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Abstract—Computations on structured grids using standard
multidimensional array layouts can incur substantial data move-
ment costs through the memory hierarchy. This paper explores
the benefits of using a framework (Bricks) to separate the
complexity of data layout and optimized communication from
the functional representation. To that end, we provide three
novel contributions and evaluate them on several kernels taken
from GENE, a phase-space fusion tokamak simulation code. We
extend Bricks to support 6-dimensional arrays and kernels that
operate on complex data types, and integrate Bricks with cuFFT.
We demonstrate how to optimize Bricks for data reuse, spatial
locality, and GPU hardware utilization achieving up to a 2.67×
speedup on a single A100 GPU. We conclude with insights on
how to rearchitect memory subsystems.

I. INTRODUCTION

Whereas 2D and 3D arrays are commonplace in scientific
computing (matrices, 3D structured grids), there are many
other computational domains that require computations on
high-dimensional structured grids. Although a tensor is the
obvious exemplar, similarly high-dimensional arrays arise
when one discretizes not only space, but also time or momen-
tum (Lattice-QCD, phase-space computations, Fokker-Planck
equations, etc...). Many of these operations see substantial
reuse (the ratio of memory references to array size is large)
and particularly among neighboring elements (an access to
some xi is likely to be followed by an access to a nearby
(in N-dimensional space) xi+δ . As the trend in computing
technology has highlighted DRAM bandwidth as the factor
limiting performance, it is imperative hardware and software
collaborate to ensure the vast majority of these memory
references hit in the cache — a challenge exacerbated by
the increasingly long reuse distances seen in computations on
high-dimensional array-based data structures.

As of 2022, the most energy efficient path to exascale lever-
ages massively-parallel systems of GPUs. Although GPUs
deliver exceptional peak performance and bandwidth, they
do so through massive parallelism. Similarly, as total GPU
cache capacity has increased in recent years, it is shared by
over ten thousand threads. When the corresponding per-thread
cache capacity is small, software, framework, and compiler
developers are required to orchestrate data access and data
layout to maximize intra- and inter-thread data locality. One
recent approach to obtain performance on these complex
systems is the Bricks library [1]. Bricks stores data in small,

multi-dimensional chunks of fixed size. These chunks are
called Bricks, and have been shown to provide performance
portability on CPUs and GPUs [1].

In this paper, we extend the Bricks [1] framework to support
higher dimensions and complex data types. We show that
the Bricks library can offer significant speedups over array-
based layouts on high-dimensional kernels by simplifying
performance tuning to just considering the Brick shape. To
do this, we implemented some of the most critical stencils
from GENE [2], [3]–a 6D physical+phase-space fusion code–
using the Bricks library. In the process, we demonstrate that
using Bricks can avoid the large engineering effort required
to optimize stencil computations on a typical array-based
memory layout. We show how to use Brick size as a proxy
for memory resource usage, and demonstrate that, for wide
ranges of Brick sizes, the performance effects of changing
Brick shape parameters are predictable. We also implemented
an FFT from GENE using the Bricks library and cuFFT to
show that Bricks are highly performant on other non-stencil
structured grid computations.

The contributions of this paper are as follows. (1) We
extended the Bricks library to support GENE kernels by
adding complex-type support and reducing metadata for high-
dimensional Bricks. (2) We added FFT support for Bricks
computations on NVIDIA GPUs using a cuFFT backend, and
implemented an FFT kernel used in the GENE code. (3) We
demonstrate how changing Brick shape corresponds to per-
formance tuning, allowing us to completely separate correct-
ness from optimization. (4) We provide detailed experiments
demonstrating the Bricks performance tuning process for two
GENE stencils and compare the performance advantages of
Bricks over array-based layouts on NVIDIA A100 GPUs.

II. BACKGROUND

Recovering data locality on multi-dimensional array layouts
often requires loop optimizations like tiling [4], polyhedral
analysis [5], or a scheduling language [6]. Some tools, such
as OpenMP loop transformations [7], try to automate these
optimizations. In contrast, Bricks obtains spatial locality by
storing data in small, fixed-size multidimensional arrays called
“Bricks” [1]. To store a d-dimensional array in a Bricked
layout, one must specify a Brick shape at compile-time. Figure
1 shows an example of a 16×16 array stored in 4×4 Bricks.



Fig. 1. Example layout of a 16× 16 array stored in 4× 4 Bricks. (Left) A layer of indirection maps each logical Brick location to its physical position in
memory. In the above example, the Brick at logical index (1, 1) is stored at index 0. (Center) Bricks are stored contiguously in memory. Each Brick is a 4×4
array. The above figure shows which array elements are stored in the Brick at index 0. (Right) In order to quickly access adjacent Bricks, each Brick has an
adjacency list storing the physical indices of neighboring Bricks. The adjacency lists are stored contiguously in memory in the same order as the Bricks. The
above figure shows the adjacency list for the Brick at index 0.

The Bricks library stores arrays using three data structures.
The first is an array of “Bricks.” Each Brick is a small,
fixed-size array stored in a traditional multi-dimensional array
layout. These Bricks store the array’s data. The second data
structure is an indirection map. This map takes the logical
location of a Brick to its physical location in memory. For
example, in Figure 1 the Brick at physical index 0 corresponds
to the Brick at logical position (i, j) = (1, 1). The third
data structure is an array of adjacency lists, providing each
Brick with the indices of its logical neighbors on a single
data stream. Note that in this example, interior and surface
Bricks are stored contiguously in memory, allowing MPI
communication with neighbors to use contiguous memory and
completely avoid “packing” of MPI message buffers.

Other multi-dimensional array libraries such as Kokkos
views [8] or mdspan layouts [9] try to abstract away the
underlying data layout of arrays for performance portability.
However, high performance on these layouts still requires loop
optimization. In contrast, Bricks embeds a d-dimensional array
into a 2d-dimensional space by adding a layer of indirection.
By relying on code generation for each Brick computation,
these d new parameters (the Brick shape) are free to be used
for tuning in place of complex polyhedral methods. While this
layout could be implemented in Kokkos or mdspan, the key
benefit of Bricks comes from programmatically optimizing the
data structure instead of the code.

The Bricks library [1] is a C++ header library which
supports computations on Bricks by using templates to au-
tomatically translate (Brick index, index in Brick) tuples to
the appropriate offset into memory, utilizing the adjacency list
to handle accesses into neighboring Bricks. Bricks supports
efficient, vectorized code generation for stencil computations
on CPUs and GPUs [10] and efficient MPI communication
with minimal message counts and no packing costs via data
layout transformation [11]. Bricks reduces user effort by
providing a DSL that separates stencil coding from optimized
code generation [10], with Brick shape as a tuning option.

Higher-dimensional fusion application frameworks, such as
GENE and COGENT [12], often have a mix of algorithms

in different problem dimensions. Previous work using Bricks
showed excellent results for real-valued stencil computations
in 2D and 3D [10]. This work extends that and examines large,
high-dimensional, complex-valued fields, stencils of much
lower dimension than the problem dimension (e.g. a 2D stencil
over the k-` axis for each index (idxi, idxj , idxm, idxn)), and
fields which depend on only a subset of the axes of a Brick.
Further, we investigate the performance impact of the Bricks
layout on other-than-stencil structured grid computations (e.g.
FFTs).

III. BRICKS PERFORMANCE CONSIDERATIONS IN
HIGH-DIMENSIONAL SPACES

A. GENE Proxy Benchmarks
To understand the issues facing Bricks in high-dimensional

settings, we focus on three microbenchmarks as a proxy for
the computations found in the full GENE code. These bench-
marks are taken from GTENSOR [13], a software productivity
library developed for the GENE project designed to generate
optimized CUDA kernels and allow kernel fusion via lazy
expression evaluation. These consist of a 1D stencil along the
i axis, a 2D stencil with variable coefficients along the k-`
axes, and an FFT along the j axis, typically with size that’s
a power of 2. The n-axis corresponds to a GENE species,
so it is typically very small (e.g. between 1 and 3). Thus,
if not otherwise specified, we use a problem size taken from
examples in the GTENSOR repository of I×J×K×L×M×N
= 72× 32× 24× 24× 32× 2. This includes a ghost-zone of
depth 2 along the i axis for the 1D stencil and ghost-zones of
depth 2 along the k and ` axes and corners for the 2D stencil.

1) 1D Stencil: This benchmark is a fused kernel described
in [13], and computes a 5-point stencil for a derivative along
the i axis fused with a derivative along the j axis and scales
the result. Since the j axis is represented in Fourier space,
the j-derivative is computed using multiplication. Specifically,
given complex-valued input field g and complex-valued fields
p1 and p2, which do not depend on j, it computes

p1[i, k, `,m, n] · Di g[i, j, k, `,m, n] (1)
+ p2[i, k, `,m, n] · ıky · g[i, j, k, `,m, n],
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where ı in Equation 1 refers to the imaginary unit, ky to the
Fourier mode, and Di is the 1-dimensional 5-point stencil with
coefficients

[
1
12 ,
−2
3 , 0,

2
3 ,
−1
12

]
.

Using double precision arithmetic this stencil has a theoreti-
cal peak arithmetic intensity (FLOPs per byte) of roughly 1.12.
As such, we expect this stencil to be completely memory band-
width bound on an A100 GPU, assuming one can generate
code that maximizes cache locality and memory bandwidth.
(n.b, all arithmetic intensity calculations in this section are
included in Appendix A).

2) 2D Stencil: This GENE kernel is also described in
[13]. This 2D stencil is a 13-point, diamond-shaped, variable-
coefficient stencil used in an Arakawa method [14] by GENE.
While the field on which the stencil is computed is complex-
valued, the coefficients are real-valued. Pseudo-code for this
stencil is shown in Listing 1. This stencil has a theoretical peak

for i, j, k, l, m, n in index_space:
result = 0
for s in range(0, 13):
c = coeffs[s](i, /* (no j) */ k, l, m, n)
dk, dl = offsets[s]
result += c * inp(i, j, k+dk, l+dl, m, n)

out(i, j, k, l, m, n) = result

Listing 1: Pseudo-code for the 2D stencil.

arithmetic intensity of roughly 1.28, so we expect this stencil
to also be heavily memory bandwidth bound on an A100 GPU
despite the increase in complexity.

3) 1D FFT: Our final benchmark is a one-dimensional FFT
computed along the j axis of the 6D domain. Bricks transfor-
mations have only been evaluated for stencil operations, so
this benchmark evaluates the approach for applications with
a mix of stencil- and non-stencil kernels. For our grid, this
corresponds to an arithmetic intensity of 0.78. As such, we
expect the FFT will also be heavily memory bandwidth bound.

B. Expanding the Bricks library to support GENE kernels

Extending the Bricks library to support these high-
dimensional kernels required supporting computations with
both real and complex-typed Bricks, specializing the meta-
data to facilitate low-dimensional computations on high-
dimensional arrays, and building a hook-in into cuFFT.

The Bricks library stores an adjacency list for each Brick so
that neighboring indices can be read in on a single prefetcher
stream. This adjacency list grows exponentially with respect to
the dimension. For example, in 6D each Brick has 3d−1 = 728
neighbors. On a I × J × K × L × M × N grid of shape
72×32×24×24×32×2 with Bricks of size 2×16×2×2×1×1,
such an adjacency list would require 1.93GB. For comparison,
each complex field takes up only 1.36GB. This is clearly far
too much overhead for a memory-bound computation.

The underlying issue is that most dimensions are inactive,
and only some of the dimensions interact with each other.
For the 1D derivative, only 31 − 1 = 2 neighboring Bricks
are needed to compute the stencil on each Brick. Similarly,
for the 2D derivative, only 32 − 1 = 8 neighboring Bricks

need to be computed. To minimize this metadata, we have
extended the Bricks library to support customizable adjacency
lists, only storing neighbors along the active dimensions.
Storing just these adjacency lists uses 5.31MB (1D) and
21.23MB (2D) and, in place of the 1.93GB 6D one, ensures the
adjacency metadata movement (∼1%) does not significantly
reduce arithmetic intensity.

To support the FFT computation performed in GENE, we
extended the Bricks library with a hook-in to cuFFT. The
cuFFT callback feature allows an external function to return
the memory references read from/stored to by cuFFT during
its computation. Using callbacks, cuFFT can compute FFTs on
non-standard array layouts (in particular, the Bricks layout).

C. Low dimensional stencils in high dimensional Bricks

In stencil computations, managing data movement is typi-
cally the key to performance [15], [16]. This process usually
involves parameter tuning, which in this case includes the
choice of Brick shape. We demonstrate important interpreta-
tions of the Brick shape parameters in terms of data reuse.

As recommended in [1], we compute each output Brick
independently for coarse-grained parallelism and rely on the
code generation technique from [10] to exploit fine-grained
parallelism. With the assumption that all resources/temporaries
needed for each Brick computation fit into L1 cache/registers,
we can assume that only cold misses to L1 occur (we ensure
this implicitly by growing the Brick size until performance
starts to decrease). Then, analyzing intra-Brick reuse becomes
tractable. The following analysis is derived in Appendix B.

1) Input field reuse: First, we show that intra-Brick data
reuse of the input field is described by the Brick shape along
the stencil dimensions. By intra-Brick data reuse, we mean
the average reuse of each element used to compute the output
Brick, i.e. the average number of times an element read from
memory is used per Brick. Consider a stencil computation ∆
which accesses size neighbors, each at a distance of at most
radd along axis d. For a Brick of shape b0 × · · · × bD−1, we
estimate the intra-Brick reuse R:

size ·
D−1∏
d=0

radd 6=0

1

1 + 2 radd/bd
≤ min

size, D−1∏
d=0

radd 6=0

bd

 (2)

To understand these bounds, consider the 1D and 2D stencils
from Section III-A. Letting ei = (1, 0, 0, 0, 0, 0) represent an
offset of 1 in the i axis, and similarly for ek and e`, the stencil
offsets are

∆1D = {−2ei,−ei, 0, ei, 2ei}
∆2D = {−2e`,−ek − e`,−e`, ek − e`,−2ek,−ek, 0,

ek, 2ek,−ek + e`, e`, ek + e`, 2e`}.
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Applying Equation 2, the intra-Brick input field reuses R1D

and R2D are in the range

5

1 + 4/bi
≤ R1D ≤ min (5, bi) (3)

13

(1 + 4/bk)(1 + 4/b`)
≤ R2D ≤ min (13, bkb`) . (4)

In particular, the 1D stencil’s access pattern encourages in-
creasing bi, while the 2D stencil incentivizes increasing bk
and b`. Thus, for a fixed Brick size, we see that relying on
intra-Brick field reuse for some stencils in an application may
force us to rely on inter-Brick field reuse for others.

2) Auxiliary field reuse: Intra-Brick reuse for auxiliary
fields is described by the Brick dimensions that the auxiliary
fields do not depend on. For example, both stencils contain
auxiliary fields which do not depend on the j-axis. Any two
points which differ only in their j coordinate depend on the
same auxiliary field values, exposing an opportunity for reuse.

For Bricks, the amount of reuse is explicit. If there are N
input field elements stored in Bricks of size B, and Naux
auxiliary field elements stored in Bricks of size Baux, then
the number of auxiliary field elements loaded is

N ·Baux
B

, (5)

with reuse factor

Raux :=
B

Baux
. (6)

For example, in both the 1D and 2D stencil, the reuse of each
scalar field is just the j Brick shape parameter, bj .

Note that in Equation 5, for a fixed Brick shape the number
of auxiliary coefficients loaded depends on the number of input
field elements. This is because each output Brick is computed
independently. Importantly, since many fields do not depend on
the j axis across both stencils, increasing bj can dramatically
improve the performance of both the 1D and 2D stencils, even
though the auxiliary fields are much smaller than the input
fields.

3) Using Reuse Estimates: Of course, in this entire dis-
cussion, the cost of loads is dependent on where the data
reside inside the memory hierarchy (i.e. inter-Brick reuse).
For example, because (in our implementation) the Bricks are
laid out contiguously in i, input fields may achieve a much
higher reuse than is indicated by Equation 3.

However, holding Brick iteration order constant, Equa-
tions 2 and 6 provide easy translations from the structure of the
computation into estimates of data reuse as a function of Brick
shape, and in practice can explain many of the performance ef-
fects observed in reasonably-sized Bricks. Since many stencils
are bandwidth bound, optimizing reuse is necessary for high
performance. Using these equations to optimize reuse changes
the search for a Brick shape from a general tuning problem to
a guided search.

IV. RESULTS

A. NVIDIA A100 GPU

In this paper, we use a GPU-accelerated system where each
node consists of four NVIDIA Ampere A100 GPUs and one
AMD EPYC 7763 (Milan) CPU. Each GPU consists of 108
streaming multiprocessors (SMs) and a total of 3,456 FP64
cores clocked at 1.41GHz, providing a theoretical (non-Tensor
core) peak double-precision performance of 9.7 TFLOP/s.
Each A100 has 40 GiB HBM2 memory at the maximum
bandwidth of 1,552.2 GB/s. This produces a machine balance
of about 6.5 FLOPs per byte. Kernels with an arithmetic
intensity less than 6.5 will ultimately be memory-bound and
unable to use the full compute capability. 1

B. Performance Methodology

To evaluate the benefits of Bricks in these high-dimensional
settings, we wish to demonstrate that Bricks separates perfor-
mance concerns from correctness, achieves highly performant
stencil code, and is performant for non-stencil computations.

We use the Roofline model [17] to evaluate the performance
potential of these kernels in terms of not only their achieved
floating-point performance, but also their cache performance
(in that any unnecessary bytes moved affect arithmetic in-
tensity). Since all of the kernels considered are bandwidth-
bound, we analyze performance by measuring and comparing
the volume of data moved to/from HBM, measured using
the NSight Compute Profiler. As the number of floating-
point operations is fixed within each kernel, performance is
dependent on data volume and bandwidth, and the arithmetic
intensities presented earlier denote goalposts. As applications
written in Bricks create, load, operate, and store data in a
Bricked layout for the entirety of the application, there is
nominally zero overhead for data layout conversions. If one
required interoperability with an external library, the overhead
would be twice the number of elements (read from one layout;
write to the other).

We intend to demonstrate that, using the insights in Equa-
tions 2 and 6, the Bricks library provides predictable perfor-
mance behavior. Then, we show how to use this predictability
to achieve near-roofline performance.

Finally, we address the concerns that Bricks may negatively
affect non-stencil computations. We implement the FFT over
the j axis as described in Section III-A3 using cuFFT, and
investigate the performance characteristics of performing an
FFT along a line spanning multiple Bricks. As GTENSOR uses
cuFFT to compute FFTs on the GPU, this is a reasonable
comparison of optimized FFT implementations accessing data
either in the traditional array layout or a Brick layout.

C. Stencils on NVIDIA A100

1) Performance tuning using Brick shape: Since we can
rely on the Bricks code generation to write the kernel, we
investigate the first question by measuring data movement for

1Experimental setup and code can be found at https://github.com/
benSepanski/bricklib/tree/mchpc 0.0/gene
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various Brick shapes. In Figures 2 and 3, we show the total
amount of data movement for the 1D and 2D stencils over a
large set of Brick shape parameters. We investigate whether
Equations 2 and 6 can be used to tune Bricks for performance.

One notable anomaly in Figure 2 is the 1D stencil with
Brick size 1024 with bi = 4. This was traced to a compiler
optimization decision, where several loops are not unrolled,
preventing key memory optimizations. In future work, outer
dimensions could be collapsed using code generation.

Equations 2 and 6 attempt to predict intra-Brick data reuse.
To see how useful these predictions are, we write the estimated
global data volume DataV ol in terms of the size of the output
field sizeout, the predicted input field reuse Rinp (taken from
the lower bound in Equation 2), the auxiliary field reuse Raux
(defined as in Equation 6), and N , Naux (as defined as in
Equation 5). We then find a least squares fit of Equation 7 to
the data in Figures 2 and 3.

DataV ol = sizeout +
size(∆) · cinp

Rinp
+

N · caux
NauxRaux

. (7)

Intuitively, cinp (resp. caux) represents the total size in GB
of the input field (resp. auxiliary scalar fields). Note that the
size(∆) (resp. N/Naux) factor is just a normalization factor:
the number of times each element is used.

First observe that the model in Equation 7 is an especially
good fit for the 2D stencil, and fits both stencils well. A
standard t-test fails to reject the fit with p < 10−4.

Our fit for the 1D stencil estimates cinp±σinp = 1.53±0.16
GB. This is slightly larger than the size of the input array
(1.36 GB), indicating that the actual reuse is slightly lower
than predicted. In Figure 2, we see no marked decrease in
data movement as the Brick-dimension increases along the i
axis. As mentioned in Section III-C, this is likely because the
reuse is occurring between Bricks even for small bi, due to
the simpler 1D stencil access pattern.

In contrast, Figure 3 shows a clear dependence of DataV ol
on the 2D Brick stencil axes (namely, bk and b`). Our fit
estimates cinp±σinp = 0.74±0.05 GB, well under the size of
the input array (1.36 GB). This suggests that the actual reuse
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Fig. 2. Total volume of data loaded to/stored from L1 in the CUDA global namespace (i.e. user data) during computation of the 1D Stencil as Brick dimension
j changes. The solid black line corresponds to a least squares fit of our reuse predictions to the data volume with a 95% confidence interval shown in gray.
This kernel is bandwidth bound, so lower data movement is better. Equation 6 can be seen in the inverse relationship between global data volume and bj–the
predicted auxiliary field reuse factor. Note that, although the auxiliary fields are 32× smaller than the input field, they can affect total data volume by a factor
of 2×. The 1024-sized Brick with bi = 4 exhibits anomalous behavior due to a change in loop unrolling decisions made by NVCC which prevents key
memory optimizations.
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Fig. 3. Total volume of data loaded to/stored from L1 in the CUDA global namespace (i.e. user data) during computation of the 2D Stencil as Brick dimension
j changes. The solid black line corresponds to a least squares fit of our reuse predictions to the data volume with a 95% confidence interval shown in gray.
This kernel is bandwidth-bound, so lower data movement is better. As described by Equation 2, data volume decreases as bk and b` increase due to reuse of
the input field. Even though the coefficients are 40% smaller than the input field, we see they make up a large component of the data volume. This component
is inversely proportional to bj , as expected from Equation 6. Increasing coefficient reuse can improve data volume by over a factor of 2.
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is higher than predicted, likely due to inter-Brick reuse.
In both figures, the pattern of coefficient reuse is readily

apparent. The DataV ol ∝ 1/bj pattern evinces itself clearly.
Our fit predicts caux±σaux = 0.18± 0.02 for the 1D stencil,
about 2.3× larger than the 0.080 GB of auxiliary fields. Our
fit estimates caux ± σaux = 0.34 ± 0.02 GB for the 2D
stencil, about 1.8× larger than the 0.19 GB auxiliary field.
In both cases, the actual array size is much smaller than caux,
suggesting that even inside of a Brick, the auxiliary coefficients
do not attain their full potential reuse.

Despite the large amounts of inter-Brick reuse, the model in
Equation 7 captures the primary data movement characteristics
of both stencils quite well. Our above observations suggest
that Equations 2 and 6 describe the dominant trends in global
data movement (in L1, for reasonably sized Bricks). Thus,
Equations 2 and 6 provide useful models to evaluate expected
data reuse of a Brick shape relative to other Brick shapes.
Further, although auxiliary fields can be more than ten times
smaller than the input fields, the Bricks library and CUDA
scheduler are apt to ignore them in order to take full advantage
of stencil access patterns.

2) Understanding memory resource limits through Brick
size: The reasoning in Section III-C relies on the assumption
that the working set of the computation fits in cache, for a
Brick size “small enough” that the assumption held. Figure 4
investigates the implications of this assumption.

Since both kernels are bandwidth-bound, lower data volume

is better. In particular, all 1D configurations are DRAM-bound.
Some 2D configurations with small bj ≤ 8 and Brick size
≤ 128 are L2-bound. The remainder are DRAM-bound. Thus,
in Figure 4, data movement through L2 and DRAM is the
performance bottleneck.

First, we observe that decisions made by NVCC on what to
put in registers or local storage can have massive, anomalous
effects on memory spilling out to DRAM/L2. For example,
the large peak for bj ∈ {16, 32} and Brick size of 512 in
Figure 4 is due to NVCC storing a large buffer in registers for
the duration of the kernel, forcing many temporaries into local
memory. The curve bj = 2 in Figure 4 is much lower than
the others for Brick sizes greater than 512 elements due to
similar decisions. Again, these could potentially be addressed
through code generation optimizations.

Next, we notice that while the global data movement in L1
(user data) is relatively constant with respect to Brick size, the
local data movement is not. In fact, the data movement through
L2 and DRAM is shaped almost exactly like the local data
movement lines in L1. This suggests that, for GPUs, cache and
capacity misses to L2 and DRAM are largely determined by
local data movement. Further, local data movement is roughly
monotonic in Brick size until Bricks become very large (more
than 512 elements per Brick). In particular, increasing Brick
dimensions to take advantage of intra-Brick reuse as described
in Equations 2 and 6 will eventually decrease performance
because of local data movement. This leads to a natural, two-
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1D : L1 1D : L2 1D : DRAM
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Fig. 4. Total data volume from/to L1, L2, and DRAM for both stencils as Brick size changes. Brick dimensions bi× bk× b`× bn are fixed at 2×2×2×1.
Data Volume from/to L1 is split into global (user) data (dashed line) and local data (solid line). Since both kernels are bandwidth-bound, lower data volume
corresponds to higher performance. Note that the user data moved is relatively constant with respect to Brick size, while the local data moved increases with
Brick size, and determines the trend of data movement down to DRAM. Anomalous behavior begins to occur at large Brick sizes (e.g. 512 elements/Brick
in 2D) due to unpredictable compiler decisions surrounding loop unrolling and register allocation. Note that the L2 traffic presented is only L2 ↔ L1, as L2
↔ DRAM is equal to DRAM data volume.
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intensityand a 1.54× increase in performance.

phased tuning strategy: First, fix a Brick size and optimize
auxiliary coefficient and input field reuse using the intra-Brick
estimates from Section III-C. Then, increase the Brick size and
repeat, stopping when performance no longer increases.

3) Tuning for GENE: We apply the procedure described
above with the microbenchmarks taken from the GENE code.
Since both 1D and 2D stencils involve reuse on j, we wish to
choose bj as large as possible. Consequently, we must set all
other dimensions as small as possible, relying on inter-Brick
reuse for the input fields. We begin with a small Brick size
and increase it until performance degrades. For our grid, this
corresponds to bj = 16 (with bi = 2, bk = 2, and b` = 2
since the stencils have radius 2 along the i, k, and ` axes).
This process achieves performance (GFLOP/s) within 0.02%
of the top Brick shape for both stencils.

Having seen that the Bricks layout is indeed tunable without
the need for a deep understanding of the GPU architecture, we
next compare it to GTENSOR in Figure 5. We see that both
implementations are very close to the roofline, with Bricks
achieving a 2.67× speedup for the 2D stencil and a 1.53×
speedup on the 1D stencil. For both stencils, Bricks achieves
theoretically minimal data movement2.

Note that, since GTENSOR already achieves near the data
movement lower bound Bricks has almost no room to improve
on data movement alone. In fact, Bricks only achieves a 4.9%
increase in AI for the 1D stencil and a 3.2% increase in AI
for the 2D stencil. The speedup is likely due to achieved
occupancy (average percentage of warps active during the
computation). GTENSOR ranged in occupancy from 90% to
95% (for the 2D and 1D stencils), while Bricks remained in
the 46% to 50% range across all Brick shapes.

2Nsight Compute slightly undercounts data movement, which accounts for
the larger than theoretical arithmetic intensity in 1D

Somewhat counter-intuitively, the lower occupancy can ex-
plain the higher performance. In an application of Little’s
Law [18], once the achieved parallelism is sufficient to meet
the bandwidth needs, higher parallelism does not provide an
additional benefit. Rather, the large number of concurrent
warps take up extra cache space. This results in a 2.55×
reduction in L1 data movement for the 2D stencil (19.25 GB
to 7.55 GB) and a 1.98× reduction in L1 data movement for
the 1D stencil (11.82 GB to 5.98 GB), roughly corresponding
to the increase in performance over GTENSOR.

D. FFTs on NVIDIA A100

Bricks are a high-performance solution for stencil-type
kernels, but one might be concerned that they negatively affect
the performance of other crucial kernels, slowing the entire
application. To test this, we used the cuFFT callback feature
to run the NVIDIA library directly on the Bricks layout. A
critical consideration is that performance is not competitive
without device link-time optimization, available starting in
CUDA 11.2, due to function call overhead.

For a Brick layout, the performance of the FFT should only
depend on the Brick shape in the j axis, and possibly the shape
in the i axis since it affects the stride. We found that cuFFT’s
performance was independent of the shape in the i axis, so
we only discuss effects of the j direction.

In these experiments we use a 72× 32× 24× 24× 32× 2
array, and compute an FFT over the j-axis. We consider two
approaches: using cuFFT callbacks to perform an FFT directly
on the j axis, or transposing the i-j axes before and after an
FFT. Since cuFFT does not currently support an FFT directly
on a “middle” axis (i.e. j in ijk), either a transpose or using
callbacks is necessary even for array layouts. The GENE code,
for instance, uses a transpose.

Array Layout excluding Transpose

Array Layout with Callbacks

Array Layout with Transpose

0

2

4

6

1 2 4 8 16

Number of Bricks Along j-Axis

T
im

e
 (
m

s)

Method: Callback Transpose

Fig. 6. Time to compute FFT as a function of the number of Bricks along
the j-axis. Horizontal lines correspond to cuFFT on an array layout. The top
line times an FFT with a transpose before and after (the approach taken by
GENE), the bottom line times the same FFT excluding transpose time, and
the middle line times the implementation using callbacks. The Bricks layout
is just as performant as the array layout for a single Brick/FFT, and causes
a slowdown between 1.83× and 1.93× using callbacks with more than one
Brick/FFT.
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We performed this computation for various Brick sizes to
investigate how the FFT performance scaled as the number of
Bricks along the FFT-axis increased (we begin with 2× 32×
2 × 2 × 1 × 1-shaped Brick, and repeatedly shift data from
bj into bm). For each Brick shape, we timed 100 runs of the
cuFFT computation after 10 warm-up iterations. We repeated
this procedure 25 times to obtain a 95% confidence interval,
presented in Appendix C. Figure 6 displays the results.

To understand the potential optimal performance, consider
the bottom-most blue horizontal line, which shows the average
time to compute 32-point FFTs on a (pre-transposed) 32×72×
24 × 24 × 32 × 2 array along the i axis. Since 32 is a small
power of 2 and in the contiguous direction, we expect this is
an lower bound on time using cuFFT, taking only 1.99±0.002
ms. Note, the transpose in Figure 6 has significant overhead.

No matter how much the transpose is optimized, streaming
1.36 GB twice at the A100’s peak bandwidth of 1,552.2 GB/s
still takes at least 1.75 ms, slowing computation by 1.88×.

While the callbacks add software complexity, they avoid
the overhead of a transpose. The red horizontal line shows
the performance of cuFFT using callbacks on an array layout.
This implementation takes only 2.32 ± 0.02 ms, within 17%
of the best performance cuFFT could potentially offer. Bricks
with callbacks is just as performant when a single Brick spans
the j-axis. The cost for using multiple Bricks in the FFT
nearly doubles when moving from one to two Bricks in the
direction of the FFT. However, there is very little additional
cost in moving from two Bricks up to sixteen, with a slowdown
ranging from 1.83× to 1.93× relative to a single domain-
spanning brick.

It is clear that using Bricks with cuFFT comes at a cost.
However, the built-in ability to use callbacks makes Bricks
already an improvement over transpose-based implementa-
tions. Further, we are relying on cuFFT to optimize the
accesses–a software package with no knowledge of the Bricks
layout. Since cuFFT has no prior knowledge over what the
callbacks are doing, it must make some assumptions to remain
performant. The near optimality of the array layout using
callbacks suggests that cuFFT may be assuming the elements
of each FFT are laid out at a constant stride.

V. DISCUSSION AND CONCLUSIONS

We have demonstrated that Bricks can achieve near-
theoretical peak performance competitive with custom solu-
tions for high-dimensional stencil computations on GPUs. This
performance can be understood through interpretable models
based on the Brick shape parameters for three kernels (1D,
2D stencils and FFT) on the A100 GPU architecture.

Stencil computations on high-dimensional arrays where the
dimensions contain moderate powers-of-two often produce
large numbers of conflict misses as striding in least contiguous
dimensions exposes the product of all the powers-of-two
across all the lower dimensions. We observe that Bricks deliv-
ers near optimal cache performance for stencil computations
and can thus infer few if any conflict misses. This suggests
rearchitecting memory subsystems and memory access for

brick-based computations in order to maximize performance
and energy efficiency. That is, for a given cache capacity,
Brick-based data layouts would allow computer architects to
reduce cache associativity and increase cache line size while
preserving the number of sets in the cache. The former reduces
cache access energy (fewer tags to compare) while the latter
improves memory access efficiency (more data per request,
possibly reaching parity with the DRAM bank size). However,
as the hierarchy of reuse distances will still be present with
Brick-based layouts (albeit to a lesser degree), replacing
caches with scratch pads is beneficial on computations with
low dimensionality.

Because computations on the elements within bricks are
performed in a data parallel manner, the adoption of Bricks
as a data layout incentivizes longer vectors (bound by grid
dimensionality and the depth of data that must be commu-
nicated between processes in each dimension). Alternatively,
it could enable asynchronous, DMA-like software prefetching
to mitigate the complexity of expressing memory parallelism
instead of out-of-order execution, extreme multithreading, or
hardware stream prefetchers.

Our investigation of cuFFT on Bricks in Section IV-D used
a standard vendor library with no knowledge of the Bricks
layout. While an FFT across multiple Bricks is not accessed at
a constant stride, it is accessed in a regular fashion across each
Brick. Increasing callback support to pass additional layout
information, such as the FFT stride inside of a Brick or the
number of FFTs performed per Brick, could prevent overhead
from using the Bricks layout. Improving Bricks support for
non-stencil operations – like FFTs, tensor contractions or
linear algebra – widens its applicability, further abstracting the
underlying Bricks layout and allowing users to simply rely on
its DSL and code generation.

In future work, we also intend to apply similar methods to
other high-dimensional problems such as QCD [19] in order
to test the generalizability of our results.
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APPENDIX A
ARITHMETIC INTENSITY COMPUTATIONS

In this section we derive the arithmetic intensity estimates
mentioned in Section III-A. For each point on the grid, the
1D stencil performs three complex multiplies (18 FLOPs),
five real-complex multiplies (10 FLOPs), and five complex
additions (10 FLOPs). With I × J × K × L × M × N =
72× 32× 24× 24× 32× 2,

38(I − 4)JKLMN

16 ∗ (IJKLMN + (I − 4)JKLMN + J)
≈ 1.12.

The 2D stencil performs 13 real-complex multiplies (26
FLOPs) and 12 complex additions (24 FLOPs) at each grid
point, so its arithmetic intensity is

50IJ(K − 4)(L− 4)MN

16 ∗ (IJKLMN + IJ(K − 4)(L− 4)MN)
≈ 1.28.

Finally, the 1D FFT along the j axis performs IKLMN
independent FFTs of size J , with a stride of I between each
element of an FFT. Since cuFFT is an “in-place” FFT [20], it
has an arithmetic intensity of 5

32 log2(J) = 0.78 [16].

APPENDIX B
BRICK REUSE

In this section, we derive the reuse estimates in Equa-
tions 2, 5, and 6. First, we establish some notation. In what
follows, for two integers a, b ∈ Z, we define

[a : b] = {i ∈ Z | a ≤ i < b}.

Given two sets A and B, we write A+B for the Minkowski
sum {a+ b : a ∈ A, b ∈ B}.

Let I be the index space of the Brick on which the stencil is
being computed. Note that size(I + ∆) many input elements
are read in, and a total of size(I) · size(∆) input elements
are used in the computation. Since size(I) is the size of the
Brick, our reuse factor is

size(∆)
∏D−1
d=0 bd

size(I + ∆)
. (8)

However, this greatly simplifies if there are any dimensions
along which ∆ is constant. Then, we can “project out”
dimension d from the set I + ∆.

More concretely, given shifts ∆ = {δ1, . . . , δn} and Z =
{z0, . . . , zm−1} with 0 ≤ z0 < z1 < · · · < zm−1 < D, define
δnZ = (δnz0 , δ

n
z1 , . . . , δ

n
zm−1

), ∆Z = {δ1
Z , . . . , δ

N
Z }, and IZ =

×m−1

d=0
[0 : bzd ]. If ∆ is constant along dimensions [0 : d]−Z,

then
size(I + ∆) = size(IZ + ∆Z) ·

∏
d/∈Z

bd.

Therefore, defining ax(∆) to be the largest set along which
∆ is non-constant for each d ∈ ax(∆), the reuse factor is

R =
size(∆)

size(Iax(∆) + ∆ax(∆))

∏
d∈ax(∆)

bd. (9)

Where ∆ is clear, we write ax for ax(∆). To estimate
size(Iax + ∆ax), we use the radius of the stencil. Define
rad(∆) to be the D-dimensional vector whose ith entry is
max{|δi| : δ ∈ ∆}. Then,

max

(∏
d∈ax

bd, size(∆)

)
= max(size(Iax), size(∆ax))

≤ size(Iax + ∆ax)

≤
∏
d∈ax

(bd + 2rad(∆)d).

Plugging this into Equation 9, our reuse factor R is between

size(∆)
∏
d∈ax

bd
bd + 2radd(∆)

≤ R ≤ min

(
size(∆),

∏
d∈ax

bd

)
.

Dividing each fraction on the left-hand side by bd, we obtain
Equation 2.

To obtain Equation 5, assume that each input/output field-
Brick is of size B, that the axes of the auxiliary field depend on
a subset of the axes of the input field, and the auxiliary field in
question is stored in bricks of size Baux with dimensions that
match the input field brick along shared axes. Suppose there
are N total output elements. Then, the number of auxiliary
elements loaded is

N/B−1∑
b=0

Baux =
N

B
·Baux,

Which is exactly Equation 5. Observing that each of the
Naux auxiliary elements is used N/Naux times, we arrive at
Equation 6 by dividing the number of uses, N , by the number
of auxiliary elements loaded.

APPENDIX C
RESULTS UNCERTAINTY

We’ve included uncertainty estimates from the FFT experi-
ments detailed in Section IV-D in Table I.

TABLE I
STANDARD DEVIATIONS OF REPORTED FFT RUNTIMES

Layout Method bj Mean (ms) σ (ms)
Array Transpose (FFT Only) - 1.99E+00 4.63E-03
Array Transpose - 6.24E+00 5.39E-03
Array Callback - 2.32E+00 3.93E-02
Bricks Callback 2 4.27E+00 3.66E-04
Bricks Callback 4 4.20E+00 5.00E-04
Bricks Callback 8 4.13E+00 4.16E-04
Bricks Callback 16 4.13E+00 4.54E-04
Bricks Callback 32 2.38E+00 4.40E-04
Bricks Transpose 2 8.07E+00 4.64E-04
Bricks Transpose 4 8.01E+00 2.65E-04
Bricks Transpose 8 8.04E+00 3.74E-04
Bricks Transpose 16 8.04E+00 2.72E-04
Bricks Transpose 32 6.41E+00 8.61E-04
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