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Abstract. High performance scientific software has many unique and
challenging characteristics. These codes typically consist of many dif-
ferent stages of computation with different algorithms and components
with diverse requirements. These heterogeneous algorithms, coupled with
with platform heterogeneity, create serious performance challenges. To
retain performance, portability and maintainability of the software on
heterogeneous platforms, more abstractions have to be integrated into
the software design. Most of these abstractions are still in the research
stage and scientific codes have barely started using them. However, it is
urgent that we start considering the abstraction interplay in designing
the next generation of software architecture. We propose a software archi-
tecture for PDE-based scientific codes that combines three abstractions
in a code framework suitable for expected heterogeneity in platforms,
while retaining separation of concerns, performance and portability of
the software. We support our proposal with an example design for an
adaptive mesh refinement based framework.

1 Introduction

Scientific software used for simulation of complex multiphysics phenomena has
many characteristics that make it uniquely challenging to architect and maintain.
The codes have many different stages of computation, each with different algo-
rithms and components. The components can have diverse requirements from
the system hardware and software. Often these requirements conflict with one
another, where an optimization for one is a detriment to another. The many
moving parts in the application need to interoperate, but often the mechanisms
used to achieve interoperability are awkward and inefficient. Furthermore, the
codes typically run on high-end high-performance-computing (HPC) platforms
which are expected to become increasingly more heterogeneous. The codes are
expected to use the platforms effectively because these are extremely expensive
and rare resources. It will take a combination of carefully thought out design,
hard-nosed trade-offs, and good orchestration capabilities in the framework for
a code to meet the demands placed upon it.

The main features of almost all successful frameworks of today are compo-
nents that encapsulate a functionality, composability of those components, and



a separation of concerns. The frameworks are designed so that the sections of
the code that pertain to the science of the application can be written and veri-
fied as sequential code. These sections are then plugged into the framework with
a wrapper. The internals of the framework handle the parallelization and data
management. There are several examples of such application codes and frame-
works [5, 16, 20, 4, 15] that have served their respective scientific communities for
a decade or more, and have even branched out to serve other communities.These
codes are continuing to serve their communities, but with a change in the hard-
ware paradigm, they are facing a crisis. In addition to heterogeneity in hardware
architecture, the codes will have to deal with higher failure rates and deeper
and more varied memory hierarchies. Furthermore, they have to do all this with
steadily growing solver diversity which is the inevitable result of increasing the
model fidelity. The abstractions that may help to tame some of the diversity are
still mostly in the research stage. The application code developers have barely
begun experimenting with these abstractions. As a result, there is little under-
standing about what design choices are likely to yield a long-lasting, nimble and
portable high performance code that will stand the test of time.

For the forthcoming exascale era, the design space is bigger than ever with
more programming abstractions to be incorporated into the software architec-
ture. There has been investment in research on programming models and ab-
stractions that could make it easier to code for the increasingly heterogeneous
platforms of the future. There has also been some investment in algorithms that
might better deal with new challenges such as decreasing memory per process-
ing unit and the need to minimize data movement. How to architect scientific
software with many moving parts into a composable whole, however, remains an
open question.

Some consensus is beginning to emerge about which abstractions might prove
to be the most useful. Here, we take note of three front runners among pro-
gramming abstractions; namely, tasking, tiling and embedded domain-specific
languages (eDSL). We propose a general software architecture that combines
these abstractions in a way that separation of concerns is maintained or even
enhanced. The abstraction lifting provided in the proposed architecture applies
to a broad class of applications that primarily use partial-differential-equation
solvers. We illustrate the applicability of this general purpose architecture with
a more specific example of a framework for adaptive mesh refinement (AMR)
based codes.

2 Requirements

Many scientific codes that are operating at petascale today have had years of
investment in solvers for the physical phenomena they model. Typically, such
codes tend to support a large community of researchers which makes code main-
tainability an important requirement. Even with the relatively uniform fat-node
architectures that are still around, there is enough variability in code behavior
that performance portability has been an important consideration. Most codes



avoid too many platform specific optimizations except in very limited perfor-
mance critical kernels, where multiple alternative implementations might have
existed for different platforms. As the diversity in the platform architecture is
increasing this is becoming a bigger challenge. In the past, it was only a mat-
ter of performance, now it has also become a matter of being able to use the
platform at all. In short, the need for platform-specific code appears to be in-
creasing. Mitigating this challenge would require a framework to support code
transformations for different target platforms while allowing the high level code
to remain unchanged.

Many long standing obstacles to meeting the above requirements still ex-
ist. There has always been a trade-off between modularity and performance.
Modularity is necessary for maintainable and reusable code, but it compromises
performance. Even today, inter-procedural analysis is unable to deliver the per-
formance across invocations of different functions. Flattening the code by fusing
functions manually has proven to increase the execution speed considerably. Sim-
ilarly, easy adaptability to various different architectures requires a small and
nimble code base. This is at odds with the increasing code size from adding
more capabilities for higher model fidelity. Some of these conflicting require-
ments were met in the past through a holistic approach to optimization, where
trade-offs were carefully considered and adopted [6]. For example, most compos-
able codes run at a very small fraction (3-8%) of the peak performance of the
machine because they sacrifice performance for multiphysics and composability.
In planning of simulation campaigns, the focus is on achieving the overall science
objective. Sometimes this means using suboptimal options for individual compo-
nents. The framework should be able to facilitate such unorthodox approaches
and therefore should provide hooks for being able to make these choices.

With the advent of heterogeneity within and across platforms, code and
performance portability have become much more critical. At the same time they
have become much more difficult to achieve. This is tractable only if coding
is done to higher levels of abstraction, with many more tools providing the
intermediate levels of support. Normally, it would be more sensible to wait until
the current research in abstractions has been hardened into products before
considering how to use them to redesign the codes. However, the codes that
need to change can be huge and take many person-years to refactor, while the
platforms are already becoming more heterogeneous. Therefore, code redesign
must begin as soon as possible.

3 Approach

One of the very first choices to make in designing a framework is which abstrac-
tions to use, and how to provide footholds for the abstractions in the framework
so that they maintain separation of concerns. Every multiphysics high perfor-
mance computing code has several levels of complexity, each one of which may
need a different expertise. While it is true that such interdisciplinary projects
demand overlap in the expertise of the participants, it is impossible for any in-



dividual to be an expert in everything. Instead, the software design has to be
orthogonalized so that various complexities are untangled and experts can fo-
cus on what they know best. The complexity of the physical model is typically
expressed in terms of parametrized equations. This is the knowledge that the
domain scientists provide. The discretization of the equations and the numerical
algorithms to solve them are best done by the applied mathematicians. In multi-
component codes, where more than one numerical solver is in use, the issues of
data movement and solver interoperability are best managed by the software
engineers. The portability and performance of the code on various platforms
are best handled by high performance computing experts. A good framework
design would allow mostly independent development of these various aspects of
the code without significant overlap in expertise.

One way to look at separation of concerns is to abstract the knowledge of
the resources from the computation and vice-versa, and differentiate the physical
view from the logical view. To illustrate this abstraction with an example, we
consider domain decomposition of structured meshes. Here the logical view of
the mesh is a self contained collection of discrete points where the “active” points
are updated during solution evolution, while the “passive” points are only used
in the computations, but are not updated. In rectangular grids the passive points
are referred to as “halo” cells surrounding the active grid Here the physical view
could be the entire physical domain where the halo points are filled with the
values derived from the physical boundaries, or it could be an arbitrarily-sized
section of the domain. The section itself could come from one or more physical
boundaries or it could come entirely from the interior of the domain. The halo
cells of the interior face of the domain section are, in effect, virtual points that
hold the same values as the real points in the corresponding neighboring section
of the domain, therefore they are also referred to as “ghost” cells in literature.
The important point to note here is that the solver concerns itself only with
the logical view, while under the hood, the infrastructure can manipulate the
physical view to orchestrate the computation to best suit the target platform.

Similarly, it should be possible for a numerical algorithm to be expressed
in a way that is essentially oblivious to the underlying micro-architecture of
the platform. This means not just the layout of the processing units (cores or
accelerators), but also the network, the coherency domains and other aspects
of memory hierarchy. This can be achieved by writing solvers without explicit
indexing into the data structures, but with the flexibility to operate on arbi-
trary chunks of provided data. One example of such an approach is stencil-based
abstractions for mitigating the hardware dependence of solvers [11, 14]. This ap-
proach cleanly shields the numerics from the vagaries of the memory hierarchy
and data movement. The orchestration of the data to be operated on can be left
to the infrastructure.

In the next few sections we describe how we can leverage three of the ab-
stractions that are gaining momentum to design a highly portable, extensible and
performant scientific software. These abstractions are embedded domain-specific
languages, tiling, and runtime dynamic tasking.



3.1 Embedded Domain-specific-languages

The idea behind eDSL’s in our context is to provide abstractions in a high level
language that address some domain’s repeatedly-used functionality. The abstrac-
tions make the job of the compiler easier by constraining the semantics, allowing
compilers to generate more optimized code. While it is difficult to persuade a
community to switch over to an unproven language, eDSL’s provide a way out.
They live embedded within high-level languages, and therefore provide an on-
ramp. An eDSL can be particularly useful to its target community if it takes
care of abstraction lifting for the numerical solvers.

The current generation of computational kernels follow strictly prescriptive
semantics. This is true not because of model or algorithmic requirements, but
because the available programming models dictate it, the developers understand
it, and it was effective on the machines of the time when the codes were de-
veloped. In truth, it is often completely unnecessary to be prescriptive in the
description of operations, and DSL’s such as the tensor-contraction-engine in
NWChem, and Nebo-wasatch, an eDSL for updating stencils in Uintah, provide
higher level constructs for precisely and concisely specifying the solver algorithm.
Another example of successful use of eDSL on heterogeneous platforms is Stella
[8]. In all these instances the back-ends transform the human-readable eDSL
code into unreadable but highly performant code for the target platform. For
each new platform one or more back-ends must be developed, but that is not a
concern of the algorithm implementer. This results in a very robust separation
of concerns between performance tuning and algorithm development.

3.2 Tiling

Because future machines will be more hierarchical, software design should ori-
ent itself to benefit from the hierarchy rather than be challenged by it. This
means that the applications must identify the granularities within the models
and the algorithms, and match the application granularity with the appropriate
level in the machine hierarchy. To some extent, applications are already doing
this with the mixed MPI-threading model. As a simple example one can con-
sider a finite difference solver for a partial differential equation on a uniformly
discretized mesh. Here the coarse-grain parallelism is achieved by decomposing
the domain spatially, where each section of the decomposed domain is mapped
to one MPI rank. The most prevalent way to achieve fine-grain parallelism is
to exploit the relative independence of operations within loops of the computa-
tional kernels evolving the solution by threading the loops. In current multi- or
many- core architectures, an MPI rank is typically the node, whereas threads
map to different cores within the node. Thus different parallel granularities of
the application are cleanly mapped to the two levels of platform architecture
hierarchy. This approach is suboptimal because the resulting parallelism is frag-
ile. It can easily break if the loop is modified without exercising sufficient care
for it to remain thread-safe. It also violates the separation of concerns between
computational kernel and parallelism. Furthermore, this approach also does not



address the issue of machine heterogeneity; the code has to change with every
different architecture.

A more robust way to expose fine-grained parallelism is to use tiling, espe-
cially when one is operating with rectangular domains. A library like TIDA [19]
provides hierarchy within tiles and assumes the responsibility of mapping tiles
to the most suitable hardware resources. TIDA not only maintains the isolation
of kernels from parallelism, but also separates the “within node” parallelism and
memory layout handling from macro-parallelism.

3.3 Task Based Runtime Support

The currently dominant bulk-synchronous model is suitable for the distributed
memory parallelization model. Enough computation is allotted to each process-
ing unit that the cost of bulk-synchronization is amortized. Scientific codes have
been designed for bulk-synchronization not because of any fundamental algorith-
mic necessity, but because that is a relatively easy way to satisfy dependencies.
However, this mode of computation is known to have limitations when differ-
ent components of the code demand different load distribution or when there is
heterogeneity in the performance of individual processing units because of error
correction or clock drift. The high performance scientific community is reach-
ing consensus that dynamic runtime task scheduling could be a more desirable
model. Dynamic runtimes have been demonstrated to be useful in many situ-
ations, such as dense linear algebra [9] and grid workflows [1]. There has been
some success in large scientific codes as well, most notably Uintah [13, 12] using
their own runtime and NAMD [17] using charm++ [10]. However, the majority
of codes have either not integrated dynamic runtimes, or are in the early stages
of experimentation. Many independent runtime systems and task based execu-
tion models are being developed in the community. Gilmanov et al. [7] provide
a good summary.

3.4 Proposed Architecture

Figure 1 provides an overview schematic of scientific code architectures as they
exist in many codes now (the left panel), and the modifications to the architec-
ture with abstraction lifting that could help tackle the platform heterogeneity
and massive parallelism. Note that in both views different virtual views (effec-
tively programming abstractions) map to different concerns of the code. The
boxes in the schematic are color coded to indicate the type of role played by
the entity in the box in the overall scheme. Orange boxes represent the base
code and its physical view. The pink boxes represent logical or virtual view of
the corresponding quantities. The green boxes are for the tools that enable the
added abstractions in the code. The blue boxes are for the target optimization.
In the figure the top left hand corner box represents the whole application code
covering the entire domain, including all the operators that need to be applied
to it. Note that we make no assertions about either the discretization or the
type of operators. The two branches out of this box represent the spatial and



functional decompositions. Again we place no constraints on what the decompo-
sitions ought to be for individual applications, each application will find its own
granularities and decompose accordingly. The decompositions provide means for
employing the logical views of the application in the framework design. Thus
the spatial decomposition results in a logical view which allows the numerics to
ignore the physical layout of the problem domain in the implementation. With
appropriate abstractions in parallelization, for example tiling, and an eDSL for
supporting higher level expression of the numerical algorithms, code transforma-
tion tools can be employed to optimize the computation and handling or memory
hierarchy. The same abstraction also helps in alleviating the challenges posed by
platform heterogeneity since code transformation tools can have different pro-
cessing elements as their targets.

Similar to spatial decomposition, functional decomposition can be done at a
granularity best suited for each specific application. In some instances, it would
be at the level of one operator. In others, the operator itself may have inherent
parallelism capable of finer decomposition. Here two different abstractions can
come into play. One is a different class of code transformation techniques that
allow operator fusion for memory access and compute optimization. The other is
treating each decomposed function object as a task with some dependencies on
other tasks. When viewed as tasks, the functions can be assigned to any resource
at any time as long as their dependencies have been met. Thus this virtualization
makes it possible to optimize for parallelization and scaling if a good dynamic
scheduler can be built. In the next section we take these general principles and
apply them to a framework for applications that use structured adaptive mesh
refinement (SAMR).
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Fig. 1. Schematics of scientific code architecture. The left panel shows the current
architecture, while the right panel shows one set of possible modifications to the archi-
tecture that could tackle heterogeneity.



4 Example: Structured AMR

Adaptive mesh refinement is a technique applied to logically Cartesian meshes
when the target application has many length scales that live in different parts of
the domain. Since the length scale dictates the spacing between the consecutive
points in the discretized mesh, clearly both memory and computation are saved
when fine resolution is used only where the physical conditions of the solution
demand it (see [2]).

4.1 Granularities and Decomposition

In any multiphysics AMR code, there are two clear granularities that stand out:
a block/patch and the physics operators. A block with its halo of virtual or
ghost cells (as they are more generally known) is already used as the logical
view of the domain by physics operators in almost all codes that rely on explicit
or semi-implicit methods for solving partial differential equations. Thus a block
readily maps to the third box on top in Figure 1. Similarly, most time integra-
tion follows operator splitting, which means that operators are applied on the
solution data sequentially. Therefore they provide a readily available means of
functional decomposition. The current generation code architectures don’t view
them as such, Uintah being one of the few exceptions. AMR Codes typically it-
erate over their collection of blocks for one operator, updating the block data as
each operator finishes. Often this generates a false dependence, because in most
situations the order of application of operators does not matter physically. A
simple reformulation where the updates from physics operators are accumulated
in a scratch space instead of being applied to the state data in the blocks im-
mediately removes this artificial dependency. Now the application of individual
operator on an individual block can be treated as a stand-alone task that can
be scheduled when its dependencies are met. This provides us a map into the
bottom left box in the schematic of Figure 1.

Another granularity that is inherent in AMR codes is that of a “level”. Recall
that each level has all blocks/patches that have same spatial resolution (dx). In
most instances, the timestep dt also refines with the same ratio as dx, and is
uniform across the level. There is some cross-level interaction. For example,
reconciliation of physical quantities such as fluxes at the fine-coarse boundaries,
ghost cell filling at those same boundaries and time synchronization of adjacent
levels when needed. But levels manage their own meta information and time
evolution. We can exploit these characteristics of the levels to enhance the macro-
parallelism flexibility. The mapping of boxes in a level to different processing
elements can be abstracted from the logical view of all boxes within the level.
Once this is done, the processing elements allocated to levels can be adjusted as
needed altering the logical view, and therefore bulk of the code.

4.2 Micro-parallelism

So far we have focused on virtualization of the decomposed space and functions
along with macro-parallelism. In the many-core and accelerators based hetero-
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Fig. 2. Exposing micro-parallelism in a parameterizable way

geneous world, this is not enough. Finer-grained parallelism potential needs to
be exposed in ways that can be harnessed flexibly for different architectures. In
AMR, since we already have the abstraction of a “block”, in principle it should
be possible to break a block into smaller blocks and provide arbitrarily fine
parallelism. The problem with that approach is that as the block size becomes
smaller, the memory used for halo cells begins to dominate. The more common
approach of explicit loop threading is not a very desirable solution because that
makes the code harder to maintain, and needs to be retuned for every platform.
A better approach is to eliminate the in-place update of the state within a block
(recall that this is also desirable for functional decomposition). Figure 2 explains
how this concept can be exploited to expose greater spatial parallelism through
tiling. Here, if we parametrize the index space of the block in order to imple-
ment the operators, then the logical view of the tiles within the source block
looks like panel (a) in the figure. Note that though the tiles have overlapping
cells, they are read only, so they don’t present any obstacle to threading. The
destination block has similar logical and physical views with no overlap between
tiles as shown in panel (b). Because of lack of overlap in the destination tiles
there are no spurious dependencies or write conflicts and therefore no obstacle
to threading.

Panel (c) shows how this parametrization also allows customization of tile
shapes to best match the target processing element. A tile can be arbitrarily
small, rectangular or thin, as long as its index space is provided as a parameter,
the tiling abstraction can manage it. This is particularly useful when faced with
processing elements that prefer to use large vectors or those that have small
caches with small cache lines. Depending on the depth of memory hierarchy
within the node, it may even be useful to coalesce some of the blocks (similar to
Figure 2(c)) to map them to NUMA/coherence domains.



In our design we use dynamic scheduling within the node. This choice main-
tains the separation of macro-parallelism from micro-parallelism. Here, the load-
balancing generated by regridding of AMR continues to be managed at the
macro/distributed memory parallel level. The tasks are generated from the com-
bination of spatial and functional decompositions described earlier. In order for
the task based execution model to be useful there should be enough load within
the node to amortize the overheads. Confining the dynamic scheduling to within
the node limits the size of the dependence graph which can grow non-linearly if
done globally. To enable dynamic scheduling very few changes needs to occur in
the solver code. One change is that if the solver iterates over blocks explicitly,
it has to either let that go completely or make it non-prescriptive (i.e. change
from “for” to “while”). The second change is that the solver must articulate any
dependencies that cannot be inferred by the framework from the index space
information available to it. For example, if order of application of operators
matters then the framework has to be informed of it, and the operators have to
express it.

4.3 Solvers

AMR codes mostly rely upon explicit or semi-implicit solvers. If need for im-
plicit methods arises, codes typically use dedicated linear algebra libraries which
assume control for the duration of the solve. Hence for this discussion we ignore
the challenges of implicit solve and focus entirely on explicit and semi-implicit
solvers. The chief characteristic of these solvers is that an update of a point in
the mesh can be described as a stencil. Stencils can be small or large, but they
all collect information from their neighborhood which can be precisely speci-
fied geometrically. A stencil update is essentially a weighted sum of specified
points in the neighborhood of the point being update. The neighboring points
can be specified by shift relative to the target as shown in an example of five
point stencil in Figure 3 (no weights are shown). Stencil computations and their
optimization [18] is an active research area with many stencil DSL or eDSL lan-
guages under development. Some, such as Stella [8] and the Nebo-Wasatch in
Uintah [3] have been successfully deployed in production codes with different
back-ends for supporting different hardware. The motivation is the same, they
seek to eliminate explicit indexing and dimensioning in expressing the involved
arithmetic. Since solvers are the most computation-intensive parts of the code,
a good code transformation tool from high level eDSL to optimized code will be
critical in achieving performance portability across heterogeneity.

5 Conclusions

We propose a software architecture for the next generation of platforms by using
a set of programming abstractions that are gaining ground in the community.
Our proposed methodology focuses on using these abstractions in ways that
function orthogonally to one another, and therefore do not diminish each others’



<-­‐1,0>	
   <1,0>	
  

<0,-­‐1>	
  

<0,1>	
  

<0,0>	
  

Fig. 3. Example of shifts in a five-point stencil update

impacts. Additionally, they maintain the separation of concerns which allows a
team to map each member’s expertise to the most appropriate aspect of code
development. We cite efforts where a code has integrated one or two of these
abstractions and has had success. We present a way of incorporating these ab-
stractions seamlessly in a framework and we believe we have provided ample
reasoning to support that claim. We firmly believe that the scientific codes of
today must begin to be refactored to be prepared for future machines, otherwise
scientific discovery through simulations will meet with a serious setback.

Acknowledgments: This material is based upon work supported by the U.S.
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Research.
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