2 P3

SpTRSV in SuperLU: Message Driven

0

4 26

5 3

78

9

10

11

12

15

16

13

14

L 0

L 1

L 2

L 3

L 4

L 5

L 6

L 7

L 8

1

7

§ Two-sided MPI on CPUs [1]
§ MPI_Isend/Recv

§ One-sided MPI on CPUs [2]
§ Computations remain the same with the two-sided solution
§ MPI_Put (non-blocking), each message= data + payload
§ Payload: user-coded checksum for receivers to check data arrival
§ Up to 2.4x vs. the Two-sided MPI solution from 64 to 4096 cores

with foMPI[3] library on Cray Aries network

Previous Messaging Solutions in SuperLU

[1] Liu, Yang, et al. "Highly scalable distributed-memory sparse triangular solution algorithms." 2018 Proceedings of the Seventh SIAM Workshop on Combinatorial Scientific Computing.
Society for Industrial and Applied Mathematics, 2018
[2] Ding, Nan, et al. "Leveraging One-Sided Communication for Sparse Triangular Solvers." Proceedings of the 2020 SIAM Conference on Parallel Processing for Scientific Computing.
Society for Industrial and Applied Mathematics, 2020.
[3] Gerstenberger, Robert, Maciej Besta, and Torsten Hoefler. "Enabling highly-scalable remote memory access programming with MPI-3 one sided." Proceedings of the International
Conference on High Performance Computing, Networking, Storage and Analysis. 2013.

8

NVSHMEM has potential
(but bad implementations can destroy it)

NVSHMEM (based on OpenSHMEM)
✓ uses GPU-initiated data transfers

-> all work can be done in one single
CUDA kernel

✓ provides signaling operations and
point-to-point synchronization
operations to notify receivers
✗ limited number of thread blocks that
can be launched

__device__ device_function()
{

/* computations*/
nvshmem_double_put_nbi_block(…)

}

✗ initiate communications on CPU
not good for DAG-Based computations
but may satisfy BSP computations
(stencil)

solve<<<…>>>(…)

MPI_Send(…)
MPI_Recv(…)

Other MPI， e.g.，cuda-aware MPI

✓no limitation on #thread blocks

9

Multi-GPU SpTRSV using two CUDA streams

§ Point-to-point communications can happen at any time between any two processes
with no strict barrier synchronization
§ depending on the sparsity pattern and the process decomposition

§ Leverage high concurrency: processes can proceed its local computations whose
data dependencies are satisfied

10

GPU memory

wait for WAIT successfully launched

Control dependencies + SendWAIT: stream[0]

Compute + sendSOLVE: stream[1]

nvshmem_malloc buffers

Multi-GPU SpTRSV vs. cusparse_csrsv2()
up to 6x speedup (L-solve)

Experimented on Summit:
§ Cuda 10, Nvshmem 1.1.3 with Grdcopy 2.0

§ bind one process to one GPU
§ Px1 process layout (column broadcast)
§ use nvshmem_double_put_nbi_block()

§ S1 is from M3DC1
§ Other matrices are from SuiteSparse Matrix Collection
§ factorized via SuperLU_DIST with METIS

ordering for fill-in reduction

S1 Li DG LU
nnz 8.80e+08 5.18e+08 9.66e+08 8.54e+08

DAG levels 388 188 199 264

11

Multi-GPU SpTRSV vs. cusparse_csrsv2()
up to 6x speedup (L-solve)

Interesting Observations:

• DG has a similar number of DAG levels with
Li but more nonzeros -> DG scales better than
Li but it’s not

• Exploit multiple GPUs on one node,
performance is challenged when using multi-
nodes

S1 Li DG LU
nnz 8.80e+08 5.18e+08 9.66e+08 8.54e+08

DAG levels 388 188 199 264

12

It's important to understand what constraint the performance

§ Some numerical methods lend themselves to simple performance analysis

§ DAG-based SpTRSV demands more sophistication

§ Solution:
• construct a critical path performance model
• assess our observed performance relative to machine capabilities.

13

Critical path Performance model

§ Architecture Characterization
• Memory bandwidth scales with the number of blocks

(GEMV/TRSV) in the same level until the aggregate
bandwidth reach the peak:

𝑇!"#$%&' (&) *(+ =
"''+!+,"#&- ./#&0

"**)"#&- 12

• Communication: binary communication tree, latency-
bandwidth model

off-diag diag

broadcast reduction

𝑇!"## $%& '$(= #
)*+*),

L-*. +
log2 #out ∗ sz

BW-*.
+ #

/%0%/1

𝑙𝑜𝑔2(#𝑖𝑛) ∗ (𝐿2%3 +
𝑠𝑧

𝐵𝑊2%3
)

§ SpTRSV Characterization
• Initial Critical path: based on level-set using BFS
• Refined Critical path: process decomposition

Inter-process column broadcast
Inter-process row reduction
Intra-process execution order

14

Interesting Observations:

• DG has a similar number of DAG levels with
Li but more nonzeros -> DG scales better than
Li but it’s not

S1 Li DG LU
nnz 8.80e+08 5.18e+08 9.66e+08 8.54e+08

DAG levels 388 188 199 264

15

Large number of messages of DG makes its scaling performance
worse than matrix Li.

@ 6 GPU (single node)
Li:

§ 270 messages on the critical path

DG:
§ 1000 messages on the critical path

Interesting Observations:

• Exploit multiple GPUs on one node,
performance is challenged when using multi-
nodes

S1 Li DG LU
nnz 8.80e+08 5.18e+08 9.66e+08 8.54e+08

DAG levels 388 188 199 264

16

SpTRSV performance differs with critical paths

SpTRSV performance differs with critical paths

Matrix #supernodes DAG levels nnz L

s1_mat_0_507744 9,827 388 8.80E+08
Li4244 362 188 5.18E+08

@ 6 GPU (single node)
S1:

§ 7,922 messages on the critical path
§ 1.3 GB/s memory bandwidth

Li:
§ 270 messages on the critical path
§ 5.2 GB/s memory bandwidth

17

Questions

UNIVERSITY OF
CALIFORNIA

