Evaluating and Optimizing the NERSC Workload
on Knights Landing

Taylor Barnes, Brandon Cook, Jack Deslippe*,
Douglas Doerfler, Brian Friesen, Yun (Helen)
He, Thorsten Kurth, Tuomas Koskela, Mathieu
Lobet, Tareq Malas, Leonid Oliker, Andrey
Ovsyannikov, Abhinav Sarje, Jean-Luc Vay,
Henri Vincenti, Samuel Williams
Lawrence Berkeley National Lab
*Corresponding Author

Abstract—NERSC has partnered with 20 representative appli-
cation teams to evaluate performance on the Xeon-Phi Knights
Landing architecture and develop an application-optimization
strategy for the greater NERSC workload on the recently
installed Cori system. In this article, we present early case studies
and summarized results from a subset of the 20 applications
highlighting the impact of important architecture differences
between the Xeon-Phi and traditional Xeon processors. We
summarize the status of the applications and describe the greater
optimization strategy that has formed.

I. INTRODUCTION

NERSC [1] is the production HPC facility for the U.S. DOE
Office of Science. The center supports over 6000 users with
more than 600 unique applications in a wide variety of science
domains. HPC systems deployed at NERSC must support a
diverse workload and broad user base but also need to satisfy
an increasing demand for cycles from this community as
spelled out in the requirements studies of the various science
domains. [2] In addition to meeting the science demand,
NERSC is transitioning to an energy efficient data center and
requires high performing, energy efficient architectures. This
transition has recently begun at NERSC with the installation
of the Cori system, a Cray XC40 system powered by 9300+
Intel Xeon-Phi “Knights Landing” (KNL) processors added
to an existing Cori phase 1 system powered by 1500+ Xeon
(Haswell) processors.

In order to prepare user applications for Cori’s KNL proces-
sors, NERSC has developed an “application-readiness” strat-
egy involving both in-depth work with strategic application
partners as well as an extensive training programming for the
greater NERSC community.

The application-readiness effort is engaging 20 represen-
tative application teams (Table I) across significant domain
areas and algorithmic paradigms to develop optimization case
studies and relevant expertise that can then be used to develop
an optimization strategy for general applications at NERSC.
Towards this end, NERSC has established the NERSC Exas-
cale Science Application Program (NESAP), a collaboration
of NERSC staff along with experts at Cray and Intel, and the

Pierre Carrier, Nathan Wichmann, Marcus
Wagner
Cray Inc.
Paul Kent
Oak Ridge National Lab
Christopher Kerr
NCAR Consultant
John Dennis
National Center for Atmospheric Research

representative application teams with the goal of porting and
optimizing the selected applications to the KNL architecture.

For the purposes of testing and optimizing performance on
KNL with access to a small number of KNLs, application
teams put together single-node runs that were representative
of projected science problems on the full Cori system. In
some cases, representative kernels were extracted to match
the single-node work of the large science runs at scale.

In this article, we discuss the lessons learned from op-
timizing a number of these representative applications and
kernels and discuss the impact of key KNL hardware features
(including missing features). Finally, we will discuss how the
application readiness process has informed the creation of an
overall optimization strategy at NERSC targeting the broader
user community.

II. NOVEL FEATURES OF KNIGHTS-LANDING RELEVANT
TO APPLICATIONS

For the last couple decades, NERSC has fielded massively
parallel distributed memory systems powered by traditional
x86 processors. The previously largest NERSC system, Edi-
son, is powered by over 5500 dual Xeon (Ivy-Bridge) nodes
with 12 cores per socket. The majority of CPU cycles on
Edison are utilized in applications whose parallelism is ex-
pressed by MPI, with a growing minority of applications
additionally expressing on-node parallelism via OpenMP. A
small but growing number of applications are also written
using a PGAS and/or task based programming model.

In comparison to Edison, the Cori KNL based system
contains a number of important architectural differences that
require attention from application developers. We list some of
the most important hardware features below:

1. Many cores - The Xeon-Phi 7250 processors powering the
Cori system contain 68 physical cores with 4 hardware threads
per core, for a total of 272 hardware threads per processor. This
is nearly 3 times the number of cores per node as Edison (24)
and close to 6 times the number of hardware threads. These
cores have an AVX frequency (1.2 GHz) that is half that of
Edison’s “Ivy-Bridge” processor (2.4 GHz).

TABLE I
NESAP TIER 1 AND 2 APPLICATIONS
Application Science Area Algorithm
Boxlib Multiple AMR
EBChombo Multiple AMR
CESM Climate Grid
ACME Climate Grid
MPAS-O Ocean Grid
Gromacs Chemistry / Biology MD
Meraculous Genomics Assembly
NWChem Chemistry PW DFT
PARSEC Material Sci. RS DFT
Quantum Material Sci. PW DFT
ESPRESSO
BerkeleyGW Material Sci. MBPT
EMGeo Geosciences Krylov Solver
XGCl1 Fusion PIC
WARP Accelerators PIC
M3D Fusion CD/PIC
HACC Astrophysics N-Body
MILC HEP QCD
Chroma Nuclear Physics QCD
DWF HEP QCD
MFDN Nuclear Physics Sparse LA

2. Configurable on-chip interconnect - The cores are inter-
connected in a 2D mesh, with each mesh point comprising
two cores (a tile) sharing an L2 cache. The mesh can be
configured in a number of NUMA configurations. For this
study, we concentrate on “quad mode”, where the cores and
DDR4 are logically contained in one NUMA domain, and the
MCDRAM in a 2nd, but the distributed tag-directory for each
memory controller is localized within four quadrants.

3. Wide vector units - Each core contains two 512-bit SIMD
units (supporting the AVX512 ISA) with fused multiply-add
(FMA) support enabling 32 double precision FLOPs per cycle,
compared to Edison’s 8 FLOPS per cycle.

4. On-package MCDRAM - The Knights Landing processor
has 1 MB of L2 cache per tile (shared between two compute
cores) but lacks a shared L3 cache. On the other hand, it
contains 16 GB of on-package MCDRAM with a bandwidth
of 450 GB/s as measured by STREAM (compared to 85
GB/s from the DDR4 memory subsystem). The MCDRAM
can be configured as addressable memory, as a direct mapped
cache or split between these configurations.

We discuss in the following sections a number of optimiza-
tion case studies targeting the above hardware features and
summarize key results across applications in the final section.

Unless otherwise noted, our KNL numbers were collected
on single Xeon-Phi 7210 processors with a slightly lower AVX
frequency of 1.1 GHz and 64 cores rather than 68 on the 7250
part on Cori. Our comparisons were made against single-node
runs on the Cori Phase 1 system powered by two 16 core Xeon
E5-2698 (Haswell) processors clocked at 2.3 GHz.

III. CASE STUDY 1 - QUANTUM ESPRESSO

Quantum ESPRESSO (QE) is a suite for performing plane-
wave density functional theory (DFT) simulations [3], [4] of
systems in materials science and chemistry [5]. We focus,
here, on the performance of calculations employing hybrid

functionals, which are often important for the accurate calcu-
lation of charge distributions [6], [7], band gaps [6], [8], [9],
polarizabilities [10], and structural properties [8], [11]. Such
calculations are dominated by the cost of computing the action
of the exchange operator, K , on the occupied electron orbitals,

{;} [12], [13], [14]:
(B == 0,0 | Wd() M
Jj=1

where Ny 1S the number of occupied bands. Eq. 1 must be
calculated for each occupied orbital, and thus requires the
calculation of a total of n2,. integrals. In QE, these integrals
are calculated by subroutine vexx, through the use of FFTs, as
shown in Algorithm 1. QE facilitates two primary approaches
for parallelizing the evaluation of Eq. 1: (1) plane-wave
parallelization, in which the work of computing each individ-
ual FFT is distributed across many processes, and (2) band
parallelization, in which multiple FFTs are simultaneously
computed by different sets of processes. In previous work [15]
within the NESAP effort, we have expanded upon the existing
band parallelization through the introduction of a “band pair”
parallelization algorithm, along with other enhancements that
enable optimal parallelization of the calculation of exact
exchange without negatively impacting the parallelization of
other regions of the code. These modifications have lead to
significant improvements in the strong scaling efficiency of
the code and increase the density of node level work.

Algorithm 1 Evaluation of Eq. 1
1: procedure VEXX

2:

3: for 7 in 1:ny.. do

4:

5: c(g) = FFT[1/|r —r|]

6: for j in 1:ny do

7: pij (r) = i (r)e; (r)

8: pij(8) = FFT[p;;(r)]

o v;(g) = c(g)pij(8)

10: 7)1‘1 (l’) = FFT_l[Uij (g)}

—
—_

(K¢i)(r) += 1;(r)vi; (r)

We focus here on our efforts to improve the single-node
performance of Algorithm 1 on KNL, which is primarily
governed by the efficiency of the hybrid MPI-OpenMP plane-
wave parallelization implementation in QE. The many-core
nature of the KNL architecture renders on-node OpenMP
threading an appealing option for the optimal use of memory
resources; however, efficiently scaling to large numbers of
threads is challenging, as shown by the red curve in Fig. 1.
The difficulty of obtaining good thread scaling in Algorithm
1 derives from the structure of the inner loop, which involves
three “vector-multiplication”-like operations (used to compute
pij(r), vij(g), and (K4);)(r)), interleaved by FFTs. Because
of this structure, each vector-multiplication is computed within
an individual OpenMP region, and several OpenMP fork and

80
Before OMP Improvements —e—
70 After OMP Improvements —e—

60
o 50
3 40
@ 30
20
10

0 20 40 60
Cores

Fig. 1. Improvements to the thread scaling of Algorithm 1 on KNL. Each
calculation is performed on system of 64 water molecules using a single KNL
node.

join operations are required for each iteration of the inner loop.
We reduce the amount of OpenMP overhead by changing the
loop structure such that each OpenMP region encompasses a
loop over bands. In the case of the calculation of p;;(r), this
corresponds, in simplified terms, to:

!'Somp parallel do

DO j=1, n_occ
DO ir = 1, nr
rho(ir, j)=psi(ir,i)*psi(ir, J)
ENDDO
ENDDO

!'Somp end parallel do

One might be tempted to add a collapse (2) clause to
the OpenMP directive above. However, we noticed that this
reduced the performance by nearly 2x. The explanation is that
vector loads/stores are replaced by gather/scatter operations
because the compiler can no longer guarantee stride 1 access.

In addition, we bundle the computation of the FFTs such
that multiple FFTs are performed by each library call. This
reduces the number of OpenMP fork and join operations
and gives a factor ~3.3x speedup compared to sequential
execution of single multi-threaded FFTs - which may be
additionally attributed to the ability of the library to optimize
cache-reuse among the many FFTs. These modifications lead
to substantial improvements in the threading efficiency of QE,
as shown in Fig. 1

An additional concern when running on KNL is the optimal
choice of memory mode. As shown in Fig. 2, running cache
mode is approximately a factor of two faster than running
exclusively out of DDR in flat mode - though variability
between runs was observed in cache mode attributed to the
fact that the working set size greatly exceeded 16GB leading
to potential cache-conflicts in the direct-mapped MCDRAM
cache. We used FASTMEM directives to place the arrays
containing 1;, p;;, v;j, and (K1;)(r) into MCDRAM. This
approach significantly reduces the walltimes associated with
the vector multiplication operations in Algorithm vexx, and

100

80

60

40

Walltime (s)

20

Q. o) >
%, N «/@/\@
%

Fig. 2. Performance of Algorithm 1 on a single KNL node using several
different memory modes. From left to right: cache mode, flat mode using only
DDR, and flat mode with explicit MCDRAM use via FASTMEM directives.

400

m Haswell
mmmm KNL

W
o
o

Walltime (s)
n
8

o
o o

Fig. 3. Single-node performance of Algorithm 1 on KNL and Haswell. The
MPI results correspond to running in pure MPI mode, while the OMP results
correspond to running with 1 MPI task and 16 OpenMP threads per 16 cores.
The “Old” results are obtained using a version of QE immediately prior to
the addition of the improvements described in this paper.

enables flat mode to outperform cache mode, as shown in Fig.
2 by 10-15% without variability.

Fig. 3 compares the performance of Algorithm 1 between
KNL and Haswell. On both Haswell and KNL, pure MPI
mode was originally found to be more efficient than mixed
MPI-OpenMP parallelization. However, implementation mod-
ifications described in this section are observed to enable
a mixed MPI-OpenMP approach to outperform pure MPI
parallelization. The net result of our enhancements is a 2.9x
speedup in the best single-node performance observed on
KNL. Furthermore, whereas prior to optimization, a single-
node KNL calculation was found to be 1.6x slower than the
corresponding single-node Haswell calculation, it is now found
to be 1.8x faster.

IV. CASE STUDY 2 - NYX/BOXLIB

BoxLib is a software framework for developing parallel,
block-structured, adaptive mesh refinement (AMR) codes.
Applications of BoxLib include compressible hypersonic flows
for cosmology [18], reactive flows for radiating systems

such as supernovae [17], low Mach number flows for stellar
convection [23] terrestrial combustion [26], and fluctuating
hydrodynamics [24], porous media flows [25], and others.
In most of these applications, the physical properties of the
simulations are expressed in FORTRAN kernels, while BoxLib
itself handles domain decomposition, AMR, memory man-
agement, parallelization (both MPI and OpenMP), boundary
condition information, inter-node communication, and disk
I/O. It also provides multigrid linear solvers on both uniform
and adaptively refined meshes. The parallelism in BoxLib
codes is hierarchical; inter-node parallelism is expressed via
MPI by decomposing the total problem domain into boxes
of arbitrary rectangular shape, and distributing them among
MPI processes. The intra-node parallelism takes the form of
OpenMP directives, spawning multiple threads to work on
different regions of each box. In this report, we focus on
the cosmology code Nyx [18] as a proxy for other BoxLib
applications.

A few kernels dominate code execution time in Nyx. These
include the piecewise-parabolic method (PPM) reconstruc-
tion of the baryon state data [21], the analytical Riemann
solver [20], Gauss-Seidel red-black smoothing during the
multigrid solve for self-gravity [19], the equation of state
(EOS) [22], and the radiative heating and cooling terms [22].
The first three kernels are ‘“horizontal” operations, in that
they require information from neighboring cells, while the
latter two are “vertical” (point-wise) operations, requiring no
neighboring data.

Horizontal operations involve a large amount of data move-
ment (e.g., stencils) and low arithmetic intensity; conse-
quently they are ideal candidates for optimization via cache
reuse. In the initial implementation of OpenMP in Nyx', the
general approach was to decorate the triply-nested {z,y, 2z}
loops in these kernels with !omp parallel do
collapse (2) directives. While simple and non-invasive
to implement, this approach led to frequent last-level cache
misses, and thus high memory bandwidth. As a result, the
strong scaling thread performance saturated at a small number
of threads (~5) per MPI process, due to memory band-
width saturation. To improve cache reuse and thus thread
concurrency, we implemented loop tiling [27], splitting large
boxes into smaller tiles, and distributing them among threads.
Specifically, an MPI process builds a list of all tiles spanning
all boxes which it owns, and then in a parallel region the
OpenMP threads iterate over the list of tiles using static chunk
size scheduling to determine the number of tiles on which each
thread must operate. This list replaces the triply-nested loops
over {z,y,z}, and thus no collapse clause is necessary.
The loop tiling approach improves data locality as well as
thread load balance, and as a result, most horizontal operations
in Nyx now strong scale effectively up to ~64 threads on Xeon
Phi.2 In particular, we choose “pencil”-shaped tiles which

!Prior to that point, Nyx had been a purely MPI-parallelized application.
2Most Nyx kernels have low memory latency, so we see little benefit from
using multiple hardware threads per core.

Nyx LyA OpenMP strong scaling; 128 grid, 128 Box size;
1 time step; KNL quadrant/cache mode; 1 MPI proc

’:)\ \
210't \
Q NS
£ STRIES

@—@ before NESAP N . ~o

®—® now

- ideal (before NESAP) 3
ideal (now)
0
100 10" 10?

total # threads

Fig. 4. Thread strong scaling in Nyx on Intel Xeon Phi 7210.

are long in the stride-1 dimension, in order to maximize
the effectiveness of prefetching, and short in the other two
dimensions, allowing us to fit the tiles into the relatively small
last-level cache (1 MB shared between two cores) on Xeon
Phi. A typical tile size is (64,4,4), while a typical box size
is (64,64,64).

Optimizing the point-wise operations in Nyx is more chal-
lenging, as they benefit less from loop tiling and each kernel
has unique performance characteristics. The equation of state,
for example, computes the free electron density and the
temperature in each cell via Newton-Raphson iteration. The
data dependence of the Newton-Raphson algorithm prohibits
vectorization. Instead, we have enjoyed success rewriting the
algebraic expression of various functions to minimize the
number of divides required.

Together, these optimization strategies have resulted in a
large improvement in thread scaling on the Xeon Phi archi-
tecture. In Figure 4 we show the thread strong scaling on a
single pre-production 7210 Xeon Phi processor. When using
a single MPI process and 64 OpenMP threads, Nyx now runs
~bHx faster on Xeon Phi than it did without the optimizations
discussed above. We have found that, even with a large
problem (256 problem domain, with a memory footprint of
O(10) GB), the L2 cache miss rate is < 1%.

As can be seen in summary Figures 9 and 10 these modifica-
tion lead to speedups around 2x on KNL. The code currently
performs about 40% faster on a single Haswell node than a
KNL node. Fig. 11 shows that despite the low L2 miss rate, the
amount bytes transferred from DRAM (or MCDRAM) during
execution is nearly 5x greater on KNL, presumably due to
the lack of an L3 cache.

V. CASE STUDY 3 - CESM

The Community Earth System Model (CESM) [28] de-
veloped at the National Center for Atmospheric Research
(NCAR) is a coupled earth-system model which consists
of multiple-components models: atmosphere, ocean, sea-ice,
land-ice, land, river-runoff, and coupler. The cost of the atmo-
sphere components (dynamics and physics) typically dominate

the total run time (60%). We discuss two of the atmosphere
components below.

A MG2

The MG2 kernel is version 2 of the Morrison-Gettleman
microphysics package [29], [30]. This component of the
atmospheric physics was chosen as it is representative of the
general code in the atmospheric physics packages and MG2
typically consumes about 10% of total CESM run time.

Previous studies of the MG2 kernel have shown to be
compute bound with poor vectorization due to: short loop
bounds O(10), dependent sequence of instructions, and com-
plex branches in the loops. Heavy use is made of the mathe-
matical intrinsics: POW, LOG, EXP, and GAMMA and lack of
vectorization forces the use of scalar implementations of these
intrinsics. The scalar performance of: POW, LOG, and EXP
on KNL was significantly worse than on Haswell. Further,
Intel GAMMA function was 2.6x slower on Haswell than
the GAMMA function used in the code. MG2 was written
with extensive use of elemental functions which were found
to inhibit vectorization because of limitations in the compiler.

Below are the major optimization steps applied to MG2;
the optimizations performed were shown to improve the per-
formance on both Haswell and KNL [31], [32]:

1) Simplify expressions to minimize number of mathemat-
ical operations

2) Use the internal coded GAMMA function

3) Remove the elemental attribute from subroutines and
explicitly define the loops in the routines

4) Replace declaration of assumed shaped arrays with
explicitly defined loop declarations

5) Replace division with inversion of multiplication

6) Use aggressive compiler flags such as those to reduce
numerical accuracy; used with caution

7) Use directives and profile to guide optimizations

Directives can be helpful if you understand why they are
needed and were used after trying other code modifications.
Use of the vectorization and optimization reports from the
Intel compiler help guide the optimization procedure.

Fig. 5 shows the final MG2 performance improvement on
a single Haswell node (64 MPI tasks) and a single KNL
node (64 MPI tasks x 4 OpenMP threads per task). Speedup
from the optimized code on Haswell and KNL are 1.75 and
1.92 respectively. However, single node KNL still does not
outperform single node Haswell for this kernel.

B. HOMME

The High Order Methods Modeling Environment
(HOMME) model is a atmospheric dynamic core available
in CESM. HOMME uses a spectral element method to
discretize horizontally and a finite difference approximation
vertically[33]. A continuous Galerkin finite-element
method[34] is used for the spectral element method.
HOMME takes about 35% of the cycles in a typical CESM
run.

Single Node MG2 Performance

3000

2500
W Haswell

S KNL

usec/iteration
eoe o
[=] w o
o o o
(=] o o

i

Optimized

%
=}
S

=}

Original

Fig. 5. MQG2 performance improvement on Haswell and KNL.

HOMME is primarily a compute bound code, however
several known regions of the code are memory bound. Some
of the optimization steps performed for HOMMEJ[35] are:

1) Thread memory copies in boundary exchange

2) Restructure data and loops for vectorization

3) Rewrite message passing library and implement special-
ized communications operations

4) Rearrange calculations to optimize cache reuse

5) Replace division with inversion of multiplication

6) Compile time specification of loop and array bounds

A major change made to HOMME was the redesign of
the OpenMP threading scheme. In the original scheme, par-
allelization was performed over elements at a high-level and
over loops at the lower-levels. The revised scheme uses the
same high-level parallelization over elements. However, the
lower-loop level parallelization has been replaced with a high-
level parallelization in the tracer and vertical dimensions.
The new scheme supports element, tracer, and vertical high-
level parallelization simultaneously. The scheme significantly
reduces the number of parallel regions in the code from over
a hundred to four. As a consequence of the redesign, the code
is much easier to maintain as the SHARED and PRIVATE
OpenMP declarations do not have to be declared.

Fig. 6 shows the HOMME scaling performance on a single
KNL node. Nested OpenMP is used in the optimized version.
The best KNL time is achieved with 64 MPI tasks, 2 threads
each for the element and tracer dimensions and 1 thread for
the vertical dimension. While performance saturates with 64
cores and 1 hardware thread per core for the original version
on KNL, the optimized version achieved max performance
with up 64 cores and 4 hardware threads per core.

Fig. 9 and Fig. 10 shows the final HOMME performance
improvement on a single Haswell node and a single KNL node.

C. Issues and Concerns

Performance studies reveal that the scalar version of the
Intel mathematical functions: LOG, EXP, PWR were over 5
times slower on KNL than those on Haswell. This is an open
issue with Intel under investigation.

Assumed shaped arrays declarations are used extensively
in CESM. These declarations have been changed to explicitly

Single Node HOMME Performance
(perfTestWACCM, NE=8,NLEV=70,QSIZE=135)

350
300
250

—_ W KNL original
@ 200 mized
E 150 i KNL optimize:
= 100 —

16 32 64 128 256
Total # of Logical Cores Used

Fig. 6. HOMME scaling performance with original and optimized versions
on a single KNL node.

define the array bounds and as a result it improves the speedup
in the loops associated with the declarations. A significant
performance improvement in HOMME would be achieved if
the compiler were able to collapse and linearize the inner most
loops. Intel are working on implementing the feature.

The use of the OMP SIMD directives were explored for
performance portability. However, performance gain is only
realized when explicitly providing the aligned list of variables
to the directive. However, providing such a list is cumbersome.

The Cray CCE compiler performance was also investigated
for MG2 and HOMME, and in many cases ran faster than
with the Intel compiler. However more porting and verification
work needs to be done to use CCE for the full CESM code.

VI. CASE STUDY 4 - XGC1

The XGCl1 code is a full distribution function global 5D
gyrokinetic Particle-In-Cell (PIC) code for simulations of
turbulent plasma phenomena in a magnetic fusion device. It
is particularly well-suited for plasma edge simulations due
to an unstructured mesh used in the Poisson equation solver
that allows the simulation volume to encompass the magnetic
separatrix, the Scrape-Off-Layer (SOL) and the edge pedestal.
The main building blocks of the code are the particle pusher,
the collision operator and the Poisson solver.

The particle pusher advances a large O(10®) ensemble
of marker particles in cylindrical coordinates in time by
integrating the guiding-center equations of motion [36]. The
equations are integrated with a standard RK4 algorithm. Elec-
trons are pushed for O(50) time steps between field solves and
collisions due to their high velocity compared to ions, this is
referred to as electron sub-cycling. The non-linear collision
operator [37] operates on the particle distribution function,
a velocity space mesh. In order to operate on the velocity
grid, the PDF from the marker particles is mapped to two
dimensional velocity space grid, and the Coulomb collision
information is mapped back to the marker particles after
the collision operation has been completed. The velocity-grid
operation is performed on each cell of a regular real space grid,
but these operations can be performed independently, making
it a good candidate for parallellization. The Poisson solve is

performed using the PETSc library on an unstructured mesh in
the R,z - plane and a regular field-line following mesh in the
¢ - direction. For this step, the charges of the marker particles
are deposited onto the nodes of the unstructured mesh.

After recent optimizations to its collision kernel [38] and
due to the sparsity of the calls to the Poisson solver, most
of the computing time in XGCl is spent in the electron push
(pushe) kernel, where the current optimization efforts have
been focused. The electron push consists of four main steps:
B-field interpolation, E-field interpolation, the particle push,
and the search for the new particle location; after each RK4
step, a new particle position is obtained and the corresponding
unstructured mesh element has to be searched.

In previous work, parallelization with MPI+OpenMP has
been implemented in all kernels of XGCI1 and the full code
scales well up to 10 000’s of cores. However, the pushe kernel
performance was limited by almost no automatic compiler
vectorization. The E and B interpolation routines consist
of loops with trip counts of 3 and 4, respectively, that are
executed once per particle per RK4 step. Typically, the com-
piler would consider these loops too short for vectorization
and produce serial code. To enable vectorization, the loops
were refactored so that the innermost loop is over a block of
particles, whose size can be tuned to the size of the vector
register. The compiler has been instructed to vectorize the
loops over particle blocks using ! Somp simd directives that
result in good vectorization efficiency. The limiting factor
in the interpolation loops is retrieving data from the grid
points closest to the particle position, a fundamentally random
memory access pattern that results in gather/scatter instruc-
tions. We have ameliorated this somewhat by employing a
sorting algorithm at the beginning of the sub-cycling that
improves data memory locality. With sorting, the E and B-
field interpolation kernels gained 1.5x and 1.8x speedups,
respectively. On Xeon Haswell processors, the XGC1 pushe
kernel benefits from the fast L3 cache that is absent on Xeon
Phi (See Fig. 11). Therefore, on Xeon Phi the amount of
loads from DRAM is roughly 3x higher than on Haswell.
The penalty for cache misses can be partially hidden by
using hyper-threading, Figure 7 shows that the performance
improves with hyper-threading on Xeon Phi while on Haswell
it actually shows slightly worse performance. As a result of the
optimizations, the pushe kernel has gained a speedup of 1.9x
on Haswell and 1.7 x on Xeon Phi. Node-to-node performance
comparison, presented in Figure 7 shows that Haswell node
performance is still roughly 25% better, attributed to LLC.
Our present optimization strategy is to re-order the time step
and particle loops to increase the reuse of grid data in the
interpolation routines. Theoretically, a close to perfect reuse
rate is achievable, since only roughly 1% of particle time steps
result in movement across grid elements.

VII. CASE STUDY 5 - WARP-PICSAR

The code WARP is an open-source PIC code dedicated
to the modeling of charged particles and electromagnetic
fields, including the dynamics of charged particle beams in

KNL, SNC4, MCDRAM
KNL, SNC4, DDR

o o KNL, Quadflat, MCDRAM
= -w KNL, Quadflat, DDR
v— KNL, Quadcache
Haswell

256 |

128

641

32

Exec. time (s)

16

H H i i i
4 8 16 32 64 128 256
Total number of threads

Fig. 7. On-node thread scaling of the XGC1 pushe kernel on different KNL
memory modes. The code scales identically on all modes up to 1 thread per
core. On multiple threads per core, the DDR memory bandwidth is saturated
but MCDRAM provides a speedup.

particle accelerators, and the physics of high-intensity laser-
matter interactions [39]. PICSAR is an open-source Particle-
In-Cell FORTRAN+Python library designed to provide high-
performance subroutines optimized for many-integrated core
architectures [40], [41] that can be interfaced with WARP.

PICSAR follows the evolution of a collection of charged
macro-particles that evolve self-consistently with their electro-
magnetic fields. A macro-particle represents a group of real
particles of the same kind with the same kinetic properties
(speed and propagation direction). Each particle’s property is
stored in an aligned and contiguous 1D array for all particles
(structure of arrays). Field structured grids are stored in 3D
arrays for each component. A MPI domain decomposition
(Cartesian topology in PICSAR) is usually used for the intra-
node parallelism. The classical PIC loop contains 4 computa-
tional steps. 1) Field gathering: fields seen by the particles
is interpolated from the grids. 2) Particle pusher: Particles
are moved forward via the fields. This step is followed
by the communication of the macro-particles between MPI
domains. 3) Current/charge deposition: The generated current
and charge is deposited on the grids. This step is followed by
the communication of the guard-cells for the current grids. 4)
Maxwell solver: The field grids are updated from the currents.
This step contains the communication of the guard-cells for the
field grids. Steps 1) and 3) constitutes interpolation processes
between the grids and the particles and uses B-spline shape
factors of given orders. The number of grid cells and vertexes
involved in these interpolation processes and border guard-
cells increase with the shape factor order.

Cartesian based PIC codes have a low flop/byte ratio
that leads non-optimized algorithms to be highly memory-
bound [41]. Large field and particle arrays cannot in cache
in most simulations. Because two consecutive particles in
memory can be localized at very distant physical positions,
different portions of the field arrays are therefore constantly

Il Haswell order 1
Il Haswell order 3

B KNL order 1
KNL order 3

N
o o

o 1
) ©
~N —

g o
S o
11.9

o

4 H
30
20

S S ~

: > K0

S
0 mm BN ==

Scalar kernel without tiling Optimized kernel

Time / iteration / particle (ns)

E Roofline model KNL SNC4 flat 3

103 L b) |— Roofline (FMA + vect) ® Tiling/no opt 7

" E e Tiling/opt ® No tiling/no opt —3

@ c]
%8102 = o .
101k i 2

=1 . L L L L T N N | o 3

10° 10
Arithmetic intensity (flops/bytes)
Fig. 8. (a) - PICSAR simulation times per iteration and per particle on a

Cori phase 1 node and a single KNL for the non-optimized kernel (scalar
subroutines without tiling) and the present optimized kernel with order 1 and
order 3 interpolation shape factors. (b) - Roofline performance model applied
to the PICSAR kernel with order 1 interpolation. The roofline is represented
by the black line. The green marker represents the non-optimized version of
the code (original kernel), the red marker the kernel with the tiling and the blue
one the fully optimized code. Marker size is proportional to the simulation
time.

reloaded leading to poor cache reuse, especially during in-
terpolation processes. In order to improve memory locality,
cache-blocking of the field arrays has been achieved by
dividing MPI domains into smaller subsets called tiles. Tile
size is carefully chosen to let local field arrays fit in L2 cache
on Haswell and KNL. OpenMP is used to parallelize over
the tiles inside MPI regions. With more tiles than OpenMP
threads, a natural load-balancing is achieved with the GUIDED
or the DYNAMIC schedulers. Furthermore, a particle sorting
algorithm has been tested to further improve memory locality.
Because of its cost, the sorting is performed after every set
number of iterations.

Tiling has created new particle exchanges between tiles in
addition to exchanges between MPI ranks. This operation is
done by transferring macro-particle properties between tile
arrays all located in the same shared-memory space. A com-
munication pattern by block using nested parallel regions has
been developed to avoid memory races when several particles
are transferred to the same tile. The tiling communication has
been merged with the MPI communication preprocessing loop
for further gain in performance.

The second phase of optimization focused on vectorization.
In the original code, the main hotspots was the interpolation
process whereas the particle pusher was automatically and
efficiently vectorized over the particles. Thus, in the cur-
rent/charge deposition, the particle loop has been modified

to remove dependencies and the data structure has been
changed to align grid vertexes in memory enabling an efficient
vectorization of the deposition process.

Performance results are shown in Fig. 8(a). For order 1
shape factor, all performed optimizations lead to a 2.4x
speedup on Haswell node and 3.7x speedup on KNL in
comparison with the scalar version of the code without tiling.
Final times are similar between Haswell and KNL. At order
3 (preferred in production rns), 1.7 x speedup on Haswell and
5x speedup on KNL are observed. KNL outperforms Haswell
with a speedup of 1.6x.

The Roofline model [41], [42], [43], [44] applied to PIC-
SAR is shown in Fig. 8(b). The tiling increases the flop/byte
ratio as shown by the transition from the green marker (origi-
nal code) to the red one. Vectorization and other optimization
them mainly increases the flops/s leading to the blue marker
(fully-optimized code).

The roofline model provides a useful way to visualize code
performance and frame the optimization conversation with
code teams. The approach used hear has been used in other
cases [41] and is now included in NERSC’s overall app-
readiness strategy - as a way to review current code perfor-
mance and discuss optimization avenues with code teams.

VIII. SUMMARY OF NESAP APPLICATION PERFORMANCE

Application speedups obtained during the NESAP period
are shown in Fig. 9 for representative problems or kernels
on a single KNL and Haswell node. The speedups achieved
range from slightly over 1x to well over 10x. In most cases,
significant speedups were achieved on both KNL and Haswell.
Code improvements targeting the many-core Xeon-Phi ar-
chitecture nearly always end up in code-restructuring (e.g.
for vectorization and improved data-locality) that essentially
improve code performance on all architectures. In most cases,
the impact of the performance improvements is higher on
KNL than Haswell, however. This is because the fewer and
faster cores on Haswell (with shared L3 cache) are more
forgiving to common code issues: imperfect thread-scaling and
vectorization for example.

An example of the trend is the WARP code, where tiling
optimization targeting data reuse in the L2 caches has a more
significant impact on KNL than Haswell where the L3 cache
was being effectively used even before the tiling optimization.
The BerkeleyGW application provides another scenario for
this effect. In this case, the code is marginally CPU bound (an
Al around 3) but the key kernel was found to be using scalar
instructions. Restructuring the code to enable vectorization
yields larger speedups on KNL than Haswell due primarily
to the wider (512 bit vs 256 bit) vector units.

A notable exception to this trend is the Boxlib application.
In this case, the speedups obtained are actually larger on
Haswell than KNL. In this case, the application is memory
bandwidth bound before the tiling optimizations described
above. The application, being significantly more bandwidth
starved on Haswell (which lacks MCDRAM), has more per-
formance to gain on Xeon by tiling/blocking optimizations.

The speedups shown in Fig. 9 show the scope of the work
performed in the NESAP program as well as the relative
potential for speedups in typical science applications on KNL.
However, the speedups, alone, don’t provide a measurement
of absolute performance on the KNL or of expected relative
performance between runs of similar scale on the Cori Phase
1 (Haswell) nodes vs Cori Phase 2 (KNL) nodes. To address
the latter issue, we compare the node level performance of
the applications on single node runs on Haswell and KNL.
We put off for the future a discussion of internode scaling
and assume that, to first order, we can expect similar scaling
as the interconnect for the two Cori phases is identical. The
comparison is shown in Fig. 10.

The “speedups” on KNL relative to Haswell shown in Fig.
10 actually range from slowdowns of 50% to speedups of near
300% when comparing against optimized codes (blue bars) on
Haswell. We also show, where possible, a comparison (orange
bars) against the original un-optimized code on Haswell. In
this case, we see speedups of up to 700% (or 8x).

When comparing optimized versions on both KNL and
Haswell, we see that EMGeo, MILC, Chroma and MFDN
(SPMM) have the largest gains. These applications all share
a commonality - they are all known to be memory-bandwidth
bound and achieving near roofline performance on both archi-
tectures. The ratio of performance on KNL vs Haswell closely
matches that ratio of the memory bandwidths available on the
nodes (400-450 GB/s vs approximately 120 GB/s).

MILC and Chroma are Quantum Chromodynamics (QCD)
applications that achieve maximum data-reuse and vectoriza-
tion on their 4D stencil computations through the use of the
QPHIX library. As shown in Fig. 11, these codes demonstrate
high speedups (3x) when running out of MCDRAM vs DDR
on the KNL.

EMGeo and the MFDN SPMM kernel are both sparse
matrix-vector or matrix-matrix multiply dominated with mea-
sured effective bandwidth near that of that stream benchmark
on each platform. In these cases, the main optimization was
performing solves on multiple right-hand sides (RHS) concur-
rently in order to reuse data in the sparse matrices. Though,
the codes remain memory-bandwidth limited even after such
optimizations. Again, Fig. 11 shows 3x or greater speedups
running out of MCDRAM vs DDR on the KNL.

The case of MFDN is unique among these four applications
in that the scientific use case does not fit within the 16GB
of MCDRAM on node. In fact, the team anticipates using
nearly all the memory on each KNL node. However, the team
was able to identify important arrays, those representing the
vectors which the sparse matrix operates on, to explicitly place
into MCDRAM with appropriate FASTMEM directives. This
approach allowed the team to outperform runs with the KNL
booted with the MCDRAM configured as a cache.

Applications with higher arithmetic intensities, not fun-
damentally limited by memory bandwidth, that effectively
use the AVX512 ISA are also able to see relatively higher
performance on KNL vs Haswell. HACC and BerkeleyGW are
examples of applications in this category with KNL speedups

NESAP* Speedups

—_
w

12 B Xeon
11 B KNL
10
a 9
% 8
3 7
L% 6
5
4
3
2
1
@o,\,// é\@o? Q‘:g\/h 4044 G@% & /146 Ge ”430 44/((\ h/,q@p OI/V,C C/)fo /17#0 /17'04
b//\/ 0/776 (A/O é\(/\/o E’/e G p’? XY £ U /7749 /V/Sp S(OC
J’*} () Ny, % A b, Ay y S/;) 44/14/ @e,,)
Fig. 9. Speedups obtained in NESAP applications over the course of the NESAP program.
Speedup on KNL vs Haswell
900 B Speedup vs Haswell (Optimized)
800 B Speedup vs Haswell (Original)
g— 700
T 600
o
I 500
v 400
£ 300
[}
£ 200
& 100
0
-100
@o*// 58(77 Q‘}W 4G @e,,{_ . &5y Mg, TG0, /V/\yo /b//f(‘ 14/4/? Wi O’*o 44,00 /‘ﬂzq
b a, o, % (/YO 5‘(&0 @/@G p'?é\g & ®, S, M /V/S,o Ay o,
<7 o ”4/[,,67 4///%) W So/ Shy &Y /W/h) Cory

Fig. 10. Performance speedup on KNL vs Haswell. The blue bars represent a comparison to the optimized code on Haswell, while orange represent comparison

to the pre-NESAP code on Haswell.

of 50-60% on the KNL nodes over the Cori-Phase 1 nodes.
In Fig. 12, one can see, that more than any other applica-
tion considered, BerkeleyGW sees speedups using AVXS512
instructions vs scalar instructions.

The applications which perform faster on Haswell than KNL
typically are often those with additional reuse out of the L3
cache on the Xeon architecture. As described above and shown
in Fig. 11, this is evident especially in Boxlib and XGC1. This
is not to say that MCDRAM is necessarily an ineffective cache
(though latencies are significantly higher than a Xeon L3), but
that the bandwidth advantage of MCDRAM is at least partially
mitigated if codes have good reuse out of cache.

No applications showed a significant change in performance
when fused multiply-add (FMA) instructions were disabled
using the “-no-fma” compiler flag, as shown in Fig 12. Note,

however, that applications that depend significantly on libraries
are expected to be unaffected by this flag even though the
compiler may heavily utilize FMA instructions.

IX. CONCLUSIONS

NERSC partnered with Cray, Intel and 20 application de-
velopment teams to evaluate and optimize applications for
the Cori system. While the effort has led to significant
performance gains, it has more importantly led to a better
understanding of how the NERSC workload is expected to
perform on the Cori system and to the development of an
overall optimization strategy.

The most straightforward beneficiaries of KNL are appli-
cations that are memory bandwidth bound and fit within the
MCDRAM (including via the use of FASTMEM directives).
However, for many applications with arithmetic intensities

KNL/Haswell Memory Hierarchy Speedups

MCDRAM Speedup and Traffic Ratio

Fig. 11.

B MCDRAM vs DDR

B KNL/Haswell DRAM Traffic

Blue: application speedups from running with MCDRAM (either in Flat mode or Cache mode) vs running entirely out of off-package DRAM.

Orange: ratio of the bytes transferred from DRAM (including MCDRAM) during program execution on KNL vs Haswell.

KNL AVX and FMA Speedups

4.5

3.5

2.5

Speedup

1.5

8 & @] A4 8 &
O*/ @C/)o /77 53/14 &Oc/lﬂ(‘ (/4/0 . G/G zé\sp,? 4/,050
/1///17 W

Fig. 12. Ratio of application performance in fully optimized build compared to builds utilizing the

B AVX512
B FMA
pe 0, G
6o, My M Map, Pne O, %04/ Mg
&
A 8, g & o,
% G A, C
y 44/;,,/ Ca,

“-no-vec” or “-no-fma” flag in the Intel compiler suite.

The asterisk on Quantum ESPRESSO and EBChombo indicates that these apps depend heavily on math libraries that are not affected by the compiler options.

near 1, it becomes essential to use all aspects of the KNL
hardware efficiently (including physical cores and hardware
threads, wide-vector units, L2 caches and MCDRAM) to
outperform traditional Xeon architectures.

ACKNOWLEDGMENT

Research used resources of NERSC, a DOE Office of
Science User Facility supported by the Office of Science of
the U.S. DOE under Contract No. DE-AC02-05CH11231.

This article has been authored at Lawrence Berkeley Na-
tional Lab under Contract No. DE-AC02-05CH11231 and
UT-Battelle, LLC under Contract No. DE-AC05-000R22725
with the United States Department of Energy. The United
States Government retains and the publisher, by accepting the
article for publication, acknowledges that the United States

Government retains a non-exclusive, paid-up, irrevocable,
worldwide license to publish or reproduce the published form
of this manuscript, or allow others to do so, for United
States Government purposes. The Department of Energy will
provide public access to these results of federally sponsored
research in accordance with the DOE Public Access Plan
(http://energy.gov/downloads/doe-public-access-plan).

Research on QE by PK was conducted at the Center for
Nanophase Materials Sciences, which is a DOE Office of
Science User Facility.

We acknowledge helpful conversations with Nicholas
Wright, Brian Austin, Antonio Valles, Jeongnim Kim, Mike
Greenfield, Richard Mills, Karthik Raman, Larry Meadows,
David Prendergast.

[1]
[2]

[3]
[4]

[5]

[6]

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

REFERENCES

http://www.nersc.gov

NERSC and DOE Requirements Reviews
http://www.nersc.gov/science/hpc-requirements-reviews/

P. Hohenberg and W. Kohn, “Inhomogeneous electron gas,” Phys. Rev.,
vol. 136, pp. B864-B871, Nov. 1964.

W. Kohn and L.J. Sham, ”Self-consistent equations including exchange
and correlation effects,” Phys. Rev., vol. 140, pp. A1133-A1138, Nov.
1965.

P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni,
D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso,
S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann,
C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari,
F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C.
Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P.
Umari, R. M. Wentzcovitch, "QUANTUM ESPRESSO: a modular and
open-source software project for quantum simulations of materials,” J.
Phys.: Condens. Matter., vol. 21, pp. 395502, Sep. 2009.

C. J. Cramer and D. G. Truhlar, “Density functional theory for transition
metals and transition metal chemistry,” Phys. Chem. Chem. Phys., vol.
11, pp. 10757-10816, Oct. 2009.

R. Baer, E. Livshits, and U. Salzner, “Tuned range-separated hybrids in
density functional theory,” Annu. Rev. Phys. Chem., vol. 61, pp. 85-109,
May 2010.

J. P. Perdew, A. Ruzsinszky, L. A. Constantin, J. Sun, and G. I. Csonka,
”Some fundamental issues in ground-state density functional theory: A
guide for the perplexed,” J. Chem. Theory Comput., vol. 5, pp. 902-908,
Mar. 2009.

K. Burke, "Perspective on density functional theory,” J. Chem. Phys.
vol. 136, pp. 150901, Apr. 2012.

W J. Cohen, P. Mori-Sanchez, and W. Yang, “Challenges for density
functional theory,” Chem. Rev., vol. 112, pp 289-320, Dec. 2011.

A. D. Becke, "Perspective: Fifty years of density-functional theory in
chemical physics,” J. Chem. Phys., vol. 136, pp. 18A301, Apr. 2014.
L. Lin, "Adaptively compressed exchange operator,” J. Chem. Theory
Comput., vol. 12, pp. 2242-2249, Apr. 2016.

E. J. Bylaska, K. Glass, D. Baxter, S. B. Baden, J. H. Weare, "Hard
scaling challenges for ab initio molecular dynamics capabilities in
NWChem: Using 100,000 CPUs per second,” J. Phys.: Conf. Ser., vol.
180, pp. 012028, 2009.

I. Duchemin and F. Gygi, A scalable and accurate algorithm for the
computation of HartreeFock exchange,” Comp. Phys. Comm., vol. 181,
pp. 855-860, Jan. 2010.

T. A. Barnes, et. al., "Improved treatment of exact exchange in Quantum
Espresso,” To be published, 2016.

G. O. Young, Synthetic structure of industrial plastics (Book style with
paper title and editor), in Plastics, 2nd ed. vol. 3, J. Peters, Ed. New
York: McGraw-Hill, 1964, pp. 1564.

A. S. Almgren, V. E. Beckner, J. B. Bell, M. S. Day, L. H. Howell,
C. C. Joggerst, M. J. Lijewski, A. Nonaka, M. Singer, and M. Zingale.
CASTRO: A New Compressible Astrophysical Solver. I. Hydrodynamics
and Self-gravity. The Astrophysical Journal, 715(2):1221, 2010.

Ann S. Almgren, John B. Bell, Mike J. Lijewski, Zarija Lukié¢, and
Ethan Van Andel. Nyx: A Massively Parallel AMR Code for Compu-
tational Cosmology. The Astrophysical Journal, 765(1):39, 2013.

W. Briggs, V. Henson, and S. McCormick. A Multigrid Tutorial. Society
for Industrial and Applied Mathematics, 2nd edition, 2000.

Phillip Colella and Harland M Glaz. Efficient solution algorithms for
the Riemann problem for real gases. Journal of Computational Physics,
59(2):264 — 289, 1985.

Phillip Colella and Paul R Woodward. The Piecewise Parabolic
Method (PPM) for gas-dynamical simulations. Journal of Computational
Physics, 54(1):174 — 201, 1984.

Zarija Luki¢, Casey W. Stark, Peter Nugent, Martin White, Avery A.
Meiksin, and Ann Almgren. The Lyman-« forest in optically thin
hydrodynamical simulations. Monthly Notices of the Royal Astronomical
Society, 446(4):3697-3724, 2015.

Series:

(23]

[24]

[25]

[26]

[27]

(28]
[29]

[30]

(31]

(32]

[33]

[34]

[35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

A. Nonaka, A. S. Almgren, J. B. Bell, M. J. Lijewski, C. M. Malone,
and M. Zingale. MAESTRO: An Adaptive Low Mach Number Hy-
drodynamics Algorithm for Stellar Flows. The Astrophysical Journal
Supplement Series, 188(2):358, 2010.

Andy Nonaka, Yifei Sun, John B. Bell, and Aleksandar Donev. Low
Mach number fluctuating hydrodynamics of binary liquid mixtures.
Communications in Applied Mathematics and Computational Science,
10(2):163-204, 2015.

George Shu Heng Pau, John B. Bell, Ann S. Almgren, Kirsten M.
Fagnan, and Michael J. Lijewski. An adaptive mesh refinement algo-
rithm for compressible two-phase flow in porous media. Computational
Geosciences, 16(3):577-592, 2012.

Will E. Pazner, Andrew Nonaka, John B. Bell, Marcus S. Day, and
Michael L. Minion. A high-order spectral deferred correction strategy
for low Mach number flow with complex chemistry. Combustion Theory
and Modelling, 20(3):521-547, 2016.

Weiqun Zhang, Ann S. Almgren, Marcus Day, Tan Nguyen, John Shalf,
and Didem Unat. BoxLib with Tiling: An AMR Software Framework.
CoRR, abs/1604.03570, 2016.

CESM website http://www.cesm.ucar.edu/

H. Morrison and A. Gettelman A New Two-Moment Bulk Stratiform
Cloud Microphysics Scheme in the Community Atmosphere Model,
Version 3 (CAM3). Part I: Description and Numerical Tests. J. of
Climate, 21(15):36423659, 2008

A. Gettelman and H. Morrison Advanced Two-Moment Bulk Micro-
physics for Global Models. Part I: Off-Line Tests and Comparison with
Other Schemes. J. of Climate, 28(3):12681287, 2015.

NERSC NESAP CESM Case Study:
https://www.nersc.gov/users/computational-systems/cori/application-
porting-and-performance/application-case-studies/cesm-case-study
Youngsung Kim, John Dennis, Christopher Kerr, Raghu Raj Prasanna
Kumar, Amogh Simha, Allison Baker, Sheri Mickelson Procedia Com-
puter Science Special Issue: International Conference on Computational
Science 2016, ICCS 2016. June 6-8, 2016, San Diego, California.
Volume 80, 2016, pages 1450-1460.

A. Simmons and D. Burridge An energy and angular momentum con-
serving vertical finite-difference scheme and hybrid vertical coordinates.
Monthly Weather Review, 109: 758-766, 1981

M. Taylor, J. Tribbia, and M. Iskandarani The spectral element method
for the shallow water equations on the sphere Journal Computational
Physics, 130: 92-108.

John Dennis, Chris Kerr, Youngsung Kim, Raghu Kumar, Rashmi Oak,
Amogh Simha Update on status of CESM on many-core. 2016 CESM
Workshop. SEWG (Software Engineering Working Group) Presentation.
June 20-23, 2016, Breckenridge, Colorado.

S. Ku, et. al. Full-f gyrokinetic particle simulation of centrally heated
global ITG turbulence from magnetic axis to edge pedestal top in a
realistic tokamak geometry. Nuclear Fusion, vol. 49 no. 11, Article
115021, 2009.

E. S. Yoon, C. S. Chang A Fokker-Planck-Landau collision equation
solver on two-dimensional velocity grid and its application to particle-
in-cell simulation. Physics of Plasmas, 21, 032503 (2014)

R. Hager, et. al. A fully non-linear multi-species FokkerPlanckLandau
collision operator for simulation of fusion plasma. Journal of Compu-
tational Physics, col. 315, no. 15, pp 644-660, 2016

WARP Particle-In-Cell code website http://warp.lbl.gov/ Accessed:
2016-08-30

H. Vincenti, et. al. An efficient and portable SIMD algorithm for
charge/current deposition in Particle-In-Cell codes, Computer Programs
in Physics, To be published, 2016

D. Doerfler, et. al. Applying the Roofline Performance Model to the
Intel Xeon Phi Knights Landing Processor. To be published, 2016.
Williams, S.: Auto-tuning Performance on Multicore Computers. Ph.D.
thesis, EECS Department, University of California, Berkeley (December
2008)

Williams, S., Watterman, A., Patterson, D.: Roofline: An insightful
visual performance model for floating-point programs and multicore
architectures. Communica-tions of the ACM (April 2009)

Williams, S. Roofline performance model,
http://crd.Ibl.gov/departments/computer-science/PAR/research/roofline/

