
Unified Communication Optimization Strategies for Sparse
Triangular Solver on CPU and GPU Clusters

Yang Liu

liuyangzhuan@lbl.gov

Lawrence Berkeley National

Laboratory

Berkeley, CA, USA

Nan Ding

nanding@lbl.gov

Lawrence Berkeley National

Laboratory

Berkeley, CA, USA

Piyush Sao

saopk@ornl.gov

Oak Ridge National Laboratory

Oak Ridge, TN, USA

Samuel Williams

swwilliams@lbl.gov

Lawrence Berkeley National

Laboratory

Berkeley, CA, USA

Xiaoye Sherry Li

xsli@lbl.gov

Lawrence Berkeley National

Laboratory

Berkeley, CA, USA

ABSTRACT
This paper presents a unified communication optimization frame-

work for sparse triangular solve (SpTRSV) algorithms on CPU and

GPU clusters. The framework builds upon a 3D communication-

avoiding (CA) layout of 𝑃𝑥 ×𝑃𝑦 ×𝑃𝑧 processes that divides a sparse
matrix into 𝑃𝑧 submatrices, each handled by a 𝑃𝑥 × 𝑃𝑦 2D grid

with block-cyclic distribution. We propose three communication

optimization strategies: First, a new 3D SpTRSV algorithm is devel-

oped, which trades the inter-grid communication and synchroniza-

tion with replicated computation. This design requires only one

inter-grid synchronization, and the inter-grid communication is

efficiently implemented with sparse allreduce operations. Second,

broadcast and reduction communication trees are used to reduce

message latency of the intra-grid 2D communication on CPU clus-

ters. Finally, we leverage GPU-initiated one-sided communication

to implement the communication trees on GPU clusters. With these

nested inter- and intra-grid communication optimization strategies,

the proposed 3D SpTRSV algorithm can attain up to 3.45x speedups

compared to the baseline 3D SpTRSV algorithm using up to 2048

Cori Haswell CPU cores. In addition, the proposed GPU 3D Sp-

TRSV algorithm can achieve up to 6.5x speedups compared to the

proposed CPU 3D SpTRSV algorithm with 𝑃𝑧 up to 64. Finally it

is remarkable that the proposed GPU 3D SpTRSV can scale to 256

GPUs using the Perlmutter system while the existing 2D SpTRSV

algorithm can only scale up to 4 GPUs.

CCS CONCEPTS
• Mathematics of computing → Mathematical software; •
Computing methodologies → Parallel computing method-
ologies; Distributed computing methodologies.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

SC ’23, November 12–17, 2023, Denver, CO, USA
© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0109-2/23/11.

https://doi.org/10.1145/3581784.3607092

KEYWORDS
communication-avoiding algorithm, communication optimization,

SpTRSV, triangular solve, supernodal method, sparse matrix, NVSH-

MEM

ACM Reference Format:
Yang Liu, Nan Ding, Piyush Sao, Samuel Williams, and Xiaoye Sherry Li.

2023. Unified Communication Optimization Strategies for Sparse Triangular

Solver on CPU and GPU Clusters. In The International Conference for High
Performance Computing, Networking, Storage and Analysis (SC ’23), November
12–17, 2023, Denver, CO, USA. ACM, New York, NY, USA, 13 pages. https:

//doi.org/10.1145/3581784.3607092

1 INTRODUCTION
Sparse triangular solves (SpTRSV) are important computational

kernels in many direct sparse linear solvers and preconditioners for

a wide range of scientific and engineering applications. Taking LU

factorization of a sparse matrix 𝐴 = 𝐿𝑈 as an example, the solution

vector 𝑥 from 𝐴𝑥 = 𝑏 given a right-hand side (RHS) vector 𝑏 can be

computed following one lower-triangular and upper-triangular Sp-

TRSV operations. Although SpTRSV typically has many fewer arith-

metic operations compared to LU factorization, it can become a com-

putational bottleneck for linear systems with many RHSs or precon-

ditioned iterative solvers requiring repeated application of SpTRSV.

The low arithmetic intensity and sequential nature of SpTRSV post

significant challenges for their efficient implementation on modern

shared-memory and distributed-memory computing architectures.

Shared-memory implementations [2, 14, 28, 30, 31, 42, 45, 46] such

as multi-core CPU and GPU implementations rely on level-set,

color-set or blocking methods to exploit available parallelism from

the directed acyclic graph (DAG) representation of the sparse LU

factors.

For realistic and large-scale multi-physics and multi-scale simu-

lations, shared-memory SpTRSV implementation quickly becomes

incapable of handling large linear systems and one needs to turn to

distributed-memory SpTRSV and LU factorization algorithms [3, 7–

10, 16, 18–25, 25–27, 35, 36]. However, distributed-memory parallel

SpTRSV algorithms are even more challenging as communication

quickly becomes dominant as the number of processors increases.

Existing works include supernodal representation with a 2D pro-

cess layout [12, 13, 22, 29], non-blocked representation with a 1D

SC ’23, November 12–17, 2023, Denver, CO, USA Yang Liu, Nan Ding, Piyush Sao, Samuel Williams, and Xiaoye Sherry Li

process layout [41], multifrontal representation with sparse RHSs

[34], and selective inversion-based algorithms for dense systems

[32, 43]. Among them, communication optimization techniques

such as customized communication trees [29], one-sided MPI com-

munication [13] and GPU-initiated communication [12] have been

exploited and performance prediction studies such as critical path

analysis [12, 13], roofline modeling [44] and machine learning-

based performance tuning [1, 15] have been considered. Despite

these advances in distributed-memory SpTRSV algorithms, their

strong scalability remains very limited for many classes of triangu-

lar matrices. More specifically, parallel 2D CPU SpTRSV can exhibit

flattened strong scaling for large numbers of MPIs [13, 29], and

parallel 2D GPU SpTRSV can only scale up to the number of GPUs

in one node (typically less than 10) [12].

In addition to the above-mentioned communication optimization

strategies, communication-avoiding (CA) algorithms have drawn

many interests in numerical linear algebra research, including

sparse LU factorization [37, 38], sparse GEMM [6], QR factoriza-

tion [5], and Krylov methods [33], etc. Many of these algorithms

rely on a 3D process layout of 𝑃𝑥 × 𝑃𝑧 × 𝑃𝑧 processes arranged

as layers of 2D process grids that replicate the memory and com-

putation loads across the grids. These algorithms oftentimes yield

asymptotic reduction in communication at the cost of manageable

memory overheads. Recently, a 3D CA SpTRSV algorithm [39] has

also been developed by following the layout of the 3D CA sparse

LU factorization algorithm [37]. The 3D SpTRSV algorithm divides

the triangular matrix into multiple levels with a binary elimination

tree, where each node corresponds to several submatrices that re-

side on one 2D grid. The algorithm proceeds with a bottom-up tree

traversal where SpTRSV of each node requires only communication

inside one 2D grid (intra-grid communication), and the solution

subvectors need to be reduced across the 2D grids (inter-grid com-

munication) before moving to the next level. This algorithm can

effectively reduce the communication volume by a factor of

√
𝑃𝑧

for matrices arising from many 2D and 3D PDEs [39].

Despite its preliminary success, neither the intra-grid commu-

nication pattern nor inter-grid communication pattern of the 3D

SpTRSV (henceforth refereed to as the baseline algorithm) [39] is op-

timal: the algorithm requires 𝑂 (log 𝑃𝑧) synchronizations between
the 2D grids which significantly increase runtime when the intra-

grid computation and computation are load-imbalanced. Moreover,

these synchronizations make it seemingly impossible to efficiently

integrate other communication reduction techniques such as cus-

tomized communication trees [29] and GPU-initiated one-sided

communication [12]. As a result, the baseline algorithm can yield

even worse performance than the 2D SpTRSV algorithms [29]. In

this paper, we propose a unified 3D SpTRSV algorithm that can

efficiently leverage multiple communication optimization strategies

on both CPU and GPU clusters. The contributions of this paper

include: (1) Develop a new 3D SpTRSV algorithm that requires only

one inter-grid synchronization in between the L and U solves. (2)

Develop an efficient sparse allreduce communication scheme that

dramatically reduces the inter-grid communication cost. (3) Inte-

grate the communication tree-based optimization [29] to reduce

message latency for the intra-grid communication on CPU clus-

ters, which yields significantly faster SpTRSV time compared to the

baseline algorithm. (4) Integrate NVSHMEM-based one-sided com-

munication for intra-grid communication and GPU acceleration for

the computation workloads using GPU clusters, which significantly

improves the strong scalability of multi-GPU SpTRSV algorithms.

The rest of this paper is organized as follows: Section 2 briefly

overviews the SpTRSV with a supernodal representation and the

baseline 3D SpTRSV algorithm. Section 3 describes the proposed

synchronization-reduced 3D SpTRSV algorithm (Subsection 3.1)

and sparse inter-grid communication (Subsection 3.2), as well as

the integration of communication tree-based intra-grid commu-

nication optimization for both CPUs (Subsection 3.3) and GPUs

(Subsection 3.4). Section 4 presents several numerical experiments

to demonstrate the improved scalability of the proposed 3D SpTRSV

algorithm on Cori Haswell CPU nodes, Perlmutter GPU nodes, and

Crusher GPU nodes.

2 BACKGROUND
2.1 Overview of SpTRSVWith Supernodal

Representation
Consider a LU factorized sparse 𝑛 × 𝑛 matrix 𝐴 = 𝐿𝑈 , the solution

vector (or matrix) 𝑥 subject to 𝐴𝑥 = 𝑏 with a dense right-hand side

(RHS) vector (or matrix) 𝑏 can be computed by a lower-triangular

SpTRSV (L-solve) 𝐿𝑦 = 𝑏 followed by a upper-triangular SpTRSV

(U-solve)𝑈𝑥 = 𝑦. Furthermore, we assume a supernodal represen-

tation of 𝐿 and𝑈 with 𝑁 supernodes from supernodal sparse direct

solvers [7]. A supernode consists of a set of contiguous columns

and rows whose nonzero patterns are similar across the rows and

columns, respectively. Let 𝑏 (𝐾), 𝑦 (𝐾) and 𝑥 (𝐾) denote the sub-

vectors corresponding to supernode 𝐾 , and 𝐿(𝐼 , 𝐾) and 𝑈 (𝐼 , 𝐾)
denote the nonzero submatrix corresponding to supdernodes 𝐼 and

𝐾 . Each 𝐿(𝐼 , 𝐾), 𝐼 < 𝐾 consists of a set of full rows, each 𝑈 (𝐼 , 𝐾),
𝐼 > 𝐾 consists of a set of columns, and 𝐿(𝐾,𝐾) and 𝑈 (𝐾,𝐾) are
dense.𝑈 (𝐼 , 𝐾) typically follows the “skyline” format assuming each

nonzero column has different length, but in this work we assume

all nonzero columns in each 𝑈 (𝐼 , 𝐾) have the same length. Com-

pared with column/row-based representation, these supernodal

column/row-based representations yield higher floating point (FP)

operation performance.

The subvectors 𝑦 (𝐾) and 𝑥 (𝐾) can be computed as

𝑦 (𝐾) = 𝐿(𝐾,𝐾)−1
(
𝑏 (𝐾) −

𝐾−1∑︁
𝐼=1

𝐿(𝐾, 𝐼) · 𝑦 (𝐼)
)

(1)

𝑥 (𝐾) = 𝑈 (𝐾,𝐾)−1
(
𝑦 (𝐾) −

𝐾+1∑︁
𝐼=𝑁

𝑈 (𝐾, 𝐼) · 𝑥 (𝐼)
)

(2)

Throughout this paper, we assume that diagonal blocks 𝐿(𝐾,𝐾)−1
and𝑈 (𝐾,𝐾)−1 have been precomputed and the significant FP op-

erations are the GEMV (single RHS) or GEMM (multiple RHSs)

associated with diagonal and nonzero off-diagonal computation,

which yields intrinsic low arithmetic intensity of SpTRSV. Further-

more, note that computation of 𝑦 (𝐾) depends on 𝑦 (𝐼) if 𝐿(𝐾, 𝐼)
is nonzero, and computation of 𝑥 (𝐾) depends on 𝑥 (𝐼) if 𝑈 (𝐾, 𝐼)
is nonzero. This computation dependency can be modeled by di-

rected acyclic graphs (DAGs) consisting of vertices 𝐾 . The DAGs

can post significant challenges for their efficient parallelization on

Unified Communication Optimization Strategies for Sparse Triangular Solver on CPU and GPU Clusters SC ’23, November 12–17, 2023, Denver, CO, USA

distributed-memory machines. One can expect that the commu-

nication will dominate the overall SpTRSV time as the number of

(distributed-memory) processes increases due to the low arithmetic

intensity and sequential nature of DAG. Communication reduction

techniques become crucial for scaling up the SpTRSV to large num-

bers of CPU and GPU processors [12, 13, 29, 39]. Next, we briefly

review the CA 3D SpTRSV algorithm [39] as the baseline algorithm

for the proposed unified communication optimization strategies.

2D grid

(0,0)

0

2

6

0

2

6

(0,1) (0,2)

(1,0) (1,1) (1,2)

(b) (c)

Grid-0

3

0

1

Grid-2

5

2

0

Grid-3

6

2

0

Global-Matrix

3

4

5

6

0

1

2

Grid-1

4

1

0

(a)
Grid-3 Grid-3

Figure 1: Parallel data layout of 3D SpTRSV with 𝑃𝑥 = 2,
𝑃𝑦 = 3 and 𝑃𝑧 = 4, assuming a LU-factorized symmetric sparse
matrix. (a) Mapping of the matrix onto the 4 2D grids. (b) 2D
process layout for computation tasks inGrid-3 of the baseline
algorithm [39]. (c) 2D process layout for computation tasks
in Grid-3 of the proposed algorithm.

2.2 Baseline CA 3D SpTRSV Algorithm
The baseline algorithm [39] trades off some communication witth

memory replication similar to several other CA algorithms[5, 6, 37].

As opposed to traditional distributed-memory SpTRSV algorithms

[22, 24] that use a 2D block-cyclic process layout with 𝑃 = 𝑃𝑥 × 𝑃𝑦
processes, the CA 3D SpTRSV algorithm [39] uses a 3D process

layout of 𝑃 = 𝑃𝑥 × 𝑃𝑦 × 𝑃𝑧 processes consisting of 𝑃𝑧 2D process

grids. The sparse matrices 𝐿 and𝑈 are distributed onto the 𝑃𝑧 grids

as follows.

First we assume that during the numerical factorization of 𝐴,

an ordering of the matrix has been applied to reduce the num-

ber of fill-ins in 𝐿 and 𝑈 , such as minimum degree ordering or

nested-dissection (ND) ordering. The ordering generates a multi-

level dependency tree, known as the elimination tree. Each node of

the tree represents a group of supernodes and the SpTRSVs of the

nodes at the same level are independent of each other. Therefore

the elimination tree can be used to exploit parallelism in SpTRSV.

In this paper, we uses ND ordering computed by METIS [17], as-

suming that the number of 2D grids 𝑃𝑧 is power-of-two and the top

log(𝑃𝑧) levels of the elimination tree are a binary subtree. Following

the elimination tree, the 3D SpTRSV algorithm finds the leaf level

where the number of nodes is equal to 𝑃𝑧 . Each leaf node 𝑘 and all

its ancestors 𝑎 are assigned to one 2D grid. In other words, the an-

cestor nodes are replicated across multiple 2D grids. Fig. 1(a) shows

the distribution of the LU factors with 𝑃𝑧 = 4 2D grids according

to the first three levels of the elimination tree. The root node 0 is

replicated across all 2D grids, node 1 is replicated across Grid-0 and

Grid-1, node 2 is replicated across Grid-2 and Grid-3, and each of

the nodes 3,4,5,6 belongs to one 2D grid. Here the submatrix of a

node consists of the diagonal block corresponding to all supernodes

of the node, as well as the off-diagonal blocks below and to the right

of the diagonal block. This submatrix of each grid is distributed

with a 2D block-cyclic layout using 𝑃𝑥 × 𝑃𝑦 processes. Fig. 1(b)(c)

shows the 2D layout with 𝑃𝑥 = 2 and 𝑃𝑦 = 3 for the submatrix in

Grid-3 of Fig. 1(a). Here we have assumed that the matrix 𝐴 has

symmetric nonzero patterns for simplicity.

Following this 3D layout, the CA SpTRSV algorithm [39] pro-

ceeds as follow.
1
First, each leaf node 𝑘 performs 2D SpTRSV inde-

pendently using the diagonal block. Once the solution subvectors

corresponding to the node has been obtained, they are used to per-

form GEMV/GEMMwith the off-diagonal blocks to generate partial

summation results corresponding to RHS of Eq (1). This step only

involves intra-grid communication. Next, an inter-grid communi-

cation between a pair of grids is performed to reduce the partial

summation results to the grid whose grid number 𝑧 is the smallest

among all grids replicating the parent 𝑝 of 𝑘 . All other grids among

those grids remain idle ever since. Next, the active grid 𝑧 performs

2D SpTRSV for the node 𝑝 , and GEMV/GEMM operations with its

off-diagonal blocks, which then requires inter-grid communication

before moving to the next level. Using the example of Fig. 1(a),

Grid-1 and Grid-3 are active at level 2 (i.e., the leaf level), Grid-2

are active at levels 2 and 1, and only Grid-0 is active at all levels.

Fig. 1(b) shows the computation and communication workloads at

Grid-3.

It has been estimated and validated that when compared with

2D SpTRSV using the same number of processes 𝑃 , the 3D SpTRSV

algorithm can effectively reduce the communication volume from

𝑂 (𝑛√
𝑃
) to 𝑂 (𝑛√

𝑃𝑃𝑧
) for many 2D and 3D PDEs [39]. That said, this

algorithm has two main drawbacks due to the alternating intra-grid

and inter-grid communication required at each level.

• Synchronization across the 2D grids is required at each level

of the elimination tree for a total of log 𝑃𝑧 times, which can

significantly increase the overall runtime due to possible

load imbalance among diagonal and off-diagonal blocks of

different grids.

• The separation of diagonal block solve and off-diagonal block

GEMV/GEMM for each node of the tree makes it cumber-

some for further communication optimization in each grid

1
Here we only describe the L-solve as the U-solve follows a similar but reversed

computation order.

SC ’23, November 12–17, 2023, Denver, CO, USA Yang Liu, Nan Ding, Piyush Sao, Samuel Williams, and Xiaoye Sherry Li

2D L-solve 2D U-solveSparseAllReduce

b3

b4

b1

b5

b6

b2

b00

2

6

1

5

4

3

b3

b1
b0

b4

0

0

b5

b2

b6

0

0

y3
y1
0

y0
0

y4
y1
1

y0
1

y5
y2
2

y0
2

y6
y2
3

y0
3

y3
y1
0

y0
0

y4

y5
y2
2

y6

y1
1+
y0
1+ y0

2+ y0
3+

y1
0 y1

1+
y0
0 y0

1+ y0
2+ y0

3+

y2
3+

y0
0 y0

1+ y0
2+ y0

3+

y0
0 y0

1+ y0
2+ y0

3+

y2
2 y2

3+

y1=

y0=

y1=

y0=

y2=

y0=

y2=

y0= x0
x2

x6

x0
x2

x5

x0
x1

x4

x0
x1

x3

0

Figure 2:Workflowof the proposed 3D SpTRSV algorithm. 2D
L-solve and U-solve only involve intra-grid communication,
and SparseAllReduce only involves inter-grid communica-
tion.

such as latency reduction with binary communication trees

[29] and one-sided CPU/GPU communication [11, 12].

These difficulties have to be addressed to further improve the par-

allel scalability of SpTRSV with large numbers of CPU and GPU

nodes.

3 UNIFIED COMMUNICATION OPTIMIZATION
STRATEGIES FOR 3D SPTRSV ALGORITHM

In this paper, we propose a unified communication optimization

framework based on a novel 3D SpTRSV algorithm. The proposed

3D algorithm requires only one inter-grid synchronization at the

cost of replicated computation as opposed to the baseline 3D algo-

rithm requiring 𝑂 (log 𝑃𝑧) inter-grid synchronizations. As a result,

the new 3D SpTRSV algorithm can integrate multiple communi-

cation optimization strategies such as sparse inter-grid communi-

cation, latency reduction [29] and one-sided GPU communication

[12].

3.1 New 3D SpTRSVWith Synchronization
Reduction

The proposed 3D SpTRSV algorithm can be described using the

example in Fig. 1(a). Unlike the baseline algorithm where each grid

is active for a few bottom levels, the proposed algorithm ensures

that all grids are active at all levels for allowing them to perform

replicated computation (see Fig. 1(c) for Grid-3). Specifically, the

baseline algorithm performs operations for each shaded block (see

Fig. 1(b) for Grid-3) separately and proceeds level by level with inter-

grid communication in between. In contrast, the proposed algorithm

treats the blocks of one grid (including the replicated blocks) as one
2D distributed matrix, denoted as 𝐿𝑧 and𝑈 𝑧 for Grid-𝑧. These 2D

solves require only one inter-grid communication/synchronization

in between at the cost of replicated computation. To ensure correct

solutions, judiciously selected subvectors of the RHS 𝑏𝑧 for each

2D L-solve need to be set to 0, and a sparse allreduce operation is

needed for the solution vectors 𝑦𝑧 before the 2D U-solve.

This procedure is illustrated in Fig. 2 using the same matrix as

Fig. 1(a) except that the blocks associated with one node of the

elimination tree is marked with the same color. The subvectors

of the RHS corresponding to one node in Grid-𝑧 are set to 0 if 𝑧

is not the smallest grid number sharing that node (see the RHS

for each grid in Fig. 2). The 2D L-solve does not involve any inter-

grid communication, which leads to partial solution vectors 𝑦𝑧
𝑘
for

non-leaf nodes 𝑘 . Therefore an allreduce operation is performed

across the grids to obtain the complete solution vectors, which

then become the RHSs for the 2D U-solve. Again, the 2D U-solve

does not involve any inter-grid communication. This algorithm is

summarized as Algorithm 1. Line 4 forms the proper RHS 𝑏𝑧 for

𝐿𝑧 , Lines 11 and 21 perform the 2D L-solve and U-solve whose

communication costs can be further optimized based on CPU (see

Section 3.3) or GPU (see Section 3.4) implementations, and Line 20

performs the inter-grid communication (see Section 3.2).

Remark. Although the proposed 3D SpTRSV algorithm intro-

duces extra FP operations and communication due to replicated

computation, the FP operations are performed in parallel among all

the 2D grids, whereas many 2D grids stay idle at higher tree levels

in the baseline 3D SpTRSV algorithm. Therefore, the FP operations

do not require extra overall runtime for the proposed algorithm.

That said, the extra communication introduced by the proposed 3D

SpTRSV algorithm can have an impact on the total communication

time in each 2D grid. However, they can be highly optimized using

the communication schemes in Subsection 3.2.

3.2 Inter-Grid Communication Optimization
The inter-grid communication and synchronization are needed in

between the 2D L-solve and U-solve of Algorithm 1 to reduce the

partial solution vectors 𝑦𝑧
𝑘
for all grids 𝑧 sharing the non-leaf node

𝑘 . Straightforward implementations using MPI_allreduce for each

node 𝑘 can become costly both in terms of latency and synchro-

nization. Instead, we propose a sparse allreduce algorithm which

requires only𝑂 (log 𝑃𝑧) pair-wise sends and receives. The algorithm
is illustrated with Fig. 3 using the example of Fig. 2. The algorithm is

composed of a sparse reduce phase and a sparse broadcast step. The

reduce phase (Fig. 3(a)) proceeds from leaf to root: Step 1○ performs

pairwise send/receive between two grids for [𝑦0, 𝑦1] and [𝑦0, 𝑦2],
Step 2○ performs pairwise send/receive between Grid-0 and Grid-2

for 𝑦0. Similarly, the broadcast phase (Fig. 3(b)) proceeds from root

to leaf: Step 3○ performs pairwise send/receive between Grid-0

and Grid-2 for 𝑦0, Step 4○ performs pairwise send/receive between

two grids for [𝑦0, 𝑦1] and [𝑦0, 𝑦2]. Note that each 𝑦𝑘 consists of

many supernodes which are distributed according to the 2D block-

cyclic layout of 𝐿𝑧 . That said, each process only communicates

for 𝑂 (log 𝑃𝑧) times when the communication buffer packs data

from all the required supernodes. This sparse allreduce algorithm

is summarized as Algorithm 2.

3.3 Intra-Grid Communication Optimization on
CPU

For each 2D L-solve and U-solve, the intra-grid communication

can be further improved by reducing message latency using cus-

tomized communication trees [29]. In Subsection 3.3 and 3.4, we

only describe the communication optimization strategies for the

L-solve as the U-solve algorithm is very similar. Consider the 𝐿𝑧

matrix in Fig. 1(c) of Grid-3 with a 2 × 3 process layout. For each

supernode column 𝐼 , the process computing 𝑦 (𝐼) needs to send

it to the process in charge of 𝐿(𝐾, 𝐼) to perform the partial sum

(see Eq (1)), for all 𝐾 > 𝐼 residing on a different process, which

is a broadcast operation for each column 𝐼 . Similarly, for each su-

pernode row 𝐾 , the process computing 𝑙𝑠𝑢𝑚(𝐾) = ∑
𝐿(𝐾, 𝐼) · 𝑦 (𝐼)

Unified Communication Optimization Strategies for Sparse Triangular Solver on CPU and GPU Clusters SC ’23, November 12–17, 2023, Denver, CO, USA

Algorithm 1 Proposed 3D SpTRSV on a 3D grid of size 𝑃𝑥 ×𝑃𝑦 ×𝑃𝑧 .
1: procedure solve_3D(𝐿,𝑈 ,𝑏,𝑥)

2: Suppose I am on grid-𝑧 with leaf node 𝑘 , form 𝐿𝑧 and 𝑈 𝑧

with a 𝑃𝑥 × 𝑃𝑦 layout (see Fig. 1(c))

3: 𝑏𝑧 = 𝑏𝑘
4: for each ancester 𝑎 of 𝑘 do ⊲ form RHS 𝑏𝑧 for 𝐿𝑧

5: if 𝑧 is the smallest grid ID that replicates 𝑎 then
6: 𝑏𝑧 = [𝑏𝑧 ;𝑏𝑎]
7: else
8: 𝑏𝑧 = [𝑏𝑧 ; 0]
9: end if
10: end for
11: if CPU then
12: SOLVE_L_CPU(𝐿𝑧 ,𝑏𝑧 ,𝑦𝑧)⊲ 2D CPU L-solve with binary

communication tree (Algorithm 3)

13: else if GPU then
14: if 𝑃𝑥 × 𝑃𝑦=1 then
15: SOLVE_L_SINGLE_GPU(𝐿𝑧 ,𝑏𝑧 ,𝑦𝑧)⊲ single-GPU 2D

L-solve (see Algorithm 4)

16: else
17: SOLVE_L_MULTI_GPU(𝐿𝑧 ,𝑏𝑧 ,𝑦𝑧) ⊲

NVSHMEM-based multi-GPU 2D L-solve (see Algorithm 5)

18: end if
19: end if
20: SPARSE_ALLREDUCE(𝑦𝑧) ⊲ Inter-grid communication

to form the correct solution vector (see Algorithm 2)

21: if CPU then
22: SOLVE_U_CPU(𝑈 𝑧 ,𝑦𝑧 ,𝑥𝑧) ⊲ 2D CPU U-solve with

binary communication tree

23: else if GPU then
24: if 𝑃𝑥 × 𝑃𝑦=1 then
25: SOLVE_U_SINGLE_GPU(𝑈 𝑧 ,𝑦𝑧 ,𝑥𝑧) ⊲ single-GPU

2D U-solve

26: else
27: SOLVE_U_MULTI_GPU(𝑈 𝑧 ,𝑦𝑧 ,𝑥𝑧) ⊲

NVSHMEM-based multi-GPU 2D U-solve

28: end if
29: end if
30: end procedure

for all 𝐿(𝐾, 𝐼) it owns needs to send 𝑙𝑠𝑢𝑚 to the process storing

𝐿(𝐾,𝐾)−1 (see Eq (1)). This induces a reduction operation for each

row 𝐾 . These broadcast and reduction operations can be improved

using customized binary communication trees (one per column

and row) to significantly reduce the total message counts [29]. For

ease of illustration, Algorithm 3 summarizes the communication

tree-enhanced 2D L-solve with a 𝑃𝑥 × 1 process layout, where only

broadcast operation is needed. Our numerical results in Section 4.1

will demonstrate the functionality and efficiency of using 𝑃𝑥 × 𝑃𝑦
process layouts with both broadcast and reduction operations. In

Algorithm 3, we use an indicator array 𝑓𝑚𝑜𝑑 to keep track of the

number of 𝑦 (𝐼) each row 𝐾 needs to receive. The algorithm is MPI

message driven with a blocking MPI_Recv at Line 7 for any incom-

ing message until the total number of expected messages have been

received by each process.

Algorithm 2 SparseAllReduce of the partial solution vectors after

3D L-solve across 𝑃𝑧 grids

1: procedure SPARSE_ALLREDUCE(𝑦)
2: Suppose I am on grid-𝑧 with nodes 𝑘𝑙 , 𝑙 = 0, . . . , 𝑙𝑚𝑎𝑥 , com-

plete solution vector 𝑦𝑘0 , and partial solution vectors 𝑦𝑘𝑙 = 𝑦
𝑧
𝑘𝑙
,

𝑙 > 0.

3: for 𝑙 = 0 : 𝑙𝑚𝑎𝑥 − 1 do ⊲ sparse reduce from leaf to root

4: 𝑦𝑏𝑢𝑓 := {𝑦𝑎 |𝑎 is an ancester of 𝑘𝑙 } ⊲ each 𝑦𝑎 follows

the same 2D layout as 𝐿

5: if 𝑧%2𝑙+1 = 0 then ⊲ pairwise inter-grid

communication

6: Send 𝑦𝑏𝑢𝑓

7: else if 𝑧%2𝑙+1 = 2
𝑙 then

8: Receive and reduce 𝑦𝑏𝑢𝑓
9: end if
10: end for
11: for 𝑙 = 𝑙𝑚𝑎𝑥 − 1 : 0 do ⊲ sparse broadcast from root to leaf

12: 𝑦𝑏𝑢𝑓 := {𝑦𝑎 |𝑎 is an ancester of 𝑘𝑙 } ⊲ each 𝑦𝑎 follows

the same 2D layout as 𝐿

13: if 𝑧%2𝑙+1 = 2
𝑙 then ⊲ pairwise inter-grid

communication

14: Send 𝑦𝑏𝑢𝑓

15: else if 𝑧%2𝑙+1 = 0 then
16: Receive 𝑦𝑏𝑢𝑓
17: end if
18: end for
19: end procedure

y
3

y
1

y
4

y
5

y
6

y
2

y
0

Grid-0 Grid-1 Grid-2 Grid-3

Grid-0 Grid-1 Grid-2 Grid-3

Grid-0 Grid-1 Grid-2 Grid-3

11

1 1

2

y
3

y
1

y
4

y
5

y
6

y
2

y
0

Grid-0 Grid-1 Grid-2 Grid-3

Grid-0 Grid-1 Grid-2 Grid-3

Grid-0 Grid-1 Grid-2 Grid-3

44

4 4

3

(a) Sparse Reduce (b) Sparse Broadcast

Figure 3: The SparseAllReduce phase of Fig. 2 with 4 2D grids,
consisting of (a) a sparse reduce step and (b) a sparse broad-
cast step.

Remark. The proposed 3D SpTRSV algorithm with synchroniza-

tion reduction (see Fig. 1(c)) makes it very convenient to integrate

the binary communication tree-based optimization as each grid

treats 𝐿𝑧 as a single-level 2D block-cyclic distributed matrix. For ex-

ample, each row and column in Fig. 1(b) require one broadcast and

communication tree. In contrast, the baseline 3D SpTRSV algorithm

needs to compute the broadcast trees and reduction trees for each

row and column, for all diagonal and off-diagonal blocks. For exam-

ple, each row and column in Fig. 1(b) require three broadcast and

reduction trees (i.e., for the orange, blue and pink colored blocks),

which unfavorably increases the message counts and greatly com-

plicates the implementation.

SC ’23, November 12–17, 2023, Denver, CO, USA Yang Liu, Nan Ding, Piyush Sao, Samuel Williams, and Xiaoye Sherry Li

Algorithm 3 CPU SpTRSV for 𝐿 on a 2D grid of size 𝑃𝑥 × 1

1: procedure SOLVE_L_CPU(𝐿,𝑏,𝑦)
2: for each leaf node 𝐾 my MPI rank owns do
3: 𝑦 (𝐾) = 𝐿(𝐾,𝐾)−1 · 𝑦 (𝐾)
4: MPI_Isend 𝑦 (𝐾) to my children in the binary broadcast

tree of column 𝐾

5: end for
6: while I expect more messages do ⊲ message count is

pre-computed in 𝑓𝑚𝑜𝑑

7: 𝑦 (𝐾)=MPI_Recv(MPI_ANY_SOURCE) ⊲ blocking

receive any message

8: MPI_Isend 𝑦 (𝐾) to my children in the binary broadcast

tree of column 𝐾

9: for each 𝐿(𝐼 , 𝐾)! = 0, 𝐼 > 𝐾 do
10: 𝑙𝑠𝑢𝑚(𝐼) = 𝑙𝑠𝑢𝑚(𝐼) + 𝐿(𝐼 , 𝐾) · 𝑦 (𝐾)
11: 𝑓𝑚𝑜𝑑 (𝐼) = 𝑓𝑚𝑜𝑑 (𝐼) − 1

12: end for
13: end while
14: end procedure

Algorithm 4 Single-GPU SpTRSV for 𝐿 on a 2D grid of size 1 × 1.

1: procedure SOLVE_L_SINGLE_GPU(𝐿,𝑏,𝑦)
2: 𝐾 = 𝑏𝑖𝑑 ⊲ one thread block handles one block column

3: while (𝑓𝑚𝑜𝑑 (𝐾)! = 0); ⊲ spin wait, called by thread 0

4: 𝑦 (𝐾)+ = 𝑙𝑠𝑢𝑚(𝐾)
5: 𝑦 (𝐾) = 𝐿(𝐾,𝐾)−1 · 𝑦 (𝐾) ⊲ parallelize GEMV/GEMM over

threads

6: for each 𝐿(𝐼 , 𝐾)! = 0, 𝐼 > 𝐾 do
7: 𝑙𝑠𝑢𝑚(𝐼) = 𝑙𝑠𝑢𝑚(𝐼) + 𝐿(𝐼 , 𝐾) · 𝑦 (𝐾) ⊲ parallelize 𝐼 and

GEMV/GEMM over threads

8: 𝑓𝑚𝑜𝑑 (𝐼) = 𝑓𝑚𝑜𝑑 (𝐼) − 1

9: end for
10: end procedure

3.4 Intra-Grid Communication Optimization on
GPU

We also implement the proposed 3D SpTRSV algorithm on GPU

clusters using synchronization reduction with replicated compu-

tation and latency reduction with communication trees. In all our

implementations, we assume that one GPU is assigned to one MPI

for simplicity. Just like Subsection 3.3, we only describe the L-

solve implementation for simplicity. In our implementation, it is

assumed that 𝐿𝑧 , 𝑏𝑧 and𝑦𝑧 reside on GPU and the computation (i.e.,

GEMV/GEMM involving 𝐿(𝐾, 𝐼) and 𝐿(𝐾,𝐾)−1) is performed on

GPU. While the SparseAllReduce operation in Line 20 of Algorithm

1 is implemented with MPIs, the communication operations in 2D L-

solve and U-solve cannot use MPI efficiently. This is due to the fact

that MPI communications are CPU-initiated (even for GPU-aware

MPI) and CPU control flow will significantly slow down perfor-

mance due to the sequential nature of SpTRSV. In other words, both

the CPU and GPU need to keep track of the DAG of SpTRSV with

frequent CPU-GPU data communication. Instead of MPI, we rely

on the GPU-initiated one-sided communication libraries such as

NVSHMEM to implement the binary communication trees. The

GPU-initiated communication feature allows the code to execute

both computation and communication in GPU kernels without CPU

interference, hence traverse the DAG much more efficiently.

Before describing the NVSHMEM-based 2D L-solve, we first de-

scribe the single-GPU accelerated L-solve algorithm. The reason

is two-fold: 1) When 𝑃𝑥 = 𝑃𝑦 = 1 and 𝑃𝑧 > 1, the GPU 2D L-solve

of 𝐿𝑧 requires no intra-grid communication, hence the L-solve

kernel can be greatly simplified. 2) Currently, the GPU-initiated

communication-based 2D solves only work on NVIDIA GPUs with

NVSHMEM. The AMD GPU’s counterpart ROC-SHMEM currently

does not support MPI subcommunicators, which are used through-

out the 3D SpTRSV algorithm. Adding support for MPI subbcommu-

nicators in ROC-SHMEM will enable significantly improved scala-

bility of SpTRSV for large nubmers of GPU nodes. In this paper our

numerical results for AMD GPUs will only consider 𝑃𝑥 = 𝑃𝑦 = 1.

The single-GPU 2D L-solve algorithm is described in Algorithm 4.

The kernel assigns one thread block (with ID 𝑏𝑖𝑑) per supernode

column 𝐾 , whose thread 0 spin waits for the dependency indicator

𝑓𝑚𝑜𝑑 (𝐾) until 𝑦 (𝐾) can be computed. The GEMV/GEMM oper-

ations for 𝐿(𝐼 , 𝐾)𝑦 (𝐾), 𝐼 > 𝐾 are parallelized over the threads in

each thread block. When the number of RHSs nrhs is 1, the GEMV

is parallelized over the row dimension; when nrhs>1, each GEMM

𝐿(𝐼 , 𝐾)𝑦 (𝐾) is implemented as dense blocked operations involving

only the nonzero rows of 𝐿(𝐼 , 𝐾) using the shared memory, similar

to MAGMA’s GEMM implementation [40].

Based on the single-GPU L-solve implementation, we briefly sum-

marize the NVSHMEM-based 2D L-solve algorithm for NVIDIA

GPUs in Algorithm 5. Just like Subsection 3.3, we only describe

the case of 𝑃𝑥 × 1 2D grids for simplicity and the complete 2D

L-solve algorithm can be found in work [12]. NVSHMEM has a

major limitation which is that the number of thread blocks that can

be concurrently scheduled on a GPU equals the number of SMs.

Such a design is to avoid potential deadlocks when using point-to-

point synchronization in the CUDA kernel. However, that limitation

would significantly restrict SpTRSV concurrency. To address this

limitation, two kernels (SOLVE and WAIT) that run on two CUDA

streams are utilized. The SOLVE kernel assigns one thread block

(with ID 𝑏𝑖𝑑) per supernode column 𝐾 that my GPU/CPU owns. If

the GPU is the diagonal process for handling 𝐾 and dependency

𝑓𝑚𝑜𝑑 (𝐾) has been met, the GEMV/GEMM operation involving

𝐿(𝐾,𝐾)−1 is parallelized over the threads of the thread block (Line

7). Otherwise, if the GPU is an off-diagonal process (Line 11), thread

0 will spin wait for the 𝑓 𝑙𝑎𝑔_𝑦 (𝐾) indicating whether 𝑦 (𝐾) (the
buffer 𝑟𝑒𝑎𝑑𝑦_𝑦 (𝐾)) has been received (Line 12). If received, 𝑦 (𝐾)
will be forwarded along the binary broadcast tree of 𝐾 using NVSH-

MEM_SEND (Line 13). Then the GEMV/GEMM involving 𝐿(𝐼 , 𝐾),
𝐼 > 𝐾 are parallelized over the threads and 𝑓𝑚𝑜𝑑 (𝐼) is updated,
just like the single-GPU algorithm of Algorithm 4. Recall that the

number of thread blocks of the SOLVE kernel equals the number

of supernode columns one GPU/CPU handles. The WAIT kernel

has only one thread block, where all threads are waiting for in-

coming messages using nvshmem_init_wait_until_any (Line 22).

Each thread has a unique waiting entry. Note that the binary broad-

cast trees and 𝑓𝑚𝑜𝑑 array have been precomputed on CPUs and

transferred to GPUs, and the 2D L-solve algorithm requires no CPU

interference during the execution.

Unified Communication Optimization Strategies for Sparse Triangular Solver on CPU and GPU Clusters SC ’23, November 12–17, 2023, Denver, CO, USA

Algorithm 5 Multi-GPU SpTRSV for 𝐿 on a 2D grid of size 𝑃𝑥 × 1

1: procedure SOLVE_L_MULTI_GPU(𝐿,𝑏,𝑦)

2: NVSHMEM launch WAIT(𝑓 𝑙𝑎𝑔_𝑦, stream[0]) ⊲

𝑓 𝑙𝑎𝑔_𝑦 (𝐾) = 1 indicates that 𝑦 (𝐾) has been received.

3: CUDA launch SOLVE(𝐿,𝑏,𝑦,stream[1])

4: end procedure

5: procedure SOLVE(𝐿,𝑏,𝑦,stream[1])

6: 𝐾 = 𝑏𝑖𝑑 ⊲ one thread block handles one block column

7: if I am the diagonal process in charge of 𝐾 then
8: while(fmod(K)!=0); ⊲ spin wait, called by thread 0

9: 𝑦 (𝐾)+ = 𝑙𝑠𝑢𝑚(𝐾)
10: 𝑦 (𝐾) = 𝐿(𝐾,𝐾)−1 · 𝑦 (𝐾) ⊲ parallelize TRSV/TRSM

over threads

11: else
12: while(𝑓 𝑙𝑎𝑔_𝑦 (𝐾)!=1); ⊲ spin wait, called by thread 0

13: NVSHMEM SEND 𝑟𝑒𝑎𝑑𝑦_𝑦 (𝐾) to my children’s

𝑟𝑒𝑎𝑑𝑦_𝑦 buffer ⊲ called by all threads

14: for each 𝐿(𝐼 , 𝐾)! = 0, 𝐼 > 𝐾 do ⊲ parallelize 𝐼 and

GEMV/GEMM over threads

15: 𝑙𝑠𝑢𝑚(𝐼) = 𝑙𝑠𝑢𝑚(𝐼) + 𝐿(𝐼 , 𝐾) · 𝑟𝑒𝑎𝑑𝑦_𝑦 (𝐾)
16: 𝑓𝑚𝑜𝑑 (𝐼) = 𝑓𝑚𝑜𝑑 (𝐼) − 1

17: end for
18: end if
19: end procedure

20: procedure WAIT(stream[0]) ⊲ probe messages, this kernel

only requires one thread block

21: while expecting more messages do
22: idx=nvshmem_int_wait_until_any(𝑓 𝑙𝑎𝑔_𝑦) ⊲ message

arrived in block column 𝑖𝑑𝑥

23: end while
24: end procedure

Table 1: Test matrices. Density := {nonzeros in 𝐿𝑈 } / 𝑛2

Matrix Size 𝑛 Nonzeros in 𝐿𝑈 Density Description

nlpkkt80 1,062,400 1,928,132,340 0.17% Optimization

Ga19As19H42 133,123 1,565,515,001 9.15% Chemistry

s1_mat_0_253872 253,872 425,394,978 0.66% Fusion

s2D9pt2048 4,194,304 810,605,750 0.005% Poisson

ldoor 952,203 319,022,661 0.035% Structural

dielFilterV3real 1,102,824 1,138,910,076 0.094% Wave

4 NUMERICAL RESULTS
In this section, we present several numerical experiments to demon-

strate the superior performance of the proposed 3D SpTRSV algo-

rithm compared with the baseline 3D SpTRSV algorithm [39] and

the existing 2D SpTRSV algorithms [12, 29] using three leadership

supercomputing systems: Cori Haswell, Perlmutter and Crusher.

The CPU-only experiments are performed on the Cori Haswell

system at NERSC. Cori Haswell is a Cray XC40 system and consists

of 2388 dual-socket nodes with Intel Xeon E5-2698v3 processors

running 16 cores per socket. The nodes are equipped with 128 GB

of DDR4 memory. The nodes are connected through the Cray Aries

interconnect. The GPU experiments (including the reference CPU

experiments) are performed on the Crusher system at OLCF and

the Perlmutter system at NERSC. Crusher is a testbed system for

the Frontier exascale machine and each node consists of a 64-core

AMD EPYC 7A53 CPU processor and 4 AMD MI250X GPUs (8

Graphics Compute Dies) each with 64 GB of HBM2 memory. The

nodes are connected with HPE Slingshot interconnect with a 25

GB/s bandwidth. Perlmutter (the GPU partition) is a HPE Cray EX

system and consists of 1536 GPU nodes each with a 64-core AMD

EPYC 7763 CPU processor, 4 NVIDIA A100 GPUs, and 40 GB HBM

memory per GPU. The nodes are connected with the HPE Slingshot

11 interconnect with a 25 GB/s bandwidth.

All the benchmark matrices are listed in Table 1, which arise

from various applications such as optimization problems, struc-

tural computation, quantum chemistry calculation, fusion plasma

simulation, finite-difference discretization of Poisson equations,

and finite element discretization of Maxwell equations. All these

matrices except for s1_mat_0_253872 and s2D9pt2048 are publicly

available via the SuiteSparse Matrix Collection [4]. The LU factors

are generated by running the 3D numerical factorization algorithm

in SuperLU_DIST [25] with the METIS ordering for fill-in reduc-

tion [17]. The size and nonzeros of the LU factors are also listed in

Table 1.

4.1 Performance of 3D SpTRSV on CPU clusters
First, we demonstrate the improved scalability and efficiency of

the proposed 3D SpTRSV algorithm using the Cori Haswell CPU

nodes. We test the runtime of the baseline and proposed 3D Sp-

TRSV algorithms by varying the total MPI count 𝑃 = 𝑃𝑥 × 𝑃𝑦 × 𝑃𝑧
from 128 to 2048 and changing 𝑃𝑧 from 1 to 32. When fixing 𝑃

and 𝑃𝑧 , the 2D grid sizes are set such that 𝑃𝑥 ≈ 𝑃𝑦 . Fig. 4 shows

the runtime of the two algorithms for four matrices s2D9pt2048,

nlpkkt80, ldoor and dielFilterV3real. It is worth noting that the

proposed algorithm with 𝑃𝑧 = 1 reduces to the 2D SpTRSV al-

gorithm [29] with latency optimization, corresponding to the red

solid curves. For both the baseline and the proposed algorithms,

increasing 𝑃𝑧 until 16 leads to improved runtime. However, the pro-

posed algorithm constantly overperforms the baseline 3D SpTRSV

[39] and 2D communication-optimized SpTRSV [29]. For the four

matrices s2D9pt2048, nlpkkt80, ldoor and dielFilterV3real, the pro-

posed algorithm respectively achieves up to 3.45x, 1.87x, 1.13x and

1.98x speedups compared to the baseline 3D algorithm. Moreover,

it respectively achieves up to 2.2x, 1.1x, 2.1x and 1.43x speedups

compared to the 2D communication-optimized SpTRSV. It’s worth

noting that without further communication optimization, the base-

line 3D algorithm can be worse than the communication-optimized

2D algorithms. For example, see the solid red curves and dashed

green curves for matrices ldoor and nlpkkt80.

To better understand the performance gains, we show the time

breakdown (averaged over all MPI ranks) in inter-grid communi-

cation, intra-grid communication and FP operations in Fig. 5 and

Fig. 6 for matrices s2D9pt2048 and nlpkkt80, respectively. We com-

pare the results of the baseline 3D SpTRSV algorithm [39] and the

proposed 3D SpTRSV algorithm. In Fig. 5, one can see that the opti-

mization algorithm in Subsections 3.1 and 3.2 significantly reduce

the intra-grid communication time particularly when 𝑃𝑧 is large;

the optimization algorithm in Subsection 3.3 significantly reduces

SC ’23, November 12–17, 2023, Denver, CO, USA Yang Liu, Nan Ding, Piyush Sao, Samuel Williams, and Xiaoye Sherry Li

the inter-grid communication time, particularly when 𝑃𝑥 × 𝑃𝑦 is

large; the algorithm in Subsection 3 introduces extra FP operations,

however they do not contribute to the overall runtime much as the

replicated FP operations are performed in parallel in different grids.

Unlike the 2D PDE discretized matrix s2D9pt2048 in Fig. 5, the 3D

PDE discretized matrix nlpkkt80 (see Fig. 6) introduces asymptoti-

cally more replicated computation and intra-grid communication

when 𝑃𝑧 is large, as can be seen from the bottom middle figure. The

increased intra-grid communication for large 𝑃𝑧 leads to worse 3D

SpTRSV performance.

For the s2D9pt2048 matrix, we also measured the load balance

when varying 𝑃𝑧 . In Fig. 7, we plotted the time in the L and U

solve across all MPI ranks given 𝑃 = 128 and 𝑃 = 1024. The load

imbalance is indicated by the error bars where both the baseline

and proposed 3D SpTRSV exhibit reasonable load balance.

For the nlpkkt80 matrix, we measured the load balance when

varying 𝑃𝑧 . In Fig. 8, we plotted the time in the L and U solve

across all MPI ranks given 𝑃 = 128 and 𝑃 = 1024. When 𝑃𝑧 is large,

the baseline code shows large imbalance, while the proposed code

shows good balance. Although the proposed code shows increased

CPU time averaged over the ranks due to duplicated computation,

it still achieves decreased overall CPU time, which is the maximum

over the ranks.

dielFilterV3real nrhs=1

s2D9pt2048 nrhs=1

ldoor nrhs=1

nlpkkt80 nrhs=1

Figure 4: SpTRSV time using the Cori Haswell machine as
the total MPI counts 𝑃𝑥 × 𝑃𝑦 × 𝑃𝑧 vary. For each 𝑃𝑧 value
(one curve), the 2D grid (𝑃𝑥 , 𝑃𝑦) is set as square as possible.
“Baseline” denotes the baseline 3D SpTRSV [39] and “New”
denotes the proposed 3D SpTRSV.

4.2 Performance of 3D SpTRSV on GPU clusters
This subsection provides several numerical examples to demon-

strate the enhanced scalability of the proposed 3D SpTRSV algo-

rithm on both AMD and NVIDIA GPUs, compared with the pro-

posed 3D SpTRSV algorithm on CPUs and existing multi-GPU

2D SpTRSV algorithm [12]. As mentioned in Subsection 3.4, ROC-

SHMEM for AMD GPUs does not yet support the use of MPI sub-

communicators and hence the proposed 3D SpTRSV cannot use

Z-Comm (baseline)

128 256 512 1024 2048

1

2

4

8

16

32

0

0.005

0.01

0.015

Z-Comm (proposed)

128 256 512 1024 2048

1

2

4

8

16

32

0

0.005

0.01

0.015

XY-Comm (baseline)

128 256 512 1024 2048

1

2

4

8

16

32

0.05

0.1

0.15

0.2

0.25

XY-Comm (proposed)

128 256 512 1024 2048

1

2

4

8

16

32

0.05

0.1

0.15

0.2

0.25

FP-Operation (baseline)

128 256 512 1024 2048

1

2

4

8

16

32
0.005

0.01

0.015

0.02

0.025

0.03

FP-Operation (proposed)

128 256 512 1024 2048

1

2

4

8

16

32
0.005

0.01

0.015

0.02

0.025

0.03

Figure 5: Time breakdown in seconds (averaged over all MPI
ranks) of the s2D9pt2048 matrix using the baseline and pro-
posed 3D SpTRSV algorithms on the Cori Haswell machine.
Z-Comm denotes inter-grid communication time, XY-Comm
denotes intra-grid communication time, and FP-Operation
denotes the floating-point operation time.

Z-Comm (baseline)

128 256 512 1024 2048

1

2

4

8

16

32

0

0.05

0.1

0.15

0.2

Z-Comm (proposed)

128 256 512 1024 2048

1

2

4

8

16

32

0

0.05

0.1

0.15

0.2

XY-Comm (baseline)

128 256 512 1024 2048

1

2

4

8

16

32

0.05

0.1

0.15

0.2

XY-Comm (proposed)

128 256 512 1024 2048

1

2

4

8

16

32

0.05

0.1

0.15

0.2

FP-Operation (baseline)

128 256 512 1024 2048

1

2

4

8

16

32 0.01

0.02

0.03

0.04

0.05

0.06

0.07

FP-Operation (proposed)

128 256 512 1024 2048

1

2

4

8

16

32 0.01

0.02

0.03

0.04

0.05

0.06

0.07

Figure 6: Time breakdown in seconds (averaged over all MPI
ranks) of the nlpkkt80 matrix using the baseline and pro-
posed 3D SpTRSV algorithms on the Cori Haswell machine.
Z-Comm denotes inter-grid communication time, XY-Comm
denotes intra-grid communication time, and FP-Operation
denotes the floating-point operation time.

more than 1 GPUs per 2D grid. Therefore, we shows scalability

results for both AMD and NVIDIA GPUs for 1 × 1 × 𝑃𝑧 layouts, but
show scalability results only for NVIDIA GPUs for more general

𝑃𝑥 ×𝑃𝑦 ×𝑃𝑧 layouts. In all experiments below, we assume one GPU

is assigned to one MPI. For each configuration with GPU solves,

we also include the results with CPU solves (using the proposed 3D

SpTRSV algorithm instead of the baseline 3D SpTRSV algorithm)

obtained from the same system using only CPU cores.

4.2.1 1 × 1 × 𝑃𝑧 layouts on Crusher and Perlmutter. We first test

the performance of the proposed 3D SpTRSV algorithms on CPUs

and GPUs using the Crusher system with AMD MI250X GPUs. We

Unified Communication Optimization Strategies for Sparse Triangular Solver on CPU and GPU Clusters SC ’23, November 12–17, 2023, Denver, CO, USA

1 2 4 8 16 32
0

0.05

0.1

1 2 4 8 16 32
0

0.05

0.1

0.15

0.2

1 2 4 8 16 32
0

0.02

0.04

0.06

0.08

1 2 4 8 16 32
0

0.05

0.1

0.15

0.2

(b)

(a)

Figure 7: Load balance for the s2D9pt2048 matrix of the base-
line and proposed 3D SpTRSV algorithms using (a) 𝑃 = 128

and (b) 𝑃 = 1024. Here the colored bars show the mean value
across all MPI ranks and the error bars show the maximum
and minimum values across all MPI ranks. The left and right
subfigures show the data for the L and U solve phases, respec-
tively. Note that the Z-Comm time is not included.

(b)

(a)
1 2 4 8 16 32

0

0.05

0.1

0.15

1 2 4 8 16 32
0

0.1

0.2

0.3

1 2 4 8 16 32
0

0.02

0.04

0.06

0.08

1 2 4 8 16 32
0

0.05

0.1

0.15

Figure 8: Load balance for the nlpkkt80 matrix of the base-
line and proposed 3D SpTRSV algorithms using (a) 𝑃 = 128

and (b) 𝑃 = 1024. Here the colored bars show the mean value
across all MPI ranks and the error bars show the maximum
and minimum values across all MPI ranks. The left and right
subfigures show the data for the L and U solve phases, respec-
tively. Note that the Z-Comm time is not included.

tested the runtime of CPU and GPU SpTRSV algorithms using the

matrices s1_mat_0_253872, s2D9pt2048 and ldoor by changing 𝑃𝑧
for 1 to 64 (i.e., 8 compute nodes), with both 1 RHS and 50 RHSs.

Fig. 9 shows that total runtime, L-solve time, U-solve time and

inter-grid communication time for each configuration. For most

matrices, the inter-grid communication time is negligible due to the

efficient sparse allreduce operation in Subsection 3.2. The CPU 3D

SpTRSV algorithms exhibits good scalability until 𝑃𝑧 = 64while the

GPU 3D SpTRSV algorithm exhibits good scalability until around

𝑃𝑧 = 16. The deteriorated scalability for larger 𝑃𝑧 is largely due to

the increased FP operations as there is no intra-grid communication.

The CPU-GPU speedups for these three matrices are up to 1.6x, 1.8x,

and 1.7x for 1 RHS and 2.9x, 2.2x and 2.2x for 50 RHSs. Moreover,

the L-solve shows higher CPU-GPU speedups compared with the

U-solve. This is largely due to reversed computation order and less

coalesced memory access patterns of the U-solve compared to the

L-solve.

Next, we perform the similar tests of the proposed 3D SpTRSV

algorithms on CPUs and GPUs using the Perlmutter system with

NVIDIA A100 GPUs. We tested the runtime of CPU and GPU Sp-

TRSV algorithms using the matrices s1_mat_0_253872, s2D9pt2048,

nlpkkt80 and dielFilterV3real by changing 𝑃𝑧 for 1 to 64 (i.e., 16

compute nodes), with both 1 RHS and 50 RHSs. Fig. 10 shows that

total runtime, L-solve time, U-solve time and inter-grid communi-

cation time for each configuration. The observations are similar

to those on Crusher: Both CPU and GPU 3D SpTRSV algorithms

exhibit scalability until 𝑃𝑧 = 64. For example when 𝑃𝑧 changes from

1 to 16 for matrix dielFilterV3real with 1 RHS, the CPU and GPU 3D

SpTRSV algorithms exhibit a speedup of 9.5x and 7x, respectively.

Moreover, the CPU-GPU speedups for these four matrices are up

to 6.5x, 4.6x, 4.8x and 5x for 1 RHS, and 5.2x, 3.7x, 4.1x and 4x for

50 RHSs. These speedup numbers are much higher than those on

Crusher.

s1_mat_0_253872 nrhs=1

0.276

0.1765

0.1155

0.0856

0.067

0.0566
0.0501

0.1775

0.1234

0.0975

0.0848
0.0809 0.0782 0.0782

s1_mat_0_253872 nrhs=50

2.7096

1.4901

0.8933

0.6017

0.456
0.3801 0.3463

0.9292

0.5059

0.3068
0.2189

0.1735 0.1701 0.1667

s2D9pt2048 nrhs=50

9.2686

5.4981

3.4845

2.5412

2.0039
1.7842 1.6872

4.7019

2.5435

1.7627
1.4514

1.0035 0.9871 0.9971

s2D9pt2048 nrhs=1

1.007

0.5601

0.3088

0.1828

0.1209
0.0899

0.0736

0.5575

0.3139

0.1966

0.139
0.1073 0.097 0.0923

ldoor nrhs=1
0.332

0.1903

0.1046

0.0622

0.0381

0.0267
0.021

0.2019

0.1111

0.0673

0.047

0.0345
0.0297 0.0275

ldoor nrhs=50

3.2874

1.9537

1.1472

0.7692

0.5534
0.4597

0.4132

1.5502

0.8791

0.5363

0.3805

0.2693 0.2583 0.2549

Figure 9: Time breakdown (averaged over all MPI ranks) of
the proposed GPU 3D SpTRSV algorithm with 1 and 50 RHSs
on the Crusher machine as 𝑃𝑥 = 𝑃𝑦 = 1 and 𝑃𝑧 varies. “L-
Solve” and “U-solve” denote the time spent in each 2D grid
and 𝑃𝑥 = 𝑃𝑦 = 1 leads to no intra-grid communication.

4.2.2 𝑃𝑥 × 1 × 𝑃𝑧 layouts on Perlmutter. Finally, we demonstrate

the scalability of the proposed 3D SpTRSV algorithm using the

SC ’23, November 12–17, 2023, Denver, CO, USA Yang Liu, Nan Ding, Piyush Sao, Samuel Williams, and Xiaoye Sherry Li

nlpkkt80 nrhs=50
24.0999

12.5713

7.3633

5.0202

4.1414
3.6937 3.512

6.0842

3.25

1.9723
1.3921 1.1437 1.0408 1.0047

s1_mat_0_253872 nrhs=50

2.6794

1.448

0.8503

0.5734

0.4323
0.3567 0.3212

0.5163

0.2891

0.1847
0.1377 0.1205 0.1178 0.123

s2D9pt2048 nrhs=50
8.6247

4.5669

2.6386

1.6757

1.2216
0.9953 0.8896

2.3721

1.4604

1.0337
0.8118 0.7035 0.6587 0.6496

dielFilterV3real nrhs=50

8.4145

4.3322

2.2819

1.3325

0.8486
0.6292 0.5289

2.0658

1.1099

0.6401
0.418 0.3122 0.2753 0.2553

nlpkkt80 nrhs=1

2.2165

1.1437

0.6838

0.4872

0.4065
0.3648 0.3446

0.4588

0.2569

0.1668
0.1268 0.1113 0.1059 0.1044

s1_mat_0_253872 nrhs=10.25

0.1475

0.097

0.0686

0.0543

0.0439
0.03910.0384

0.0232
0.0169 0.0143 0.0137 0.0144 0.0155

dielFilterV3real nrhs=1
0.7661

0.3998

0.2214

0.1329

0.0807
0.0614

0.0484

0.1525

0.0816

0.0462
0.0295 0.0218 0.0197 0.0174

s2D9pt2048 nrhs=1

0.936

0.496

0.2764

0.151

0.0985
0.0732 0.0611

0.2037

0.1139

0.0694
0.047 0.0365 0.0326 0.029

Figure 10: Time breakdown (averaged over all MPI ranks)
of the proposed GPU 3D SpTRSV algorithm with 1 and 50
RHSs on the Perlmutter machine as 𝑃𝑥 = 𝑃𝑦 = 1 and 𝑃𝑧 varies.
“L-Solve” and “U-solve” denote the time spent in each 2D grid
and 𝑃𝑥 = 𝑃𝑦 = 1 leads to no intra-grid communication.

Perlmutter system with NVIDIA A100 GPUs with 𝑃𝑧 >= 1, and

𝑃𝑥 × 𝑃𝑦 > 1, which requires the use of NVSHMEM-based 2D L-

and U-solves described in Subsection 3.4. As reported in [12], for

NVSHMEM-based 2D solves, best performance can be obtained

with 𝑃𝑦 = 1 due to the slower reduction performance compared

to the broadcast performance. Therefore in this subsection we set

𝑃𝑦 = 1 and only vary 𝑃𝑥 and 𝑃𝑧 .

We tested fourmatrices s1_mat_0_253872, nlpkkt80, Ga19As19H42

and dielFilterV3real with 1 RHS by changing 𝑃𝑧 from 1 to 64 and

𝑃𝑦 varying from 1 to 4, as shown in Fig. 11. First, it is worth noting

that when 𝑃𝑧 = 1, the 3D GPU SpTRSV algorithm reduces to the

NVSHMEM-enhanced 2D GPU SpTRSV algorithm [12]. As shown

with the solid red curves in most sub-figures of Fig. 11, the 2D

SpTRSV stops scaling at 𝑃 = 𝑃𝑦 = 8 which requires NVSHMEM to

send data across multiple nodes (recall each Perlmutter GPU node

has 4 GPUs). This is expected as the peak intra-node and inter-node

bandwidth per direction per GPU on Perlmutter are 300 GB/s and

12.5 GB/s, respectively. Such a big bandwidth performance differ-

ence suggests that 2D GPU SpTRSV may not benefit from using

more than one GPU node. Therefore, all other data points in Fig. 11

only vary 𝑃𝑥 from 1 to 4 to ensure all NVSHMEM communications

are confined within one GPU node. Next, we observe that as 𝑃𝑥
and 𝑃𝑧 increase, both CPU and GPU 3D SpTRSV algorithms exhibit

good scalability. That said, given a fixed number of 𝑃 = 𝑃𝑥 × 1 × 𝑃𝑧
GPUs, larger 𝑃𝑧 can yield better performance than larger 𝑃𝑥 mean-

ing the 3D GPU SpTRSV scales better with increasing 𝑃𝑧 . Finally, we

remark that as opposed to 2D GPU SpTRSV [12] that only scales up

to 4 GPUs, the proposed 3D GPU SpTRSV can scale to 256 GPUs. To

our best knowledge, this represents the most scalable GPU SpTRSV

implementation to date.

s1_mat_0_253872 nrhs=1 nlpkkt80 nrhs=1

Ga19As19H42 nrhs=1 dielFilterV3real nrhs=1

Figure 11: Runtime of the proposed 3D SpTRSV algorithm
using the Perlmutter machine as the total MPI counts 𝑃𝑥 ×
𝑃𝑦×𝑃𝑧 vary. For each 𝑃𝑧 value (one curve), the 2D grid (𝑃𝑥 , 𝑃𝑦)
is set to 𝑃𝑦 = 1. “CPU” denotes theCPU 3D SpTRSV and “GPU”
denotes the GPU 3D SpTRSV with one GPU per MPI rank.

5 CONCLUSIONS
This paper presents a novel communication optimization frame-

work for enhancing scalability of the SpTRSV algorithms on CPU

and GPU clusters. The framework builds upon a 3D communication-

avoiding parallel layout which decomposes the sparse matrix into

submatrices mapped to multiple 2D process grid. Each grid handles

a judiciously selected submatrix. The proposed framework advances

the existing 3D SpTRSV algorithm with four improvements in com-

munication: an inter-grid synchronization reduced process layout,

an efficient inter-grid sparse allreduce communication scheme, inte-

gration of a latency reduction scheme for intra-grid communication

for CPU clusters, and integration of a GPU-initiated one-sided com-

munication scheme for GPU clusters. The resulting 3D SpTRSV

algorithm exhibits up to 3.45x speedups compared to the baseline

3D SpTRSV algorithm using up to 2048 Cori Haswell CPU cores,

and scales up to 256 GPUs compared to existing 2D multi-GPU

Unified Communication Optimization Strategies for Sparse Triangular Solver on CPU and GPU Clusters SC ’23, November 12–17, 2023, Denver, CO, USA

SpTRSV algorithms that can only scale to 4 GPUs using Perlmutter

GPU nodes.

Although the unified communication optimization framework

is only applied to the SpTRSV algorithm in this paper, the general

take-away message is that the proposed domain-decomposition-

type hierarchical communication optimization framework applies

to many 3D communication avoiding algorithms and their GPU

implementations. For each 2D subdomain or subproblem, GPU can

boost fine-grained and localized computation, but lacks MPI scal-

ability due to excessive communication. GPU-initiated one-sided

communication and CPU-based communication optimization can

improve their scalability to some extent. On the other hand, adding

the third dimension in the parallel layout can increase coarse-level

parallelism at the expense of limited replicated memory and com-

putation. Moreover, it can be very beneficial to avoid intertwining

intra-grid and inter-grid communication such that the subdomain

can be handled independently as mush as possible.

ACKNOWLEDGMENTS
This research was supported in part by the Exascale Computing

Project (17-SC-20-SC), a collaborative effort of the U.S. Department

of Energy Office of Science and the National Nuclear Security Ad-

ministration, and in part by the U.S. Department of Energy, Office

of Science, Office of Advanced Scientific Computing Research, Sci-

entific Discovery through Advanced Computing (SciDAC) program

through the FASTMath Institute under Contract No. DE-AC02-

05CH11231 at Lawrence Berkeley National Laboratory. This re-

search used resources of the National Energy Research Scientific

Computing Center (NERSC), a U.S. Department of Energy Office

of Science User Facility operated under Contract No. DE-AC02-

05CH11231. This research also used resources of the Oak Ridge

Leadership Facility which is supported by the Office of Science

of the U.S. Department of Energy under Contract No. DE-AC05-

00OR22725.

REFERENCES
[1] Najeeb Ahmad, Buse Yilmaz, and Didem Unat. 2020. A prediction framework for

fast sparse triangular solves. In Euro-Par 2020: Parallel Processing: 26th Interna-
tional Conference on Parallel and Distributed Computing, Warsaw, Poland, August
24–28, 2020, Proceedings. Springer, 529–545.

[2] Andrew M. Bradley. 2016. A hybrid multithreaded direct sparse tri-

angular solver. In Proceedings of SIAM Workshop on Combinatorial Sci-
entific Computing. 13–22. https://doi.org/10.1137/1.9781611974690.ch2

arXiv:http://epubs.siam.org/doi/pdf/10.1137/1.9781611974690.ch2

[3] Indranil Chowdhury and Jean-Yves L’Excellent. 2010. Some Experiments and
Issues to Exploit Multicore Parallelism in a Distributed-Memory Parallel Sparse
Direct Solver. Research Report RR-7411. INRIA. https://hal.inria.fr/inria-00524249

[4] Timothy A. Davis and Yifan Hu. 2011. The University of Florida sparse matrix

collection. ACM Trans. Math. Softw. 38, 1, Article 1 (Dec. 2011), 25 pages. https:

//doi.org/10.1145/2049662.2049663

[5] James Demmel, Laura Grigori, Mark Hoemmen, and Julien Langou. 2008.

Communication-avoiding parallel and sequential QR factorizations. CoRR
abs/0806.2159 (2008).

[6] James Demmel, Mark Hoemmen, Marghoob Mohiyuddin, and Katherine Yelick.

2008. Avoiding communication in sparse matrix computations. In 2008 IEEE
International Symposium on Parallel and Distributed Processing. IEEE, 1–12.

[7] J. W. Demmel, S. C. Eisenstat, J. R. Gilbert, X. S. Li, and J. W. H. Liu. 1999. A

supernodal approach to sparse partial pivoting. SIMAX 20, 3 (1999), 720–755.

[8] J. W. Demmel, J. R. Gilbert, and X. S. Li. 1997. SuperLU and SuperLU_MT.

http://www.netlib.org/scalapack/prototype/.

[9] J. W. Demmel, J. R. Gilbert, and X. S. Li. 1997. SuperLU Users’ Guide. Technical
Report UCB//CSD-97-944. Computer Science Division, U.C. Berkeley.

[10] J. W. Demmel, J. R. Gilbert, and X. S. Li. 1999. An Asynchronous Parallel Supern-

odal Algorithm for Sparse Gaussian Elimination. SIMAX 20, 4 (1999), 915–952.

[11] N. Ding, Y. Liu, X. S. Li, and S. Williams. 2019. Leveraging One-Sided Com-

munication for Sparse Triangular Solvers — A Pathway to Exascale Solvers. In

Proceedings of SC19. Denver, CO.
[12] Nan Ding, Yang Liu, Samuel Williams, and Xiaoye S Li. 2021. A Message-Driven,

Multi-GPU Parallel Sparse Triangular Solver. In SIAM Conference on Applied and
Computational Discrete Algorithms (ACDA21). SIAM, 147–159.

[13] Nan Ding, Samuel Williams, Yang Liu, and Xiaoye S Li. 2020. Leveraging one-

sided communication for sparse triangular solvers. In Proceedings of the 2020
SIAM Conference on Parallel Processing for Scientific Computing. SIAM, 93–105.

[14] Ernesto Dufrechou and Pablo Ezzatti. 2018. Solving Sparse Triangular Linear Sys-

tems in Modern GPUs: A Synchronization-Free Algorithm. In 2018 26th Euromicro
International Conference on Parallel, Distributed and Network-based Processing
(PDP). 196–203. https://doi.org/10.1109/PDP2018.2018.00034

[15] Ernesto Dufrechou, Pablo Ezzatti, Manuel Freire, and Enrique S. Quintana-Ortí.

2021. Machine learning for optimal selection of sparse triangular system solvers

on GPUs. J. Parallel and Distrib. Comput. 158 (2021), 47–55. https://doi.org/10.

1016/j.jpdc.2021.07.013

[16] Pieter Ghysels and Ryan Synk. 2022. High performance sparse multifrontal

solvers on modern GPUs. Parallel Comput. 110 (2022), 102897. https://doi.org/

10.1016/j.parco.2022.102897

[17] George Karypis and Vipin Kumar. 1998. A fast and high quality mul-

tilevel scheme for partitioning irregular graphs. SIAM J. Sci. Com-
put. 20, 1 (1998), 359–392. https://doi.org/10.1137/S1064827595287997

arXiv:https://doi.org/10.1137/S1064827595287997

[18] X. S. Li. 2003. An Overview of SuperLU: Algorithms, Implementation, and User
Interface. Technical Report LBNL-53848. Lawrence Berkeley National Laboratory.
http://crd.lbl.gov/~xiaoye/LBNL-53848.pdf.

[19] X. S. Li. 2005. An Overview of SuperLU: Algorithms, Implementation, and User

Interface. ACM Trans. Math. Software 31, 3 (September 2005), 302–325.

[20] X. S. Li. 2008. Evaluation of sparse factorization and triangular solution on

multicore architectures. In Proceedings of VECPAR’08 8th International Meeting
High Performance Computing for Computational Science. Toulouse, France.

[21] X. S. Li. 2008. Evaluation of SuperLU on multicore architectures. In Proceedings
of SciDAC 2008 Conference, Journal of Physics: Conference Series 125 (2008) 012079.
Institute of Physics Publishing. Seattle.

[22] Xiaoye S Li and James W Demmel. 1998. Making sparse Gaussian elimination

scalable by static pivoting. In SC’98: Proceedings of the 1998 ACM/IEEE Conference
on Supercomputing. IEEE, 34–34.

[23] X. S. Li and J. W. Demmel. 1999. A Scalable Sparse Direct Solver using Static

Pivoting. In Proceedings of the Ninth SIAM Conference on Parallel Processing for
Scientific Computing. San Antonio, Texas.

[24] X. S. Li and J. W. Demmel. 2003. SuperLU_DIST: A Scalable Distributed-Memory

Sparse Direct Solver for Unsymmetric Linear Systems. ACM Trans. Math. Software
29, 2 (June 2003), 110–140.

[25] Xiaoye S Li, Paul Lin, Yang Liu, and Piyush Sao. 2022. Newly Released Capabilities

in Distributed-memory SuperLU Sparse Direct Solver. ACM Trans. Math. Software
(2022).

[26] X. S. Li and M. Shao. 2009. A Supernodal approach to imcomplete LU factorization
with partial pivoting. Technical Report LBNL-2178E. Lawrence Berkeley National
Laboratory. ACM Trans. Mathematical Software (submitted).

[27] X. S. Li andM. Shao. 2010. A Supernodal approach to imcomplete LU factorization

with partial pivoting. ACM Trans. Math. Software 37, 4 (2010).
[28] Weifeng Liu, Ang Li, Jonathan D. Hogg, Iain S. Duff, and Brian Vinter. 2017.

Fast synchronization-free algorithms for parallel sparse triangular solves with

multiple right-hand sides. Concurrency and Computation: Practice and Experience
29, 21 (2017), e4244–n/a. https://doi.org/10.1002/cpe.4244 e4244 cpe.4244.

[29] Yang Liu, Mathias Jacquelin, Pieter Ghysels, and Xiaoye S Li. 2018. Highly scalable

distributed-memory sparse triangular solution algorithms. In 2018 Proceedings of
the Seventh SIAM Workshop on Combinatorial Scientific Computing. SIAM, 87–96.

[30] Sirine Marrakchi and Mohamed Jemni. 2017. Fine-Grained Parallel Solution

for Solving Sparse Triangular Systems on Multicore Platform Using OpenMP

Interface. In 2017 International Conference on High Performance Computing &
Simulation (HPCS). 659–666. https://doi.org/10.1109/HPCS.2017.102

[31] Jan Mayer. 2009. Parallel algorithms for solving linear systems with sparse

triangular matrices. Computing 86, 4 (16 Sep 2009), 291. https://doi.org/10.1007/

s00607-009-0066-3

[32] Padma Raghavan. 1998. Efficient parallel sparse triangular so-

lution using selective inversion. Parallel Processing Letters 08,

01 (1998), 29–40. https://doi.org/10.1142/S0129626498000067

arXiv:http://www.worldscientific.com/doi/pdf/10.1142/S0129626498000067

[33] Bram Reps, P Ghysels, O Schenk, K Meerbergen, and W Vanroose. 2015. Com-

munication Avoiding and Hiding in preconditioned Krylov solvers. In High
Performance Computing in Science and Engineering: HPCSE’15.

[34] F.-H. Rouet. 2012. Memory and performance issues in parallel multifrontal factor-
ization and triangular solutions with sparse right-hand sides. Theses. Université
de Toulouse.

[35] P. Sao, X. Liu, R. Vuduc, and X.S. Li. 2015. A Sparse Direct Solver for Distributed

Memory Xeon Phi-accelerated Systems. In 29th IEEE International Parallel &

SC ’23, November 12–17, 2023, Denver, CO, USA Yang Liu, Nan Ding, Piyush Sao, Samuel Williams, and Xiaoye Sherry Li

Distributed Processing Symposium (IPDPS). Hyderabad, India.
[36] P. Sao, R. Vuduc, and X. Li. 2014. A Distributed CPU-GPU Sparse Direct Solver.

In Proc. of Euro-Par 2014, LNCS Vol. 8632, pp. 487-498. Porto, Portugal.
[37] P. Sao, R. Vuduc, and X.S. Li. 2018. A Communication-Avoiding 3D Factorization

for Sparse Matrices. In 32nd IEEE International Parallel & Distributed Processing
Symposium (IPDPS). Vancouver, Canada.

[38] P. Sao, R. Vuduc, and X. Li. 2019. A communication-avoiding 3D algorithm for

sparse LU factorization on heterogeneous systems. J. Parallel and Distributed
Computing (September 2019). https://doi.org/10.1016/j.jpdc.2019.03.004 https:

//www.sciencedirect.com/science/article/abs/pii/S0743731518305197.

[39] P. Sao, R. Vuduc, and X.S. Li. 2019. A Communication-Avoiding 3D Sparse Trian-

gular Solver. In ICS 2019: International Conference on Supercomputing. Phoenix,
AZ.

[40] Stanimire Tomov, Rajib Nath, Hatem Ltaief, and Jack Dongarra. 2010.

Dense Linear Algebra Solvers for Multicore with GPU Accelerators. In

Proc. of the IEEE IPDPS’10. IEEE Computer Society, Atlanta, GA, 1–8.

DOI: 10.1109/IPDPSW.2010.5470941.

[41] Ehsan Totoni, Michael T. Heath, and Laxmikant V. Kale. 2014. Structure-adaptive

parallel solution of sparse triangular linear systems. Parallel Comput. 40, 9 (2014),
454 – 470. https://doi.org/10.1016/j.parco.2014.06.006

[42] Xinliang Wang, Weifeng Liu, Wei Xue, and Li Wu. 2018. swSpTRSV: a fast

sparse triangular solve with sparse level tile layout on Sunway architectures.

In Proceedings of ACM SIGPLAN Symposium on Principles and Practice of Paral-
lel Programming (PPoPP) (Vienna, Austria). 338–353. https://doi.org/10.1145/

3178487.3178513

[43] T. Wicky, E. Solomonik, and T. Hoefler. 2017. Communication-avoiding paral-

lel algorithms for solving triangular systems of linear equations. In 2017 IEEE
International Parallel and Distributed Processing Symposium (IPDPS). 678–687.
https://doi.org/10.1109/IPDPS.2017.104

[44] Markus Wittmann, Georg Hager, Radim Janalik, Martin Lanser, Axel Klawonn,

Oliver Rheinbach, Olaf Schenk, and Gerhard Wellein. 2018. Multicore Perfor-

mance Engineering of Sparse Triangular Solves Using a Modified Roofline Model.

In 2018 30th International Symposium on Computer Architecture and High Perfor-
mance Computing (SBAC-PAD). 233–241. https://doi.org/10.1109/CAHPC.2018.

8645938

[45] Feng Zhang, Jiya Su, Weifeng Liu, Bingsheng He, Ruofan Wu, Xiaoyong Du, and

Rujia Wang. 2021. YuenyeungSpTRSV: A Thread-Level and Warp-Level Fusion

Synchronization-Free Sparse Triangular Solve. IEEE Transactions on Parallel and
Distributed Systems 32, 9 (2021), 2321–2337. https://doi.org/10.1109/TPDS.2021.

3066635

[46] İlke Çuğu andMurat Manguoğlu. 2020. A parallel multithreaded sparse triangular

linear system solver. Computers & Mathematics with Applications 80, 2 (2020),
371–385. https://doi.org/10.1016/j.camwa.2019.09.012 Numerical Methods for

Scientific Computations and Advanced Applications II.

A ARTIFACT DESCRIPTION & EVALUATION
A.1 Artifact Description
Machines:

The CPU-only experiments are performed on the Cori Haswell

system at NERSC (Fig. 4-6). The GPU experiments (including the

reference CPU experiments) are performed on the Crusher system

at OLCF (Fig. 7) and the Perlmutter system at NERSC (Fig. 8-9).

• Cori Haswell is a Cray XC40 system and consists of 2388 dual-

socket nodes with Intel Xeon E5-2698v3 processors running 16

cores per socket. The nodes are equipped with 128 GB of DDR4

memory. The nodes are connected through the Cray Aries in-

terconnect. Please be advised that Cori will retire at the end of

April 2023.

• Crusher is a testbed system for the Frontier exascale machine

and each node consists of a 64-core AMD EPYC 7A53 CPU pro-

cessor and 4 AMD MI250X GPUs (8 Graphics Compute Dies)

each with 64 GB of HBM2 memory. The nodes are connected

with HPE Slingshot interconnect with a 25 GB/s bandwidth.

• Perlmutter (the GPU partition) is a HPE Cray EX system and

consists of 1536 GPU nodes each with a 64-core AMD EPYC 7763

CPU processor, 4 NVIDIA A100 GPUs, and 40 GB HBM memory

per GPU. The nodes are connected with the HPE Slingshot 11

interconnect with a 25 GB/s bandwidth.

Software: The proposed SpTRSV algorithm is implemented in the

gpu_trisolve_new branch of SuperLU_DIST github repository https:

//github.com/xiaoyeli/superlu_dist/tree/gpu_trisolve_new.Most soft-

ware dependencies are available on those three machines, except

for parmetis-4.0.3 which can be installed by:

wget https://launchpad.net/ubuntu/+archive/primary/+sourcefiles/

parmetis/4.0.3-4/parmetis_4.0.3.orig.tar.gz

tar -xf parmetis_4.0.3.orig.tar.gz

cd parmetis-4.0.3/

export CRAYPE_LINK_TYPE=dynamic

mkdir -p install

make config shared=1 cc=cc cxx=CC prefix=$PWD/install

make install

Once parmetis has been installed, SuperLU_DIST can be installed

in the three test machines as follows:

• Cori Haswell The loaded modules are:

– gcc/11.2.0

– cray-mpich/7.7.19

– cray-libsci/20.09.1

– PrgEnv-gnu/6.0.10

– cmake/3.22.2

SuperLU_DIST can be installed on Cori with https://github.com/

xiaoyeli/superlu_dist/blob/gpu_trisolve_new/example_scripts/run_

cmake_build_haswell_gnu.sh and set the parmetis path accord-

ingly.

• Crusher The loaded modules are:

– gcc/12.2.0

– cray-mpich/8.1.23

– cray-libsci/22.12.1.1

– PrgEnv-gnu/8.3.3

– cmake/3.23.2

– rocm/5.3.0

SuperLU_DIST can be installed on Crusher with https://github.

com/xiaoyeli/superlu_dist/blob/gpu_trisolve_new/example_scripts/

run_cmake_build_crusher_gnu_gpu_hip_amd.sh and set the parmetis

path accordingly.

• Perlmutter GPUs The loaded modules are:

– nvidia/22.7

– cray-mpich/8.1.25

– cray-libsci/23.02.1.1

– PrgEnv-nvidia/8.3.3

– libfabric/1.15.2.0

– cmake/3.24.3

– cudatoolkit/11.7

In addition, SuperLU_DIST with fully 3D GPU SpTRSV support

depends on NVSHMEM 2.8.0, which can be found at https://

developer.download.nvidia.com/compute/redist/nvshmem/2.8.0/

source/ and installed with https://github.com/xiaoyeli/superlu_

dist/blob/gpu_trisolve_new/example_scripts/install_nvshmem_perlmutter.

sh. SuperLU_DIST can be installed on Perlmutter with https://

github.com/xiaoyeli/superlu_dist/blob/gpu_trisolve_new/example_

scripts/run_cmake_build_perlmutter_nvidia_nvshmem.sh and

set the parmetis path accordingly.

Unified Communication Optimization Strategies for Sparse Triangular Solver on CPU and GPU Clusters SC ’23, November 12–17, 2023, Denver, CO, USA

Data collection:
Most of the test matrices including nlpkkt80, ldoor and dielFil-

terV3real and Ga19As19H42 are publicly available from the SuiteS-

parse Matrix Collection at http://sparse.tamu.edu/. The following

scripts (after allocating the appropriate numbers of compute nodes)

have been used to collect performance data from the three ma-

chines.

• Cori Haswell The CPU runs with the baseline and proposed 3D

SpTRSV algorithms used the script at https://github.com/xiaoyeli/

superlu_dist/blob/gpu_trisolve_new/example_scripts/batch_script_

mpi_runit_cori_haswell_gcc.sh.

• Crusher The CPU and GPU runs on Crusher used the script

at https://github.com/xiaoyeli/superlu_dist/blob/gpu_trisolve_

new/example_scripts/batch_script_mpi_runit_crusher_gcc_hip_

3dsolve.sh.

• Perlmutter GPUs The CPU and GPU runs on the Perlmut-

ter GPU partition used the script at https://github.com/xiaoyeli/

superlu_dist/blob/gpu_trisolve_new/example_scripts/batch_script_

mpi_runit_perlmutter_3dsolve_nvidia_nvshmem.sh.

A.2 Artifact Evaluation
Please follow instructions at https://zenodo.org/record/8084212 and

use the docker image liuyangzhuan/superlu3dsptrsv to evaluate

the artifact on local machines.

Received 07 April 2023; accepted 16 June 2023

