
Performance Tuning of Scientific
Codes with the Roofline Model
1:30pm Introductions / Administration all
1:35pm Roofline Introduction Samuel Williams
2:10pm CARM / Energy / GPUs Aleksandar Ilic
2:40pm Intel Advisor Installation Zakhar Matveev
3:00pm coffee break
3:30pm Introduction to Intel Advisor Zakhar Matveev
3:45pm Hands-on with Intel Advisor all
4:30pm HPC Application Studies Charlene Yang
4:55pm closing remarks / Q&A all

Introductions
Samuel Williams
Computational Research Division
Lawrence Berkeley National Lab

SWWilliams@lbl.gov

Charlene Yang
NERSC

Lawrence Berkeley National Lab
CJYang@lbl.gov

Aleksandar Ilic
Institute of Systems and Computer

Engineering, Portugal
aleksandar.ilic@inesc-id.pt

Zakhar Matveev
Intel Corporation

zakhar.a.matveev@intel.com

Kiril Rogozhin
Intel Corporation

kirill.rogozhin@intel.com

mailto:SWWilliams@lbl.gov
mailto:TKoskela@lbl.gov
mailto:aleksandar.ilic@inesc-id.pt
mailto:zakhar.a.matveev@intel.com
mailto:kirill.rogozhin@intel.com

Materials:
USB / Downloads

P3HPC
Workshop

Friday
8:30am
D174

more Roofline at SC’18…
“An Empirical Roofline Methodology for Quantitatively
Assessing Performance Portability”, Yang, Gayatri, Kurth,
Basu, Ronaghi, Adetokunbo, Friesen, Cook, Doerfler, Oliker,
Deslippe, Williams

Don’t forget to take the Survey…
http://bit.ly/sc18-eval

http://bit.ly/sc17-eval

Introduction to the
Roofline Model

Samuel Williams
Computational Research Division
Lawrence Berkeley National Lab

SWWilliams@lbl.gov

mailto:SWWilliams@lbl.gov

§ This material is based upon work supported by the Advanced Scientific Computing Research Program
in the U.S. Department of Energy, Office of Science, under Award Number DE-AC02-05CH11231.

§ This material is based upon work supported by the DOE RAPIDS SciDAC Institute.
§ This research used resources of the National Energy Research Scientific Computing Center (NERSC),

which is supported by the Office of Science of the U.S. Department of Energy under contract DE-AC02-
05CH11231.

Acknowledgements

Background

Why Use Performance Models or Tools?
§ Identify performance bottlenecks

§ Motivate software optimizations

§ Determine when we’re done optimizing
• Assess performance relative to machine capabilities

• Motivate need for algorithmic changes

§ Predict performance on future machines / architectures

• Sets realistic expectations on performance for future procurements

• Used for HW/SW Co-Design to ensure future architectures are well-suited for the

computational needs of today’s applications.

9

Performance Models

10

#FP operations
Cache data movement
DRAM data movement

PCIe data movement
Depth

MPI Message Size
MPI Send:Wait ratio

#MPI Wait’s

Flop/s
Cache GB/s
DRAM GB/s
PCIe bandwidth
OMP Overhead
Network Bandwidth
Network Gap
Network Latency

§ Many different components can contribute to kernel run time.

§ Some are application-specific, and some architecture-specific.

Performance Models

11

§ Can’t think about all these terms all the time for every application…

#FP operations
Cache data movement
DRAM data movement

PCIe data movement
Depth

MPI Message Size
MPI Send:Wait ratio

#MPI Wait’s

Flop/s
Cache GB/s
DRAM GB/s
PCIe bandwidth
OMP Overhead
Network Bandwidth
Network Gap
Network Latency

Computational
Complexity

Performance Models

12

§ Because there are so many components, performance models often
conceptualize the system as being dominated by one or more of these
components.

#FP operations
Cache data movement
DRAM data movement

PCIe data movement
Depth

MPI Message Size
MPI Send:Wait ratio

#MPI Wait’s

Flop/s
Cache GB/s
DRAM GB/s
PCIe bandwidth
OMP Overhead
Network Bandwidth
Network Gap
Network Latency

LogP

Culler, et al, "LogP: a practical model of parallel computation",
CACM, 1996.

Performance Models

13

§ Because there are so many components, performance models often
conceptualize the system as being dominated by one or more of these
components.

#FP operations
Cache data movement
DRAM data movement

PCIe data movement
Depth

MPI Message Size
MPI Send:Wait ratio

#MPI Wait’s

Flop/s
Cache GB/s
DRAM GB/s
PCIe bandwidth
OMP Overhead
Network Bandwidth
Network Gap
Network Latency

LogGP

Alexandrov, et al, "LogGP: incorporating long messages into
the LogP model - one step closer towards a realistic model for
parallel computation", SPAA, 1995.

Performance Models

15

§ Because there are so many components, performance models often
conceptualize the system as being dominated by one or more of these
components.

#FP operations
Cache data movement
DRAM data movement

PCIe data movement
Depth

MPI Message Size
MPI Send:Wait ratio

#MPI Wait’s

Flop/s
Cache GB/s
DRAM GB/s
PCIe bandwidth
OMP Overhead
Network Bandwidth
Network Gap
Network Latency

Roofline
Model

Williams et al, "Roofline: An Insightful Visual Performance
Model For Multicore Architectures", CACM, 2009.

Roofline Model:
Arithmetic Intensity and Bandwidth

Performance Models / Simulators
§ Historically, many performance models and simulators tracked time to

predict performance (i.e. counting cycles)

§ The last two decades saw a number of latency-hiding techniques…
• Out-of-order execution (hardware discovers parallelism to hide latency)
• HW stream prefetching (hardware speculatively loads data)
• Massive thread parallelism (independent threads satisfy the latency-bandwidth product)

§ … resulted in a shift from a latency-limited computing regime to a
throughput-limited computing regime

17

Roofline Model
§ Roofline Model is a throughput-

oriented performance model…
• Tracks rates not times
• Augmented with Little’s Law

(concurrency = latency*bandwidth)
• Independent of ISA and architecture (applies

to CPUs, GPUs, Google TPUs1, etc…)

18
1Jouppi et al, “In-Datacenter Performance Analysis of a Tensor
Processing Unit”, ISCA, 2017.

https://crd.lbl.gov/departments/computer-science/PAR/research/roofline

https://crd.lbl.gov/departments/computer-science/PAR/research/roofline/

(DRAM) Roofline
§ One could hope to always attain

peak performance (Flop/s)
§ However, finite reuse and

bandwidth limit performance.
§ Assuming perfect overlap of

communication and computation…

19

CPU
(compute, flop/s)

DRAM
(data, GB)

DRAM Bandwidth
(GB/s)

#FP ops / Peak GFlop/s
Time = max

#Bytes / Peak GB/s

(DRAM) Roofline
§ One could hope to always attain

peak performance (Flop/s)
§ However, finite reuse and

bandwidth limit performance.
§ Assuming perfect overlap of

communication and computation…

20

CPU
(compute, flop/s)

DRAM
(data, GB)

DRAM Bandwidth
(GB/s)

1 / Peak GFlop/sTime
#FP ops #Bytes / #FP ops / Peak GB/s

= max

(DRAM) Roofline
§ One could hope to always attain

peak performance (Flop/s)
§ However, finite reuse and

bandwidth limit performance.
§ Assuming perfect overlap of

communication and computation…

21

CPU
(compute, flop/s)

DRAM
(data, GB)

DRAM Bandwidth
(GB/s)

Peak GFlop/s#FP ops
Time (#FP ops / #Bytes) * Peak GB/s

= min

(DRAM) Roofline
§ One could hope to always attain

peak performance (Flop/s)
§ However, finite reuse and

bandwidth limit performance.
§ Assuming perfect overlap of

communication and computation…

22

CPU
(compute, flop/s)

DRAM
(data, GB)

DRAM Bandwidth
(GB/s)

Peak GFlop/s
GFlop/s = min

AI * Peak GB/s
Note, Arithmetic Intensity (AI) = Flops / Bytes (as presented to DRAM)

(DRAM) Roofline
§ Plot Roofline bound using

Arithmetic Intensity as the x-axis
§ Log-log scale makes it easy to

doodle, extrapolate performance
along Moore’s Law, etc…

§ Kernels with AI less than machine
balance are ultimately DRAM
bound (we’ll refine this later…)

23

Peak Flop/s

At
ta

in
ab

le
 F

lo
p/

s

DRAM G
B/s

Arithmetic Intensity (Flop:Byte)

DRAM-bound Compute-bound

Roofline Example #1
§ Typical machine balance is 5-10

flops per byte…
• 40-80 flops per double to exploit compute capability
• Artifact of technology and money
• Unlikely to improve

§ Consider STREAM Triad…

• 2 flops per iteration
• Transfer 24 bytes per iteration (read X[i], Y[i], write Z[i])
• AI = 0.083 flops per byte == Memory bound

24

At
ta

in
ab

le
 F

lo
p/

s

DRAM G
B/s

Arithmetic Intensity (Flop:Byte)

TRIAD

Gflop/s ≤ AI * DRAM GB/s

#pragma omp parallel for
for(i=0;i<N;i++){
Z[i] = X[i] + alpha*Y[i];

}

0.083

Peak Flop/s

Roofline Example #2
§ Conversely, 7-point constant

coefficient stencil…
• 7 flops

• 8 memory references (7 reads, 1 store) per point

• Cache can filter all but 1 read and 1 write per point

• AI = 0.44 flops per byte == memory bound,
but 5x the flop rate

25

A
tta

in
ab

le
 F

lo
p/

s

DRAM G
B/s

7-point
Stencil

Gflop/s ≤ AI * DRAM GB/s

TRIAD

Arithmetic Intensity (Flop:Byte)
0.083 0.44

Peak Flop/s

#pragma omp parallel for
for(k=1;k<dim+1;k++){
for(j=1;j<dim+1;j++){
for(i=1;i<dim+1;i++){
new[k][j][i] = -6.0*old[k][j][i]

+ old[k][j][i-1]
+ old[k][j][i+1]
+ old[k][j-1][i]
+ old[k][j+1][i]
+ old[k-1][j][i]
+ old[k+1][j][i];

}}}

Why is Roofline Useful?
§ Imagine a mix of loop nests
§ Flop/s alone may not be useful in

deciding which to optimize first

26

Fl
op

/s

Kernel (or apps)

Why is Roofline Useful?
§ We can sort kernels by AI …

27

At
ta

in
ab

le
 F

lo
p/

s

Arithmetic Intensity (Flop:Byte)

Why is Roofline Useful?
§ We can sort kernels by AI …
§ … and compare performance

relative to machine capabilities

28

Peak Flop/s

At
ta

in
ab

le
 F

lo
p/

s

DDR G
B/s

Arithmetic Intensity (Flop:Byte)

Why is Roofline Useful?
§ Kernels near the roofline are

making good use of
computational resources
o kernels can have low performance

(Gflop/s), but make good use of a
machine

o kernels can have high performance
(Gflop/s), but make poor use of a
machine

29

Peak Flop/s

At
ta

in
ab

le
 F

lo
p/

s

DDR G
B/s

50
% of

 STREAM

Arithmetic Intensity (Flop:Byte)

50% of Peak

Refining Roofline:
Memory Hierarchy & DLP

Hierarchical Roofline
§ Processors have multiple levels of

memory/cache
• Registers
• L1, L2, L3 cache
• MCDRAM/HBM (KNL/GPU device memory)
• DDR (main memory)
• NVRAM (non-volatile memory)

§ Applications have locality in each level
§ Unique data movements imply unique AI’s
§ Moreover, each level will have a unique

bandwidth

31

DDR Bound
DDR AI*BW <

MCDRAM AI*BW

Hierarchical Roofline
§ Construct superposition of

Rooflines…
§ Measure bandwidth
§ Measure AI for each level of memory
• Although an loop nest may have multiple

AI’s and multiple bounds (flops, L1, L2, …
DRAM)…

• … performance is bound by the
minimum

32

At
ta

in
ab

le
 F

lo
p/

s

DDR G
B/s

MCDRAM ca
ch

e G
B/s

Arithmetic Intensity (Flop:Byte)

L2
 G

B/s

Peak Flop/s

Hierarchical Roofline
§ Construct superposition of

Rooflines…
§ Measure bandwidth
§ Measure AI for each level of memory
• Although an loop nest may have multiple

AI’s and multiple bounds (flops, L1, L2, …
DRAM)…

• … performance is bound by the
minimum

33

At
ta

in
ab

le
 F

lo
p/

s

MCDRAM ca
ch

e G
B/s

Arithmetic Intensity (Flop:Byte)

L2
 G

B/s

DDR bottleneck
pulls performance
below MCDRAM

Roofline

Peak Flop/s

DDR G
B/s

MCDRAM ca
ch

e G
B/s

MCDRAM bound
MCDRAM AI*BW <

DDR AI*BW

Hierarchical Roofline
§ Construct superposition of

Rooflines…
§ Measure bandwidth

§ Measure AI for each level of memory
• Although an loop nest may have multiple

AI’s and multiple bounds (flops, L1, L2, …
DRAM)…

• … performance is bound by the
minimum

34

A
tta

in
ab

le
 F

lo
p/

s

Arithmetic Intensity (Flop:Byte)

L2
 G

B/s

Peak Flop/s

DDR G
B/s

Hierarchical Roofline
§ Construct superposition of

Rooflines…
§ Measure bandwidth
§ Measure AI for each level of memory
• Although an loop nest may have multiple

AI’s and multiple bounds (flops, L1, L2, …
DRAM)…

• … performance is bound by the
minimum

35

Peak Flop/s

At
ta

in
ab

le
 F

lo
p/

s

Arithmetic Intensity (Flop:Byte)

MCDRAM
bottleneck pulls

performance below
DDR Roofline

Data, Instruction, Thread-Level Parallelism…
§ We have assumed one can attain

peak flops with high locality.
§ In reality, we must …

• Use special instructions (e.g. FMA)
• Vectorize loops (16 flops per instruction)
• Hide FPU latency

(unrolling, out-of-order execution)
• Use all cores & sockets

§ Without these, …
• Peak performance is not attainable
• Some kernels can transition from

memory-bound to compute-bound

36

Peak Flop/s

Add-only (No FMA)

No vectorization

At
ta

in
ab

le
 F

lo
p/

s

DDR G
B/s

Arithmetic Intensity (Flop:Byte)

Lack of DLP pulls
performance
below DDR

Roofline

Data, Instruction, Thread-Level Parallelism…
§ We have assumed one can attain

peak flops with high locality.
§ In reality, we must …

• Use special instructions (e.g. FMA)
• Vectorize loops (16 flops per instruction)
• Hide FPU latency

(unrolling, out-of-order execution)
• Use all cores & sockets

§ Without these, …
• Peak performance is not attainable
• Some kernels can transition from

memory-bound to compute-bound

37

No vectorization

At
ta

in
ab

le
 F

lo
p/

s

Arithmetic Intensity (Flop:Byte)

Lack of DLP pulls
performance
below DDR

Roofline

Roofline Model:
Roofline-driven Performance Optimization

Roofline-Driven Performance Optimization
§ Broadly speaking, there are three

approaches to improving
performance:

39

Peak Flop/s

No FMA

At
ta

in
ab

le
 F

lo
p/

s

DDR G
B/s

Arithmetic Intensity (Flop:Byte)

Roofline-Driven Performance Optimization
§ Broadly speaking, there are three

approaches to improving
performance:

§ Maximize in-core performance
(e.g. get compiler to vectorize)

40

Peak Flop/s

No FMA

At
ta

in
ab

le
 F

lo
p/

s

DDR G
B/s

Arithmetic Intensity (Flop:Byte)

Roofline-Driven Performance Optimization
§ Broadly speaking, there are three

approaches to improving
performance:

§ Maximize in-core performance
(e.g. get compiler to vectorize)

§ Maximize memory bandwidth
(e.g. NUMA-aware, unit-stride)

41

Peak Flop/s

No FMA

At
ta

in
ab

le
 F

lo
p/

s

DDR G
B/s

Arithmetic Intensity (Flop:Byte)

Roofline-Driven Performance Optimization
§ Broadly speaking, there are three

approaches to improving
performance:

§ Maximize in-core performance
(e.g. get compiler to vectorize)

§ Maximize memory bandwidth
(e.g. NUMA-aware, unit stride)

§ Minimize data movement
(e.g. cache blocking)

42

Peak Flop/s

No FMA

At
ta

in
ab

le
 F

lo
p/

s

DDR G
B/s

Arithmetic Intensity (Flop:Byte)

C
om

pu
ls

or
y

AI

C
ur

re
nt

 A
I

Roofline In Practice:
Evolution at LBL / NERSC

Step 1:
Machine Characterization

Machine Characterization
§ “Theoretical Performance”

numbers can be highly optimistic…
• Pin BW vs. sustained bandwidth
• TurboMode / Underclock for AVX
• compiler failings on high-AI loops.

45
https://crd.lbl.gov/departments/computer-science/PAR/research/roofline/

§ LBL developed the Empirical
Roofline Toolkit (ERT)…
• Characterize CPU/GPU systems
• Peak Flop rates
• Bandwidths for each level of memory
• MPI+OpenMP/CUDA == multiple GPUs

 10

 100

 1000

 10000

 0.01 0.1 1 10 100

G
FL

O
Ps

 /
se

c

FLOPs / Byte

Empirical Roofline Graph (Results.quadflat.2t/Run.002)

2450.0 GFLOPs/sec (Maximum)

L1
 - 6

44
2.9

 G
B/s

L2
 - 1

96
5.4

 G
B/s

DRAM - 4
12

.9
GB/s

Cori / KNL

 10

 100

 1000

 10000

 100000

 0.01 0.1 1 10 100

G
FL

O
Ps

 /
se

c

FLOPs / Byte

Empirical Roofline Graph (Results.summitdev.ccs.ornl.gov.02.MPI4/Run.001)

17904.6 GFLOPs/sec (Maximum)

L1
 - 6

50
6.5

 G
B/s

DRAM - 1
92

9.7
 G

B/s

SummitDev / 4GPUs

https://crd.lbl.gov/departments/computer-science/PAR/research/roofline/

Step 2:
Application Characterization

Measuring AI

47

§ To characterize execution with Roofline we need…
o Time
o Flops (=> flop’s / time)
o Data movement between each level of memory (=> Flop’s / GB’s)

§ We can look at the full application…
o Coarse grained, 30-min average
o Misses many details and bottlenecks

§ or we can look at individual loop nests…
o Requires auto-instrumentation on a loop by loop basis
o Moreover, we should probably differentiate data movement or flops on a core-by-core basis.

How Do We Count Flop’s?

48

Manual Counting
§ Go thru each loop nest and

count the number of FP
operations

ü Works best for deterministic
loop bounds

ü or parameterize by the
number of iterations
(recorded at run time)

✘ Not scalable

Perf. Counters
§ Read counter before/after

ü More Accurate

ü Low overhead (<%) == can
run full MPI applications

ü Can detect load imbalance
✘ Requires privileged access

✘ Requires manual
instrumentation (+overhead)
or full-app characterization

✘ Broken counters = garbage
✘ May not differentiate

FMADD from FADD

✘ No insight into special
pipelines

Binary Instrumentation
§ Automated inspection of

assembly at run time

ü Most Accurate

ü FMA-, VL-, and mask-aware

ü Can count instructions by
class/type

ü Can detect load imbalance

ü Can include effects from
non-FP instructions

ü Automated application to
multiple loop nests

✘ >10x overhead (short runs /
reduced concurrency)

How Do We Measure Data Movement?

49

Manual Counting
§ Go thru each loop nest and

estimate how many bytes
will be moved

§ Use a mental model of
caches

ü Works best for simple loops
that stream from DRAM
(stencils, FFTs, spare, …)

✘ N/A for complex caches

✘ Not scalable

Perf. Counters
§ Read counter before/after
ü Applies to full hierarchy (L2,

DRAM,
ü Much more Accurate
ü Low overhead (<%) == can

run full MPI applications
ü Can detect load imbalance
✘ Requires privileged access
✘ Requires manual

instrumentation (+overhead)
or full-app characterization

Cache Simulation
§ Build a full cache simulator

driven by memory
addresses

ü Applies to full hierarchy and
multicore

ü Can detect load imbalance
ü Automated application to

multiple loop nests
✘ Ignores prefetchers
✘ >10x overhead (short runs /

reduced concurrency)

Previously Cobbled Together Tools…
§ Use tools known/observed to work on NERSC’s

Cori (KNL, HSW)…
• Used Intel SDE (Pin binary instrumentation +

emulation) to create software Flop counters
• Used Intel VTune performance tool (NERSC/Cray

approved) to access uncore counters

Ø Accurate measurement of Flop’s (HSW) and
DRAM data movement (HSW and KNL)

Ø Used by NESAP (NERSC KNL application
readiness project) to characterize apps on Cori…

50

http://www.nersc.gov/users/application-performance/measuring-arithmetic-intensity/

NERSC is LBL’s production computing division
CRD is LBL’s Computational Research Division
NESAP is NERSC’s KNL application readiness project
LBL is part of SUPER (DOE SciDAC3 Computer Science Institute)

http://www.nersc.gov/users/application-performance/measuring-arithmetic-intensity/

Intel Advisor
§ Includes Roofline Automation…

ü Automatically instruments applications
(one dot per loop nest/function)

ü Computes FLOPS and AI for each
function (CARM)

ü AVX-512 support that incorporates masks
ü Integrated Cache Simulator1

(hierarchical roofline / multiple AI’s)
ü Automatically benchmarks target system

(calculates ceilings)
ü Full integration with existing Advisor

capabilities

51

Memory-bound, invest into
cache blocking etc

Compute bound: invest
into SIMD,..

1Experimental Feature, the look and feel and exact behavior is
subject for change

http://www.nersc.gov/users/training/events/roofline-training-1182017-1192017

http://www.nersc.gov/users/training/events/roofline-training-1182017-1192017

Hierarchical Roofline vs.
Cache-Aware Roofline

…understanding different Roofline
formulations in Intel Advisor

There are two Major Roofline Formulations:
§ Hierarchical Roofline (original Roofline w/ DRAM, L3, L2, …)…

• Williams, et al, “Roofline: An Insightful Visual Performance Model for Multicore Architectures”, CACM, 2009
• Chapter 4 of “Auto-tuning Performance on Multicore Computers”, 2008
• Defines multiple bandwidth ceilings and multiple AI’s per kernel

• Performance bound is the minimum of flops and the memory intercepts (superposition of original, single-metric Rooflines)

§ Cache-Aware Roofline
• Ilic et al, "Cache-aware Roofline model: Upgrading the loft", IEEE Computer Architecture Letters, 2014
• Defines multiple bandwidth ceilings, but uses a single AI (flop:L1 bytes)

• As one looses cache locality (capacity, conflict, …) performance falls from one BW ceiling to a lower one at constant AI

53

§ Why Does this matter?
• Some tools use the Hierarchical Roofline, some use cache-aware == Users need to understand the differences
• Cache-Aware Roofline model was integrated into production Intel Advisor

• Evaluation version of Hierarchical Roofline1 (cache simulator) has also been integrated into Intel Advisor

1Experimental Feature, the look and feel and exact behavior is
subject for change

54

Cache-Aware RooflineHierarchical Roofline
§ Captures cache effects§ Captures cache effects

§ Single Arithmetic Intensity§ Multiple Arithmetic Intensities
(one per level of memory)

§ AI independent of problem size§ AI dependent on problem size
(capacity misses reduce AI)

§ AI is Flop:Bytes as presented to the L1
cache (plus non-temporal stores)

§ AI is Flop:Bytes after being filtered by
lower cache levels

§ Memory/Cache/Locality effects are
observed as decreased performance

§ Memory/Cache/Locality effects are
observed as decreased AI

§ Requires static analysis or binary
instrumentation to measure AI

§ Requires performance counters or
cache simulator to correctly measure AI

Example: STREAM

55

#pragma omp parallel for
for(i=0;i<N;i++){

Z[i] = X[i] + alpha*Y[i];
}

§ L1 AI…
• 2 flops
• 2 x 8B load (old)
• 1 x 8B store (new)
• = 0.08 flops per byte

§ No cache reuse…
• Iteration i doesn’t touch any data associated with

iteration i+delta for any delta.

§ … leads to a DRAM AI equal to
the L1 AI

Example: STREAM

56

Cache-Aware RooflineHierarchical Roofline

Peak Flop/s

DRAM G
B/s

At
ta

in
ab

le
 F

lo
p/

s

Arithmetic Intensity (Flop:Byte)
0.083

L1
 G

B/s

Multiple AI’s….
1) Flop:DRAM bytes
2) Flop:L1 bytes (same)

Peak Flop/s

DRAM G
B/s

At
ta

in
ab

le
 F

lo
p/

s

0.083
Arithmetic Intensity (Flop:Byte)

L1
 G

B/s

Single AI based on flop:L1 bytes

Observed performance
is correlated with DRAM
bandwidth

Performance is bound to
the minimum of the two
Intercepts…

AIL1 * L1 GB/s
AIDRAM * DRAM GB/s

Example: 7-point Stencil (Small Problem)

57

#pragma omp parallel for
for(k=1;k<dim+1;k++){
for(j=1;j<dim+1;j++){
for(i=1;i<dim+1;i++){

new[k][j][i] = -6.0*old[k][j][i]
+ old[k][j][i-1]
+ old[k][j][i+1]
+ old[k][j-1][i]
+ old[k][j+1][i]
+ old[k-1][j][i]
+ old[k+1][j][i];

}}}

§ L1 AI…
• 7 flops
• 7 x 8B load (old)
• 1 x 8B store (new)
• = 0.11 flops per byte
• some compilers may do register shuffles to reduce the

number of loads.

§ Moderate cache reuse…
• old[k][j][i+1] is reused on next iteration of i.
• old[k][j+1][i] is reused on next iteration of j.
• old[k+1][j][i] is reused on next iterations of k.

§ … leads to DRAM AI larger than
the L1 AI

Example: 7-point Stencil (Small Problem)

58

Cache-Aware RooflineHierarchical Roofline

Peak Flop/s

D
R
A
M

 G
B
/s

A
tt
a
in

a
b
le

 F
lo

p
/s

0.11

Arithmetic Intensity (Flop:Byte)

0.44

L
1
 G

B
/s

Peak Flop/s

D
R
A
M

 G
B
/s

A
tt
a
in

a
b
le

 F
lo

p
/s

0.11

Arithmetic Intensity (Flop:Byte)

L
1
 G

B
/s

Multiple AI’s….

1) flop:DRAM ~ 0.44

2) flop:L1 ~ 0.11

Performance bound is

the minimum of the two

Example: 7-point Stencil (Small Problem)

59

Cache-Aware RooflineHierarchical Roofline

Peak Flop/s

DRAM G
B/s

At
ta

in
ab

le
 F

lo
p/

s

0.11
Arithmetic Intensity (Flop:Byte)

0.44

L1
 G

B/s

Peak Flop/s

DRAM G
B/s

At
ta

in
ab

le
 F

lo
p/

s

0.11
Arithmetic Intensity (Flop:Byte)

L1
 G

B/s

Single AI based on flop:L1 bytes
Multiple AI’s….
1) flop:DRAM ~ 0.44
2) flop:L1 ~ 0.11

Observed performance
is between L1 and DRAM lines
(== some cache locality)

Performance bound is
the minimum of the two

Example: 7-point Stencil (Large Problem)

60

Cache-Aware RooflineHierarchical Roofline

Peak Flop/s

DRAM G
B/s

A
tta

in
ab

le
 F

lo
p/

s

0.11
Arithmetic Intensity (Flop:Byte)

0.20

L1
 G

B/s

Peak Flop/s

DRAM G
B/s

A
tta

in
ab

le
 F

lo
p/

s

0.11
Arithmetic Intensity (Flop:Byte)

L1
 G

B/s

Single AI based on flop:L1 bytes

Multiple AI’s….
1) flop:DRAM ~ 0.20
2) flop:L1 ~ 0.11

Capacity misses reduce
DRAM AI and performance

Observed performance
is closer to DRAM line
(== less cache locality)

Example: 7-point Stencil (Observed Perf.)

61

Cache-Aware RooflineHierarchical Roofline

Peak Flop/s

At
ta

in
ab

le
 F

lo
p/

s

0.11
Arithmetic Intensity (Flop:Byte)

0.20

L1
 G

B/s

Peak Flop/s

DRAM G
B/s

At
ta

in
ab

le
 F

lo
p/

s

0.11
Arithmetic Intensity (Flop:Byte)

L1
 G

B/s

Single AI based on flop:L1 bytes

Actual observed performance
is tied to the bottlenecked resource
and can be well below a cache
Roofline (e.g. L1).

Observed performance
is closer to DRAM line
(== less cache locality)

Example: 7-point Stencil (Observed Perf.)

62

Cache-Aware RooflineHierarchical Roofline

Peak Flop/s

At
ta

in
ab

le
 F

lo
p/

s

0.11
Arithmetic Intensity (Flop:Byte)

0.20

Peak Flop/s

DRAM G
B/s

At
ta

in
ab

le
 F

lo
p/

s

Arithmetic Intensity (Flop:Byte)
0.11

L1
 G

B/s

Single AI based on flop:L1 bytes

Actual observed performance
is tied to the bottlenecked resource
and can be well below a cache
Roofline (e.g. L1).

Observed performance
is closer to DRAM line
(== less cache locality)

DRAM G
B/s

Questions?

Don’t forget to take the Survey…
http://bit.ly/sc18-eval

http://bit.ly/sc17-eval

Backup

Refining Roofline:
NUMA

NUMA Effects
§ Cori’s Haswell nodes are built

from 2 Xeon processors (sockets)
• Memory attached to each socket (fast)
• Interconnect that allows remote memory

access (slow == NUMA)
• Improper memory allocation can result in

more than a 2x performance penalty

68

Peak Flop/s

No FMA

At
ta

in
ab

le
 F

lo
p/

s

DDR G
B/s

DDR G
B/s

(N
UMA)

Arithmetic Intensity (Flop:Byte)

CPU0
cores 0-15

DRAM
~50GB/s

CPU1
cores 16-31

DRAM
~50GB/s

Refining Roofline:
Instruction Issue Bandwidth

Superscalar vs. Instruction mix
§ Define in-core ceilings based on

instruction mix…

70

Peak Flop/s

25% FP (75% int)

A
tt
a
in

a
b
le

 F
lo

p
/s

DDR G
B/s

Arithmetic Intensity (Flop:Byte)

12% FP (88% int)

≥50% FP§ e.g. Haswell
• 4-issue superscalar

• Only 2 FP data paths

• Requires 50% of the instructions to be FP
to get peak performance

Superscalar vs. Instruction mix
§ Define in-core ceilings based on

instruction mix…

71

Peak Flop/s

50% FP (50% int)

A
tta

in
ab

le
 F

lo
p/

s

DDR G
B/s

Arithmetic Intensity (Flop:Byte)

25% FP (75% int)

100% FP§ e.g. Haswell
• 4-issue superscalar
• Only 2 FP data paths
• Requires 50% of the instructions to be FP

to get peak performance

§ e.g. KNL
• 2-issue superscalar
• 2 FP data paths
• Requires 100% of the instructions to be

FP to get peak performance

Superscalar vs. instruction mix
§ Define in-core ceilings based on

instruction mix…

72

Peak Flop/s

50% FP (50% int)

A
tta

in
ab

le
 F

lo
p/

s

DDR G
B/s

Arithmetic Intensity (Flop:Byte)

25% FP (75% int)

100% FP§ e.g. Haswell
• 4-issue superscalar
• Only 2 FP data paths
• Requires 50% of the instructions to be FP

to get peak performance

§ e.g. KNL
• 2-issue superscalar
• 2 FP data paths
• Requires 100% of the instructions to be

FP to get peak performance

Superscalar vs. instruction mix
§ Define in-core ceilings based on

instruction mix…

73

A
tta

in
ab

le
 F

lo
p/

s

DDR G
B/s

Arithmetic Intensity (Flop:Byte)

25% FP (75% int)

§ e.g. Haswell
• 4-issue superscalar
• Only 2 FP data paths
• Requires 50% of the instructions to be FP

to get peak performance

§ e.g. KNL
• 2-issue superscalar
• 2 FP data paths
• Requires 100% of the instructions to be

FP to get peak performance

non-FP instructions
sap instruction issue
bandwidth and pull
performance below

Roofline

Refining Roofline:
Compulsory, Capacity, and Conflict misses

Locality Walls
§ Naively, we can bound AI using

only compulsory cache misses

75

Peak Flop/s

No FMA

No vectorization

At
ta

in
ab

le
 F

lo
p/

s

DDR G
B/s

Arithmetic Intensity (Flop:Byte)

C
om

pu
ls

or
y

AI

#Flop’s
Compulsory MissesAI =

Locality Walls
§ Naively, we can bound AI using

only compulsory cache misses

§ However, write allocate caches
can lower AI

76

Peak Flop/s

No FMA

No vectorization

A
tt
a
in

a
b
le

 F
lo

p
/s

DDR G
B/s

Arithmetic Intensity (Flop:Byte)

C
o
m

p
u
ls

o
ry

 A
I

#Flop’s
Compulsory Misses + Write Allocates

AI =

+
W

ri
te

 A
llo

ca
te

Locality Walls
§ Naively, we can bound AI using

only compulsory cache misses

§ However, write allocate caches
can lower AI

§ Cache capacity misses can have
a huge penalty

77

Peak Flop/s

No FMA

No vectorization

A
tta

in
ab

le
 F

lo
p/

s

DDR G
B/s

Arithmetic Intensity (Flop:Byte)

C
om

pu
ls

or
y

A
I

#Flop’s
Compulsory Misses + Write Allocates + Capacity MissesAI =

+
W

rit
e

A
llo

ca
te

+
C

ap
ac

ity
 M

is
se

s

Locality Walls
§ Naively, we can bound AI using

only compulsory cache misses
§ However, write allocate caches

can lower AI
§ Cache capacity misses can have

a huge penalty
Ø Compute bound became

memory bound

78

Peak Flop/s

No FMA

No vectorization

A
tta

in
ab

le
 F

lo
p/

s

DDR G
B/s

Arithmetic Intensity (Flop:Byte)

C
om

pu
ls

or
y

A
I

#Flop’s
Compulsory Misses + Write Allocates + Capacity MissesAI =

+W
rit

e
A

llo
ca

te

+C
ap

ac
ity

 M
is

se
s

!Know the theoretical

bounds on your AI.

LIKWID:
Performance Counters

LIKWID
§ LIKWID provides easy to use wrappers for measuring performance

counters...
ü Works on NERSC production systems
ü Distills counters into user-friendly metrics (e.g. MCDRAM Bandwidth)
ü Minimal overhead (<1%)
ü Scalable in distributed memory (MPI-friendly)
ü Fast, high-level characterization
✘ No timing breakdowns
✘ Suffers from Garbage-in/Garbage Out

(i.e. hardware counter must be sufficient and correct)

80

https://github.com/RRZE-HPC/likwid
http://www.nersc.gov/users/software/performance-and-debugging-tools/likwid

https://github.com/RRZE-HPC/likwid
http://www.nersc.gov/users/software/performance-and-debugging-tools/likwid

