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Abstract—Effective programming models offer programmers
the ability to harness the capabilities of the underlying platform.
For decades, the two-sided Message Passing Interface (MPI) has
become a de facto standard for communication among processes
running on distributed memory systems. As high-performance
GPU computing becomes the trend, GPU-initiated one-sided
communication becomes a viable solution for multi-GPU scal-
ing. It also highlights the use of one-sided communication on
CPUs. However, the lack of deep understanding of one-sided
communication performance and its impact on an application’s
performance becomes a hurdle. In this paper, we overcome
this hurdle by proposing a Message Roofline model, which
characterizes an application’s sustained messaging performance
(GB/s) as a function of its message size, number of messages per
synchronization, peak network bandwidth, and network latency.
We use three benchmarks to demonstrate the potentials of one-
sided communication on CPUs and GPUs. These benchmarks
include Stencils representing applications that follow the bulk
synchronization programming model, Sparse Triangular Solve
representing directed acyclic graph computations that perform
asynchronous point-to-point communications, and Distributed
HashTable performing atomic compare and swaps. Our eval-
uation provides insights into practically understanding the two-
sided and one-sided communications in MPI applications, and
can also guide hardware vendors with design principles lest the
potential performance of one-sided communications being under-
utilized.

Index Terms—two-sided communication, one-sided communi-
cation, distributed memory, multi-GPU communication

I. INTRODUCTION

Over the last decade, accelerated computing architectures
have become increasingly popular in High-Performance Com-
puting (HPC) systems. A total of 289 systems on the 2023
TOP500 list use accelerators [1]. GPUs, the primary acceler-
ator in modern HPC systems, contribute 80% of the compute
capability of the entire machine [2]. This makes application
developers spend tremendous efforts towards designing and
implementing new algorithms to fully leverage GPU capabil-
ities. The most common way of communicating on multiple
GPU systems is to communicate via the host processor. This
forces the developers to think differently from programming
on distributed memory CPU systems, as they must think
about host-initiated communications separately from GPU
computations, instead of performing both computations and
communications directly within the GPU kernels. This often
results in increased algorithm complexity and decreased pro-
gram productivity.

Effective programming models offer programmers the abil-
ity to utilize the capabilities of the underlying hardware. The

two-sided Message Passing Interface (MPI) has become a de
facto standard for communication among processes running
on distributed memory systems. As high-performance GPU
computing becomes ubiquitous, some numerical methods find
host-initiated two-sided MPI and its CUDA-aware variant [3]
to satisfy their requirements. It is because they have a relatively
simple communication pattern, such as stencils, which adhere
to the Bulk Synchronous Parallel (BSP) model [4]. Inter-
processor communications follow the discipline of strict bar-
rier synchronization. However, directed acyclic graph (DAG)
computations, such as sparse triangular solve (SpTS), are
hard to scale on multi-GPU platforms due to more complex
communication patterns. Point-to-point communications can
happen anytime between two processes with no strict barrier
synchronization.

Fortunately, one-sided communication offers a friendly
programming model for DAG-like computations. One-sided
communication libraries, such as OpenSHMEM [5], NVSH-
MEM [6] and ROC SHMEM [7] use the Partitioned Global
Address Space (PGAS) [8] style programming. Senders
can directly access the receivers’ memory without requiring
explicit communication calls from them. NVSHMEM and
ROC SHMEM further support initiating communication from
within a GPU kernel. As such, one-sided communication pro-
vides a different execution paradigm from the standard host-
initiated two-sided model, offering an attractive alternative for
DAG applications. Several researchers have investigated one-
sided communications performance on GPUs [9–14] using
NVSHMEM and ROC SHMEM. They found that the GPU-
initiated one-sided communication makes scaling DAG-like
computations more feasible. In addition, it provides better
scaling performance for BSP-like applications compared to
using host-initiated two-sided communications due to the
lower network latency. Thus, one-sided communication is a
potential and promising programming model for scalable GPU
computing. The CPU one-sided communication performance
has been explored in work [15–17] using an improved fast one-
sided library that works on top of the standard one-sided MPI.
Missing from past work is a lack of comparison between two-
sided and one-sided communications in terms of performance,
productivity, and portability.

In this paper, we propose a Message Roofline Model to
provide a tighter upper bound and intuition on achieved
communication bandwidth using the number of messages per
synchronization. We evaluate the communication performance
on CPUs and GPUs over various interconnects and topologies,
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including standard two-sided and one-sided MPI on CPUs over
Infiniband and Slingshot-11, NVSHMEM over NVLINK2
using a dual-island dumbbell shape topology and NVLINK3
fully connected on NVIDIA GPUs. We use three workloads,
Stencil, Sparse Triangular Solve (SpTRSV), and Distributed
HashTable, to understand and visualize the performance im-
pact of one-sided and two-sided communications. Based on
these results, we summarize our observations, challenges to
address, and potential research topics regarding one-sided
communications. Through this evaluation, application devel-
opers can gain deeper knowledge about multi-GPU communi-
cation, paving the way for building a more mature multi-GPU
programming environment and code portability from two-
sided to one-sided communications. We make the following
contributions in this paper:

1) We create the Message Roofline Model, which extends
the traditional bandwidth and message size plots to
understand an application’s sustained messaging perfor-
mance (GB/s) as a function of its number of messages
per synchronization, message size, empirical peak net-
work bandwidth, and empirical network latency.

2) We create a realistic bound on the communication
performance based on the number of messages per
synchronization, instead of using a loose (practically
unattainable) upper bound from the traditional flood
send/put benchmark.

3) We observe that the CPU one-sided communications
can potentially outperform the two-sided communication
by introducing put-with-signal and receiver notification
operations.

4) We observe that on GPUs, a message size larger than
131KB can achieve up 2.9× speedup by splitting into
multiple smaller messages and simultaneously commu-
nicating them.

5) We provide helpful insights and guidance to communi-
cation software providers to better develop technologies
for various architectures and applications.

II. MESSAGE ROOFLINE MODEL

The Message Roofline Model follows the methodology of
the traditional Roofline Model [18] but applies to bandwidth
vs. message size plots adding ceilings and concurrency axes.
We introduce and incorporate a new metric, the number of
messages per synchronization (msg/sync), to better quantify
the impact of different (one- and two-sided) communication
libraries on an individual application. As such, the Message
Roofline model provides a generalized framework to visualize
and evaluate an application’s sustained messaging performance
(GB/s) as a function of its message concurrency, message
size, the peak network bandwidth, and the network latency.
It provides a quick visual comparison of an application’s
communication performance against the bounds set by the
underlying hardware and software bounds.

Fig.1 shows an overview of the Message Roofline model on
Frontier supercomputer. Frontier’s detailed architecture can be
found later in this section. The on-node communication data

path on Frontier CPU partition is Infinity Fabric CPU-GPU
(36GB/s) → PCIe4 ESM (50GB/s). Thus the ultimate bound
is the Infinity Fabric CPU-GPU, at 36GB/s [19].
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Fig. 1: An overview of the Message Roofline Model on
Frontier.

The diagonal ceilings (Latencies) are fitted from the em-
pirical data. Each vertically dotted line represents a certain
message size. Along the dotted line, as it moves from bottom
to top, it sends more and more messages per synchronization,
i.e., ranges from one message per synchronization to one
million messages per synchronization. One can immediately
observe the implications of overlapped latency by sending
more messages per synchronization. According to the LogGP
model [20], the parameters that denote the communication cost
are:

• L: network latency cost, processor independent (PI)
• o: sender/receiver sequential overhead, processor dependent
• g: 1/bandwidth (time between sends or receives) (PI)
• G: message size/bandwidth (time per byte) (PI)
• P: number of processors

Thus, the processor-independent times, L, g, and G, can be
overlapped with computation. Meanwhile, the L and G can
further be overlapped by sending more messages. On the other
hand, the g can not be overlapped with more messages. This is
because if a processor wants to send more than one message
in a row, it has to wait for g cycles after the first message goes
out before it can push the first byte of the second message into
the network.

The plots in Fig. 1 show a sharp Message Roofline model,
which is calculated by B

max(o,L,B·G) , where B is the number
of bytes. The junction between the diagonal and horizontal
ceiling is an ideal region one can never practically reach.
In reality, the achieved bandwidth is B

o+max(L,B·G) , which
denoted a rounded Message Roofline model as the empirical
dots show. The latter one infers that the overhead o dominates
the total messaging time.

Eventually, the Message Roofline model tells the potential
of overlapping messages compared to serialized messages.
Fig.1 suggests that at maximum, you can get 10× improve-
ment by sending one hundred (or more) messages per sync
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TABLE I: Evaluation Platforms

Machine GPUs per node GPU Interconnect GPU Runtime GPU-CPU Interconnect CPUs CPU-CPU Interconnect CPU Runtime CPU-NIC Interconnect

Summit 6×V100 NVLINK2 CUDA v11.0.3 NVLINK2 2×IBM POWER9 X-Bus IBM Spectrum PCIe4.0
NVSHMEM v2.8.0

Perlmutter GPU 4×A100 NVLINK3 cudatoolkit v11.7 PCIe4 1×AMD EPYC 7763 - - PCIe4.0
NVSHMEM v2.8.0

Perlmutter CPU - - - - 2×AMD EPYC 7763 Infinity Fabric CrayMPI PCIe4.0
Frontier CPU - - - - 1×AMD EPYC 7A53 Infinity Fabric CrayMPI Infinity Fabric and PCIe4.0 ESM

when L >> G. However, when G dominates, the benefit
you can get from message overlapping is limited since the
bandwidth bounds are already reached.

Table I lists the machine details evaluated in this paper.
Fig. 2 plots the node architecture of the three machines.

Perlmutter CPUs: Fig. 2a shows the Perlmutter CPU
node configuration [21]. Each CPU node has two Milan
CPUs connected by Infinity Fabric (IF) CPU-CPU at 4× 32
GB/s/direction. The NIC is connected to one of the CPUs via
PCIe4.0 at 25GB/s/direction.

Frontier CPUs: Fig. 2b describe the Frontier node config-
uration [19]. Each node has one Milan CPU and four MI250X
GPUs via Infinity Fabric CPU-GPU at 36GB/s/direction. The
four NICs are connected to the four GPUs via PCIe4 ESM at
50GB/s/direction.

Summit CPUs: it has two Power9 CPU sockets [22] as
Fig. 2c shows. The two CPUs are connected via X-Bus at
64GB/s/direction. Each CPU is connected to the NIC via PCIe
at 16 GB/s/direction.

Summit GPUs: the six V100 GPUs on one node are
organized in a dual-island dumbbell shape topology [22] as
showed in Fig. 2c, each with three GPUs and one Power9 CPU
socket. The three GPUs in each subset are fully connected
using NVLINK2 at 50 GB/s/direction.

Perlmutter GPUs: Fig. 2d presents the Perlmutter GPU
node configuration [23]. The four A100 GPUs on one node are
fully connected using NVLINK3 at 300GB/s/direction. Since
the twelve NVLink ports are divided into three groups for
connection to the other GPUs in the node, the peak between
two GPUs is 100GB/s/direction. All GPUs are connected to
the Milan CPU via PCIe4.0.

Note, the Frontier GPU partition is not considered in this
paper due to the lack of support of wait_until_any in
ROC SHMEM [7]. Additionally, the backend implementation
is not in the scope of this study. We demonstrate the achieved
performance of using the existing one-sided and two-sided
communication libraries. However, based on the presented
performance data, we can motivate their backend optimization.

Fig. 3 plots the sustained network bandwidth using two-
sided and one-sided MPI on Perlmutter, Frontier, and Sum-
mit CPUs. On Perlmutter CPUs, the on-node communication
transfers the message via IF. As such, the achieved bandwidth
in Fig. 3a is close to the IF peak of 32GB/s. The Frointer
CPU cores also communicate via IF, which provides 36GB/s,
as Fig. 3b shows. Even though the X Bus provides 64GB/s/di-
rection between the two Summit CPUs within one node, the
achieved bandwidth is relatively low, approximately 25GB/s
in Fig 3c.
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NIC

CPU 1
Infinity Fabric

(a) Perlmutter CPU: NIC attached to CPU

PCIe4 ESM
NIC

Infinity Fabric

GPU 6 GPU 7
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NICNIC

(b) Frontier: NIC attached to GPU
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(c) Summit: dual-island dumbbell shape topology
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NVLINK3
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(d) Perlmutter GPU: fully connected

Fig. 2: Node architecture of Perlmutter CPU, Frontier
CPU, Summit and Perlmutter GPU.

As the number of messages per synchronization increases,
one-sided MPI achieves higher bandwidth and lower latency
than the two-sided MPI, as depicted by Fig. 3. Note, each
message requires four one-sided MPI operations to complete
but only two two-sided MPI operations. However, even with
double the number of operations, one-sided can still achieve
a comparable bandwidth as the two-sided. As such, one-
sided has the potential to provide lower latency and higher
bandwidth with the support of put-with-signal, which can
reduce the number of one-sided MPI operations per message
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Fig. 3: One-sided MPI (four MPI operations per message) has the potential to outperform the two-sided (two MPI operations)
on Perlmutter and Frontier. The bandwidth ceiling (horizontal) is theoretical, and the diagonal ceilings (latency lines) are
inferred based the empirical data.

to two. Fig. 3c shows a different behavior for Spectrum MPI
communication performance on Summit. Here, we observe
that the one-sided Spectrum MPI communication performance
is consistently lower than the two-sided Spectrum MPI.

Fig. 4 plots the sustained NVSHMEM GPU-initiated put-
with-signal bandwidth on Perlmutter and Summit GPUs. The
GPU partition node architectures are presented in Fig. 2d and
Fig. 2c. Perlmutter GPUs transfer messages via NVLINK3 at
100 GB/s/direction, while Summit GPUs transfer messages via
NVINK2 at 50 GB/s/direction or 32 GB/s/direction (inter CPU
sockets). Figures 4a and 4b show that similar to CPU-initiated
communications, the achieved bandwidth for GPU-initiated
NVSHMEM communications increases with the number of
messages per synchronization. The latency for Perlmutter
GPUs was observed from 4us to 0.5us, which is similar to
the latency of 5us to 0.3us on Perlmutter CPUs. However,
the observed bandwidth for Perlmutter GPU was much higher
than that of Perlmutter CPU. As such, using GPU-initiated
communications can improve the programming productivity
as one can do everything inside GPU kernels, similar to
programming distributed memory CPU codes.

III. RESULTS

We consider three workloads: Stencil, Sparse Triangular
Solve (SpTRSV), and HashTable (HB), in this paper. These
three workloads represent three different communication pat-
terns, as listed in Table II:

1) Stencil: it adheres to the BSP model [4]. Communica-
tions follow the discipline of strict barrier synchroniza-
tion. The sender and receiver pairs and message sizes
are all fixed.

2) SpTRSV: it’s a DAG-like computation. Point-to-point
communications can happen anytime between any two
processes, depending on the sparsity pattern and the
process decomposition, with no strict barrier synchro-
nization. Both message size and sender-receiver pair
could be different among messages.

3) HashTable: it represents data analytics applications that
often require random access in distributed structures.
Unlike SpTRSV and Stencil, it’s a true sender’s con-
trol communication paradigm in which senders perform
inserts atomically on the remote memory. The message
size is fixed, but the sender-receiver pair varies.

We then detail our one-sided and two-sided designs and
achieved performances of each workload in the rest of this
section.

A. Stencil

In two-sided implementations of two-dimensional sten-
cils, each process performs four sets of MPI_Isend and
MPI_Irecv to send and receive from its neighbors, and
then performs MPI_Waitall for synchronization. After
MPI_Waitall, the received data can be used for local
computation.

In one-sided implementations of two-dimensional stencils,
each process performs four MPI_Put within a pair of
MPI_Win_fence. The MPI_Put write the data directly to
its neighbors. The MPI_Win_fence avoid the data hazard
and the data can be used for local computations as it returns.

The GPU design follows the idea of put-with-signal. We use
NVSHMEM for NVIDIA GPU clusters. The senders sends
data using nvshmem_double_put_signal_nbi.
The NVSHMEM library handles the memory
order of the data and signal. The receiver uses
nvshmem_uint64_wait_until_all to wait for
the signal. Once it returns, the data can be used for local
computation on the receiver side.

Porting the stencil code among the three implementations
is relatively straightforward due to the simplicity of the BSP
model. The two-sided CPU, one-sided CPU, and one-sided
GPU share the same communication code design. Specifically,
the one-sided and two-sided implementations have the same
message concurrency (number of neighbors) and message size
(halo size).
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Fig. 4: NVSHMEM GPU-initiated put and atomic compare and swap on Perlmutter and Summit. The plotted dots are measured.
The bandwidth ceiling (horizontal) is theoretical, and the diagonal ceilings (latency lines) are inferred based the empirical data.

TABLE II: Evaluated workloads characterizations. P=number of processes.

Workloads Patterns Notify Receiver Operation P2P pair #Msg/sync Words/Msg

Stencil BSP sync Yes two-sided: non-blocking send and receive with waitall deterministic & fixed 4 problem size / P
one-sided: non-blocking put with fence

SpTRSV DAG async Yes
two-sided: non-blocking send and receive with waitall

deterministic & variable 1 avg. 100one-sided: nonblocking put with flush (data and signal, respectively)
one-sided: user implemented receiver notification

Hashtable Random async No two-sided: non-blocking send and blocking receive indeterministic P 3
one-sided: atomic compare and swap 1e6 1

For the test case in this paper, both two-sided and one-
sided send four messages per synchronization, as listed in
Table II. The grid size is 16384×16384. Thus, the message
size is a mixture of 216 to 213 as we increase the number
of processes from 4 to 128 using a 2D process grid. Fig. 6a
shows the sustained two-sided and one-sided MPI performance
on Perlmutter CPUs. The one-sided has lower latency than
the two-sided, and the two communication models begin to
converge at a message size of 216. The observed two-sided and
one-sided implementations perform equally in Fig. 5 because
stencil computations are inherently bandwidth-bound. As such,
even though the one-sided has 20% lower latency than two-
sided, applications like stencil won’t see any benefit from it
on CPUs.

However, GPU-like architectures provide massive paral-
lelism and higher bandwidth than multi-core CPUs, making
them an ideal acceleration platform for such stencils as shown
by Fig. 5. One can achieve 30GB/s bandwidth on Perlmutter
GPUs while only getting 20GB/s on CPUs. Thus, the speedups
on GPUs are mainly gained from higher achieved bandwidth
and parallelism. One can scale to 16×8 MPI ranks on CPUs,
and the work within each MPI rank is serial. However, each
GPU can have eighty thread blocks scheduled simultaneously,
and thus achieving 320 × parallelism on one node.

B. SpTRSV

SpTRSV has a more complex data dependency than stencils.
Here we consider performing SpTRSV on the LU factored
matrix via SuperLU_DIST. Let’s consider a lower triangular

matrix L to explain its communication pattern. A supernode
is a set of consecutive columns of L with the triangular block
just below the diagonal being full, and the same nonzero struc-
ture below the triangular block. After obtaining a supernode
partition along the columns of L, it applies the same partition
row-wise to obtain a 2D block partitioning. The nonzero block
pattern defines the supernodal DAG. After partitioning the
matrix L among multiple processes using a 2D block-cyclic
layout, each process is responsible for a subset of solution
subvectors. A DAG can precisely express this data dependency.
The solution of those subvectors and partial summation results
require communication. The message size equals the size of
the subvectors or the partial summation results. Ultimately,
the message size varies from a few bytes to hundreds of bytes
depending on each supernode size.

In the two-sided SpTRSV, each process uses MPI_Isend
to send messages and uses MPI_Recv in a loop to wait for
the messages. The loop size equals the number of expected
messages.

In the one-sided SpTRSV, we use four MPI operations
to send the data and signal: MPI_PUT(data),
MPI_Win_flush, MPI_PUT(signal) and
MPI_Win_flush. Among the four operations, MPI_PUT
is non-blocking, and MPI_Win_flush ensures the signal
arrives after the data. After sending the signal, we use a
second MPI_Win_flush to avoid a delayed signal in the
network. This is because the standard one-sided library lacks
support for signal waiting and notification operations at
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Fig. 5: Stencil time on CPUs and GPUs using two-sided and one-sided communications. Increased parallelism, as evidenced
by GPUs, leads to larger improvements with the number of messages per synchronization.
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Fig. 6: Communication upper bound of Distributed HashTable, Stencil, and SpTRSV on Perlmutter CPUs. Vertical lines
represent the tested message sizes. Stencil and SpTRSV have a wide range of message sizes because increasing parallelism can
decrease the message size in Stencil, while SpTRSV inherently has various message sizes according to the LU factorization,
and the message size will not change by parallelism. The Distributed Hashtable has a fixed message size across all parallelism.

the receiver side. We also implement our acknowledgment
for receivers as described in Listing 1. Inspired by the
nvshmem_wait_until_any, we pre-compute a mask
array (validindex[]) for receivers. The length of this mask
array equals the number of messages that needs to be received
(msg num expected). The receiver keeps looping over the
mask array until all messages are received. In each loop,
the receiver masks out (set value to −1) the corresponding
element if the signal arrives. Otherwise, the receiver continues
the loop. After receiving the signal, the receiver can use the
received data in its local computation.

1 int recv_count=0;
2 while (recv_count < msg_num_expected) {
3 for (int i = 0; i < msg_num_expected; i++) {
4 if (validindex[i]==-1) continue;
5 if (signal[i] == 1) {
6 validindex[i] = -1;
7 recv_count++;
8 }
9 continue;

10 }
11 }

Listing 1: Receiver Acknowledgment Example

The one-sided waiting message loop is similar to the two-
sided design. However, since the standard one-sided library
lacks support for signal waiting and notification operations on
the receiver side, users must create the receiver acknowledg-
ment by themselves.

The one-sided GPU implementation follows a simi-
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Distributed HashTable
1M msg/sync
Stencil, 4 msg/sync
SpTRSV, 1 msg/sync

SpTRSV
Latency 4us

Hashtable
Latency 0.8 us

Stencil
Latency 1.6us

Message size [Bytes]

Perlmutter (NVLINK3) 100GB/s

Fig. 7: More messages per synchronization help to overlap
the latency. The GPU messaging latency of Hashtable (one
million messages per synchronization) is the smallest, while
the latency of SpTRSV is the largest due to one message per
synchronization.

lar idea to CPU SpTRSV. Each process sends data
using nvshmem_double_put_signal_nbi, and uses
nvshmem_wait_until_any in a loop to wait for mes-
sages. The loop size equals the number of expected messages.
Once the signal arrives, the sending data is already completed
for local computation.

Both two-sided and one-sided SpTRSV send one message
per synchronization. However, in addition to sending the data,
one-sided also sends an extra signal. As such, the CPU one-
sided communication needs four MPI operations per message
and needs to implement the receiver notification. Therefore,
two-sided performs one operation per synchronization (3.3us
in Fig 6b) while one-sided performs four operations per
synchronization (5us in Fig 6b).

Fig. 8 shows the SpTRSV time. The tested matrix has
1e + 08 non-zeros with a dimension of 126K × 126K. One
could immediately observe that, unlike stencil, the one-sided
SpTRSV is slower than the two-sided. Recall that SpTRSV has
one message per synchronization and the message size ranges
from 24 bytes to 1040 bytes. The low performance of the one-
sided implementation is due to higher latencies introduced by
4× as many MPI operations.

The second observation from Fig. 8 is that one-sided imple-
mentation stops scaling at higher parallelism. This is due to ex-
tra work to maintain data arrival in one-sided implementation.
Recall that each process needs to loop all the remaining signal
buffers to check the message arrival every time it expects one
message.

The SpTRSV scales well on Perlmutter GPUs using NVSH-
MEM but not on Summit GPUs. One can immediately find the
advantages of a faster GPU-to-GPU interconnection. Recall
that the latency via NVLINK3 (4us) is 20% lower than
NVLINK2 (5us), and bandwidth is 2× higher than NVINK2.
In addition, the observed single GPU times are equal on the
two machines. As it scales to four GPUs, SpTRSV can achieve
a 3.7× speedup via NVLINK3 on Perlmutter compared to
NVLINK2 on Summit. This emphasizes the benefits of a lower
latency between GPUs for applications like SpTRSV.

In addition, the implication of high latency on Summit GPU

can be immediately observed by comparing the Summit GPU
and Summit CPU runs. First, the single GPU is the fastest due
to the GPU power, and then the time increases as we scale to
more GPUs due to the high latency on Summit GPUs (5us).
SpTRSV can scale up to 32 Summit CPUs because Summit
CPUs provide a lower latency of 3us, and the time increases
using all 42 CPUs due to contention.

C. Distributed Hashtable

The distributed hashtable benchmark represents data analyt-
ics applications that often require random access in distributed
structures. Each process manages a part of the hashtable and
an additional overflow heap to store elements after collisions.
The total number of messages each process expects is random.
Only the sender knows the receiver when the inserted element
is generated. Unlike stencil and SpTRSV, Hashtable is a
sender’s control benchmark. Thus, using one-sided commu-
nication is more straightforward than using two-sided ones.

The table and overflow list are placed in shared arrays in
the one-sided implementation. Inserts are based on the atomic
compare and swap (CAS, MPI_Fetch_and_op) operation.
If a collision happens, the losing thread acquires a new element
in the overflow list by atomically incrementing the next free
pointer. It also updates the last pointer using a second CAS.
MPI_Win_flush_local are used to ensure the memory
consistency.

In the two-sided implementations, each process sends a
triplet (ID, elem, pos) to other processes using MPI_Isend,
where ID is the receiver rank ID, elem is the insert value,
and pos represents the insert position. After sending, each
process waits for P − 1 messages using MPI_Recv with
MPI_ANY_SOURCE and MPI_ANY_TAG. If the received ID
equals my rank ID, the process starts to perform the local
insert. Otherwise, the process continues waiting for the rest
messages.

Eventually, the one-sided implementation performs the
atomic operation, and there’s no synchronization until ending
the insert. The two-sided has P number of messages per
synchronization (or insert), and the message size is also tripled.
According to the Message Roofline Model in Fig. 6c, the
two-sided MPI takes 0.3us per message when the number of
messages per synchronization is a hundred. When using 128
processes, each process must send (or receive) 127 messages
to other processes. Thus, for one insert, the two-sided message
time should be 0.3× log2 128 = 2.1 us, and also considering
the extra overhead of the local insert, the GUPS [24] of the
two-sided hashtable can never be higher than 476K GUPS (one
CAS in 2.1us). On the other hand, the on-sided can provide
500K GUPS corresponding to one CAS in 2us. It suggests that
the one-sided HashTable should be faster than the two-sided.
This is corroborated by the results in Fig. 9 which shows that
one-sided is 5× faster than the two-sided using 128 processes.
Note, the one-sided is slower than the two-sided in the case
of 2 processes, as the two-sided message time for one insert
should be 1.1×1=1.1 us as compared to 2 us for one-sided
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CPU (Number of processes)
4
8
16
32

42 [Summit, full node]
56 [Frontier, full node]
64 [Perlmutter, full socket]

128 [Perlmutter, full node]
GPU (Number of GPUs)

1 2 3  
4 [Perlmutter, full node]
6 [Summit, full node]

Fig. 8: SpTRSV time on CPUs and GPUs using two-sided and one-sided communications. The opposite performance scaling
trends between Perlmutter GPUs and Summit GPUs indicates the network impact on scaling performance to multiple GPUs.

CPU (Number of processes)
4
8
16

32 42 [Summit, full node]
56 [Frontier, full node]
64 [Perlmutter, full socket]

128 [Perlmutter, full node]
GPU (Number of GPUs)

1 2 3  
4 [Perlmutter, full node]
6 [Summit, full node]

Fig. 9: Distributed hashtable time on CPUs and GPUs using two-sided and one-sided communications. The increased time
using more than three GPUs on Summit shows the performance implication of on-node GPU topology.

CAS. These observations apply to Frontier and Summit CPUs
as well.

Looking at the Summit GPU results in Fig. 9, one can
immediately see the implication of on-node GPU topology.
It stops scaling when using Summit GPUs across two CPU
sockets because each atomic compare and swap takes 1.6us
across sockets while it only takes 1us within a socket. If
we further compare the Perlmutter GPU results to Summit
GPU results within a CPU socket, we can find that the
Perlmutter results are slightly better than Summit results.
Again, it is because each atomic compare and swap takes 0.8us
on Perlmutter GPUs, but it takes 1us on Summit GPUs within
a CPU socket.

IV. RELATED WORK

Li et al. [25] evaluated modern GPU interconnect: PCIe,
NVLink, NV-SLI, NVSwitch and GPUDirect NUMA effects

in a multi-GPU node and provided optimization guidance.
Groves et al. [26] studied the performance trade-offs between
the host and device-initiated GPU communications. Spafford et
al. [27] analyzed the NUMA effects in a multi-GPU node and
provided optimization guidance. Sun et al. [28] evaluated the
potential performance benefits and tradeoffs of AMD’s Radeon
Open Compute (ROC) platform for Heterogeneous System
Architecture (HSA). All of the existing studies use the flood
send (or put) or ping-pong to benchmark the communication
performance. However, it provides a loose bound of the
achieved performance because most practical applications can
seldom reach the benchmarked performance. Dufek el al. [29]
create an extended Roofline model which characterizes an
application performance (GFLOP/s) as a function of flops per
MPI byte. The proposed Message Roofline model, using the
number of messages per synchronization, provides a tighter
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bound of achieved performance, especially for latency-bound
applications like SpTRSV and Distributed HashTable. It also
characterizes the message overhead, which can never be over-
lapped. It also guides the software developers on how much
optimization room they have by overlapping the messages and
guides the MPI distribution developers about future software
optimization.

V. DISCUSSION AND CONCLUSION

In this paper, we characterize and evaluate three types
of communications namely CPU two-sided MPI, CPU one-
sided MPI and GPU one-sided MPI, using three workloads
over three architectures namely Perlmutter CPUs and GPUs,
Summit CPUs and GPUs, and Frontier CPUs. We also present
a Message Roofline model using the number of messages
per synchronization to provide realistic performance bounds
for different workloads. This study also helps motivate the
HPC community to push forward the multi-GPU research,
particularly the development of more mature multi-GPU pro-
gramming, execution, and performance models.

Performance. We show that the applications similar to
Stencils are not sensitive to on-node GPU topology as they
scale well using six GPUs on Summit. These applications
achieve better speedups from the massive parallelism and
high bandwidth of GPUs as compared to the CPUS due to
their inherent bandwidth-bound nature. However, the latency-
bound applications, similar to SpTRSV, prefer a lower-latency
interconnect. For example, running SpTRSV using 4 GPUs on
Perlmutter is 3.7× faster than running it on Summit. Liu et
al. [15] showed that a low latency one-sided foMPI [16] on
CPU can improve SpTRSV performance by 1.5× compared
to the standard two-sided MPI. Applications similar to the
Distributed HashTable also show sensitivity to the on-node
GPU topology due to their nature.

We demonstrate that sending more messages can help to
overlap the latency by increasing the number of messages
while keeping the message size the same for each message.
This gives a tight bound of achievable communication perfor-
mance. If one can send more messages per synchronization
while the message size of each message remains the same,
the dot on the Message Roofline plot also moves upwards.

Another insight from the Message Roofline model is
whether the communication performance can be improved by
splitting the message into several smaller ones. Fig. 10 is a
Message Roofline variant, showing the performance achieved
by splitting one message into four smaller ones on Perlmutter
GPUs. Instead of using message size on the x-axis, Fig. 10
uses message volume (equal to the number of messages ×
message size) on the x-axis. Therefore, as we send more
messages, the size of each message decreases accordingly.
It gives more optimization guides on leveraging messages
per synchronization to optimize communication performance.
Message sizes larger than 131K can get 2.9× speedups by
splitting one big message into four smaller ones.

Portability. We discuss three kinds of portability. The first
one is design portability. One-sided communications preserve

One message
Four messages

Perlmutter GPU

0.6x

2.9x

Fig. 10: Large message sizes can get up to 2.9× speedups by
splitting one big message into four smaller ones on GPUs.

design portability within the SHMEM model across archi-
tectures. NVSHMEM, ROC SHMEM, and one-sided MPI
follow the SHMEM model. As such, the communication
design can be shared with CPUs and GPUs. Two-sided is
different from them. The second is code portability within
the same processor type. For example, porting NVSHMEM
code to ROC SHMEM on devices is relatively straightforward
but requires some user efforts to maintain a proper interface
mapping. Conversely, porting two-sided MPI to one-sided
MPI on CPUs needs a re-design and many coding efforts on
data placement and receiver notification. The third is code
portability across processor types. For example, porting CPU
one-sided MPI to GPU NVSHMEM. Even though the design
can be shared, it still requires many user efforts in engineering
because the control flow and interfaces are different. It def-
initely requires more effort to re-design the communication
scheme when porting CPU two-sided MPI to NVSHMEM.

Productivity. Effective programming models offer pro-
grammers the ability to utilize the capabilities of the under-
lying hardware and improve productivity. Applications like
stencils that follow the BSP model may find two-sided MPI
can satisfy the performance and productivity on both CPUs
and GPUs. Conversely, applications with asynchronous com-
munication patterns prefer one-sided communications across
architectures.

In addition, We demonstrate that one-sided communica-
tions have the potential to provide lower latency and higher
bandwidth than two-sided communication. On Perlmutter and
Frontier CPUs, the one-sided communication depicts the same
latency as the two-sided communications, even with a doubled
number of MPI operations per send. Therefore, it can be intu-
itively inferred that the one-sided MPI can easily outperform
the two-sided MPI with hardware-level support for put-with-
signal.

Our future efforts include extending our Message Roofline
Model to AMD GPUs using ROC SHMEM and assessing
other communication patterns, system interconnects, and li-
braries. e.g., AI applications using NCCL [30], RCCL [31],
and HCCL [32]. We believe our work will be instrumental in



10

obtaining insights into the messaging performance of complex
HPC applications running on existing and emerging hardware
accelerator architectures.
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APPENDIX A
ARTIFACT DESCRIPTION APPENDIX: [EVALUATING THE

PERFORMANCE OF ONE-SIDED COMMUNICATION ON
CPUS AND GPUS]

A. Abstract

The key contribution of this paper is the methodology
of the Message Roofline Model for GPUs. The hardware
and software environment used in this paper are all publicly
available as described below.

B. Hardware

Results presented in this paper were obtained on Perlmutter
at NERSC, Summit and Frontier at OLCF, as listed in Table III
Perlmutter GPU partition is comprised of nodes with one
AMD EPYC 7763 (Milan) CPU and four NVIDIA A100
GPUs. Perlmutter CPU partition has two AMD EPYC 7763
(Milan) CPUs. Each compute node on Summit contains two
IBM POWER9 processors and six NVIDIA V100 accelera-
tors, while each Frontier node consists of one 64-core AMD

“Optimized 3rd Gen EPYC” CPU and four AMD MI250X
GPUs.

C. Run-time environment

Table III presents the used run-time environments on all
machines. We use NVSHMEM v2.8.0 with GDRcopy in all
GPU experiments. We use cudatoolkit v11.7 on Perlmutter
GPU partition and CUDA v11.0.3 on Summit GPUs. We
use CrayMPI for two-sided and one-sided experiments on
Perlmutter CPU partition and Frontier CPUs, while we use
IBM Spectrum MPI on Summit. Note we did not experi-
ment on Frontier AMD GPUs due to the lack of support of
“wait until any” in ROC SHMEM.

D. Benchmarks

The three benchmarks we evaluated in the paper are de-
scribed below.

1) Sparse Triangular Solve (SpTRSV), the source code
can be found https://github.com/xiaoyeli/superlu dist/
tree/new multiGPU.

2) Stencil, the source code can be found https://web.cels.
anl.gov/∼thakur/sc16-mpi-tutorial/.

3) Distrbiuted HashTable, the source code can be found
https://spcl.inf.ethz.ch/Research/Parallel Programming/
foMPI/.

E. Installation

The NVSHMEM installation script named
“install perlmutter.sh” and “install summit.sh” on Perlmutter
and Summit can be found https://github.com/nanding0701/
nvshmem test/tree/main.

The installation scripts of SpTRSV can be found https:
//github.com/xiaoyeli/superlu dist/tree/gpu3d-batch/example
scripts. The installation script follows the naming convention
by run cmake build {machine} {compiler} nvshmem.sh for
GPUs and run cmake build {machine} gcc nogpu.sh for
CPUs.

The Makefile of Stencil and Distributed HashTable are
included in their source code.

F. Experiment workflow

We run SpTRSV with a matrix from M3D-C1, a fusion
simulation code used for magnetohydrodynamics modeling of
plasma. The matrices are first factorized via SuperLU DIST
with METIS ordering for fill-in reduction. The matrix dimen-
sion is 126K × 126K with 1e+08 number of non-zeros after
factorization.

We run Stencil using the grid size of 16384×16384, and
Distributed HashTable using one million inserts. There is no
input for these two benchmarks. One can pass in the grid size
and number of inserts via the command line.

https://rocm.docs.amd.com/projects/rccl/en/latest/
http://nowlab.cse.ohio-state.edu/static/media/workshops/presentations/exacomm23/Habana_ExaComm_2023.pdf
http://nowlab.cse.ohio-state.edu/static/media/workshops/presentations/exacomm23/Habana_ExaComm_2023.pdf
https://github.com/xiaoyeli/superlu_dist/tree/new_multiGPU
https://github.com/xiaoyeli/superlu_dist/tree/new_multiGPU
https://web.cels.anl.gov/~thakur/sc16-mpi-tutorial/
https://web.cels.anl.gov/~thakur/sc16-mpi-tutorial/
https://spcl.inf.ethz.ch/Research/Parallel_Programming/foMPI/
https://spcl.inf.ethz.ch/Research/Parallel_Programming/foMPI/
https://github.com/nanding0701/nvshmem_test/tree/main
https://github.com/nanding0701/nvshmem_test/tree/main
https://github.com/xiaoyeli/superlu_dist/tree/gpu3d-batch/example_scripts
https://github.com/xiaoyeli/superlu_dist/tree/gpu3d-batch/example_scripts
https://github.com/xiaoyeli/superlu_dist/tree/gpu3d-batch/example_scripts
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TABLE III: Hardware and Run-time environments

Machine GPUs per node GPU Interconnect GPU Runtime GPU-CPU Interconnect CPUs CPU-CPU Interconnect CPU Runtime CPU-NIC Interconnect

Summit 6×V100 NVLINK2 CUDA v11.0.3 NVLINK2 2×IBM POWER9 X-Bus IBM Spectrum PCIe4.0
NVSHMEM v2.8.0

Perlmutter GPU 4×A100 NVLINK3 cudatoolkit v11.7 PCIe4 1×AMD EPYC 7763 - - PCIe4.0
NVSHMEM v2.8.0

Perlmutter CPU - - - - 2×AMD EPYC 7763 Infinity Fabric CrayMPI PCIe4.0
Frontier CPU - - - - 1×AMD EPYC 7A53 Infinity Fabric CrayMPI Infinity Fabric and PCIe4.0 ESM

G. Evaluation and expected result

The SpTRSV requires some run-time settings. The running
script of SpTRSV can be found https://github.com/xiaoyeli/
superlu dist/tree/new multiGPU/example scripts. Similar to
the installation scripts, it follows the naming convention by
batch script mpi runit {machine} {compiler} nvshmem.sh
for GPUs and batch script mpi runit {machine} gcc nogpu.sh
for CPUs. One can refer to the SOLVE time reported at the
end of each run.

The running command of Stencil is “srun -n4 -c32 –cpu-
bind=cores -G 4 ./stencil 16384 1 1000 2 2 ” on Perlmutter
GPUs, and “jsrun -n6 -c2 -a1 -g1 ./stencil 16384 1 1000 3 2
” on Summit GPUs. The parameters represent the grid size,
energy, number of iterations, and process decomposition in x-
and y-axis. The timing will be printed at the end of each run.

The running command of Distributed Hashtable is “srun -n4
-c32 –cpu-bind=cores -G 4 ./hashtable 250000 ” on Perlmutter
GPUs and “jsrun -n6 -c2 -a1 -g1 ./hashtable 166666” on
Summit GPUs. Note that both commands are performing one
million inserts in total. As more processes (GPUs) are used, the
number of inserts of each GPU reduces accordingly. One must
manually calculate that number and pass it in when running
the benchmark. The timing will be printed at the end of each
run.

https://github.com/xiaoyeli/superlu_dist/tree/new_multiGPU/example_scripts
https://github.com/xiaoyeli/superlu_dist/tree/new_multiGPU/example_scripts
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