
Charlene Yang
Application Performance Group, NERSC

Email: cjyang@lbl.gov

Performance Analysis with
Roofline on GPUs

ECP Annual Meeting 2019

Outline
• Use ERT to obtain empirical Roofline ceilings

– compute: FMA, no-FMA
– bandwidth: system memory, device memory, L2, L1

• Use nvprof to obtain application performance
– FLOPs: active non-predicated threads, divides-aware
– bytes: read + write; system memory, device memory, L2, L1
– runtime: --print-gpu-summary, --print-gpu-trace

• Plot Roofline with Python and Matplotlib

• Examples and analysis
– GPP from BerkeleyGW: varying AI, FMA, strided memory access
– HPGMG from Multi-Grid applications: thread divergence

1

One Hierarchical Roofline

Two Examples

Measure Roofline Ceilings

Roofline Ceilings

• Empirical Roofline Toolkit (ERT)
• https://bitbucket.org/berkeleylab/cs-roofline-toolkit/
• Characterizes machines with highly tuned but real ‘micro-kernels’
• Sweeps through a variety of configurations:

– 1 data element per thread -> multiple
– 1 FLOP operation per data element -> multiple
– number of threadblocks/threads
– number of trails, dataset sizes, etc

• Four components
– Driver.c, Kernel.c, configuration script, and job script

3

job script
• submit the job and run it

Job script

./ert config.txt

ert (Python)

create directories
loop over ERT_FLOPS, ERT_GPU_BLOCKS/THREADS

call driver, kernel

Driver.c
• setup
• call kernels
• loop over parameters

Driver.c (uses some Macros from config.txt)

initialize MPI, CUDA
loop over dataset sizes <= ERT_MEMORY_MAX

loop over trial sizes >= ERT_TRIALS_MIN
cudaMemcpy
start timer
call kernel
end timer

Kernel.c
• actual compute
• customizable

1. Empirical Roofline Toolkit. https://bitbucket.org/berkeleylab/cs-roofline-toolkit/
2. Tutorial code. https://github.com/cyanguwa/nersc-roofline/
3. Roofline documentation. https://crd.lbl.gov/departments/computer-science/PAR/research/roofline/

Kernel.c

loop over ntrails
distribute dataset on threads and each

computes ERT_FLOPS

Kernel.h

ERT_FLOPS=1: a = b + c
ERT_FLOPS=2: a = a x b + c

ERT Configuration

config script
• set up ranges of parameters

config.txt

ERT_FLOPS 1,2,4,8,16,32,64,128,256
ERT_GPU_BLOCKS 80,160,320,640,1280,2560
ERT_GPU_THREADS 64,128,256,512,1024
ERT_MEMORY_MAX 1073741824
ERT_WORKING_SET_MIN 128
ERT_TRIALS_MIN 1
...

ERT Caveats
• Read-modify-write Polynomial on a vector

– ERT_FLOPS=1: a = b + c; ERT_FLOPS=2: a = a x b + c; ………

• May require an unroll-and-jam or large OOO window to hit peak
– #pragma unroll 8

• Uses 1:1 Read:Write ratio
– ERT_FLOPS=1: a = b + c

– May underestimate aggregate cache bandwidth on architectures with 2:1 ratio
• Labels the largest/slowest bandwith ‘DRAM’ and the smallest/fastest ‘L1’

– May label L2 as ‘L1’ on architectures with write-through

5

Peak Bandwidths
• NVIDIA V100, Voltar at Oregon
• ERT_FLOPS=1, GPU_BLOCKS=640, GPU_THREADS=256
• Bandwidth: HBM 828GB/s, L2 3TB/s à These are the peak bandwidths!
• GFLOP/s: 200GFLOP/s à Still in a bandwidth-bound regime

6

Missing L1 Bandwidth

• Unified cache size is 128KB (L1 data + shared memory) per SM; L2 cache size is 6MB
• Similar size: aggregated L1 size vs L2
• Filling up L1 and L2 at the same time

V100 KNL, 32K L1, 512K L2, 16G HBM7

HBM

L2

L1

Peak GFLOP/s
• NVIDIA V100, Voltar at Oregon
• ERT_FLOPS=1024, GPU_BLOCKS=640, GPU_THREADS=256
• Bandwidth: HBM 100GB/s à ERT is now in a compute-bound regime
• GFLOP/s: 7TFLOP/s à This is the peak GFLOP/s!

8

Empirical vs. Theoretical Ceilings
• Theoretical compute ceilings on V100:

– FMA: 80 SMs x 32 FP64 cores/SM x 2 FLOPs/FMA x 1.53 GHz = 7.83 TFLOP/s
– No-FMA: 7.83 TFLOP/s /2 = 3.92 TFLOP/s

• Theoretical memory bandwidths on V100:
– HBM: 900 GB/s
– L2: 4.1 TB/s
– L1: ~14 TB/s

http://on-demand.gputechconf.com/gtc/2018/
presentation/s81006-volta-architecture-and-
performance-optimization.pdf

10%

10%

9 Voltar at Oregon

Measure Application Performance

Application Performance
• Three raw measurements: Runtime, FLOPs, Bytes (on a memory/cache level)

• Runtime:
– time per invocation of a kernel

nvprof --print-gpu-trace ./application

– average time over multiple invocations
nvprof --print-gpu-summary ./application

– same kernel with different input parameters are grouped separately

Performance	=	
𝒏𝒗𝒑𝒓𝒐𝒇	FLOPs

Runtime
		, Arithmetic	Intensity	=	

𝒏𝒗𝒑𝒓𝒐𝒇	FLOPs
𝒏𝒗𝒑𝒓𝒐𝒇	Data	Movement

11

Application Performance
• FLOPs:

– predication aware, and divides aware, dp/dp_add/dp_mul/dp_fma, sp*
– nvprof --kernels ‘kernel_name’ --metrics ‘flop_count_xx’ ./application

• Bytes for different memory/cache levels to construct hierarchical Roofline
– nvprof --kernels ‘kernel_name’ --metrics ‘metric_name’./application

– (read transactions + write transactions) x transaction size

12

Memory Level Metrics Transaction Size
L1 gld_transactions, gst_transactions 32B

L2 l2_read_transactions, l2_write_transactions 32B

Device Memory dram_read_transactions, dram_write_transactions 32B

System Memory system_read_transactions, system_write_transactions 32B

Example Output
• [cjyang@voltar source]$ nvprof --kernels "1:7:smooth_kernel:1" --metrics

flop_count_dp --metrics gld_transactions --metrics gst_transactions --metrics
l2_read_transactions --metrics l2_write_transactions --metrics
dram_read_transactions --metrics dram_write_transactions --metrics
sysmem_read_bytes --metrics sysmem_write_bytes ./backup-bin/hpgmg-fv-fp 5 8

• All metrics at once or one at a time: both are okay!
• Output in CSV; Python/Excel for multiple output files

13

Plot Roofline

Plot Roofline
• Runtime, FLOPs, Bytes à Arithmetic Intensity, application performance (GFLOP/s)

• Python scripts using Matplotlib
• https://github.com/cyanguwa/nersc-roofline/tree/master/Plotting
• Simple example: plot_roofline.py data.txt

• Tweaking needed for more sophisticated plotting, see examples

15

Arithmetic	Intensity	=	
𝒏𝒗𝒑𝒓𝒐𝒇	FLOPs

𝒏𝒗𝒑𝒓𝒐𝒇	Data	Movement Performance	=	
𝒏𝒗𝒑𝒓𝒐𝒇	FLOPs

Runtime
		

Plot Roofline
• Simple example: plot_roofline.py data.txt

• Roofline plot = Compute/Bandwidth ceilings + Two Coordinates per data point
• Accepts space-delimited list for values
• Use quotes to separate names/labels

data.txt

all data is space delimited
memroofs 828.758
mem_roof_names 'HBM’
comproofs 7068.86 3535.79
comp_roof_names 'FMA' ’No-FMA’

omit the following if only plotting roofs
AI: arithmetic intensity; GFLOPs: performance
AI 2.584785579
GFLOPs 2085.756683
labels ‘FMA, nw=1’

16

Code Analysis

Code Example 1
• GPP (General Plasmon Pole) kernel from BerkeleyGW (Material Science)
• https://github.com/cyanguwa/BerkeleyGW-GPP
• Medium problem size: 512 2 32768 20

• Tensor-contraction, abundant parallelism, large reductions
• Low FMA counts, divides, complex double data type, HBM data 1.5GB

do band = 1, nbands #threadblocks
do igp = 1, ngpown

do ig = 1, ncouls #threads
do iw = 1, nw #unrolled

compute; reductions

18

Code Example 1
Highly parameterizable:
• Varying nw from 1 to 6 to increase arithmetic intensity

– increasing FLOPs, same HBM data movement
• Striding ig loop to analyze impact of strided memory access

– Split ig loop to two loops and place the ’blocking’ loop outside

do band = 1, nbands #threadblocks
do igp = 1, ngpown

do igs = 0, stride - 1 #threads
do ig = 1, ncouls/stride

do iw = 1, nw #unrolled
compute; reductions

19

Stride 2

Analysis for GPP

• Effects of varying AI, and FMA/no-FMA
• Appropriate counting of FLOPs for divides
• FLOPs on masked-out threads

• HBM Roofline (i.e. bytes are HBM bytes)

• AI increases as nw grows
• bandwidth bound à compute bound
• No-FMA converges to its ceiling
• But FMA doesn’t

(-fmad=true/false)

20

nvprof has taken care of these !

Analysis for GPP

• HBM Roofline (i.e. bytes are HBM bytes)

• Stride size doubles à AI halves
• compute bound à bandwidth bound

• Cache line 32B; Each complex data 16B

• AI should bottom out at Stride = 2
• But instead Stride =4
• Prefetching may be in effect

21

Analysis for GPP

• Hierarchical Roofline

• GPP is more HBM bound than L2/L1 bound at low nw’s
• L1/L2 performance far from L1/L2 roof

• FLOPs ∝ nw

• HBM bytes: constant
• L2 bytes: increasing at 𝛼 > 1
• L1 bytes: constant

• Steep jump in L2 curve at nw=2, 3

22

Analysis for GPP
• Hierarchical Roofline

• At fixed nw (nw=6), striding leads to suboptimal memory coalescing
à L1 bytes doubles from stride 1 to stride 2; stays constant after that
à stride 2 = 16B x 2 = 1 transaction
à L2/DRAM AI drops as well

• At Stride = 8, L1/L2/DRAM performance dots
converge to HBM bandwidth

23

Code Example 2
• HPGMG (High-performance Geometric Multigrid) from Adaptive Mesh Refinement codes
• https://bitbucket.org/nsakharnykh/hpgmg-cuda

• Stencil code, F-cycles and V-cycles, GSRB smoother (Gauss-Seidel Red-Black)

1. https://devblogs.nvidia.com/high-performance-geometric-multi-grid-gpu-acceleration/

Code Example 2
• Hybrid GPU and CPU code
• Example: hpgmg-fv 7 8

• 128^3 box x 8, Level 5-8 run on GPU, Level 1-4 on CPU

• Versions: GSRB_FP, GSRB_BRANCH

24

Code Example 2

• GSRB_BRANCH should have half the FLOPs as GSRB_FP, but same HBM/L1/L2 bytes

GSRB_FP

for(int k=klo; k<(klo+kdim); k++){
const int ijk = i + j*jStride + k*kStride;
const double *__restrict__ RedBlack =

level.RedBlack_FP + ghosts*(1+jStride)
+((k^color000)&1)*kStride;

const double Ax = apply_op_ijk();
const double lambda = Dinv_ijk();
const int ij = i + j*jStride;
xo[ijk] = X(ijk) +

RedBlack[ij]*lambda*(rhs[ijk]-Ax);
}

GSRB_BRANCH

for(int k=klo; k<klo+kdim; k++){
const int ijk = i + j*jStride + k*kStride;
if(((i^j^k^color000^1)&1)){

const double Ax = apply_op_ijk();
const double lambda = Dinv_ijk();
xo[ijk] = X(ijk) + lambda*(rhs[ijk]-Ax);

}else{
xo[ijk] = X(ijk);

}
}

25

1 0 1 0 1 0 1 0

8 elements

1 1 1 1

8 elements

8 threads
(predicated)

8 threads

Analysis for HPGMG
GSRB_FP
• HBM AI increases as Level 5 à 8
• Due to better surface: volume ratio
• Also more HBM bound

• L1 AI stays constant (roughly)
• FLOPs x 8 when Level +1
• L1 bytes x 8 when Level +1

26

Analysis for HPGMG
GSRB_BRANCH
• Half the FLOPs as GSRB_FP; Same bytes
• Thread predication/divergence

27

Summary

• Methodology to profile applications on GPUs with Hierarchical Roofline
– Use ERT to obtain empirical compute/bandwidth peaks
– Use nvprof to collect FLOPs and Bytes on various memory levels
– Handy Python scripts at https://github.com/cyanguwa/nersc-roofline

• Hierarchical Roofline is very helpful in understanding performance bounds
(compute/bandwidth), analyzing the effects of memory coalescing and thread
divergence, and guiding performance optimization efforts.

28

Thank You!

