Performance Analysis with Roofline on GPUs

ECP Annual Meeting 2019

Charlene Yang
Application Performance Group, NERSC
Email: cjyang@lbl.gov
Outline

• Use **ERT** to obtain empirical Roofline ceilings
 – compute: FMA, no-FMA
 – bandwidth: system memory, device memory, L2, L1

• Use **nvprof** to obtain application performance
 – FLOPs: active non-predicated threads, divides-aware
 – bytes: read + write; system memory, device memory, L2, L1
 – runtime: --print-gpu-summary, --print-gpu-trace

• Plot Roofline with **Python** and Matplotlib

• **Examples and analysis**
 – GPP from BerkeleyGW: varying AI, FMA, strided memory access
 – HPGMG from Multi-Grid applications: thread divergence
Measure Roofline Ceilings
Roofline Ceilings

- **Empirical Roofline Toolkit (ERT)**
- https://bitbucket.org/berkeleylab/cs-roofline-toolkit/
- Characterizes machines with **highly tuned** but **real** ‘micro-kernels’
- Sweeps through a variety of configurations:
 - 1 data element per thread -> multiple
 - 1 FLOP operation per data element -> multiple
 - number of threadblocks/threads
 - number of trails, dataset sizes, *etc*
- Four components
 - Driver.c, Kernel.c, configuration script, and job script
ERT Configuration

Kernel.c

- loop over ntrails
 - distribute dataset on threads and each
- computes ERT_FLOPS

Kernel.h

- ERT_FLOPS=1: \(a = b + c\)
- ERT_FLOPS=2: \(a = a \times b + c\)

config.txt

```
ERT_FLOPS 1,2,4,8,16,32,64,128,256
ERT_GPU_BLOCKS 80,160,320,640,1280,2560
ERT_GPU_THREADS 64,128,256,512,1024
ERT_MEMORY_MAX 1073741824
ERT_WORKING_SET_MIN 128
ERT_TRIALS_MIN 1
```

Driver.c (uses some Macros from config.txt)

- initialize MPI, CUDA
- loop over dataset sizes <= ERT_MEMORY_MAX
 - loop over trial sizes >= ERT_TRIALS_MIN
 - cudaMemcpy
 - start timer
 - call kernel
 - end timer

Job script

```
./ert config.txt
```

- ert (Python)

create directories

- loop over ERT_FLOPS, ERT_GPU_BLOCKS/THREADS
 - call driver, kernel

ERT Caveats

• Read-modify-write Polynomial on a vector
 – ERT_FLOPS=1: \(a = b + c \); ERT_FLOPS=2: \(a = a \times b + c \); ………
• May require an unroll-and-jam or large OOO window to hit peak
 – #pragma unroll 8
• Uses 1:1 Read:Write ratio
 – ERT_FLOPS=1: \(a = b + c \)
 – May underestimate aggregate cache bandwidth on architectures with 2:1 ratio
• Labels the largest/slowest bandwidth ‘DRAM’ and the smallest/fastest ‘L1’
 – May label L2 as ‘L1’ on architectures with write-through
Peak Bandwidths

- NVIDIA V100, Voltar at Oregon
- ERT_FLOPS=1, GPU_BLOCKS=640, GPU_THREADS=256
- Bandwidth: HBM 828GB/s, L2 3TB/s → These are the peak bandwidths!
- GFLOP/s: 200GFLOP/s → Still in a bandwidth-bound regime
Missing L1 Bandwidth

- Unified cache size is 128KB (L1 data + shared memory) per SM; L2 cache size is 6MB
- Similar size: aggregated L1 size vs L2
- Filling up L1 and L2 at the same time
Peak GFLOP/s

- NVIDIA V100, Voltar at Oregon
- ERT_FLOPS=1024, GPU_BLOCKS=640, GPU_THREADS=256
- Bandwidth: HBM 100GB/s → ERT is now in a **compute-bound** regime
- GFLOP/s: 7TFLOP/s → This is the peak GFLOP/s!
Empirical vs. Theoretical Ceilings

• Theoretical compute ceilings on V100:
 – FMA: \(80 \text{ SMs} \times 32 \text{ FP64 cores/SM} \times 2 \text{ FLOPs/FMA} \times 1.53 \text{ GHz} = 7.83 \text{ TFLOP/s}\)
 – No-FMA: \(7.83 \text{ TFLOP/s} / 2 = 3.92 \text{ TFLOP/s}\)

• Theoretical memory bandwidths on V100:
 – HBM: 900 GB/s
 – L2: 4.1 TB/s
 – L1: \(~14 \text{ TB/s}\)

Measure Application Performance
Application Performance

- Three raw measurements: **Runtime**, **FLOPs**, **Bytes (on a memory/cache level)**

 Performance = $\frac{nvprof \text{ FLOPs}}{\text{Runtime}}$, \hspace{1cm} \text{Arithmetic Intensity} = \frac{nvprof \text{ FLOPs}}{nvprof \text{ Data Movement}}$

- Runtime:
 - time per invocation of a kernel
 \quad \text{nvprof --print-gpu-trace ./application}
 - average time over multiple invocations
 \quad \text{nvprof --print-gpu-summary ./application}
 - same kernel with different input parameters are grouped separately
Application Performance

- **FLOPs:**
 - predication aware, and divides aware, \(\text{dp/dp_add/dp_mul/dp_fma, } \text{sp} \)
 - `nvprof --kernels 'kernel_name' --metrics 'flop_count_xx' application`

- **Bytes for different memory/cache levels to construct hierarchical Roofline**
 - `nvprof --kernels 'kernel_name' --metrics 'metric_name'.application`
 - (read transactions + write transactions) \(\times \) transaction size

<table>
<thead>
<tr>
<th>Memory Level</th>
<th>Metrics</th>
<th>Transaction Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td><code>gld_transactions, gst_transactions</code></td>
<td>32B</td>
</tr>
<tr>
<td>L2</td>
<td><code>l2_read_transactions, l2_write_transactions</code></td>
<td>32B</td>
</tr>
<tr>
<td>Device Memory</td>
<td><code>dram_read_transactions, dram_write_transactions</code></td>
<td>32B</td>
</tr>
<tr>
<td>System Memory</td>
<td><code>system_read_transactions, system_write_transactions</code></td>
<td>32B</td>
</tr>
</tbody>
</table>
Example Output

- `[cjayang@voltar source]$ nvprof --kernels "1:7:smooth_kernel:1" --metrics flop_count_dp --metrics gld_transactions --metrics gst_transactions --metrics l2_read_transactions --metrics l2_write_transactions --metrics dram_read_transactions --metrics dram_write_transactions --metrics sysmem_read_bytes --metrics sysmem_write_bytes ./backup-bin/hpgmg-fv-fp 5 8`

- All metrics at once or one at a time: both are okay!
- Output in CSV; Python/Excel for multiple output files
Plot Roofline

- Runtime, FLOPs, Bytes → Arithmetic Intensity, application performance (GFLOP/s)

Arithmetic Intensity = \(\frac{\text{\texttt{nvprof} FLOPs}}{\text{\texttt{nvprof} Data Movement}} \)
Performance = \(\frac{\text{\texttt{nvprof} FLOPs}}{\text{Runtime}} \)

- Python scripts using Matplotlib
- https://github.com/cyanguwa/nersc-roofline/tree/master/Plotting
- Simple example: `plot_roofline.py data.txt`
- Tweaking needed for more sophisticated plotting, see examples
Plot Roofline

- Simple example: `plot_roofline.py data.txt`
- Roofline plot = Compute/Bandwidth ceilings + Two Coordinates per data point
- Accepts space-delimited list for values
- Use quotes to separate names/labels

```
data.txt
# all data is space delimited
memroofs 828.758
mem_roof_names 'HBM'
comproofs 7068.86 3535.79
comp_roof_names 'FMA' 'No-FMA'

# omit the following if only plotting roofs
# AI: arithmetic intensity; GFLOPs: performance
AI 2.584785579
GFLOPs 2085.756683
labels 'FMA, nw=1'
```
Code Analysis
Code Example 1

- GPP (General Plasmon Pole) kernel from BerkeleyGW (Material Science)
- https://github.com/cyanguwa/BerkeleyGW-GPP
- Medium problem size: 512 2 32768 20

- Tensor-contraction, abundant parallelism, large reductions
- Low FMA counts, divides, complex double data type, HBM data 1.5GB

```c
  do band = 1, nbands       #threadblocks
    do igp = 1, ngpown
      do ig = 1, ncouls       #threads
        do iw = 1, nw          #unrolled
          compute; reductions
  
```
Code Example 1

Highly parameterizable:

• Varying nw from 1 to 6 to increase arithmetic intensity
 - increasing FLOPs, same HBM data movement
• Striding ig loop to analyze impact of strided memory access
 - Split ig loop to two loops and place the 'blocking' loop outside

```c
  do band = 1, nbands  #threadblocks
    do igp = 1, ngpown
      do igs = 0, stride - 1  #threads
        do ig = 1, ncouls/stride
          do iw = 1, nw       #unrolled
            compute; reductions
        end do
      end do
    end do
  end do
```

Stride 2
Analysis for GPP

- Effects of varying AI, and FMA/no-FMA
- Appropriate counting of FLOPs for divides
- FLOPs on masked-out threads

- HBM Roofline (i.e. bytes are HBM bytes)
- AI increases as \(nw \) grows
- bandwidth bound \(\rightarrow \) compute bound
- No-FMA converges to its ceiling
- But FMA doesn’t \((-fmad=true/false)\)

nvprof has taken care of these!
Analysis for GPP

- HBM Roofline (i.e. bytes are HBM bytes)
- Stride size doubles \rightarrow AI halves
- compute bound \rightarrow bandwidth bound
- Cache line 32B; Each complex data 16B
- AI should bottom out at Stride $= 2$
- But instead Stride $= 4$
- Prefetching may be in effect
Analysis for GPP

- Hierarchical Roofline
- GPP is more HBM bound than L2/L1 bound at low nw's
- L1/L2 performance far from L1/L2 roof
- FLOPs $\propto nw$
- HBM bytes: constant
- L2 bytes: increasing at $\alpha > 1$
- L1 bytes: constant
- Steep jump in L2 curve at $nw=2, 3$
Analysis for GPP

- Hierarchical Roofline

- At fixed \(nw \) (\(nw=6 \)), striding leads to suboptimal memory coalescing
 - \(L1 \) bytes doubles from stride 1 to stride 2; stays constant after that
 - stride 2 = 16B \(\times \) 2 = 1 transaction
 - \(L2/DRAM \) AI drops as well

- At Stride = 8, \(L1/L2/DRAM \) performance dots converge to HBM bandwidth
Code Example 2

- HPGMG (High-performance Geometric Multigrid) from Adaptive Mesh Refinement codes
 - https://bitbucket.org/nsakharnykh/hpgmg-cuda

- Stencil code, F-cycles and V-cycles, GSRB smoother (Gauss-Seidel Red-Black)

Code Example 2

- Hybrid GPU and CPU code
- Example: `hpgmg-fv 7 8`
- 128^3 box x 8, Level 5-8 run on GPU, Level 1-4 on CPU
- Versions: GSRB_FP, GSRB_BRANCH
Code Example 2

GSRB_FP

```c
for(int k=klo; k<(klo+kdim); k++){
    const int ijk = i + j*jStride + k*kStride;
    const double *__restrict__ RedBlack =
        level.RedBlack_FP + ghosts*(1+jStride) +((k^color000)&1)*kStride;
    const double Ax = apply_op_ijk();
    const double lambda = Dinv_ijk();
    const int ij = i + j*jStride;
    xo[ijk] = X(ijk) +
        RedBlack[ij]*lambda*(rhs[ijk]-Ax);
}
```

GSRB_BRANCH

```c
for(int k=klo; k<klo+kdim; k++){
    const int ijk = i + j*jStride + k*kStride;
    if(((i^j^k^color000^1)&1)){
        const double Ax = apply_op_ijk();
        const double lambda = Dinv_ijk();
        xo[ijk] = X(ijk) + lambda*(rhs[ijk]-Ax);
    }else{
        xo[ijk] = X(ijk);
    }
}
```

- **GSRB_BRANCH** should have half the FLOPs as GSRB_FP, but same HBM/L1/L2 bytes
Analysis for HPGMG

GSRB_FP

- HBM AI increases as Level 5 → 8
- Due to better surface: volume ratio
- Also more HBM bound

- L1 AI stays constant (roughly)
- FLOPs x 8 when Level +1
- L1 bytes x 8 when Level +1
Analysis for HPGMG

GSRB_BRANCH

- Half the FLOPs as GSRB_FP; Same bytes
- Thread predication/divergence
Summary

• Methodology to profile applications on GPUs with Hierarchical Roofline
 – Use ERT to obtain empirical compute/bandwidth peaks
 – Use nvprof to collect FLOPs and Bytes on various memory levels
 – Handy Python scripts at https://github.com/cyanguwa/nersc-roofline

• Hierarchical Roofline is very helpful in understanding performance bounds (compute/bandwidth), analyzing the effects of memory coalescing and thread divergence, and guiding performance optimization efforts.