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1:35pm Roofline Introduction Samuel Williams
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Materials:
USB / Downloads
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more Roofline at SC’18…
“An Empirical Roofline Methodology for Quantitatively
Assessing Performance Portability”, Yang, Gayatri, Kurth,
Basu, Ronaghi, Adetokunbo, Friesen, Cook, Doerfler, Oliker,
Deslippe, Williams
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Background



Why Use Performance Models or Tools?
§ Identify performance bottlenecks

§ Motivate software optimizations

§ Determine when we’re done optimizing
• Assess performance relative to machine capabilities

• Motivate need for algorithmic changes

§ Predict performance on future machines / architectures

• Sets realistic expectations on performance for future procurements

• Used for HW/SW Co-Design to ensure future architectures are well-suited for the 

computational needs of today’s applications.
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Performance Models
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#FP operations
Cache data movement
DRAM data movement

PCIe data movement
Depth

MPI Message Size
MPI Send:Wait ratio

#MPI Wait’s

Flop/s
Cache GB/s
DRAM GB/s
PCIe bandwidth
OMP Overhead
Network Bandwidth
Network Gap
Network Latency

§ Many different components can contribute to kernel run time.

§ Some are application-specific, and some architecture-specific.



Performance Models

11

§ Can’t think about all these terms all the time for every application…

#FP operations
Cache data movement
DRAM data movement

PCIe data movement
Depth

MPI Message Size
MPI Send:Wait ratio

#MPI Wait’s

Flop/s
Cache GB/s
DRAM GB/s
PCIe bandwidth
OMP Overhead
Network Bandwidth
Network Gap
Network Latency

Computational
Complexity



Performance Models
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§ Because there are so many components, performance models often 
conceptualize the system as being dominated by one or more of these 
components.

#FP operations
Cache data movement
DRAM data movement

PCIe data movement
Depth

MPI Message Size
MPI Send:Wait ratio

#MPI Wait’s

Flop/s
Cache GB/s
DRAM GB/s
PCIe bandwidth
OMP Overhead
Network Bandwidth
Network Gap
Network Latency

LogP

Culler, et al, "LogP: a practical model of parallel computation", 
CACM, 1996.



Performance Models
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§ Because there are so many components, performance models often 
conceptualize the system as being dominated by one or more of these 
components.

#FP operations
Cache data movement
DRAM data movement

PCIe data movement
Depth

MPI Message Size
MPI Send:Wait ratio

#MPI Wait’s

Flop/s
Cache GB/s
DRAM GB/s
PCIe bandwidth
OMP Overhead
Network Bandwidth
Network Gap
Network Latency

LogGP

Alexandrov, et al, "LogGP: incorporating long messages into 
the LogP model - one step closer towards a realistic model for 
parallel computation", SPAA, 1995.



Performance Models
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§ Because there are so many components, performance models often 
conceptualize the system as being dominated by one or more of these 
components.

#FP operations
Cache data movement
DRAM data movement

PCIe data movement
Depth

MPI Message Size
MPI Send:Wait ratio

#MPI Wait’s

Flop/s
Cache GB/s
DRAM GB/s
PCIe bandwidth
OMP Overhead
Network Bandwidth
Network Gap
Network Latency

Roofline
Model

Williams et al, "Roofline: An Insightful Visual Performance 
Model For Multicore Architectures", CACM, 2009.



Roofline Model:
Arithmetic Intensity and Bandwidth



Performance Models / Simulators
§ Historically, many performance models and simulators tracked time to 

predict performance (i.e. counting cycles)

§ The last two decades saw a number of latency-hiding techniques…
• Out-of-order execution (hardware discovers parallelism to hide latency)
• HW stream prefetching (hardware speculatively loads data)
• Massive thread parallelism (independent threads satisfy the latency-bandwidth product)

§ … resulted in a shift from a latency-limited computing regime to a 
throughput-limited computing regime

17



Roofline Model
§ Roofline Model is a throughput-

oriented performance model…
• Tracks rates not times
• Augmented with Little’s Law

(concurrency = latency*bandwidth) 
• Independent of ISA and architecture (applies 

to CPUs, GPUs, Google TPUs1, etc…)

18
1Jouppi et al, “In-Datacenter Performance Analysis of a Tensor 
Processing Unit”, ISCA, 2017.

https://crd.lbl.gov/departments/computer-science/PAR/research/roofline

https://crd.lbl.gov/departments/computer-science/PAR/research/roofline/


(DRAM) Roofline
§ One could hope to always attain 

peak performance (Flop/s)
§ However, finite reuse and 

bandwidth limit performance.
§ Assuming perfect overlap of 

communication and computation…

19

CPU
(compute, flop/s)

DRAM
(data, GB)

DRAM Bandwidth
(GB/s)

#FP ops / Peak GFlop/s
Time = max

#Bytes / Peak GB/s



(DRAM) Roofline
§ One could hope to always attain 

peak performance (Flop/s)
§ However, finite reuse and 

bandwidth limit performance.
§ Assuming perfect overlap of 

communication and computation…
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CPU
(compute, flop/s)

DRAM
(data, GB)

DRAM Bandwidth
(GB/s)

1 / Peak GFlop/sTime
#FP ops #Bytes / #FP ops / Peak GB/s

= max



(DRAM) Roofline
§ One could hope to always attain 

peak performance (Flop/s)
§ However, finite reuse and 

bandwidth limit performance.
§ Assuming perfect overlap of 

communication and computation…
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CPU
(compute, flop/s)

DRAM
(data, GB)

DRAM Bandwidth
(GB/s)

Peak GFlop/s#FP ops
Time (#FP ops / #Bytes) * Peak GB/s

= min



(DRAM) Roofline
§ One could hope to always attain 

peak performance (Flop/s)
§ However, finite reuse and 

bandwidth limit performance.
§ Assuming perfect overlap of 

communication and computation…
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CPU
(compute, flop/s)

DRAM
(data, GB)

DRAM Bandwidth
(GB/s)

Peak GFlop/s
GFlop/s = min

AI * Peak GB/s
Note, Arithmetic Intensity (AI) = Flops / Bytes (as presented to DRAM )



(DRAM) Roofline
§ Plot Roofline bound using 

Arithmetic Intensity as the x-axis
§ Log-log scale makes it easy to 

doodle, extrapolate performance 
along Moore’s Law, etc…

§ Kernels with AI less than machine 
balance are ultimately DRAM 
bound (we’ll refine this later…)

23
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Roofline Example #1
§ Typical machine balance is 5-10 

flops per byte…
• 40-80 flops per double to exploit compute capability
• Artifact of technology and money
• Unlikely to improve

§ Consider STREAM Triad…

• 2 flops per iteration
• Transfer 24 bytes per iteration (read X[i], Y[i], write Z[i])
• AI = 0.083 flops per byte == Memory bound

24
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Arithmetic Intensity (Flop:Byte)

TRIAD

Gflop/s ≤ AI * DRAM GB/s

#pragma omp parallel for
for(i=0;i<N;i++){
Z[i] = X[i] + alpha*Y[i];

}

0.083

Peak Flop/s



Roofline Example #2
§ Conversely, 7-point constant 

coefficient stencil…
• 7 flops

• 8 memory references (7 reads, 1 store) per point

• Cache can filter all but 1 read and 1 write per point

• AI = 0.44 flops per byte == memory bound,
but 5x the flop rate
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DRAM G
B/s

7-point
Stencil

Gflop/s ≤ AI * DRAM GB/s

TRIAD

Arithmetic Intensity (Flop:Byte)
0.083 0.44

Peak Flop/s

#pragma omp parallel for
for(k=1;k<dim+1;k++){
for(j=1;j<dim+1;j++){
for(i=1;i<dim+1;i++){
new[k][j][i] = -6.0*old[k  ][j  ][i ] 

+ old[k  ][j  ][i-1]
+ old[k  ][j  ][i+1]
+ old[k  ][j-1][i ]
+ old[k  ][j+1][i ]
+ old[k-1][j  ][i ]
+ old[k+1][j  ][i ];

}}}



Why is Roofline Useful?
§ Imagine a mix of loop nests
§ Flop/s alone may not be useful in 

deciding which to optimize first

26

Fl
op

/s

Kernel (or apps)



Why is Roofline Useful?
§ We can sort kernels by AI …

27
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Why is Roofline Useful?
§ We can sort kernels by AI …
§ … and compare performance 

relative to machine capabilities
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Why is Roofline Useful?
§ Kernels near the roofline are 

making good use of 
computational resources
o kernels can have low performance 

(Gflop/s), but make good use of a 
machine

o kernels can have high performance 
(Gflop/s), but make poor use of a 
machine

29
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Refining Roofline:
Memory Hierarchy & DLP



Hierarchical Roofline
§ Processors have multiple levels of 

memory/cache
• Registers
• L1, L2, L3 cache
• MCDRAM/HBM (KNL/GPU device memory)
• DDR (main memory)
• NVRAM (non-volatile memory)

§ Applications have locality in each level
§ Unique data movements imply unique AI’s
§ Moreover, each level will have a unique 

bandwidth

31



DDR Bound
DDR AI*BW <

MCDRAM AI*BW

Hierarchical Roofline
§ Construct superposition of 

Rooflines…
§ Measure bandwidth
§ Measure AI for each level of memory
• Although an loop nest may have multiple 

AI’s and multiple bounds (flops, L1, L2, …
DRAM)…

• … performance is bound by the 
minimum
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Hierarchical Roofline
§ Construct superposition of 

Rooflines…
§ Measure bandwidth
§ Measure AI for each level of memory
• Although an loop nest may have multiple 

AI’s and multiple bounds (flops, L1, L2, …
DRAM)…

• … performance is bound by the 
minimum
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DDR G
B/s

MCDRAM ca
ch

e G
B/s

MCDRAM bound
MCDRAM AI*BW <

DDR AI*BW 

Hierarchical Roofline
§ Construct superposition of 

Rooflines…
§ Measure bandwidth

§ Measure AI for each level of memory
• Although an loop nest may have multiple 

AI’s and multiple bounds (flops, L1, L2, …
DRAM)…

• … performance is bound by the 
minimum
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DDR G
B/s

Hierarchical Roofline
§ Construct superposition of 

Rooflines…
§ Measure bandwidth
§ Measure AI for each level of memory
• Although an loop nest may have multiple 

AI’s and multiple bounds (flops, L1, L2, …
DRAM)…

• … performance is bound by the 
minimum
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Data, Instruction, Thread-Level Parallelism…
§ We have assumed one can attain 

peak flops with high locality.
§ In reality, we must …

• Use special instructions (e.g. FMA)
• Vectorize loops (16 flops per instruction)
• Hide FPU latency

(unrolling, out-of-order execution)
• Use all cores & sockets

§ Without these, …
• Peak performance is not attainable
• Some kernels can transition from 

memory-bound to compute-bound
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Data, Instruction, Thread-Level Parallelism…
§ We have assumed one can attain 

peak flops with high locality.
§ In reality, we must …

• Use special instructions (e.g. FMA)
• Vectorize loops (16 flops per instruction)
• Hide FPU latency

(unrolling, out-of-order execution)
• Use all cores & sockets

§ Without these, …
• Peak performance is not attainable
• Some kernels can transition from 

memory-bound to compute-bound
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Roofline Model:
Roofline-driven Performance Optimization



Roofline-Driven Performance Optimization
§ Broadly speaking, there are three 

approaches to improving 
performance:
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Roofline-Driven Performance Optimization
§ Broadly speaking, there are three 

approaches to improving 
performance:

§ Maximize in-core performance 
(e.g. get compiler to vectorize)
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Roofline-Driven Performance Optimization
§ Broadly speaking, there are three 

approaches to improving 
performance:

§ Maximize in-core performance 
(e.g. get compiler to vectorize)

§ Maximize memory bandwidth 
(e.g. NUMA-aware, unit-stride)
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Roofline-Driven Performance Optimization
§ Broadly speaking, there are three 

approaches to improving 
performance:

§ Maximize in-core performance 
(e.g. get compiler to vectorize)

§ Maximize memory bandwidth 
(e.g. NUMA-aware, unit stride)

§ Minimize data movement
(e.g. cache blocking)
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Roofline In Practice:
Evolution at LBL / NERSC



Step 1: 
Machine Characterization



Machine Characterization
§ “Theoretical Performance”

numbers can be highly optimistic…
• Pin BW vs. sustained bandwidth
• TurboMode / Underclock for AVX
• compiler failings on high-AI loops.

45
https://crd.lbl.gov/departments/computer-science/PAR/research/roofline/

§ LBL developed the Empirical 
Roofline Toolkit (ERT)…
• Characterize CPU/GPU systems
• Peak Flop rates
• Bandwidths for each level of memory
• MPI+OpenMP/CUDA == multiple GPUs
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Step 2:
Application Characterization



Measuring AI

47

§ To characterize execution with Roofline we need…
o Time
o Flops (=> flop’s / time)
o Data movement between each level of memory (=> Flop’s / GB’s)

§ We can look at the full application…
o Coarse grained, 30-min average
o Misses many details and bottlenecks

§ or we can look at individual loop nests…
o Requires auto-instrumentation on a loop by loop basis
o Moreover, we should probably differentiate data movement or flops on a core-by-core basis.



How Do We Count Flop’s?
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Manual Counting
§ Go thru each loop nest and 

count the number of FP 
operations

ü Works best for deterministic 
loop bounds

ü or parameterize by the 
number of iterations 
(recorded at run time)

✘ Not scalable

Perf. Counters
§ Read counter before/after

ü More Accurate

ü Low overhead (<%) == can 
run full MPI applications

ü Can detect load imbalance
✘ Requires privileged access

✘ Requires manual 
instrumentation (+overhead) 
or full-app characterization 

✘ Broken counters = garbage
✘ May not differentiate 

FMADD from FADD

✘ No insight into special 
pipelines

Binary Instrumentation
§ Automated inspection of 

assembly at run time

ü Most Accurate

ü FMA-, VL-, and mask-aware

ü Can count instructions by 
class/type

ü Can detect load imbalance

ü Can include effects from 
non-FP instructions

ü Automated application to 
multiple loop nests

✘ >10x overhead (short runs / 
reduced concurrency)



How Do We Measure Data Movement?

49

Manual Counting
§ Go thru each loop nest and 

estimate how many bytes 
will be moved

§ Use a mental model of 
caches

ü Works best for simple loops 
that stream from DRAM 
(stencils, FFTs, spare, …)

✘ N/A for complex caches

✘ Not scalable

Perf. Counters
§ Read counter before/after
ü Applies to full hierarchy (L2, 

DRAM, 
ü Much more Accurate
ü Low overhead (<%) == can 

run full MPI applications
ü Can detect load imbalance
✘ Requires privileged access
✘ Requires manual 

instrumentation (+overhead) 
or full-app characterization 

Cache Simulation
§ Build a full cache simulator 

driven by memory 
addresses

ü Applies to full hierarchy and 
multicore

ü Can detect load imbalance
ü Automated application to 

multiple loop nests
✘ Ignores prefetchers
✘ >10x overhead (short runs / 

reduced concurrency)



Previously Cobbled Together Tools…
§ Use tools known/observed to work on NERSC’s 

Cori (KNL, HSW)…
• Used Intel SDE (Pin binary instrumentation + 

emulation) to create software Flop counters
• Used Intel VTune performance tool (NERSC/Cray 

approved) to access uncore counters

Ø Accurate measurement of Flop’s (HSW) and 
DRAM data movement (HSW and KNL)

Ø Used by NESAP (NERSC KNL application 
readiness project) to characterize apps on Cori…

50

http://www.nersc.gov/users/application-performance/measuring-arithmetic-intensity/

NERSC is LBL’s production computing division
CRD is LBL’s Computational Research Division
NESAP is NERSC’s KNL application readiness project
LBL is part of SUPER (DOE SciDAC3 Computer Science Institute)

http://www.nersc.gov/users/application-performance/measuring-arithmetic-intensity/


Intel Advisor
§ Includes Roofline Automation…

ü Automatically instruments applications
(one dot per loop nest/function)

ü Computes FLOPS and AI for each 
function (CARM)

ü AVX-512 support that incorporates masks
ü Integrated Cache Simulator1

(hierarchical roofline / multiple AI’s)
ü Automatically benchmarks target system 

(calculates ceilings)
ü Full integration with existing Advisor 

capabilities

51

Memory-bound, invest into 
cache blocking etc

Compute bound: invest 
into SIMD,..

1Experimental Feature, the look and feel and exact behavior is 
subject for change

http://www.nersc.gov/users/training/events/roofline-training-1182017-1192017

http://www.nersc.gov/users/training/events/roofline-training-1182017-1192017


Hierarchical Roofline vs.
Cache-Aware Roofline

…understanding different Roofline 
formulations in Intel Advisor



There are two Major Roofline Formulations:
§ Hierarchical Roofline (original Roofline w/ DRAM, L3, L2, …)…

• Williams, et al, “Roofline: An Insightful Visual Performance Model for Multicore Architectures”, CACM, 2009 
• Chapter 4 of “Auto-tuning Performance on Multicore Computers”, 2008
• Defines multiple bandwidth ceilings and multiple AI’s per kernel

• Performance bound is the minimum of flops and the memory intercepts (superposition of original, single-metric Rooflines)

§ Cache-Aware Roofline
• Ilic et al, "Cache-aware Roofline model: Upgrading the loft", IEEE Computer Architecture Letters, 2014
• Defines multiple bandwidth ceilings, but uses a single AI (flop:L1 bytes)

• As one looses cache locality (capacity, conflict, …) performance falls from one BW ceiling to a lower one at constant AI

53

§ Why Does this matter?
• Some tools use the Hierarchical Roofline, some use cache-aware == Users need to understand the differences
• Cache-Aware Roofline model was integrated into production Intel Advisor

• Evaluation version of Hierarchical Roofline1 (cache simulator) has also been integrated into Intel Advisor

1Experimental Feature, the look and feel and exact behavior is 
subject for change



54

Cache-Aware RooflineHierarchical Roofline
§ Captures cache effects§ Captures cache effects

§ Single Arithmetic Intensity§ Multiple Arithmetic Intensities
(one per level of memory)

§ AI independent of problem size§ AI dependent on problem size
(capacity misses reduce AI)

§ AI is Flop:Bytes as presented to the L1 
cache (plus non-temporal stores)

§ AI is Flop:Bytes after being filtered by 
lower cache levels

§ Memory/Cache/Locality effects are 
observed as decreased performance

§ Memory/Cache/Locality effects are 
observed as decreased AI

§ Requires static analysis or binary 
instrumentation to measure AI

§ Requires performance counters or 
cache simulator to correctly measure AI



Example: STREAM
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#pragma omp parallel for
for(i=0;i<N;i++){

Z[i] = X[i] + alpha*Y[i];
}

§ L1 AI…
• 2 flops
• 2 x 8B load (old)
• 1 x 8B store (new)
• = 0.08 flops per byte

§ No cache reuse…
• Iteration i doesn’t touch any data associated with 

iteration i+delta for any delta. 

§ … leads to a DRAM AI equal to 
the L1 AI



Example: STREAM
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Cache-Aware RooflineHierarchical Roofline
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Example: 7-point Stencil (Small Problem)
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#pragma omp parallel for
for(k=1;k<dim+1;k++){
for(j=1;j<dim+1;j++){
for(i=1;i<dim+1;i++){

new[k][j][i] = -6.0*old[k  ][j  ][i ] 
+ old[k  ][j  ][i-1]
+ old[k  ][j  ][i+1]
+ old[k  ][j-1][i ]
+ old[k  ][j+1][i ]
+ old[k-1][j  ][i ]
+ old[k+1][j  ][i ];

}}}

§ L1 AI…
• 7 flops
• 7 x 8B load (old)
• 1 x 8B store (new)
• = 0.11 flops per byte
• some compilers may do register shuffles to reduce the 

number of loads.

§ Moderate cache reuse…
• old[k][j][i+1] is reused on next iteration of i.
• old[k][j+1][i] is reused on next iteration of j.
• old[k+1][j][i] is reused on next iterations of k.

§ … leads to DRAM AI larger than 
the L1 AI



Example: 7-point Stencil (Small Problem)
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Example: 7-point Stencil (Small Problem)
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Example: 7-point Stencil (Large Problem)
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Example: 7-point Stencil (Observed Perf.)
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Example: 7-point Stencil (Observed Perf.)
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Questions?



Don’t forget to take the Survey…
http://bit.ly/sc18-eval

http://bit.ly/sc17-eval


Backup



Refining Roofline:
NUMA



NUMA Effects
§ Cori’s Haswell nodes are built 

from 2 Xeon processors (sockets)
• Memory attached to each socket (fast)
• Interconnect that allows remote memory 

access (slow == NUMA)
• Improper memory allocation can result in 

more than a 2x performance penalty
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Refining Roofline:
Instruction Issue Bandwidth



Superscalar vs. Instruction mix
§ Define in-core ceilings based on 

instruction mix…
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to get peak performance



Superscalar vs. Instruction mix
§ Define in-core ceilings based on 

instruction mix…
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§ e.g. KNL
• 2-issue superscalar
• 2 FP data paths
• Requires 100% of the instructions to be 

FP to get peak performance



Superscalar vs. instruction mix
§ Define in-core ceilings based on 

instruction mix…
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Superscalar vs. instruction mix
§ Define in-core ceilings based on 

instruction mix…
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§ e.g. Haswell
• 4-issue superscalar
• Only 2 FP data paths
• Requires 50% of the instructions to be FP 

to get peak performance

§ e.g. KNL
• 2-issue superscalar
• 2 FP data paths
• Requires 100% of the instructions to be 

FP to get peak performance

non-FP instructions 
sap instruction issue 
bandwidth and pull 
performance below 

Roofline



Refining Roofline:
Compulsory, Capacity, and Conflict misses 



Locality Walls
§ Naively, we can bound AI using 

only compulsory cache misses
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Locality Walls
§ Naively, we can bound AI using 

only compulsory cache misses

§ However, write allocate caches 
can lower AI
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Locality Walls
§ Naively, we can bound AI using 

only compulsory cache misses

§ However, write allocate caches 
can lower AI

§ Cache capacity misses can have 
a huge penalty
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Locality Walls
§ Naively, we can bound AI using 

only compulsory cache misses
§ However, write allocate caches 

can lower AI
§ Cache capacity misses can have 

a huge penalty
Ø Compute bound became 

memory bound
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LIKWID:
Performance Counters



LIKWID
§ LIKWID provides easy to use wrappers for measuring performance 

counters...
ü Works on NERSC production systems
ü Distills counters into user-friendly metrics (e.g. MCDRAM Bandwidth)
ü Minimal overhead (<1%)
ü Scalable in distributed memory (MPI-friendly)
ü Fast, high-level characterization
✘ No timing breakdowns
✘ Suffers from Garbage-in/Garbage Out

(i.e. hardware counter must be sufficient and correct)
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https://github.com/RRZE-HPC/likwid
http://www.nersc.gov/users/software/performance-and-debugging-tools/likwid

https://github.com/RRZE-HPC/likwid
http://www.nersc.gov/users/software/performance-and-debugging-tools/likwid

