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Abstract: The Dynamic, Exascale Global Address Space programming environment (DEGAS)
project will develop the next generation of programming models and runtime systems to meet the
challenges of Exascale computing. Our approach is to provide an efficient and scalable programming
model that can be adapted to application needs through the use of dynamic runtime features and
domain-specific languages for computational kernels. We address the following technical challenges:

Programmability: Rich set of programming constructs based on a Hierarchical Partitioned Global
Address Space (HPGAS) model, demonstrated in UPC++.
Scalability: Hierarchical locality control, lightweight communication (extended GASNet), and ef-
ficient synchronization mechanisms (Phasers).
Performance Portability: Just-in-time specialization (SEJITS) for generating hardware-specific
code and scheduling libraries for domain-specific adaptive runtimes (Habanero).
Energy Efficiency: Communication-optimal code generation to optimize energy efficiency by re-
ducing data movement.
Resilience: Containment Domains for flexible, domain-specific resilience, using state capture
mechanisms and lightweight, asynchronous recovery mechanisms.
Interoperability: Runtime and language interoperability with MPI and OpenMP to encourage
broad adoption.

1 DEGAS Publications
We will organize the summary of DEGAS publications according to each of our major research
thrusts. Full citations appear for each in the bibligraphy.

1. Hierarchical Programming Models
2. Communication-Avoiding Compilers and Libraries
3. Adaptive Interoperable Runtime
4. Lightweight One-sided Communication
5. Resilience
6. Applications and Benchmarks
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1.1 Hierarchical Programming Models
1.1.1 UPC++: A PGAS Extension for C++ [1]
We designed and implemented UPC++, a C++ template library realizing the DEGAS program-
ming concepts and techniques for C/C++ applications. While very convenient for moving data
around the system, PGAS languages have taken different views on the model of computation, with
the static Single Program Multiple Data (SPMD) model providing the best scalability. In this
paper we presented UPC++, a PGAS extension for C++ that has three main objectives: 1) to
provide an object-oriented PGAS programming model in the context of the popular C++ language;
2) to add useful parallel programming idioms unavailable in UPC, such as asynchronous remote
function invocation and multidimensional arrays, to support complex scientific applications; 3) to
offer an easy on-ramp to PGAS programming through interoperability with other existing parallel
programming systems (e.g., MPI, OpenMP, CUDA).

We implemented UPC++ with a compiler-free approach using C++ templates and runtime
libraries. We borrowed heavily from previous PGAS languages and describe the design decisions
that led to this particular set of language features, providing significantly more expressiveness than
UPC with very similar performance characteristics. To demonstrate the performance of UPC++,
we ported a large collection of application benchmarks to UPC++, including miniGMG, HPGMG,
LULESH, MILC, NAS Parallel Benchmarks and more. We evaluated the programmability and per-
formance of UPC++ using five benchmarks on two representative supercomputers, demonstrating
that UPC++ can deliver excellent performance at large scale up to 32K cores while offering PGAS
productivity features to C++ applications.

1.1.2 HabaneroUPC++: A Compiler-free PGAS Library [2]
The Partitioned Global Address Space (PGAS) programming models combine shared and dis-
tributed memory features, providing the basis for high performance and high productivity parallel
programming environments. UPC++ is a very recent PGAS implementation that takes a library-
based approach and avoids the complexities associated with compiler transformations. However,
this implementation does not support dynamic task parallelism and only relies on other threading
models (e.g., OpenMP or pthreads) for exploiting parallelism within a PGAS place.

In this paper, we introduced a compiler-free PGAS library called HabaneroUPC++, which
supports a tighter integration of intra-place and inter-place parallelism than standard hybrid pro-
gramming approaches. The library makes heavy use of C++11 lambda functions in its APIs.
C++11 lambdas avoid the need for compiler support while still retaining the syntactic convenience
of language-based approaches. The HabaneroUPC++ library implementation is based on a tight
integration of the UPC++ library and the Habanero-C++ library, with new extensions to sup-
port the integration. The UPC++ library is used to provide PGAS communication and function
shipping support using GASNet, and the Habanero-C++ library is used to provide support for
intra-place work-stealing integrated with function shipping. We demonstrated the programmabil-
ity and performance of our implementation using two benchmarks, scaled up to 6K cores. The
insights developed in this paper promise to further enhance the usability and popularity of PGAS
programming models.

1.1.3 Optimized Distributed Work-Stealing [3]
Work-stealing is a popular approach for dynamic load balancing of task-parallel programs. However,
as has been widely studied, the use of classical work-stealing algorithms on massively parallel and
distributed supercomputers introduces several performance issues. One such issue is the overhead
of failed steals (communicating with a victim that has no work), which is far more severe in the
distributed context than within a single SMP node. Prior work has demonstrated that load- aware
victim processor selection can reduce the number of failed steals and improve the performance.
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However, this too does not guarantee that the victim processor can always fulfill the thiefs request
and steal attempts are still prone to failure.

In this paper, we present a distributed work-stealing algorithm, which introduces a new pol-
icy for moving work from busy to idle processors. As in past work, our approach relies on global
workload information, but unlike past work, every remote steal attempt is guaranteed to eventually
return work (unless the program terminates first). This strategy also avoids querying the same pro-
cessor multiple times with failed steals. Our approach is applicable to any asynchronous task-based
PGAS programming system implemented on a distributed system, e.g., Chapel, HabaneroUPC++,
and X10. The results in this paper were obtained using HabaneroUPC++ and GASNet, and in-
clude a detailed study of our approach on dynamic irregular applications, as exemplified by the UTS
and NQueens benchmarks. Our approach demonstrates low overheads and improved performance
(relative to MPI and UPC versions) for up to 12288 cores on the NERSC Edison system.

1.1.4 Hierarchical Coarray Fortran [4, 5]
We produced a detailed design for the HCAF programming language, which extends the PGAS
model for massively manycore computers at the exascale. Current systems already contain NUMA
hierarchies that have profound consequences for communication costs in time and energy. In exas-
cale systems, we anticipate that NUMA hierarchies will be deeper and more complex. For acceptable
performance, such hierarchies must be exploited rather than ignored. We believe that today’s ap-
proach of having programmers micromanage locality is unsustainable. However, past experience
with compilers for HPF has taught us that completely automatic methods are also unlikely to
succeed. Our design for HCAF offers an alternative to both of these approaches. HCAF provides
constructs for describing and controlling hierarchical locality at a high level, enabling programmers
to exploit hierarchy by writing locality-aware code somewhat painlessly. Since hardware topolo-
gies can vary greatly across machines and even jobs on one machine, there is a tension between
locality awareness and performance portability. HCAF addresses this with a mechanism for spec-
ifying and using programmer-defined abstract topologies chosen for to suit application needs; the
HCAF runtime would automatically map these application hierarchies to available hardware. The
programmer handles strategies for exploiting hierarchal locality at a portable high level, while the
language handles tactical details via static optimization and runtime adaptation.

HCAF is based on a notion of hierarchy, mappings between hierarchies, hierarchical objects
and operations, and relative locality for exploiting hierarchy. A single model of hierarchy is used
to describe hardware topology, execution resources, data distribution, and parallelism across all
hardware levels from node interconnect down to hardware threads. HCAF hierarchies are trees
with each node’s children arranged in a Cartesian grid, where tree nodes denote sets of co-located
resources possibly tiled into subsets. Hierarchy maps are locality-preserving correspondences be-
tween hierarchies and HCAF can automatically compute a relatively good map between any two
hierarchies. The hierarchical objects are locales (hardware topologies), teams (execution resources),
and coarrays (distributed data), while the hierarchical operations are mapping, subscripting, data-
parallel looping, and asynchronous tasking. Relative locality generalizes the PGAS local/remote
distinction by applying it to each node of a hierarchy: resources within a given hierarchy node
are relatively local while other resources are relatively remote. By indicating a “current” hierarchy
node the programmer chooses a level of detail at which to control locality; this currency is dynamic,
supporting modular locality control across components and libraries. Data and task parallelism
constructs partition computation by the current view of locality and automatically adjust that view
for nested constructs within them.
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1.1.5 Portable, MPI-interoperable Coarray Fortran [6]
The past decade has seen the advent of a number of parallel programming models such as Coarray
Fortran (CAF), Unified Parallel C, X10, and Chapel. Despite the productivity gains promised by
these models, most parallel scientific applications still rely on MPI as their data movement model.
One reason for this trend is that it is hard for users to incrementally adopt these new programming
models in existing MPI applications. Because each model use its own runtime system, they duplicate
resources and are potentially errorprone. Such independent runtime systems were deemed necessary
because MPI was considered insufficient in the past to play this role for these languages.

The recently released MPI-3, however, adds several new capabilities that now provide all of
the functionality needed to act as a runtime, including a much more comprehensive one-sided
communication framework. In this paper, we investigate how MPI-3 can form a runtime system
for one example programming model, CAF, with a broader goal of enabling a single application to
use both MPI and CAF with the highest level of interoperability.

1.1.6 Managing Asynchronous Operations in Coarray Fortran 2.0 [7]
As the gap between processor speed and network latency continues to increase, avoiding exposed
communication latency is critical for high performance on modern supercomputers. One can hide
communication latency by overlapping it with computation using non-blocking data transfers, or
avoid exposing communication latency by moving computation to the location of data it manip-
ulates. Coarray Fortran 2.0 (CAF 2.0)–a partitioned global address space language—provides a
rich set of asynchronous operations for avoiding exposed latency including asynchronous copies,
function shipping, and asynchronous collectives. CAF 2.0 provides event variables to manage com-
pletion of asynchronous operations that use explicit completion. This paper describes CAF 2.0s
finish and cofence synchronization constructs, which enable one to manage implicit completion of
asynchronous operations.

finish ensures global completion of a set of asynchronous operations across the members of
a team. Because of CAF 2.0’s SPMD model, its semantics and implementation of finish differ
significantly from those of finish in X10 and Habanero-C. cofence controls local data completion
of implicitlysynchronized asynchronous operations. Together these constructs provide the ability
to tune a programs performance by exploiting the difference between local data completion, local
operation completion, and global completion of asynchronous operations, while hiding network
latency. We explore subtle interactions between cofence, finish, events, asynchronous copies and
collectives, and function shipping. We justify their presence in a relaxed memory model for CAF
2.0. We demonstrate the utility of these constructs in the context of two benchmarks: Unbalanced
Tree Search (UTS), and HPC Challenge RandomAccess.

We achieve 74%77% parallel efficiency for 4K32K cores for UTS using the T1WL spec, which
demonstrates scalable performance using our synchronization constructs. Our cofence micro-
benchmark shows that for a producer-consumer scenario, using local data completion rather than
local operation completion yields superior performance.

1.1.7 A New Vision for Coarray Fortran [8]
In 1998, Numrich and Reid proposed Coarray Fortran as a simple set of extensions to Fortran 95
[8]. Their principal extension to Fortran was support for shared data known as coarrays. In 2005,
the Fortran Standards Committee began exploring the addition of coarrays to Fortran 2008, which
is now being finalized. Careful review of drafts of the emerging Fortran 2008 standard led us to
identify several shortcom- ings with the proposed coarray extensions. In this paper, we briefly
critique the coarray extensions proposed for Fortran 2008, outline a new vision for coarrays in
Fortran language that is far more expressive, and briefly describe our strategy for implementing
the language extensions that we propose.
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1.1.8 Integrating Asynchronous Task Parallelism with MPI [9]
Effective combination of inter-node and intra-node parallelism is recognized to be a major chal-
lenge for future extreme-scale systems. Many researchers have demonstrated the potential benefits
of combining both levels of parallelism, in- cluding increased communication-computation overlap,
improved memory utilization, and effective use of accelerators. However, current hybrid program-
ming approaches often require signif- icant rewrites of application code and assume a high level of
programmer expertise.

Dynamic task parallelism has been widely regarded as a programming model that combines the
best of performance and programmability for shared-memory programs. For distributed- memory
programs, most users rely on efficient implementations of MPI. In this paper, we propose HCMPI
(Habanero-C MPI), an integration of the Habanero-C dynamic task-parallel pro- gramming model
with the widely used MPI message-passing interface. All MPI calls are treated as asynchronous
tasks in this model, thereby enabling unified handling of messages and tasking constructs. For
programmers unfamiliar with MPI, we introduce distributed data-driven futures (DDDFs), a new
data-flow programming model that seamlessly integrates intra- node and inter-node data-flow par-
allelism without requiring any knowledge of MPI.

Our novel runtime design for HCMPI and DDDFs uses a combination of dedicated commu-
nication and computation specific worker threads. We evaluate our approach on a set of micro-
benchmarks as well as larger applications and demon- strate better scalability compared to the
most efficient MPI implementations, while offering a unified programming model to integrate asyn-
chronous task parallelism with distributed-memory parallelism.

1.1.9 Hierarchical Computation in the SPMD Programming Model [10]
Large-scale parallel machines are programmed mainly with the single program, multiple data
(SPMD) model of parallelism. While this model has advantages of scalability and simplicity, it
does not fit well with divide-and-conquer parallelism or hierarchical machines that mix shared and
distributed memory. In this paper, we defined the recursive single program, multiple data model
(RSPMD) that extends SPMD with a hierarchical team mechanism to support hierarchical algo-
rithms and machines. We implemented this model in the Titanium language and described how
to eliminate a class of deadlocks by ensuring alignment of collective operations. We presented
application case studies evaluating the RSPMD model, showing that it enables divide-and-conquer
algorithms such as sorting to be elegantly expressed and that team collective operations increase
performance of conjugate gradient by up to a factor of two. The model also facilitates optimizations
for hierarchical machines, improving scalability of particle in cell by 8x and performance of sorting
and a stencil code by up to 40% and 14%, respectively.

1.1.10 A Local-View Array Library for Partitioned Global Address Space C++ Pro-
grams [11]

Multidimensional arrays are an important data structure in many scientific applications. Unfor-
tunately, built-in support for such arrays is inadequate in C++, particularly in the distributed
setting where bulk communication operations are required for good performance. In this paper,
we presented a multidimensional library for partitioned global address space (PGAS) programs,
supporting the one-sided remote access and bulk operations of the PGAS model. The library
is based on Titanium arrays, which have proven to provide good productivity and performance.
These arrays provide a local view of data, where each rank constructs its own portion of a global
data structure, matching the local view of execution common to PGAS programs and providing
maximum flexibility in structuring global data. Unlike Titanium, which has its own compiler with
array-specific analyses, optimizations, and code generation, we implemented multidimensional ar-
rays solely through a C++ library. The main goal of this effort was to provide a library-based
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implementation that can match the productivity and performance of a compiler-based approach.
We implemented the array library as an extension to UPC++, a C++ library for PGAS programs,
and we extended Titanium arrays with specializations to improve performance. We evaluated the
array library by porting four Titanium benchmarks to UPC++, demonstrating that it can achieve
up to 25% better performance than Titanium without a significant increase in programmer effort.

1.1.11 PyGAS: A Partitioned Global Address Space Extension for Python [12]
High-level, productivity-oriented languages such as Python are becoming increasingly popular in
HPC applica- tions as glue and prototyping code. The PGAS model offers its own productivity
advantages [6], and combining PGAS and Python is a promising approach for rapid development
of parallel applications. We discuss the potential benefits and challenges of a PGAS extension to
Python, and we present initial performance results from a prototype implementation called PyGAS.

1.1.12 PGAS for Distributed Numerical Python Targeting Multi-core Clusters [13]
In this paper we propose a parallel programming model that combines two well-known execution
models: Single Instruction, Multiple Data (SIMD) and Single Program, Multiple Data (SPMD).
The combined model supports SIMD-style data parallelism in global address space and supports
SPMD-style task parallelism in local address space. One of the most important features in the
combined model is that data communication is expressed by global data assignments instead of
message passing. We implement this combined programming model into Python, making parallel
programming with Python both highly productive and performing on distributed memory multi-
core systems. We base the SIMD data parallelism on DistNumPy, an auto-parallel zing version
of the Numerical Python (NumPy) package that allows sequential NumPy programs to run on
distributed memory architectures. We implement the SPMD task parallelism as an extension to
DistNumPy that enables each process to have direct access to the local part of a shared array. To
harvest the multi-core benefits in modern processors we exploit multi-threading in both SIMD and
SPMD execution models. The multi-threading is completely transparent to the user – it is imple-
mented in the runtime with Open MP and by using multi-threaded libraries when available. We
evaluate the implementation of the combined programming model with several scientific computing
benchmarks using two representative multi-core distributed memory systems – an Intel Nehalem
cluster with Infini band interconnects and a Cray XE-6 supercomputer – up to 1536 cores. The
benchmarking results demonstrate scalable good performance.

1.2 Communication-Avoiding Compilers and Libraries
The research in compilers was divided into demonstrations of communication avoiding compiler
optimizations and a set of foundational results to understand how these ideas arise in various
algorithms and libraries, and what benefit, both theoretically and experimentally, are achievable.

1.2.1 Communication avoiding algorithms: Analysis and code generation for parallel
systems [14]

Data movement is a critical bottleneck for future generations of parallel systems. The class of
communication-avoiding .5D algorithms were developed to address this bottleneck. These algo-
rithms reduce communication and provide strong scaling in both time and energy. As a first
step towards automating the development of communication-avoiding libraries, we have developed
Maunam—a prototype compiler for communication avoiding algorithms.

Maunam generates efficient parallel code from a high-level, global view sketch of .5D algorithms
that are expressed using symbolic data sizes and numbers of processors. It supports the expression
of data movement and communication through high-level global operations such as TILT and
CSHIFT as well as through element-wise copy operations. Wrap-around communication patterns
can also be achieved using subscripts based on modulo operations.

Maunam employs polyhedral analysis to reason about the communication and computation
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present in the input .5D algorithm. It partitions data and computation then inserts point-to-point
and collective communication as needed. Maunam also analyzes data dependence patterns and
data layouts to identify reductions over processor subsets. Maunam-generated Fortran+MPI code
for 2.5D matrix multiplication running on 4096 cores of a Cray XC30 supercomputer achieves 59
TFlops/s (76% of the machine peak).

1.2.2 Communication lower bounds and optimal algorithms for numerical linear al-
gebra [15]

This invited survey article of our work appeared in Acta Numerica. The traditional metric for
the efficiency of a numerical algorithm has been the number of arithmetic operations it performs.
Technological trends have long been reducing the time to perform an arithmetic operation, so that
it is no longer the bottleneck in many algorithms, rather communication, or moving data, is the
bottleneck. This motivates us to seek algorithms that move as little data as possible, either be-
tween levels of a memory hierarchy or between parallel processors over a network. In this paper
we summarize recent progress in three aspects of this problem. First we describe lower bounds on
communication. Some of these generalize known lower bounds for dense classical (O(n3)) matrix
multiplication to all direct methods of linear algebra, to sequential and parallel algorithms, and
to dense and sparse matrices. We also present lower bounds for Strassen-like algorithms, and for
iterative methods, in particular Krylov subspace methods applied to sparse matrices. Second, we
compare these lower bounds to widely used versions of these algorithms, and note that these widely
used algorithms usually communicate asymptotically more than necessary. Third, we identify or
invent new algorithms for most linear algebra problems that do attain these lower bounds, and
demonstrate large speedups in theory and practice.

1.2.3 Communication Avoiding and Overlapping for Numerical Linear Algebra [16]
To efficiently scale dense linear algebra problems to future exascale systems, communication cost
must be avoided or overlapped. Communication-avoiding 2.5D algorithms improve scalability by
reducing inter-processor data transfer volume at the cost of extra memory usage. Communication
overlap attempts to hide messaging latency by pipelining messages and overlapping with compu-
tational work. We study the interaction and compatibility of these two techniques for two matrix
multiplication algorithms (Cannon and SUMMA), triangular solve, and Cholesky factorization.
For each algorithm, we construct a detailed performance model which considers both critical path
dependencies and idle time. We give novel implementations of 2.5D algorithms with overlap for
each of these problems. Our software employs UPC, a partitioned global address space (PGAS)
language that provides fast one-sided communication. We show communication avoidance and
overlap provide a cumulative benefit as core counts scale, including results using over 24K cores of
a Cray XE6 system.

1.2.4 Accuracy of the s-step Lanczos Method for the symmetric eigenproblem [17]
The s-step Lanczos method is an attractive alternative to the classical Lanczos method as it enables
an O(s) reduction in data movement over a fixed number of iterations. This can significantly
improve performance on modern computers. In order for s-step methods to be widely adopted, it
is important to better understand their error properties. Although the s-step Lanczos method is
equivalent to the classical Lanczos method in exact arithmetic, empirical observations demonstrate
that it can behave quite differently in finite precision.

In this paper, we demonstrate that bounds on accuracy for the finite precision Lanczos method
given by Paige [Lin. Alg. Appl., 34:235-258, 1980] can be extended to the s-step Lanczos case
assuming a bound on the condition numbers of the computed s-step bases. Our results confirm
theoretically what is well-known empirically: the conditioning of the Krylov bases plays a large role
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in determining finite precision behavior. In particular, if one can guarantee that the basis condition
number is not too large throughout the iterations, the accuracy and convergence of eigenvalues in
the s-step Lanczos method should be similar to those of classical Lanczos. This indicates that, under
certain restrictions, the s-step Lanczos method can be made suitable for use in many practical cases.

1.2.5 A massively parallel tensor contraction framework for coupled-cluster compu-
tations [18]

Precise calculation of molecular electronic wavefunctions by methods such as coupled-cluster re-
quires the computation of tensor contractions, the cost of which has polynomial computational
scaling with respect to the system and basis set sizes. Each contraction may be executed via
matrix multiplication on a properly ordered and structured tensor. However, data transpositions
are often needed to reorder the tensors for each contraction. Writing and optimizing distributed-
memory kernels for each transposition and contraction is tedious since the number of contractions
scales combinatorially with the number of tensor indices. We present a distributed-memory numer-
ical library (Cyclops Tensor Framework(CTF)) that automatically manages tensor blocking and
redistribution to perform any user-specified contractions. CTF serves as the distributed-memory
contraction engine in Aquarius, a new program designed for high-accuracy and massively-parallel
quantum chemical computations. Aquarius implements a range of coupled-cluster and related
methods such as CCSD and CCSDT by writing the equations on top of a C++ templated domain-
specific language. This DSL calls CTF directly to manage the data and perform the contractions.
Our CCSD and CCSDT implementations achieve high parallel scalability on the BlueGene/Q and
Cray XC30 supercomputer architectures showing that accurate electronic structure calculations
can be effectively carried out on top of general distributed-memory tensor primitives.

1.2.6 Communication Costs of Strassen’s Matrix Multiplication [19]
This paper appeared as in invited Research Highlight in the CACM. Algorithms have historically
been evaluated in terms of the number of arithmetic operations they performed. This analysis
is no longer sufficient for predicting running times on todays machines. Moving data through
memory hierarchies and among processors requires much more time (and energy) than performing
computations. Hardware trends suggest that the relative costs of this communication will only
increase. Proving lower bounds on the communication of algorithms and finding algorithms that
attain these bounds are therefore fundamental goals. We show that the communication cost of
an algorithm is closely related to the graph expansion properties of its corresponding computation
graph.

Matrix multiplication is one of the most fundamental problems in scientific computing and in
parallel computing. Applying expansion analysis to Strassens and other fast matrix multiplication
algorithms, we obtain the first lower bounds on their communication costs. These bounds show that
the current sequential algorithms are optimal but that previous parallel algorithms communicate
more than necessary. Our new parallelization of Strassens algorithm is communication-optimal and
outperforms all previous matrix multiplication algorithms.

1.2.7 An Efficient Deflation Technique for the Communication-Avoiding Conjugate
Gradient Method [20]

By fusing s loop iterations, communication-avoiding formulations of Krylov subspace methods can
asymptotically reduce sequential and parallel communication costs by a factor of O(s). Although
a number of communication-avoiding Krylov methods have been developed, there remains a seri-
ous lack of available communication-avoiding preconditioners to accompany these methods. This
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has stimulated active research in discovering which preconditioners can be made compatible with
communication-avoiding Krylov methods and developing communication-avoiding methods which
incorporate these preconditioners. In this paper we demonstrate, for the first time, that deflation
preconditioning can be applied in communication-avoiding formulations of Lanczos-based Krylov
methods such as the conjugate gradient method while maintaining an O(s) reduction in communi-
cation costs. We derive a deflated version of a communication-avoiding conjugate gradient method,
which is mathematically equivalent to the deflated conjugate gradient method of Saad et al. [SIAM
J. Sci. Comput., 21 (2000), pp.19091926]. Numerical experiments on a model problem demonstrate
that the communication-avoiding formulations can converge at comparable rates to the classical
formulations, even for large values of s. Performance modeling illustrates that O(s) speedups are
possible when performance is communication bound. These results motivate deflation as a promis-
ing preconditioner for communication-avoiding Krylov subspace methods in practice.

1.2.8 A residual replacement strategy for improving the maximum attainable accu-
racy of s-step Krylov subspace methods [21]

Krylov subspace methods are a popular class of iterative methods for solving linear systems with
large, sparse matrices. On modern computer architectures, both sequential and parallel perfor-
mance of classical Krylov methods is limited by costly data movement, or communication, required
to update the approximate solution in each iteration. These motivated communication-avoiding
Krylov methods, based on s-step formulations, reduce data movement by a factor of O(s) by reorder-
ing the computations in classical Krylov methods to exploit locality. Studies on the finite precision
behavior of communication-avoiding Krylov methods in the literature have thus far been empiri-
cal in nature; in this work, we provide the first quantitative analysis of the maximum attainable
accuracy of communication-avoiding Krylov subspace methods in finite precision. Following the
analysis for classical Krylov methods, we derive a bound on the deviation of the true and updated
residuals in communication-avoiding conjugate gradient and communication-avoiding biconjugate
gradient in finite precision. Furthermore, an estimate for this bound can be iteratively updated
within the method without asymptotically increasing communication or computation. Our bound
enables an implicit residual replacement strategy for maintaining agreement between residuals to
within O(ε)‖A‖‖x‖. Numerical experiments on a small set of test matrices verify that, for cases
where the updated residual converges, the residual replacement strategy can enable accuracy of
O(ε)‖A‖‖x‖. with a small number of residual replacement steps, reflecting improvements of up to
seven orders of magnitude.

1.2.9 Contention Bounds for Combinations of Computation Graphs and Network
Topologies [22]

Network topologies can have significant effect on the costs of algorithms due to inter-processor
communication. Parallel algorithms that ignore network topology can suffer from contention along
network links. However, for particular combinations of computations and network topologies, costly
network contention may inevitably become a bottleneck, even for optimally designed algorithms.
We obtain a novel contention lower bound that is a function of the network and the computation
graph parameters. To this end, we compare the communication bandwidth needs of subsets of
processors and the available network capacity (as opposed to per-processor analysis in most pre-
vious studies). Applying this analysis we improve communication cost lower bounds for several
combinations of fundamental computations on common network topologies.
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1.2.10 Tradeoffs between synchronization, communication and work in parallel linear
algebra computations [23]

This work was reported last time. Since then it has appeared in SPAA’14, and been invited to
appear in ACM Trans. Par. Comp. This paper derives tradeoffs between three basic costs of
a parallel algorithm: synchronization, data movement, and computational cost. Our theoretical
model counts the amount of work and data movement as a maximum of any execution path during
the parallel computation. By considering this metric, rather than the total communication volume
over the whole machine, we obtain new insight into the characteristics of parallel schedules for
algorithms with nontrivial dependency structures. The tradeoffs we derive are lower bounds on the
execution time of the algorithm which are independent of the number of processors, but dependent
on the problem size. Therefore, these tradeoffs provide lower bounds on the parallel execution time
of any algorithm computed by a system composed of any number of homogeneous components
each with associated computational, communication, and synchronization payloads. We first state
our results for general graphs, based on expansion parameters, then we apply the theorem to a
number of specific algorithms in numerical linear algebra, namely triangular substitution, Gaussian
elimination, and Krylov subspace methods. Our lower bound for LU factorization demonstrates
the optimality of Tiskins LU algorithm answering an open question posed in his paper, as well as of
the 2.5D LU algorithm which has analogous costs. We treat the computations in a general manner
by noting that the computations share a similar dependency hypergraph structure and analyzing
the communication requirements of lattice hypergraph structures.

1.2.11 A Communication-Optimal N-Body Algorithm for Direct Interactions [24]
We considered the problem of communication avoidance in computing interactions between a set
of particles in scenarios with and without a cutoff radius for interaction. Our strategy, which we
showed to be optimal in communication, divides the work in the iteration space rather than simply
dividing the particles over processors, so more than one processor may be responsible for computing
updates to a single particle. Similar to a force decomposition in molecular dynamics, this approach
requires up to

√
p times more memory than a particle decomposition, but reduces communication

costs by factors up to
√
p and is often faster in practice than a particle decomposition. We examined

a generalized force decomposition algorithm that tolerates the memory limited case, i.e. when
memory can only hold c copies of the particles for c = 1, 2, ...,

√
p. When c = 1, the algorithm

degenerates into a particle decomposition; similarly when c =
√
p, the algorithm uses a force

decomposition. We presented a proof that the algorithm is communication-optimal and reduces
critical path latency and bandwidth costs by factors of c2 and c, respectively. Performance results
from experiments on up to 24K cores of Cray XE-6 and 32K cores of IBM BlueGene/P machines
indicate that the algorithm reduces communication in practice. In some cases, it even outperformed
the original force decomposition approach because the right choice of c striked a balance between
the costs of collective and point-to-point communication. Finally, we extended the analysis to
include a cutoff radius for direct evaluation of force interactions. We showed that with a cutoff,
communication optimality still holds. We sketched a generalized algorithm for multi-dimensional
space and assess its performance for 1D and 2D simulations on the same systems.

1.2.12 Computation- and Communication-Optimal Parallel Direct 3-Body
Algorithms [25]

Traditional particle simulation methods are used to calculate pairwise potentials, but some prob-
lems require 3-body potentials that calculate over triplets of particles. A direct calculation of
3-body interactions involves O(n3) interactions, but has significant redundant computations that
occur in a nested loop formulation. In this paper we explored algorithms for 3-body computations

DEGAS: Dynamic Exascale Global Address Space programming environments x



that simultaneously optimize three criteria: computation minimization through symmetries, com-
munication optimality, and load balancing. We presented a new 3-body algorithm that is both
communication and computation optimal. Its optional replication factor, c, saves c3 in latency
(number of messages) and c2 in bandwidth (volume), with bounded load-imbalance. We also con-
sidered the k-body case and discussed an algorithm that is optimal if there is a cutoff distance
of less than 1/3 of the domain. The 3-body algorithm demonstrated 99% efficiency on tens of
thousands of cores, showing strong scaling properties with order of magnitude speedups over the
näıve algorithm.

1.2.13 Communication-Avoiding Matrix Multiplication on a Ring Architecture [26]
An additional effort has explored the development of a new communication-avoiding 1.5D matrix
multiplication algorithm for ring architecture. This version has been implemented with OpenMP
and tested on the Intel MIC-based Stampede architecture. The 1.5D algorithm is found to be
beneficial, compared with the baseline 2.5D approach, in matrix sizes that fit in half the L2 cache
(i.e. allows at least one replication), especially on Intel MIC due to its much larger aggregate L2
cache.

1.2.14 Subdivision Surface Evaluation as Sparse Matrix-Vector Multiplication [27]
Another activity is focusing on techniques for developing high-performance via PGAS-aware code
generators via domain-specific languages, runtime code generation, and automatic performance
tuning (autotuning). To motivate this work, we have identified a class of problems that can be cast
as sparse matrix-vector products, but where the element-wise operations are generalized version of
multiplication and addition. These problems include matrix-vector multiplication, matrix-matrix
multiplication, path queries on graphs (shortest, most reliable, highest capacity, etc.), direct particle
simulations, and dataflow analyses in compilers. Because the underlying data structure in all of
these problems is a graph (or sparse matrix), the optimal implementation is data-dependent and
difficult to predict; therefore, we plan to use code generation and autotuning to discover the best
configuration. We are in the process of building an AST library to serve as an intermediate
representation between the domain-specific language and LLVM IR, the input to the LLVM JIT
compiler. To date, we have implemented support for a common subset of C-level operations, and
have released our code online at https://github.com/mbdriscoll/ctree. Our longer-term goal is to
enable the code generator technology to target distributed memory machines within the DEGAS
software stack.

We demonstrated present an interpretation of subdivision surface evaluation in the language
of linear algebra. Specifically, the vector of surface points can be computed by left-multiplying
the vector of control points by a sparse subdivision matrix. This “matrix-driven” interpretation
applies to any level of subdivision, holds for many common subdivision schemes (including Catmull-
Clark and Loop), supports limit surface evaluation, allows semi-sharp creases, and complements
feature-adaptive optimizations. It is primarily applicable to static meshes undergoing deformation
(i.e. animation), in which case the subdivision matrix is invariant over time and the surface can
be evaluated at each frame with a single sparse matrix-vector multiplication (SpMV). We describe
techniques for building subdivision matrices on-the-fly using the recursive definition of the sub-
division scheme and sparse matrix-matrix multiplication (SpMM) routines. The performance of
our approach thus reduces to that of SpMV and SpMM, both of which have been studied exten-
sively and are available in common packages for numerical linear algebra. We implemented our
approach as an extension to Pixars OpenSubdiv library using routines from Intels Math Kernel
Library and Nvidias CUSPARSE library to target multicore CPUs and GPUs, respectively. We
present performance results from off-the-shelf routines and our own SpMV-like routines that achieve
1.7-4.8x better performance than existing techniques on both platforms.We conclude by describing
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two major limitations of matrix-driven evaluation, namely difficulty computing vertex normals and
complications in the presence of hierarchical edits, and suggest workarounds for both.

1.3 Adaptive Interoperable Runtime
1.3.1 Runtime systems for extreme scale platforms [28]
Future extreme-scale systems are expected to contain homogeneous and heterogeneous many-core
processors, with O(103) cores per node and O(106) nodes overall. Effective combination of inter-
node and intra-node parallelism is recognized to be a major software challenge for such systems.
Further, applications will have to deal with constrained energy budgets as well as frequent faults
and failures. To aid programmers manage these complexities and enhance programmability, much
of recent research has focused on designing state-of-art software runtime systems. Such run- time
systems are expected to be a critical component of the software ecosystem for the management
of parallelism, locality, load balancing, energy and resilience on extreme-scale systems. In this
dissertation, we address three key challenges faced by a runtime system using a dynamic task
parallel framework for extreme-scale computing. First, we address the challenge of integrating an
intra-node task parallel runtime with a communication system for scalable performance. We present
a runtime communication system, called HC-COMM, designed to use dedicated communication
cores on a system. We introduce the HCMPI programming model which integrates the Habanero-
C asynchronous dynamic task parallel language with the MPI message passing communication
model on the HC-COMM runtime. We also introduce the HAPGNS model that enables data flow
programming for extreme-scale systems in which the user does not require knowledge of MPI.
Second, we address the challenge of separating locality optimizations from a programmer with
domain specific knowledge. We present a tuning framework, through which performance experts can
optimize existing applications by specifying runtime operations aimed at co-scheduling of affinitized
tasks. Finally, we address the challenge of scalable synchronization for long running tasks on a
dynamic task parallel runtime. We use the phaser construct to present a generalized tree-based
synchronization algorithm and support unified collective operations at both inter-node and intra-
node levels. Overcoming these runtime challenges are a first step towards effective programming
on extreme-scale systems.

1.3.2 Distributed Phasers [29]
A phaser is an expressive synchronization construct that unifies collective and point-to-point co-
ordination with dynamic task paral- lelism. Each task can participate in a phaser as a signaler, a
waiter, or both. The participants in a phaser may change over time as dynamic tasks are added
and deleted. In this paper, we present a highly concurrent and scalable design of phasers for a dis-
tributed memory environment that is suitable for use with asynchronous partitioned global address
space programming models.

Our design for a distributed phaser employs a pair of skip lists augmented with the ability to
collect and propagate synchronization signals. To enable a high degree of concurrency, addition and
deletion of participant tasks are performed in two phases: a “fast single-link-modify” step followed
by multiple hand-over-hand “lazy multi-link-modify” steps. We also present complexity analysis of
the cost of synchronization and structural operations.

Verifying highly-concurrent protocols is difficult. We analyze our design for a distributed phaser
using the SPIN model checker. A straight-forward approach to model checking the operation of a
distributed phaser requires an infeasibly large state space. To address this issue, we employ a novel
“message-based” model checking scheme to enable a non-approximate complete model checking of
our phaser design. We guarantee the semantic properties of phaser operations by ensuring that a
set of linear temporal logic formulae are valid during model checking.
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1.3.3 Experimental analysis of space-bounded schedulers [30]
The running time of nested parallel programs on shared memory machines depends in significant
part on how well the scheduler mapping the program to the machine is optimized for the organi-
zation of caches and processors on the machine. Recent work proposed space-bounded schedulers
for scheduling such programs on the multi-level cache hierarchies of current machines. The main
benefit of this class of schedulers is that they provably preserve locality of the program at every
level in the hierarchy, resulting (in theory) in fewer cache misses and better use of bandwidth than
the popular work-stealing scheduler. On the other hand, compared to work-stealing, space-bounded
schedulers are inferior at load balancing and may have greater scheduling overheads, raising the
question as to the relative effectiveness of the two schedulers in practice.

In this paper, we provide the first experimental study aimed at addressing this question. To fa-
cilitate this study, we built a flexible experimental framework with separate interfaces for programs
and schedulers. This enables a head-to-head comparison of the relative strengths of schedulers in
terms of running times and cache miss counts across a range of benchmarks. (The framework is
validated by comparisons with the Intel Cilk Plus work-stealing scheduler.) We present experimen-
tal results on a 32-core Xeon 7560 comparing work-stealing, hierarchy-minded work-stealing, and
two variants of space-bounded schedulers on both divide-and-conquer micro-benchmarks and some
popular algorithmic kernels. Our results indicate that space-bounded schedulers reduce the number
of L3 cache misses compared to work-stealing schedulers by 2565% for most of the benchmarks,
but incur up to 7% additional scheduler and load-imbalance overhead. Only for memory-intensive
benchmarks can the reduction in cache misses overcome the added overhead, resulting in up to
a 25% improvement in running time for synthetic benchmarks and about 20% improvement for
algorithmic kernels. We also quantify runtime improvements varying the available bandwidth per
core (the bandwidth gap), and show up to 50% improvements in the running times of kernels as
this gap increases 4-fold. As part of our study, we generalize prior definitions of space-bounded
schedulers to allow for more practical variants (while still preserving their guarantees), and explore
implementation tradeoffs.

1.4 Lightweight One-sided Communication
Nearly all of the programming model and runtime publication implicitly cover the communication
work as well, since this is part of the DEGAS multi-node runtime.

1.4.1 Evaluation of PGAS Communication Paradigms with Geometric Multigrid [31]
Partitioned Global Address Space (PGAS) languages and one-sided communication enable appli-
cation developers to select the communication paradigm that balances the performance needs of
applications with the productivity desires of programmers. In this paper, we evaluated three differ-
ent one-sided communication paradigms in the context of geometric multigrid using the miniGMG
benchmark. Although miniGMGs static, regular, and predictable communication does not exploit
the ultimate potential of PGAS models, multigrid solvers appear in many contemporary appli-
cations and represent one of the most important communication patterns. We used UPC++, a
PGAS extension of C++, as the vehicle for our evaluation, though our work is applicable to any of
the existing PGAS languages and models. We compared performance with the highly tuned MPI
baseline, and the results indicate that the most promising approach towards achieving performance
and ease of programming is to use high-level abstractions, such as the multidimensional arrays
provided by UPC++, that hide data aggregation and messaging in the runtime library.

1.4.2 Accelerating Applications at Scale Using One-Sided Communication [32]
The lower overhead associated with one-sided messaging as compared to traditional two-sided
communication has the potential to increase the performance at scale of scientific applications
by increasing the effective network bandwidth and reducing synchronization overheads. In this
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work, we investigate both the programming effort required to modify existing MPI applications to
exploit one-sided messaging using PGAS languages, and the resulting performance implications. In
particular, we modify the MILC and IMPACT-T applications to use the one-sided communication
features of Unified Parallel C (UPC) and coarray Fortran (CAF) languages respectively. Only
modest modifications to the source code are required where fewer than 100 lines of the source code
out of 70,000 need to be changed for each application. We show that performance gains of more
than 50% can be achieved at scale, with the largest benefits realized at the highest concurrencies
(32,768 cores).

1.4.3 A preliminary evaluation of the hardware acceleration of the Cray Gemini
interconnect for PGAS languages and comparison with MPI [33]

The Gemini interconnect on the Cray XE6 platform provides for lightweight remote direct memory
access (RDMA) between nodes, which is useful for implementing partitioned global address space
languages like UPC and Co-Array Fortran. In this paper, we perform a study of Gemini perfor-
mance using a set of communication microbenchmarks and compare the performance of one-sided
communication in PGAS languages with two-sided MPI. Our results demonstrate the performance
benefits of the PGAS model on Gemini hardware, showing in what circumstances and by how much
one-sided communication outperforms two-sided in terms of messaging rate, aggregate bandwidth,
and computation and communication overlap capability. For example, for 8-byte and 2KB messages
the one-sided messaging rate is 5 and 10 times greater respectively than the two-sided one. The
study also reveals important information about how to optimize one-sided Gemini communication.

1.5 Resilience
Our work on Resilience includes both the concept of containment domains for global address space
programming and stack capture mechanisms, e.g., checkpointing.

1.5.1 Containment Domains Semantics version 0.2 [34]
We produced a specification for both strict and relaxed Containment Domains in the PGAS model.
Correctly specifying the semantics and use of uncoordinated and distributed resilience in the PGAS
context is very challenging because remote accesses to shared state occur without notification in a
one-sided manner. This included finding gaps in recent published work on the topic of resilience
with one-sided communication. We are currently implementing Containment Domains for UPC++.
This implementation includes initial support for logging communication and runtime events, sup-
port for preservation in memory and in files, and the design of the inter-thread coordination and
preservation runtime components. Our effort also contributed to the first Containment Domains
API specification [35].

1.5.2 Containment Domains (API) [35]
The DEGAS team worked with others in the community, in particular at Cray, Inc., to contribute
to the first public API for Containment Domains. This is an API described in C++ syntax, but
that is general enough to serve as a baseline for implementation and for development of language-
specific variants and extensions. The API includes PGAS-specific concepts that we are specifically
exploring as a means to provide hints and directives for optimizing the execution of relaxed CDs.

1.5.3 Containment Domains: A Scalable, Efficient, and Flexible Resilience Scheme
for Exascale Systems [36]

This paper describes and evaluates a scalable and efficient resilience scheme based on the concept
of containment domains. Containment domains are a programming construct that enable appli-
cations to express resilience needs and to interact with the system to tune and specialize error
detection, state preservation and restoration, and recovery schemes. Containment domains have
weak transactional semantics and are nested to take advantage of the machine and application
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hierarchies and to enable hierarchical state preservation, restoration, and recov- ery. We evaluate
the scalability and efficiency of containment domains using generalized trace-driven simulation and
analytical analysis and show that containment domains are superior to both checkpoint restart
and redundant execution approaches. Another version of this work also appeared in the Scientific
Computing journal [37].

1.5.4 Affinity-Aware Checkpoint Restart [38]
Current checkpointing techniques employed to overcome faults for HPC applications result in in-
ferior application performance after restart from a checkpoint for a number of applications. This
is due to a lack of page and core affinity awareness of the checkpoint/restart (C/R) mechanism,
i.e., application tasks originally pinned to cores may be restarted on dierent cores, and in case of
non-uniform memory architectures (NUMA), quite common today, memory pages associated with
tasks on a NUMA node may be associated with a dierent NUMA node after restart. This work
contributes a novel design technique for C/R mechanisms to preserve task-to-core maps and NUMA
node specic page anities across restarts. Experimental results with BLCR, a C/R mechanism, en-
hanced with affinity awareness demonstrate signicant performance benets of 37%-73% for the NAS
Parallel Benchmark codes and 6-12% for NAMD with negligible overheads instead of up to nearly
four times longer an execution times without affinnity-aware restarts on 16 cores.

1.5.5 Affinity-Aware Checkpoint Restart (Master’s Thesis) [39]
This work (described in the previous abstract) was also presented in the Master’s Thesis by Ajay
Saini at North Carolina State University under the supervision of Frank Mueller.

1.6 Applications and Benchmarks
1.6.1 Parallel De Bruijn Graph Construction and Traversal for De Novo Genome

Assembly [40]
De novo whole genome assembly reconstructs genomic sequence from short, overlapping, and po-
tentially erroneous fragments called reads. We study optimized parallelization of the most time-
consuming phases of Meraculous, a state-of-the-art production assembler. First, we present a new
parallel algorithm for k-mer analysis, characterized by intensive communication and I/O require-
ments, and reduce the memory requirements by 6.93. Second, we efficiently parallelize de Bruijn
graph construction and traversal, which necessitates a distributed hash table and is a key component
of most de novo assemblers. We provide a novel algorithm that leverages one-sided communication
capabilities of the Unified Parallel C (UPC) to facilitate the requisite fine-grained parallelism and
avoidance of data hazards, while analytically proving its scalability properties. Overall results show
unprecedented performance and efficient scaling on up to 15,360 cores of a Cray XC30, on human
genome as well as the challenging wheat genome, with performance improvement from days to
seconds.

1.6.2 merAligner: A Fully Parallel Sequence Aligner [41]
Aligning a set of query sequences to a set of target sequences is an important task in bioinfor-
matics. In this work we present merAligner, a highly parallel sequence aligner that implements a
seedandextend algorithm and employs parallelism in all of its components. MerAligner relies on a
high performance distributed hash table (seed index) and uses one-sided communication capabili-
ties of the Unified Parallel C to facilitate a fine-grained parallelism. We leverage communication
optimizations at the construction of the distributed hash table and software caching schemes to
reduce communication during the aligning phase. Additionally, merAligner preprocesses the target
sequences to extract properties enabling exact sequence matching with minimal communication.
Finally, we efficiently parallelize the I/O intensive phases and implement an effective load balancing
scheme. Results show that merAligner exhibits efficient scaling up to thousands of cores on a Cray
XC30 supercomputer using real human and wheat genome data while significantly outperforming
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existing parallel alignment tools.

1.6.3 A whole-genome shotgun approach for assembling and anchoring the hexaploid
bread wheat genome [42]

Polyploid species have long been thought to be recalcitrant to whole-genome assembly. By combin-
ing high-throughput sequencing, recent developments in parallel computing, and genetic mapping,
we derive, de novo, a sequence assembly representing 9.1 Gbp of the highly repetitive 16 Gbp
genome of hexaploid wheat, Triticum aestivum, and assign 7.1 Gb of this assembly to chromosomal
locations. The genome representation and accuracy of our assembly is comparable or even exceeds
that of a chromosome-by-chromosome shotgun assembly. Our assembly and mapping strategy
uses only short read sequencing technology and is applicable to any species where it is possible to
construct a mapping population.

1.6.4 HipMer: An Extreme-scale De Novo Genome Assembler [43]
De novo whole genome assembly reconstructs genomic sequences from short, overlapping, and
potentially erroneous DNA segments and is one of the most important computations in modern ge-
nomics. This work presents HipMer, the first high-quality end-to-end de novo assembler designed
for extreme scale analysis, via efficient parallelization of the Meraculous code. First, we signifi-
cantly improve scalability of parallel k-mer analysis for complex repetitive genomes that exhibit
skewed frequency distributions. Next, we optimize the traversal of the de Bruijn graph of k-mers
by employing a novel communication-avoiding parallel algorithm in a variety of use-case scenarios.
Finally, we parallelize the Meraculous scaffolding modules by leveraging the one-sided communica-
tion capabilities of the Unified Parallel C while effectively mitigating load imbalance. Large-scale
results on a Cray XC30 using grand-challenge genomes demonstrate efficient performance and scal-
ability on thousands of cores. Overall, our pipeline accelerates Meraculous performance by orders
of magnitude, enabling the complete assembly of the human genome in just 8.4 minutes on 15K
cores of the Cray XC30, and creating unprecedented capability for extreme-scale genomic analysis.

1.6.5 Parallel Hessian Assembly for Seismic Waveform Inversion Using Global Up-
dates [44]

UPC++ has already enabled new science results by allowing application scientists (French and
Romanwicz at UC Berkeley) to tackle a previously intractable seismic imaging problem. The
solution was made feasible by the specific combination of PGAS features provided by UPC++,
particularly remote memory management and asynchronous task execution, while still presenting
a familiar language (C++) and allowing interoperation with MPI/OpenMP components of the
original code. This application incorporated observational data into a simulation to improve both
the quality and speed of the simulation. The performance, shown on the right side in figure
demonstrated 90% parallel efficiency on 12,000 cores. With UPC++, the code can solve problems
that were previously impossible due to memory size constraints, enabling scientists to extend their
earlier upper-mantle tomographic imaging work to compute the first ever whole-mantle global
tomographic model using numerical seismic wavefield computations. Following the UPC++ work,
the code was also written in MPI-3’s one-sided model for a reference implementation, whose current
performance lags the UPC++ version on the Edison system by up to 6x at larger scales.

1.6.6 Optimization of geometric multigrid for emerging multi- and manycore proces-
sors [45]

Multigrid methods are widely used to accelerate the convergence of iterative solvers for linear
systems used in a number of different application areas. In this paper, we explore optimiza-
tion techniques for geometric multigrid on existing and emerging multicore systems including the
Opteron- based Cray XE6, IntelR XeonR E5-2670 and X5550 processor-based Infiniband clusters,
as well as the new IntelR Xeon PhiTM coprocessor (Knights Corner). Our work examines a va-
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riety of novel techniques including communication-aggregation, threaded wavefront-based DRAM
communication-avoiding, dynamic threading decisions, SIMDization, and fusion of operators. We
quantify performance through each phase of the V-cycle for both single-node and distributed-
memory experiments and provide detailed analysis for each class of optimization. Results show
our optimizations yield significant speedups across a variety of subdomain sizes while simultane-
ously demonstrating the potential of multi- and manycore processors to dramatically accelerate
single-node performance. However, our analysis also indicates that improvements in networks and
communication will be essential to reap the potential of manycore processors in large-scale multi-
grid calculations. (This work was primarily funded by the ExaCT Co-Design Center, but with
some involvment of DEGAS-funded researchers.)

1.6.7 Optimization of parallel particle-to-grid interpolation on leading multicore plat-
forms [46]

We are now in the multicore revolution which is witnessing a rapid evolution of architectural designs
due to power constraints and correspondingly limited microprocessor clock speeds. Understanding
how to efficiently utilize these systems in the context of demanding numerical algorithms is an urgent
challenge to meet the ever growing computational needs of high-end computing. In this work, we
examine multicore parallel optimization of the particle-to-grid interpolation step in particle-mesh
methods, an inherently complex optimization problem due to its low computation intensity, irregu-
lar data accesses, and potential fine-grained data hazards. Our evaluated kernels are derived from
two important numerical computations: a biological simulation of the heart using the Immersed
Boundary (IB) method, and a Gyrokinetic Particle-in-Cell (PIC)-based application for studying
fusion plasma microturbulence. We develop several novel synchronization and grid decomposition
schemes, as well as low-level optimization techniques to maximize performance on three modern
multicore platforms: Intel’s Xeon X5550 (Nehalem), AMD’s Opteron 2356 (Barcelona), and Sun’s
UltraSparc T2+ (Niagara). Results show that our optimizations lead to significant performance
improvements, achieving up to a 5.6 speedup compared to the reference parallel implementation.
Our work also provides valuable insight into the design of future autotuning frameworks for particle-
to-grid interpolation on next-generation systems.

1.7 Implementing High-Performance Geometric Multigrid Solver With Naturally-
GrainedMessages [47]

Structured grid linear solvers often require manually packing and unpacking of communication data
to achieve high performance. Orchestrating this process efficiently is challenging, labor-intensive,
and potentially error-prone. In this paper, we explore an alternative approach that communicates
the data with naturally grained message sizes without manual packing and unpacking. This ap-
proach is the distributed analogue of shared-memory programming, taking advantage of the global
address space in PGAS languages to provide substantial programming ease. However, its perfor-
mance may suffer from the large number of small messages. We investigate the runtime support
required in the UPC++ library for this naturally grained version to close the performance gap be-
tween the two approaches and attain comparable performance at scale using the High-Performance
Geometric Multigrid (HPGMG-FV) benchmark as a driver.

2 Software Products and Web Sites
• We released the UPC++ programming system as Open Source Software with a BSD license.
https://bitbucket.org/upcxx

• We released the UPC++ miniGMG implementation in 2014 as Open Source Software under
a BSD license.
https://bitbucket.org/upcxx/minigmg/downloads

• We released UPC++ HPGMG-FV implementation in 2015 as Open Source Software under a
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BSD license.
https://bitbucket.org/upcxx/hpgmg/downloads

• We released the Habanero-UPC++ PGAS library.
http://habanero-rice.github.io/habanero-upc

• We released the GASNet PGAS communications library in November 2014 (and will again in
April 2015) as Open-Source Software with a BSD license. These releases include prototype
implementations of backward-compatible features from GASNet-EX.
http://gasnet.lbl.gov

• We released Berkeley Lab Checkpoint/Restart (BLCR), in January 2013 as Open-Source
Software with a GPL license. We added support for additional Linux kernels in development
releases during late 2014.
http://ftg.lbl.gov/checkpoint

• We released the CTree implementation of the Selected Embedded Just-in-Time Specializations
(SEJITS), via github:
https://github.com/mbdriscoll/ctree

• We released an API specification for Containment Domains, including features specifically
for a global address space currently developing a UPC++ instantiation of this API.
http://lph.ece.utexas.edu/users/CDAPI

• We have developed an HPGAS version of most components of the Meraculous genome as-
sembly pipeline. This has been shared and used by our JGI collaborators, and will be release
later once the full pipeline is complete and optimized.
• We developed a CAF2.0 translation of CGPOP—a mini-applicaiton that represents the con-

jugate gradient solver from LANL’s POP 2.0. http://svn.rice.edu/r/caf/caf-compiler/
tests/benchmarks-forthcoming/cgpop-caf2/caf2D

• We developed a CAF2.0 translation of Sandia’s miniGhost—a finite difference mini-application
that implements a difference stencil across a homogenous three dimensional domain. http://
svn.rice.edu/r/caf/caf-compiler/tests/benchmarks-forthcoming/minighost/miniGhost-mgr-caf2

2.1 Tutorials and Outreach
1. K. Mohror, N. DeBardeleben, E. Roman, and L. Kale. Practical Fault Tolerance on Today’s

HPC Systems. In SC ’13. International Conference for High Performance Computing,
Networking, Storage and Analysis. Denver CO. November 17, 2013. Tutorial.

2. K. Mohror, N. DeBardeleben, E. Roman, and L. Kale. Practical Fault Tolerance on Today’s
Supercomputing Systems. In SC ’14. International Conference for High Performance Com-
puting, Networking, Storage and Analysis. New Orleans, LA. November 16, 2014. Tutorial.

3. C. Iancu, K. Yelick, and Y. Zheng. Advanced PGAS Programming in UPC. In SC ’13. In-
ternational Conference for High Performance Computing, Networking, Storage and Analysis.
Denver CO. November, 2013. Tutorial.

4. Y. Zheng. PGAS Programming in UPC and UPC++. In PGAS ’14. International Conference
on Partitioned Global Address Space Programming Models. Eugene, Oregon. October, 2014.
Tutorial.

5. K. Yelick, and Y. Zheng. Developing Parallel C++ Applications with Modern PGAS Features
in UPC++. In PGAS ’15. International Conference on Partitioned Global Address Space
Programming Models. Washington D.C.. October, 2015. Tutorial.
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[16] E. Georganas, J. González-Domı́nguez, E. Solomonik, Y. Zheng, J. Tourino, and K. Yelick,
“Communication avoiding and overlapping for numerical linear algebra,” in Proceedings of the
International Conference on High Performance Computing, Networking, Storage and Analysis,
p. 100, IEEE Computer Society Press, 2012.

[17] E. Carson and J. Demmel, “Accuracy of the s-step Lanczos method for the symmetric eigen-
problem,” tech. rep., Technical Report UCB/EECS-2014-165, EECS Department, University
of California, Berkeley, 2014. To appear in SIAM J. Mat. Anal. Appl.

[18] E. Solomonik, D. Matthews, J. R. Hammond, J. F. Stanton, and J. Demmel, “A massively
parallel tensor contraction framework for coupled-cluster computations,” Journal of Parallel
and Distributed Computing, vol. 74, no. 12, pp. 3176–3190, 2014.

[19] G. Ballard, J. Demmel, O. Holtz, and O. Schwartz, “Communication costs of strassen’s matrix
multiplication,” Communications of the ACM, vol. 57, no. 2, pp. 107–114, 2014.

[20] E. Carson, N. Knight, and J. Demmel, “An efficient deflation technique for the communication-
avoiding conjugate gradient method,” Electronic Transactions on Numerical Analysis, vol. 43,
pp. 125–141, 2014.

[21] E. Carson and J. Demmel, “A residual replacement strategy for improving the maximum
attainable accuracy of s-step Krylov subspace methods,” SIAM Journal on Matrix Analysis
and Applications, vol. 35, no. 1, pp. 22–43, 2014.

[22] G. Ballard, J. Demmel, A. Gearhart, B. Lipshitz, O. Schwartz, and S. Toledo, “Contention
bounds for combinations of computation graphs and network topologies,” in CSC14: The Sixth
SIAM Workshop on Combinatorial Scientific Computing, p. 30, 2014.

[23] E. Solomonik, E. Carson, N. Knight, and J. Demmel, “Tradeoffs between synchronization,
communication, and computation in parallel linear algebra computations,” in Proceedings of
the 26th ACM symposium on Parallelism in algorithms and architectures, pp. 307–318, ACM,
2014.

[24] P. Koanantakool and K. Yelick, “A computation-and communication-optimal parallel direct 3-
body algorithm,” in High Performance Computing, Networking, Storage and Analysis, SC14:
International Conference for, pp. 363–374, IEEE, 2014.

[25] M. Driscoll, E. Georganas, P. Koanantakool, E. Solomonik, and K. Yelick, “A communication-
optimal n-body algorithm for direct interactions,” in Parallel & Distributed Processing
(IPDPS), 2013 IEEE 27th International Symposium on, pp. 1075–1084, IEEE, 2013.

[26] E. Georganas, P. Koanantakool, E. Solomonik, S. Williams, K. Yelick, and Y. Zheng,
“Communication-avoiding matrix multiplication on ring architectures.” unpublished
manuscript.

DEGAS: Dynamic Exascale Global Address Space programming environments xx



[27] M. Driscoll, “Subdivision surface evaluation as sparse matrix-vector multiplication,” Master’s
thesis, EECS Department, University of California, Berkeley, Dec 2014.

[28] S. Chatterjee, Runtime systems for extreme scale platforms. Ph.D. dissertation, Rice Univer-
sity, Houston, 2013.

[29] K. Murthy, S. R. Paul, K. S. Meel, and J. Mellor-Crummey, “Distributed phasers.” Submit-
ted to International Conference on Parallel Architectures and Compilation Techniques, 2015,
Under review.

[30] H. V. Simhadri, G. E. Blelloch, J. T. Fineman, P. B. Gibbons, and A. Kyrola, “Experimental
analysis of space-bounded schedulers,” in Proceedings of the 26th ACM symposium on Paral-
lelism in algorithms and architectures, pp. 30–41, ACM, 2014.

[31] H. Shan, A. Kamil, S. Williams, Y. Zheng, and K. Yelick, “Evaluation of PGAS Communica-
tion Paradigms with Geometric Multigrid,” in Proceedings of the 8th International Conference
on Partitioned Global Address Space Programming Models, PGAS ’14, (New York, NY, USA),
pp. 8:1–8:12, ACM, 2014.

[32] H. Shan, B. Austin, N. J. Wright, E. Strohmaier, J. Shalf, and K. Yelick, “Accelerating
applications at scale using one-sided communication,” in Proceedings of the Conference on
Partitioned Global Address Space Programming Models (PGAS12), 2012.

[33] H. Shan, N. J. Wright, J. Shalf, K. Yelick, M. Wagner, and N. Wichmann, “A preliminary
evaluation of the hardware acceleration of the cray gemini interconnect for pgas languages and
comparison with mpi,” ACM SIGMETRICS Performance Evaluation Review, vol. 40, no. 2,
pp. 92–98, 2012.

[34] M. Sullivan, I. Lee, J. Chung, S. Zhang, S.-L. Gong, D. Liu, M. LeBeane, K. Lee, and M. Erez,
“Containment domains semantics version 0.2,” Tech. Rep. Tr-LPH-2014-001, LPH Group, De-
partment of Electrical and Computer Engineering, The University of Texas at Austin, February
2014.

[35] Containment Domains Team, “Containment domains C++ API rev 0.1.” lph.ece.utexas.

edu/users/CDAPI, 2014.

[36] J. Chung, I. Lee, M. Sullivan, J. H. Ryoo, D. W. Kim, D. H. Yoon, L. Kaplan, and M. Erez,
“Containment domains: A scalable, efficient, and flexible resilience scheme for exascale sys-
tems,” in the Proceedings of SC’12, November 2012.

[37] J. Chung, I. Lee, M. Sullivan, J. H. Ryoo, D. W. Kim, D. H. Yoon, L. Kaplan, and M. Erez,
“Containment domains: A scalable, efficient, and flexible resilience scheme for exascale sys-
tems,” Scientific Programming, vol. 21, pp. 197 – 212, January 2013.

[38] A. Saini, A. Rezaei, F. Mueller, P. Hargrove, and E. Roman, “Affinity-aware checkpoint
restart,” in Middleware, Dec. 2014.

[39] A. Saini, “Affinity-aware checkpoint restart.” Master’s Thesis, North Carolina State University,
2014.
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