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ABSTRACT
Replay of parallel execution is required by HPC debuggers and
resilience mechanisms. Up-to-date, there is no existing determin-
istic replay solution for one-sided communication. The essential
problem is that the readers of updated data do not have any in-
formation on which remote threads produced the updates, the con-
ventional happens-before based ordering tracking techniques are
challenging to work at scale. This paper presents SReplay, the
first software tool for sub-group deterministic record and replay for
one-sided communication. SReplay allows the user to specify and
record the execution of a set of threads of interest (sub-group), and
then deterministically replays the execution of the sub-group on a
local machine without starting the remaining threads. SReplay en-
sures sub-group determinism using a hybrid data- and order-replay
technique. SReplay maintains scalability by a combination of local
logging and approximative event order tracking within sub-group.
Our evaluation on deterministic and nondeterministic UPC pro-
grams shows that SReplay introduces an overhead ranging from
1.3⇥ to 29⇥, when running on 1,024 cores and tracking up to 16
threads.
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1. INTRODUCTION
The ability to reproduce a parallel execution is desirable for de-

bugging and reliability purposes. In debugging [56], a programmer
needs to travel back in time and deterministically examine the same
execution, while for resilience [19, 20, 22, 25, 36, 57] this is auto-
matically performed by the the application upon failure. To be use-
ful, deterministic record and replay (R&R) is required (i.e. replay
faithfully reproduces the original execution). For parallel programs
the main challenge of R&R is inferring and recording the order of
conflicting operations (data races). This problem has been inves-
tigated intensively in the context of shared memory [14, 18, 33,
47] and distributed memory programs [65]. Our main interest is to
enable R&R for programming models based on one-sided commu-
nication [6, 10] that are increasingly used in large-scale scientific
applications.

Shared memory R&R techniques either monitor thread schedul-
ing [14, 18, 33] by tracking synchronization APIs, or log [47] the
memory accessed within each thread. In distributed memory, R&R
techniques for MPI [65] have been developed with emphasis on

scalability. They track two-sided MPI_Send/MPI_Recv opera-
tions and ignore local memory accesses. Unfortunately, none of
existing solutions are sufficient to enable deterministic R&R for
distributed shared memory with one-sided communication. This
mode is the base for Partitioned Global Address Space (PGAS)
languages such as UPC [6], Co-Array Fortran [21, 37], Chapel [4],
X10 [9, 20, 59], OpenSHMEM [42, 62] and an important feature
of the new MPI-3 RMA [10, 26, 61].

Existing deterministic R&R tools for shared memory [44, 47]
supports two "end points" in the design space. On one end, a
R&R tool could log the inputs (values) to loads to one thread, with
these values injected into replay execution at the right points, this
thread could be replayed in an isolated manner. It is called data-
replay [34, 47]. On the other end, a R&R tool could detect and
record the order of events from all threads, a deterministic replay
could be achieved by scheduling events in the same order. It is
called order-replay. However, the two designs could not simulta-
neously achieve the usability and scalability. Data-replay incurs
only local instrumentation overhead but provide little insights on
communications between threads. Order-replay incurs high over-
head (increases with system size) to track event orders in large-
scale distributed memory. Therefore, the question is how to design
a useful and scalable R&R tool for one-sided communication in
distributed memory?

This paper attempts to answer this question by proposing the first
scalable partial R&R tool, SReplay, combining the best of data- and
order-replay. SReplay is a hybrid design in that it performs coor-
dinated deterministic replay of a sub-group (i.e. a set of threads of
interest) (instead of an individual isolated thread) and reconstructs
event orders based on information logged in record phase. Similar
to data-replay, each thread in the sub-group generates value logs
for loads, in addition, we also track event orders among threads
in the sub-group. The value logs are not only used to ensure iso-
lated thread replay, but also used to infer communications based on
value matching assuming the logged event order. Threads not in
sub-group are not executed in replay.

Practically, SReplay makes it possible to debug a large-scale ex-
ecution on a smaller (or even local) machine, relieving users from
monitoring a large number of concurrent events from thousands of
threads. At the same time, it provides the insights on communica-
tions between threads in the sub-group for debugging purpose. The
scalability is ensured by several simplifications so that SReplay it
could be used in large executions involving thousands of threads.
Moreover, partial replay is intrinsic to the scalability of resilience
techniques [19, 22, 36] using uncoordinated or quasi-synchronous
checkpointing and recovery. In this paper, we focus on the usage
of R&R in debugging.

The ideas in SReplay can be applied to any programming mod-



els based on one-sided communication with memory access instru-
mentation. We built a prototype based on Unified Parallel C [1]
programming language. UPC is a typical PGAS language which
is defined with a relaxed memory consistency model that allow
memory access reordering for high performance. Nondeterministic
execution is common in UPC applications with fine-grained par-
allelism. In UPC, global shared memory could be accessed with
either local load/store instructions or one-sided remote operations
(e.g. Put/Get). We modified the compiler and runtime system to
instrument all memory accesses to shared memory.

The evaluation is conducted on Edison, a Cray XC30 supercom-
puter at NERSC. We evaluate SReplay using eight NAS Parallel
Benchmarks [5] (BT, CG, EP, FT, IS, LU, MG, SP), two appli-
cations using work stealing from the UPC Task Library [38] (fib,
nqueens), three applications in the UPC test suite (guppie, laplace,
mcop) and Unbalanced Tree Search (UTS) [45]. In addition we
evaluate a large-scale production application performing Parallel
De Bruijn Graph Construction and Traversal for De Novo Genome
Assembly (Meraculous) [23]. We measure the record overhead
and confirmed that the sub-group replay could produce correct re-
sults. The sub-group replay requires similar instrumentation as
in record phase and we found that its overhead is very similar to
record overhead. Most applications are first executed on about
40 nodes (1,024 cores or threads) of Edison and we replay the
threads in sub-group on a single node monitor and replay threads
that can be contained on single node (up to 24 cores or threads
per node). We see that SReplay incurs an overhead from 1.3x ⇠
29x among all applications and different sub-group sizes (2,4,8,16
threads), when running most of the original programs on 1,024
cores. Compared with start-of-the-art instrumentation-based soft-
ware R&R tools (e.g. [8]), such overhead is moderate and ac-
ceptable for a software-only R&R scheme used for debugging in
large-scale.

The main contributions of this paper are:

• We introduce a novel deterministic R&R scheme for one-
sided communication. It allows users to deterministically re-
play a subgroup of threads in a full execution without execut-
ing the rest of threads. To the best of our knowledge, SRe-
play is the first software tool to support deterministic partial
replay for one-sided communication with good usability and
scalability.

• We implement a prototype with the proposed SReplay tech-
niques in UPC and demonstrate its usage model and over-
head on 15 applications.

The rest of the paper is organized as follows. Section 2 presents
background of deterministic R&R and UPC. Section 3 explains the
essence of one-sided communication and each step of SReplay by a
concrete example. Section 4 shows the value logging and simplified
vector clock algorithm in record phase. Section 5 describes the
offline mechanisms to generate logs for replay phase. Section 6
describes the communication inference mechanisms and the sub-
group replay algorithm. Section 7 presents several usage models of
SReplay, it is followed with the implementation details in Section 8
and the evaluation in Section 9. The paper concludes in Section 10.

2. BACKGROUND

2.1 One-Sided Communication
Traditional large-scale HPC applications are based on message

passing and they typically use Message Passing Interface (MPI) as
communication mechanism. Several modern programming models

for distributed shared memory use one-sided communication ab-
stractions that offers better performance with less synchronization.
This model is particularly suitable for irregular applications [24].
Several Partitioned Global Address Space (PGAS) languages, in-
cluding Unified Parallel C (UPC) [6], Co-Array Fortran [21, 37],
Chapel [4], X10 [9, 20, 59] and OpenSHMEM [42, 62], are based
on one-sided communication. In addition, the new MPI-3 [10] in-
troduced efficient support for one-sided communication with re-
mote memory access (RMA) [26].
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Figure 1: Two-sided and One-sided Communication.

The essence of one-sided communication is its implicit nature.
In MPI, a typical communication involves MPI_Send/MPI_Recv
pairs, which carries both data transfer and synchronization seman-
tic and the initiating task can be determined in the receive operation
(shown in Figure 1 (a)). Also, the memory location involved in the
communication is visible only to one rank. These features made
MPI communication easy to intercept at runtime. In one-sided
communication (shown in Figure 1 (b)), a thread could write to any
remote memory location in shared address space by a Put without
notifying others. Later, a thread could read the new value produced
by that earlier writer using a local access (since the thread is af-
filiated with the shared memory module), the reader is not aware
of the thread which previously produced the value. Such implicit
one-sided communication removes the implicit synchronization be-
tween sender and receiver in message passing and potentially offers
better performance. However, this advantage comes at the price
of nondeterminism and complex debugging because previous tech-
niques based on dependence tracking could not apply.

2.2 Deterministic Record and Replay
Deterministic Record and Replay (R&R) consists of monitoring

the execution of a multithreaded application on a parallel machine,
and exactly reproducing this execution later. R&R requires record-
ing in a log all nondeterministic events that occurred during the
initial execution. They include the inputs to the execution (e.g.,
return values from system calls) and the order of the inter-thread
communications (e.g., the interleaving of the inter-thread data de-
pendences). During the replay phase, the logged inputs are fed into
to the execution at the correct times, and the memory accesses are
forced to interleave according to the log.

Deterministic replay is a powerful technique for debugging HPC
applications. In principle, replay tools for HPC applications typ-
ically fall into two categories [34]. Data-replay tools record all
incoming messages to each thread during program execution, and
provide the recorded messages to threads during replay and de-
bugging at the correct execution points. This approach allows in-
dividual threads to be replayed in isolation. In contrast, Order-
replay tools only record the order of nondeterministic events in
inter-thread communication during program execution. Since order-
replay does not record actual inputs to threads, it typically generate



smaller logs than data-replay. However, detecting event orders at
large-scale poses scalability challenge.

PinPlay [47, 3] is a modern Pin-based [2] R&R tool that lever-
ages the principles of both data- and order-replay. For all programs,
it could log the inputs to each thread and generates a log (i.e. pin-
ball) during a record execution and then execute the same thread
in isolation by injecting logged values to loads at right points. For
multithreaded programs, it could detect and log orders of conflict-
ing accesses to shared addresses by implementing a directory-based
coherence protocol in software. However, even on a single machine
with shared memory, this incurs high overhead (up to 197⇥ slow-
down for SPECOMP 2001) [8].

Because event orders could be easily tracked in message pass-
ing, existing research has been mainly focusing on MPI R&R de-
bugging [15, 65]. Sub-group reproducible replay (SRR) [65] tries
to find a good balance between data-replay and order-replay by
considering a hybrid approach. SRR divides all MPI ranks into
disjoint replay groups, based on the insight that ranks communi-
cate mostly with few other ranks in the same group. During the
record phase, SRR records the contents of messages across group
boundaries using data-replay but records communication orderings
within a group. Each group could then be replayed independently.
The idea of sub-group in SRR is similar to our ideas in SReplay.
However, due to the fundamental difference between two-sided and
one-sided communication, the techniques in SRR could not be ap-
plied to our context. For example, during the runtime of record
phase, we could not determine whether a communication is within
or between different sub-groups.

Extensive efforts were made in recent years to use hardware
support to reduce overhead in tracking orders of conflicting ac-
cesses [13, 17, 27, 28, 29, 39, 43, 48, 49, 50, 51, 60, 63, 64],
they are all based on cache-coherent shared memory. In distributed
memory, MPReplay [58] proposes architectural supports for de-
terministic R&R for MPI programs. The hardware tracks nonde-
terministic synchronization events such as wildcard receives (e.g.
MPI_ANY_SOURCE, MPI_ANY_TAG, etc.). They are MPI two-
sided specific mechanisms and not applicable in our context.

Due to the fundamental feature of one-sided communication,
tracking event order is inherently much more challenging than in
two-sided communication. The record and replay of individual
thread in Pinplay [3] could be potentially directly applied in this
context. However, as we discussed in Section 1, it does not provide
sufficient insight for debugging purpose. There is no previous work
addressing this problem.

2.3 Unified Parallel C
Unified Parallel C (UPC) [6] is an extension to ISO C 99 that pro-

vides a Partitioned Global Address Space (PGAS) abstraction using
Single Program Multiple Data (SPMD) parallelism. The memory
is partitioned in a task (unit of execution in UPC) local heap and
a global heap. All tasks can access memory residing in the global
heap, while access to the local heap is allowed only for the owner.
The global heap is logically partitioned between tasks and each task
is said to have local affinity with its sub-partition. Global mem-
ory can be accessed either using pointer dereferences (load and
store) or using bulk communication primitives (memget(), mem-
put()). The language provides synchronization primitives, namely
locks, barriers and split phase barriers. Most of the existing UPC
implementations also provide non-blocking communication prim-
itives, e.g. upc_memget_nb(). The language provides a memory
consistency model which imposes constraints on message ordering.

We implemented a prototype of SReplay based on UPC. The un-
derlying principles are directly applicable to other one-sided com-

munication paradigms, most notably MPI-3 RMA.

3. OVERVIEW OF SReplay
We present a overview of SReplay based on UPC. The details of

each components are discussed in the following sections. As shown
in Figure 2, it involves the three steps.

Record at full concurrency. The user first specifies sub-group,
a subset of threads that need to be replayed. A modified compiler is
used to build a binary with recording instrumentation, tracking both
load/store instructions, as well as communication operations
(e.g. Put/Get). The instrumented binary is then executed at full
scale on a modified UPC runtime system that records the execution.
For any tasks within sub-group, we record load values of each
thread in its value log, we also track the order of Put/Get opera-
tions from threads in sub-group in distributed event order logs. The
event order log indicates the order of conflicting operations access-
ing the global memory at coarse-grain. The execution of threads
outside sub-group and their communication with sub-group are not
tracked.

In Figure 2, the shaded region indicates sub-group. White dots
indicate read accesses that do not have value log entries; black dots
indicate read accesses that generate value log entries; brey dots in-
dicate write accesses. We will discuss how we avoid logging the
value for every read in Section 4.1. The arrows indicate detected
event orders, which is a superset of orders between conflicting ac-
cesses. A read could be ordered after multiple writes (such as
the second read in the second thread) but it could only get value
from one write ordered before. We infer the precise order between
writes and reads in replay phase. Some read could get values writ-
ten by threads outside sub-group, such as the second black dot in
the fourth thread in sub-group. In this case, there may be no write
event ordered before the read in sub-group.

Log processing. The value and order logs generated in full ex-
ecution are processed to obtain the required event order in replay.
Based on the distributed event order log, this pass generates a re-
play order log for each thread in sub-group. The event orders are
translated into wait and wake operations so that threads in sub-
group could collaboratively enforce the order present in the orig-
inal execution. In addition, a write check log is generated for each
thread so that it could try to match its own written values with re-
mote read values in certain ranges at correct points in replay phase.
We use this value-based approach to infer communications between
threads in sub-group because there is no explicit matching between
senders and receivers in one-sided communication.

Sub-group Replay SReplay only executes the threads in sub-
group in replay phase. The effects (e.g. remote writes) of any
other tasks can be reconstructed from the logs. Each thread in sub-
group reproduces the same execution by injecting the values in its
value log at correct points. The operations from different threads
are scheduled to execute in an order according to the replay order
log. In addition, after a thread performs certain writes, it needs to
check whether all the local writes so far could contribute to some
read value log entries of remote threads. On a value match, a com-
munication is assumed to happen between the two threads. This
process is driven by the write check log. For each read log entry of
a thread in sub-group, SReplay could infer one of two possibilities:
(a) the value is produced by a thread inside sub-group, if so, the
specific thread is given; (b) the value is not produced by any thread
inside sub-group. In Figure 2, the question marks indicate the value
matching operation.

SReplay uses the principle of data-replay to ensure the correct
replay of each thread in sub-group based on value logs. We use a
combination of order-replay and value matching to infer the com-
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Algorithm 1: Value Logging by thread T
i

in sub-group.
Data: V (a, len): values of (a, len) in T

i

V
sm

(a, len): values of (a, len) in shadow memory of T
i

V
i

[i] is the sequence number (SN) of T
i

.
Output: V alLog

i

: read value log of T
i

.
Value log entry format: (V

i

[i], len, val).
1 switch type of an access e

i

do
2 case e

i

is a read of range (a,len)
3 if V (a, len) 6= V

sm

(a, len) then
4 new V alLog

i

entry: (V
i

[i], a, len, V (a, len))
5 V

sm

(a, len) V (a, len)
end

6 case e
i

is a write of range (a,len)
7 V

sm

(a, len) V (a, len)
8 V

i

[i] V
i

[i] + 1
endsw

munications between threads in sub-group. This idea is novel and
has not been exploited in previous work. This design principle is
critical for improving usability since purely relying on order-replay
requires replaying all threads (not satisfying requirement of partial
replay). Due to non-atomic instrumentation, it is very challenging
to generate precise event orders. Our current approach does not
rely on precise event order among threads in sub-group.

4. RECORDING THE EXECUTION

4.1 Value Logging
SReplay maintains a shadow memory in each thread in sub-group.

The shadow memory indicates the current local view of shared
memory of a thread. Each address in the shadow memory is as-
sociated with a sequence number (SN). The contents of a memory
address are logged either at its first read or when the value read
by the execution differs from value stored in the shadow memory.
Similar schemes [44, 47] are described for R&R of shared memory
programs.

Algorithm 1 shows the detail of the value logging mechanism in
SReplay. Each thread maintains its local shadow memory, V

sm

.
On a read, V (a, len) is the value obtained from the current shared
memory. If the value is the same as the current value in V

sm

, no
log is generated. If not, a new value log entry is generated and V

sm

is updated, so that next time T
i

will not log the same value again.
On a write, V (a, len) is the written value and it also updates the
shadow memory. This could avoid logging the values generated

Algorithm 2: Vector Clock for Shared Memory
Procedure OnMemAcc (e

i

in T
i

,AccRange)
Data: V

i

: vector clock of thread T
i

V w

x

: write vector clock of address x
V a

x

: access vector clock of address x
All vector clocks have r entries, r is the size of sub-group.
Output: O

i

: Event orders need to obey in replay
1 V

i

[i] V
i

[i] + 1
2 switch type of e

i

do
3 case e

i

is a read
4 foreach x 2 AccRange do
5 O

i

 O
i

[ GO(V
i

,V w

x

,i)
6 V

i

 max{V
i

, V w

x

}
7 V a

x

 max{V a

x

, V
i

}
end

8 case e
i

is a write
9 foreach x 2 AccRange do

10 O
i

 O
i

[ GO(V
i

,V a

x

,i)
11 V w

x

 V a

x

 V
i

 max{V a

x

, V
i

}
end

endsw

Procedure GO
Input : V

my

,V
m

,my_pid
Output: O

n

: New event orders
12 foreach 1  i  r, i 6=my_pid do
13 if V

m

[i] > V
my

[i] then
14 O

n

 O
n

[ (T
i

: V
m

[i]! T
my

: V
my

[my])
end

end
15 return O

n

by the local thread and avoid logging addresses of dynamically al-
located objects (see Section 8). The SN (V

i

[i]) is updated on both
reads and writes. V

i

[i] in an value log entry indicates that this value
should be consumed by T

i

in replay phase when its SN is increased
to the same number.

4.2 Event Order Logging
For tasks within sub-group, we use vector clock to obtain event

orders of conflicting accesses during execution. This information
is used to schedule the conflicting accesses in the replay phase and
infer communications. Vector clock [53] is a powerful tool to track
causal relationship of events in concurrent systems. The conven-



tional vector clock algorithms assume explicit sender and receiver
and they are matched when a communication happens. We present
a vector clock algorithm based on the one described in [55] and pro-
pose mechanisms to generate event orders of conflicting accesses in
one-sided communication. The algorithm is shown in Algorithm 2
as a function OnMemAcc.

Let V
i

be an n-dimensional vector of natural numbers for thread
T
i

, 1  i  n. Let V a

x

and V w

x

be two additional n-dimensional
vectors for each shared address, we call V a

x

and V w

x

access vector
clock and write vector clock, respectively. All the vector clocks
are initialized to 0 at the beginning of computation. For two n-
dimensional vectors we say that V  V 0 if and only if V [j] 
V 0[j] for all 1  j  n; max{V, V 0} is defined as the vector
with max{V, V 0}[j] = max{V [j], V 0[j]} for each 1  j  n.
V
i

[i] also represents the SN of the event in T
i

which caused V
i

[i]
increased to the current value. In SReplay, we only run the vector
clock algorithm within sub-group, therefore n = r, r is the size of
sub-group.

It is proved in [54] that OnMemAcc ensures e
i

! e
j

(! indi-
cates causal relationship), if and only if V (e

i

) < V (e
j

). Using this
property, by keeping and comparing the vector clock of all mem-
ory accesses, an external observer can obtain the complete causal
relationship of events.

In reality, the lack of "external observer" limits the information
available in tracking complete event order. After each access e

i

in T
i

, two vector clocks are available to T
i

, one is the updated
V

i

after the access (denoted as V
i

(e
i

)), the other is Va

x

(if e
i

is
a write) or Vw

x

(if e
i

is a read) from shared memory, assuming
e
i

accesses x. T
i

can infer whether there is a causal relationship
between e

i

and the most recent access to x (and by transitivity, the
accesses causally ordered before it). From the vector clock of the
most recent access, Va

x

or Vw

x

, T
i

cannot tell the specific remote
access and cannot generate orders between two specific accesses.

Figure 3 shows a concrete example. We consider three threads
and two shared memory addresses (x and y). V

i

(i=1,2,3) after each
memory access is indicated below the memory accesses. On the
right, we show the trace of Va

{x,y} and Vw

{x,y} updates. Consider
the second access in T1 (i.e. r(x)), V1(r(x)) is [2,2,1], Vw

x

is [1,2,1].
T1 can infer that the current operation r(x) is ordered after the most
recent write to address x. However, from [1,2,1], it does not know
which remote access previously wrote to x. The issue is similar to
the case in one-sided communication in that, a read does not know
the most recent writer of a memory location.

We propose a simplified mechanism to generate conservative
causal relationship of events. Consider V

i

(e
i0), it captures the set

of all accesses from all threads that causally happened before e
i0.

We could consider it as a global layer, denoted as GL[e
i0]. It cap-

tures the boundary of most recent previous accesses in all threads
that are causally executed before e

i0. When T
i

performs the next
memory access e

i1, similarly, V
i

(e
i1) represents a different global

layer GL[e
i1]. To reproduce the event orders in an execution, it

is sufficient to execute e
i1 after the accesses in each remote thread

on GL[e
i1]. These accesses are denoted as V

i

(e
i1)[j], j 6= i. It

is possible that V
i

(e
i1)[j] = V

i

(e
i0)[j] for some j, it means that

T
j

did not perform any access after e
i0 that is causally happened

before e
i1. In this case, no new causal relationship needs to be

generated. Therefore, condition for generating causal relationship
is, V

i

(e
i1)[j] ! e

i1 if j 6= i and V
i

(e
i1)[j] 6= V

i

(e
i0)[j]. This

approach generates a set of causal relationships between individ-
ual accesses to ensure that the replay and record enforce the same
orders for all events.

Figure 4 shows the insight. From the vector clocks, T2 can iden-
tify the difference between GL0 and GL1. According to our rule,

the second r(x) in T2 is causally ordered after w(x) in T0. In T3,
there is no memory access performed between the two global lay-
ers, so there is no order generated. T4 performs a memory access
w(z), but it is not conflicting with r(x) in T2, so there is no causal
relationship between the two and also no order generated. For the
example in Figure 3, before r(x) in T1 is performed, the current
vector clock in the thread is [1,0,0], after the operation, the vector
clock becomes [2,2,1]. According to the rule, r(x) needs to be or-
dered after w(x) in T2 and w(y) in T3. Note that w(y) in T3 does
not conflict with r(x) in T1, but it is causally ordered before r(x)
in T1. Specifically, it is because the vector clock obtained in T1 at
r(x) (most recently updated by w(x) in T2) include w(y) in T3 due
to T2’s r(y), — they are indeed conflicting accesses.

Because program order contributes to causal relationship, the
event orders detected are conservative. It is why in Figure 3 r(x)
in T1 is causally ordered after w(y) T3: w(y) in T3 conflicts with
r(y) in T2, r(y) and w(x) in T2 are ordered by program order, w(x)
in T2 conflicts with r(x) in T1, so transitively, r(x) in T1 is also
causally ordered after w(y) in T3.

The order generation rule is implemented by GO in Algorithm 2.
It takes two vector clocks (V

my

and V
m

) and thread ID of the
calling thread as inputs. V

my

is the vector clock for T
i

before
executing the current memory access. V

m

is the vector clock ob-
tained from shared memory, it is either Va

x

(for writes) or Vw

x

(for
reads). This function is called before the vector clock updates in
local threads and shared memory (line 6-7 and 11). An event order
is in the format of (T

i

: SN
i

! T
j

: SN
j

), which enforces that an
access in T

j

with SN
j

executed after an access in T
i

with SN
i

in
replay.

4.3 Scalability Enhancements
The overhead of Algorithm 2 is high for following reasons.

Storage Overhead. Two vectors (V a

x

and V w

x

) are associated with
each shared memory location.
Atomic vector clock updates. It implicitly requires that the up-
dates to vector clocks happen atomically with the actual memory
accesses. In a large-scale distributed memory system, to satisfy
this each memory access will be associated with a lock operation
when modifying the vector clock.
Update order requirement. The updates of vector clocks associ-
ated with memory addresses (V w

x

and V a

x

) (line 7 and 11) should
be consistent with program order. Because updates to vector clocks
are ordinary memory accesses to shared memory, UPC runtime
may reorder them. Strictly enforcing the order requires using fences,
which is expensive.

We relax Algorithm 2 to make it practical. To reduce storage
overhead, we associate a range of addresses with a single vector
clock. For UPC, we naturally partition the shared address space
according to the affinity (owner) of shared address and assign one
vector clock for each partition. We choose to not maintain atom-
icity of instrumentation and not use fences to ensure vector clock
updates order.

The consequence of those relaxations is that the event orders
generated could be imprecise. It does not affect the replay correct-
ness because it is based on data-replay. It does occasionally incur
mis-reported communication but this is acceptable for a best-effort
debugging tool.

5. LOG PROCESSING

5.1 Replay Order Log Generation
The order log is used to reproduce the orders generated in the

record phase. For each memory access e
i

in T
i

with SN
i

, we in-



Time T1

w(x)

T2

r(y)

T3
w(y)

[1,0,0]
[0,0,1]

Vxa Vxw Vya Vyw

[0,1,1]

w(x)
[1,2,1]

r(x)
[2,2,1]

[0,0,0] [0,0,0] [0,0,0] [0,0,0]
[0,0,1] [0,0,1]--- ---

[1,0,0] [1,0,0] --- ---
[0,1,1] ------ ---

[1,2,1] [1,2,1] --- ---
[2,2,1] --- --- ---

Figure 3: Running Example of Algorithm 2.
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Figure 4: Tracking Event Order.

Algorithm 3: Value Check Log Generation
Procedure ValCheckGen (ValLog

i

, i 2 1, ..., r)
Output: V CL

i

: A map from local SN to remote SN.
i 2 1, ..., r

1 foreach i 2 1, ..., r do
2 foreach val 2 V alLog

i

do
3 foreach j 2 1, ..., r do
4 if j 6= i then
5 V CL

j

[V
val

[j]] V
val

[i]
end

end
end

end

troduce two maps: wake_up map (wake) and wait_for map (wait).
Each of them maps an SN to a vector that is of the same size as sub-
group. wake[SN

i

][j] requires that after a memory access with SN
i

in T
i

is executed, T
i

should notify T
j

with its sequence number
SN

i

. wait[SN
j

][i] indicates a sequence number SN
i

from T
i

, that
before a memory access with SN

j

in T
j

can be executed, it needs
to wait for a notification from T

i

containing SN
i

. With this notion,
each order (T

i

: SN
i

! T
j

: SN
j

) generated in the record phase
incurs the following updates to the two maps: wake[SN

i

][j]=1,
wait[SN

j

][i]=SN
i

. After processing all distributed event order
logs, a map is generated for each thread in sub-group, it is then
written to an order log used during replay.

5.2 Write Check Log Generation
In SReplay, communication is inferred by matching values writ-

ten by a potential producer with the values in remote threads’ value
log. Consider the scenario in Figure 5. In record phase, there are

three read accesses from T2 that incur new values logged (e21,e22,e23).
The number indicates the return value of each read. When each one
is performed, its vector clock represents a global layer that indicates
the set of remote accesses that ordered before it. Such global lay-
ers are denoted by dashed lines. The arrows indicate the remote
accesses that produced the new values logged. The goal of value
matching is to infer the solid arrows in replay phase.

In replay phase, by following order log, we can order the three
read accesses after the accesses before the global layers specified
by their vector clocks. The value matching could be done at pro-
ducer side as follows. Consider e21, both T1 and T3 could compare
their last write value to x with the value in T2’s value log. The
communication is inferred when the two values match. In the ex-
ample, T3 will conclude that its write value is consumed by T2.
Therefore, the purpose of the value check log is to give the poten-
tial producer threads information about, at which point, the thread
should match its written values with which remote new read values
in remote threads’ value log.

Algorithm 3 shows the value check log generation algorithm.
The input is the value logs of all threads in sub-group. The output is
a value check log (VCL

i

) for each thread. VCL
i

is a map from local
SN to remote SN. For T

i

, VCL
j

[SN
i

]=SN
j

indicates that after T
i

finished the access with SN
i

, it needs to match all its locally written
values up to SN

i

(inclusive) with the logged values in T
j

from the
next value after the previous match (by T

i

) to the value with SN
j

.
This algorithm processes all entries in the value log of all threads
in sub-group, and continuously updates VCL of remote threads. To
simplify notation, we assume that for each value in value log, its
full vector is available. Such information could be obtained with
some extra information in record phase and offline processing.

Let us consider Algorithm 3 in the scenario in Figure 5. We con-
sider the value check log (VCL) for T2. We see that V(e21)[3] and
V(e22)[3] are the same, according to the algorithm, we will even-
tually have VCL3[V(e22)]=V(e22)[2]. It ensures that after T3 fin-
ishes x = 1 operation, it will try to match its previous write values
with the value of both e21 and e22. Since V(e23)[3] is larger than
V(e22)[3], a new map is generated, which ensures all writes in T3

up to the boundary specified by V(e23) are matched with the new
value logs in T2 from the one after e22 to e23. Each thread keeps
the most recent locally written value to shared addresses and the
value matching is always against them. For example T1 performs
two writes to z, but only the second one is matched with e23. It is
important to ensure that value matching needs to consider all previ-
ous writes performed by a thread, not only the accesses on a global
layer or between two global layers. For example, T4 performed a
write y = 2 before V(e21), but it is only matched with e22 after
V(e22). When a value cannot be matched by writes in sub-group,
it is deemed to be produced by threads outside sub-group. It is the
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Figure 5: Inferring Communication in Replay.

case for e33.
In summary, the value matching procedure could provide the

producer of a new value in value log if it is produced by some
thread in sub-group. Otherwise, SReplay will conclude that the
values are performed outside sub-group.

6. PARTIAL REPLAY
Using the value log, order log and the value check log, SReplay

can replay the threads in sub-group without executing any other
threads. The partial replay algorithm is shown in Algorithm 4. In
the replay phase, SReplay executes the memory accesses according
to the order log. The correctness is always ensured by the value log.

The order of memory accesses in different threads is enforced
by a logically shared data structure notify. It has r ⇥ r entries,
each entry is an SN that will be set by remote threads by one-sided
update. The i-th row of notify is used by T

i

to check whether its
next access needs to wait due to event order. Physically, the i-th
row is associated with the local shared memory of T

i

.
If T

i

needs to wait at V
i

[i], then for some j, wait[V
i

[i]][j] is
non-zero and it indicates the SN of remote access from T

j

it needs
to wait. Before an access can be executed, T

i

needs to make sure
that all wait[V

i

[i]][j] entries are less than or equal to notify[i][j]
(less is because wait[V

i

[i]][j] is zero if T
i

’s current access does not
need to wait for T

j

) (line 4 ⇠ 5). If the condition is not true, then
block is true and the thread blocks at this point. Similarly, after an
access from T

i

is executed, if wake[V
i

[i][j]] is set, T
i

will update
i-th entry in T

j

’s row in notify using one-sided communication
(line 20 ⇠ 21).

For a read access, if there is a value log entry for it, then the
value from value log is used (line 8 ⇠ 9). The value is written to
shared memory (line 10). Such value may or may not be the same
as the current values in shared memory. If the value is produced by
a thread not in sub-group, then shared memory does not contain it
because that thread does not execute in replay. In this case, value
log is used to construct the partial states in shared memory.

Each thread still maintains a shadow memory for values read
from value log (line 11). The purpose is to tolerate the incorrect
event orders generated in record phase. When there is no value log
entry for a read access, the thread accesses corresponding values in
both shared memory and read shadow memory (R

sm

) (line 12). If
they disagree, then the value in read shadow memory is used (line
13 ⇠ 14). The reason is that in record phase, there could be a con-
flicting remote write happened after the read, and changes the value
in shared memory. It is due to the occasionally mis-reported event
orders in record phase. With this support, the replay correctness is

Algorithm 4: Partial Replay
Procedure OnMemAcc (e

i

in T
i

,AccRange, V alLog
i

)
Data: V

i

: vector clock of thread T
i

ShMem: actual shared memory in execution
W

sm

: shadow memory for local written values
R

sm

: shadow memory for values read from log
SN

next_val: SN of the next new value from V alLog
i

R
val

: return value of a read
W

val

: written value of a write
V C: a vector indicating the most recent SN of remote new
value checked
notify: data structure in shared memory to enforce order.

1 V
i

[i] V
i

[i] + 1
2 block  false
3 repeat
4 foreach j 2 1, ..., r do
5 block  block|(wait[V

i

[i]][j]  notify[i][j])
end

until block == false
6 switch type of e

i

do
7 case e

i

is a read
8 if V

i

[i] == SN
next_val then

9 Fill value from V alLog
i

[V
i

[i]]
10 ShMem[AccRange] V alLog

i

[V
i

[i]]
11 R

sm

[AccRange] V alLog
i

[V
i

[i]]
else

12 if
ShMem[AccRange] == R

sm

[AccRange]
then

13 R
val

 ShMem[AccRange]
else

14 R
val

 R
sm

[AccRange]
end

end
15 case e

i

is a write
16 W

sm

[AccRange] (W
val

, V
i

[i])
foreach j 2 1, ..., r do

17 if V CL
j

[V
i

[i]] 6= 0 then
18 CheckComm

(W
sm

[AccRange], V C[j], V CL
j

[V
i

[i]])
19 V C[j] V

i

[i]
end

end
endsw
foreach j 2 1, ..., r do

20 if wake[V
i

[i]][j] 6= 0 then
21 notify[j][i] V

i

[i]
end

end

not affected because the read will get the (correct) old value from
shadow memory.

Finally, for write accesses, each thread updates a write shadow
memory (W

sm

) (line 16). It keeps the most recent local write val-
ues produced by the local thread and is used in communication in-
ference. After a write access, value check is performed when its
next VCL indicates that there is a need to check the current local
writes with a set of remote read value log entries (line 17 ⇠ 19).
In CheckComm function, the relevant values in W

sm

are checked
against value entries in remote threads’ value log.



1 i n t s s _ s t e a l ( S t e a l S t a c k ⇤s , i n t v i c t i m , i n t k ) {
2 long s t e a l I n d e x ;
3 long s t e a l A m t ;
4

5 s t e a l I n d e x = WAITING_FOR_WORK;
6 whi le ( s t e a l I n d e x == WAITING_FOR_WORK) {
7 s t e a l I n d e x = s�>s t o l e n _ w o r k _ a d d r ;
8 }
9 i f ( s t e a l I n d e x >=0) {

10 upc_fence ;
11 / / e n s u r e c o r r e c t n e s s i n r e l a x e d memory c o n s i s t e n c y
12 s t e a l A m t =s�>s t o l e n _ w o r k _ a m t ;
13 SMEMCPY(&( ( s�>s t a c k ) [ s�>t o p ] ) ,
14 &( s t e a l S t a c k [ v i c t i m ]�> s t a c k _ g ) [ s t e a l I n d e x ] ,
15 s t e a l A m t ⇤ s i z e o f ( Node ) ) ;
16 s�>n S t e a l += s t e a l A m t ;
17 }
18 }
19 void c h e c k S t e a l ( S t e a l S t a c k ⇤ s s ) {
20 long d , p o s i t i o n ;
21 i n t s t e a l A m t ;
22 i n t r e q u e s t o r ;
23

24 i f ( d o S t e a l ) {
25 i n t d = s s _ l o c a l D e p t h ( s s ) ;
26 i f ( d > 2 ⇤ chunkS ize ) {
27 / / enough work t o s h a r e
28 r e q u e s t o r = ss�>r e q _ t h r e a d ;
29 i f ( r e q u e s t o r >= 0){
30 s t e a l A m t = ( d / 2 / chunkS ize )⇤ chunkS ize ;
31 / / make chunk ( s ) a v a i l a b l e
32 p o s i t i o n = ss�>l o c a l ;
33 ss�>l o c a l += s t e a l A m t ;
34 ss�>n R e l e a s e ++;
35 / / a d v e r t i s e c o r r e c t amount o f work l e f t l o c a l l y
36 ss�>workAvai l = d � s t e a l A m t ;
37 }
38 ss�>r e q _ t h r e a d = REQ_AVAILABLE ;
39 s t e a l S t a c k [ r e q u e s t o r ]�> s t o l e n _ w o r k _ a m t = s t e a l A m t ;
40 upc_fence ;
41 / / e n s u r e c o r r e c t n e s s i n r e l a x e d memory c o n s i s t e n c y
42 s t e a l S t a c k [ r e q u e s t o r ]�> s t o l e n _ w o r k _ a d d r = p o s i t i o n ;
43 re turn ;
44 }
45 }
46 }

Listing 1: Communication in UTS Algorithm

7. CASE STUDIES

7.1 Unbalanced Tree Search
We discuss usage cases of SReplay based on a real-world appli-

cation. We consider Unbalanced Tree Search (UTS) benchmark [45],
a typical application that could leverage the advantages of one-
sided communication. UTS exploits a synthetic tree-structured search
space that is highly imbalanced. An efficient parallel implemen-
tation of the search relies on asynchronous work-stealing to keep
processors engaged in the search.

Listing 1 shows two functions related to work stealing. The first
function, checkSteal, is called by a thread which will poten-
tially share certain amount of its own work to another thread. The
thread first checks whether it has enough work to share (line 25). If
so, it updates local stack information (line 29⇠ 35). Finally, it pub-
licizes the work using one-sided communication and writes directly
(Put) to the work stack of the remote thread which requested the
work (line 38 ⇠ 40). The first write (line 38) indicates the stolen
work amount. The second write (line 40) indicates the stolen work
address.
ss_steal is called by a thread that has posted the stealing re-

quest and is waiting for stolen work that will be granted by a remote
thread. The stealIndex is initially WAITING_FOR_WORK, in-

dicating that it is waiting, then the thread busy waits on a while-
loop, until the local variable stealIndex is updated by a re-
mote thread using one-sided communication. After this, the local
thread will observe the update by a local read (line 7) and then
leaves the loop. If some work is successfully stolen, the local
thread will then read the second write performed by remote thread,
stolen_work_amt, to find out the amount of stolen work. Fi-
nally, it completes the work stealing by copying data from the stack
of remote thread to its local stack.

In this example, a thread that receives the stolen data could only
implicitly find the thread which provided stolen work by the owner
of address (s->stolen_work_addr), but there is no explicit
send and receive operation posted for this communication. In dif-
ferent executions, a thread may receive the stolen work from differ-
ent remote threads at different execution points. Debugging such
application is difficult due to nondeterministic behavior, especially
in a large-scale system. Next, we show how SReplay could help in
debugging.

7.2 Tracking Nondeterminism
During a period of execution, assumes that T0 steals from T2 and

T3 consecutively and sub-group is {T0, T2}. In the record phase, in
both steals, SReplay logs the values of s->stolen_work_addr
and s->stolen_work_amt written by T2 and T3 in sequence.
This captures the read order of remote written values. In replay
phase, these values will be fed into T0 at the same execution points.
This ensures that T0 can be replayed repeatedly and correctly in iso-
lation. Based on the logs generated by the offline processing step,
SReplay ensures that the write operations in T2 are executed be-
fore the read operations in T0 that caused the exit of the while-loop.
After writes in T2 are performed, T2 will check whether its writes
performed so far could match the next value in read log in T0. In as-
sumed scenario, T0 first steals work from T2, so there there will be
matches for the first pair of values of s->stolen_work_addr
and s->stolen_work_amt. Based on this fact, SReplay infers
that the communication happened from T2 to T0 at T0’s first local
reads. As a result, a user could infer T0 steals from T2. Suppose
there is some data access error on these data, a user could track the
source in T2 and we indeed log sufficient information in T2 as well.

In this case, T2 happens to be in sub-group, so that SReplay
could provide the insights. When T0 steals from T3, SReplay could
only replay T0’s execution but cannot gives information on which
thread performed the writes, except that it is not from any thread in
sub-group.

7.3 Memory Consistency Analysis
Memory consistency models [11] specify the order in which mem-

ory accesses performed by one processor become visible to other
processors. It is a central concept in shared memory parallel ar-
chitecture [11] and programming models based on shared memory
(i.e. UPC [32, 66]). Sequential Consistency (SC) is a strong mem-
ory model mandates that the global memory order is an interleav-
ing of memory accesses of each thread with each thread’s mem-
ory accesses appearing in program order. Sequential consistency
violations (SCVs) happen when non-SC behaviors are allowed by
architecture or runtime system due to the lack of synchronizations
(e.g. fences). It is critical to monitor and detect SCVs as they
likely indicate concurrency bugs. Recent works [31, 41, 52] show
the techniques to dynamically detect SCVs. Unfortunately, these
proposals rely on the ability to detect conflicting accesses (i.e. data
races) based on cache coherence, which does not exist in implicit
one-sided communication.

In UTS, the upc_fence operations in line 10 and line 39 are in-



serted for this purpose. If we delete those fences, we indeed found
incorrect behavior in a machine with PowerPC processors, which
supports a more relaxed memory consistency model than Intel pro-
cessors and allows the reordering of write operations.

It was shown that ensuring the correctness in relaxed memory
consistency with synchronization operations is challenging [16, 41,
31]. It is important to provide programmers of distributed mem-
ory with with one-sided communication with the ability to analyze
these bugs. SReplay readily made it possible to analyze memory
consistency based on values returned by load operations. For each
thread in sub-group, SReplay provides the returned value for each
load. The values in record phase could be affected by the seman-
tics in relaxed memory model: a value returned and logged may not
be possible in an SC execution. In replay phase, with much fewer
number of threads, we could easily ensure that memory operations
from different threads in sub-group are executed according to SC.
The value returned in replay with an SC execution may be different
from the value logged in record, and a user could consider this as
a potential SCV. It is possible that the value is produced by some
threads not in sub-group, therefore, such analysis is not precise.
Nevertheless, it provides the users with good hints to pinpoint the
root cause.

7.4 Sub-Group Selection
So far, we assumed that sub-group is pre-determined. A natu-

ral question is how to decide sub-group in reality. We outline a
new debugging iterative concurrency reduction approach that could
be built based on SReplay. This analysis is based on two recent
SMT-based [40] techniques. CLAP [30] is a technique for repro-
ducing concurrency bugs, via symbolic constraints. It generates a
full, buggy, multithreaded schedule via thread path profiling and
symbolic constraint solving. Symbiosis [35] is based on CLAP but
further localize the cause of the bug. These two techniques only re-
quire collecting local execution information, which is particularly
suitable for large scale system. However, these approach could not
scale to large systems yet due to the large number of constrains for
the solver.

With SReplay, we could provide SMT solvers with only con-
strain formulations for threads in sub-group. If a solution is found,
it means that a schedule of threads within sub-group will reproduce
the bug. In another word, we could conclude that such a bug is only
caused by threads in sub-group. In this case, the users could inspect
the schedule and replay the buggy schedule repeatedly. If a solution
is not found, it means that some read values are not produced by any
threads in sub-group, an SMT solver, like Z3 [40], will produce an
unsatisfiable (UNSAT) core which is a subset of constraint clauses
that conflict, leaving the formula unsatisfiable. UNSAT core could
localize the read values that are produced by threads outside sub-
group. Then, we could search the external threads that ever wrote
the required value to these read addresses by a new execution, and
add all those threads in a new sub-group. Then we could let SMT
solver try to find a solution again. Such iterative search contin-
ues until the SMT solver finds a solution to the constraints of the
extended sub-group.

Debugging tools such as data race detectors [46] or stack inspec-
tors [12] could help identify the initial sub-group. We leave the
systematic exploration of this topic as future work.

8. IMPLEMENTATION
The instrumentation of memory accesses is conducted in both

UPC runtime and UPC compiler. For each local memory accesses
that are casted from shared pointers, we add "before" and "after"
instrumentation by compiler. For Put/Get operations, we modify

Set Apps Description
BT class=D, NP=1024
CG class=D, NP=256
EP class=D, NP=1024
FT class=D,NP=512,-shared-

heap=512
NAS IS class=C, NP=256

LU class=D, NP=1024
MG class=D, NP=1024
SP class=D, NP=1024
guppie NP=1024

Tests laplace NP=1024
mcop NP=1024, problem size: 4000
fib NP=1024, fib(60)

Task nqueens NP=1024, 8⇥ 8
uts-upc NP=1024, $T3XXL
meraculous NP=480, human genomes

Table 1: Applications Parameters. NP denotes the number of
cores used for the record execution.

the UPC runtime to intercept them. Both instrumentations increase
the SN of the thread.

Shadow memory is implemented as a hash map. Each entry maps
a key to a block of consecutive bytes. The size of the block is
configurable, we choose 64-byte block. Depending on the size of
accessed address range, multiple blocks may be accessed for value
comparison.

Some applications have dynamically allocated objects in shared
memory. Their addresses could be different in record and replay
phase. We cannot log any shared address of those objects as values
to avoid bad pointer. Consider the following code:

shared int *p=upc_alloc(..);
*p=5;

will be translated to:
tmp1=upc_alloc(); (1)
p_addr=tmp1 (2)
*p_addr=5 (3)

At (2), the value at address tmp1 (denoted as @tmp1) is logged for
"p_addr" (because @tmp1 in shadow memory is uninitialized). In
replay phase, the value in the log (which is an object address) will
be assigned to p_addr. Then, 5 will be written to an bad address
that has never been allocated in replay phase.

We solve this problem by updating shadow memory for thread
local stores. When later a thread reads some addresses written by
itself, no value log is generated because the values from shared
memory and shadow memory is unchanged. In our example, af-
ter (1), in shadow memory, @tmp1 holds the value returned by
upc_alloc(). At (2), we find the value @tmp1 unchanged, as
if the thread previous already observed it. No value for p_addr is
logged. So replay phase will correctly use the address of actually
allocated object. Essentially we write the dynamically allocated
addresses into shadow memory, so it will not be logged later.

Finally, we also instrument the shared memory allocation func-
tion and always set the content of newly allocated object to zero.
This is to avoid the occasional missed log values because of the
same values in shadow memory.

9. EVALUATION
We use fifteen UPC benchmarks to evaluate SReplay. Eight NAS

Parallel Benchmarks [5] (BT, CG, EP, FT, IS, LU, MG, SP) and
three applications in the UPC test suite (guppie, laplace, mcop) are



App Native Exec. sub-group=2 sub-group=4 sub-group=8 sub-group=16 Shadow Memory Log Size
BT 363s 8.38x 8.48x 8.35x 8.41x 9.73 MB 1.6 GB
CG 508s 5.79x 5.84x 5.93x 6.16x 7.51 MB 16.9 GB
EP 4s 5.79x 3.98x 3.97x 4.03x 0.13 MB 0.12 MB
FT 35s 27.5x 28.1x 28.5x 29.4x 703.12 MB 15 GB
IS 26s 1.39x 1.44x 1.51x 1.57x 13.08 MB 13 MB
LU 56s 13.03x 13.89x 14.32x 15.04x 1.75 MB 770 MB
MG 176s 11.20x 11.38x 11.64x 12.18x 58.20 MB 759 MB
SP 1229s 1.82x 1.83x 1.83x 1.82x 9.65 MB 2.8 GB
guppie 160s 4.49x 4.67x 4.74x 4.89x 64 MB 519 MB
laplace 154s 8.55x 12.84x 14.76x 13.14x 0.52 MB 0.15 MB
mcop 247s 0.24x 0.52x 0.31x 0.29x 86.05 MB 121 MB
fib 13s 0.98x 0.99x 0.98x 1.14x 0.26 MB 1.31 MB
nqueens 123s 12.2x 12.8x 12.9x 13.4x 0.28 MB 85 MB
uts-upc 5s 25.4x 25.3x 26.0x 26.4x 40 MB 204 MB
Meraculous 216s 5.18x 5.44x 5.17x 5.79x 5.3 GB 2.1 GB

Table 2: SReplay Overhead

deterministic. The rest are nondeterministic by design: two appli-
cations in the UPC Task Library [7, 38] (fib, nqueens), Unbalance
Tree Search (UTS) [45] and Parallel De Bruijn Graph Construction
and Traversal for De Novo Genome Assembly (Meraculous) [23].
Table 1 shows the parameters and data sets used in experiments.

De novo whole genome assembly reconstructs genomic sequence
from short, overlapping, and potentially erroneous fragments called
reads. We use optimized parallelized program of the most time-
consuming phases of Meraculous, a state-of-the-art production as-
sembler [23]. It is a novel algorithm that leverages one-sided com-
munication capabilities of UPC to facilitate the requisite fine-grained
parallelism and avoidance of data hazards. A lightweight synchro-
nization scheme is the heart of the parallel de Bruijn graph traver-
sal.

9.1 Experiment Setup
Experiments are conducted on Edison, a Cray XC30 supercom-

puter at NERSC. Edison has a peak performance of 2.57 petaflop-
s/sec, with 5576 compute nodes, each equipped with 64 GB RAM
and two 12-core 2.4GHz Intel Ivy Bridge processors for a total of
133,824 compute cores, and interconnected with the Cray Aries
network using a Dragonfly topology.

We are interested four aspects: (1) replay overhead in differ-
ent sub-group size; (2) log size; (3) memory consumption and (4)
quantify the affects of imprecise event order detection. For each
experiment, we choose four different sub-group sizes: 2,4,8 and
16. sub-group size is expected to be small for partial replay. Since
each node in Edison contains 24 cores, we make sure that threads in
sub-group execute on different nodes (e.g. when sub-group is 2, the
threads are T24 and T48). In total, we conduct 60 executions (4 for
each application). The concurrency during the initial program run
and the recording phase is given by the parameter NP in Table 1.
The replay correctness is verified manually by comparing the re-
sults and outputs. We use only one node of Edison (24 cores) for
the replay phase, down from the original 1,024 cores (⇠ 40 nodes)
in most cases.

9.2 Experimental Results
Table 2 shows our results. For each application, we show the

native execution time without any instrumentation, the overhead for
different sub-group sizes, size of shadow memory allocated and the
largest log size among all logs generated by threads in sub-group.
In addition, we wrote a micro-benchmark program to quantify the

inaccuracy in event order detection.

9.2.1 Record Overhead
We see that SReplay introduce overhead from 1.39⇥ ⇠ 27.5⇥

for small sub-group size (2). For FT, the high overhead (27.5⇥) is
due to the large ratio between log size and shadow memory size.
For uts-upc, the high overhead (25.4⇥) is due to the large number
of shared memory accesses. They appear in when polling (busy-
waiting) on remote variables when waiting for the stolen work from
remote threads (e.g. line 7 in Listing 1). The overhead for the other
applications are mostly under 10x. Note that the replay phase runs
faster with instrumentation for two applications (mcop and fib).
It is because of the nondeterministic behavior in the algorithms.
For example, mcop’s data distribution depends on random numbers
generated. Therefore, we observed different execution characteris-
tic in record and replay executions. We do not expect the native
execution to have the same behavior as the recorded executions.
Among all sub-group sizes, SReplay introduces 29.4x overhead at
most in FT with 16 replayed threads, which is significantly lower
than PinPlay [8] (up to 197⇥).

9.2.2 Overhead vs. sub-group Size
With different replay group sizes (2,4,8,16), we see that the record

overhead only increases slightly or almost the same. The reason is
two-fold. First, the main overhead is introduced by instrumenta-
tion of read and write accesses. They are local overhead and do
not increase when the number of threads in replay group increases.
Second, the overhead due to vector clock does increase when re-
play group size increases. But SReplay size is not expected to be
large.

9.2.3 Log and Shadow Memory Size
For each application, we show the size of shadow memory allo-

cated. It includes both read and write shadow memory. We see that
different applications show drastically different characteristics. We
found that shadow memory size increases after the executions start
and then become stable after certain points. The largest shadow
memory size appears in Meraculous. It is due to large input data
size (150 GB). SReplay also uses a separate shadow memory to
keep written values. The final column shows the largest log size
generated by a thread in sub-group for each application.

Overall, we found that the runtime overhead is mainly decided
by: (1) instrumentation of local load/store or remote put/get; (2)



shadow memory size. Applications typically show a large differ-
ence on the two aspects, therefore, we see variations in record over-
head. In particular, uts-upc has a large overhead, it is partially due
to the instrumented shared memory accesses in busy wait. For ap-
plications with large shadow memory size, we see that the over-
head could be large (as for FT). Because shadow memory needs
to be accessed on all instrumented reads, large shadow memory
tends to have poor cache locality. This could explain why CG has
lower overhead than FT, because the shadow memory size is much
smaller. For Meraculous, although the size of shadow memory is
much larger than FT, the log size is in fact smaller than shadow
memory size. This suggests that the data in shadow memory are
mostly allocated and written once. In another word, when deciding
whether some values need to be logged, we mostly find that chunk
of data not appear in shadow memory. Therefore, there are no byte
level comparisons in those cases. Since the overhead is depending
on multiple factors, we cannot draw conclusion based on a single
factor, for example, for both CG and LU, the ratio between log size
and shadow memory is large and shadow memory size is small.
However, the overheads are different. In this case, the different
overhead is due to (1), — the instrumentation.

9.2.4 Quantifying Imprecise Event Order Detection
The event order detection algorithm in SReplay is imprecise due

to the simplification of vector clock algorithm. It is challenging to
quantify this effect in applications evaluated. Most applications use
bulk synchronous model, where conflicting accesses are saperated
by barriers. In this case, all orders detected by our vector clock
algorithm are deemed to be precise. Direct inspecting order logs of
applications using data race in synchronization (e.g. UTS) is not
feasible, because it is impossible to tell at replay time whether a
mismatched value is due to mis-reported event order or due to the
lack of value producer in sub-group.

We wrote a small test program to quantify the imprecision. The
program is shown in on the left of Table 3. We let two threads (T0

and T
n�1) read and write a shared variable (sh_v) concurrently

for a several times (5000 in our experiment) and create numerous
data dependences. sh_v is affiliate with a remote memory module
for both threads and is initially zero. The other threads are idle. We
run this program on SReplay and with sub-group={T0,T

n�1}. It
will generate value and order logs for these two threads. For each
entry (v

i

) in value log of T0, we check whether the remote write
from T

n�1 that produced the value v
i

is ordered before the read
in T0 that gets v

i

according to order log. If this is the case, the
order is correctly detected, otherwise, our algorithm mis-reported
an order. We conduct this experiment on different system size
(4,16,64,256,512,1024) and the two threads are running on the first
and last node (they are the same for system size 4 and 16). We show
the percentage of correctly detected order for each system size.

We see that if two threads running on the same node, our algo-
rithm practically does not produce any incorrect event order, while
in theory, it is possible. When the threads run on different nodes,
we do see a small percentage of mis-reported orders and it increases
with system size. It is reasonable since the larger system produce
more variances in memory access latency and the effects of non-
atomic instrumentation become more significant. However, even
with 1024 threads, we only have 15% of mis-reported orders. The
consequence of such mis-reported orders is the potential imprecise
information provided in the debugging tool, but the replay correct-
ness is never affected. Moreover, this result is from the test pro-
gram that artificially generates a large number of data dependences
together with each other, which is unlikely to be the case for real
applications. Therefore, we believe that our simplified vector clock

Test Code System Size (n) 4 16 64 256 512 1024
T0 Tn�1
n=0; n=0;
while(n<5000){ while(n<5000) {
x=sh_v; sh_v=n;
n++; n++;
} }

Percentage
of Correctly
Detected Depen-
dence Order

100% 100% 99.6% 95.6% 87.8% 85%

Table 3: Quantifying Imprecise Event Order

algorithm does a good job in detecting event orders in large-scale
executions.

10. CONCLUSION
One-sided communication is widely used in Partitioned Global

Address Space (PGAS) programming models and recently inte-
grated in to MPI-3 standard. Despite performance advantages, its
inherent nondeterminism makes debugging even more difficult. We
present SReplay, a general mechanism to support R&R for one-
sided communication. SReplay allows users focus on events within
a sub-group of threads. The key idea is to use a hybrid data- and
order-replay technique to enable local thread determinism and in-
ferring inter-thread communication based on values at replay. We
implemented a prototype of SReplay based on Berkeley UPC which
scales to more than a thousand cores. To the best of our knowledge,
SReplay is the first tool that supports deterministic R&R for one-
sided communication. We demonstrate practicality of our approach
by evaluating the tool using 15 applications. SReplay introduced
overheads ranging from 1.3⇥ to 29⇥ with 1,024 threads and track-
ing up to 16 threads.
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