Toward Automated Application Profiling on Cray Systems

Charlene Yang, Brian Friesen, Thorsten Kurth, Brandon Cook
National Energy Research Scientific Computing Center

Lawrence Berkeley National Laboratory
Berkeley, CA 94720, US

Email: {cjyang, bfriesen, tkurth, bgcook} @Ibl.gov

Abstract—Application performance data can be used by
HPC users to optimize their code and prioritize their develop-
ment efforts, and by HPC facilities to better understand their
user base and guide their future procurements. This paper
presents an exploration of six commonly used profiling tools
in order to assess their ability to enable automated passive
performance data collection on Cray systems. Each tool is
benchmarked with three applications with distinct performance
characteristics, to collect five pre-selected metrics such as the
total number of floating-point operations and memory band-
width. Results are then used to evaluate the tools’ usability,
overhead to run, amount of actionable information that they
can provide, and accuracy of the information provided.

Keywords-automated profiling; performance tools; Cray;
HPC;

I. INTRODUCTION

Profiling tools such as CrayPat [1] and LIKWID [2]
provide additional insights to the code that developers can
not obtain by simply inspecting the code. Thus it is important
for HPC developers to collect performance data to identify
the bottleneck and prioritize their efforts on more profitable
optimizations. It is equally important for HPC centers to
collect mass performance data on all users and applications
in order to better understand their user base and make more
informed decisions in their next procurement. However,
these tools vary, in terms of their overhead, how easy to run,
the amount of information they can provide and the accuracy
of the information provided. This paper presents a survey of
a set of commonly used profiling tools in the HPC area,
to assess their ability to enable low-overhead, high-accuracy
and easy-to-automate performance data collection on Cray
systems. Each tool is benchmarked on three applications
with distinctive performance characteristics, to collect five
pre-selected performance metrics.

II. ToOLS, METRICS AND APPLICATIONS
A. Tools

The tools being assessed are, CrayPat
(perftools-lite) [1], LIKWID from Regional
Computing Center Erlangen in Germany [2], IPM from
Lawrence Berkeley National Laboratory [3], Intel VTune
Amplifier [4], Intel SDE Emulator [5], and the perf tool
from the Linux Kernel [6].

Samuel Williams
Computational Research Division
Lawrence Berkeley National Laboratory
Berkeley, CA 94720, US
Email: swwilliams@Ibl.gov

The mechanisms behind these tools are very different.
Some are based on sampling, some on performance counters;
some require code instrumentation and some can run by
simply appending a wrapper to the native run command.

B. Metrics and Tool Qualities

To evaluate these tools, five metrics are selected for these
tools to collect.

1) Runtime, to evaluate the tools’ overhead relative to
codes’ ‘native’ runtime; it is equally important to HPC
users as well as HPC facilities.

2) GFLOP’s and GFLOP/s, with GFLOP’s representing
the count of giga floating-point operations executed
and GFLOP/s representing the rate of GFLOP’s ex-
ecuted per second. This metric is to evaluate tools’
ability to capture codes’ floating-point operations; it
could be a more important metric to HPC facilities
than to HPC users as it shows how well their super-
computer is being utilized.

3) Bandwidth on different levels such as DRAM, LLC,
L2 and L1. This metric is to assess whether tools are
able to accurately report the data movement within
the memory hierarchy; it is an indicator to whether a
code is bandwidth-bound or not; also a measurement
of how much a system’s memory bandwidth is utilized
by users, on a particular memory/cache level.

4) Memory high watermark. This metric is to evaluate
tools’ ability to capture the memory footprint of an
application, helping users to avoid OOM (Out Of
Memory) error, and helping HPC centers to decide
on their next machine’s memory sizes.

5) Vectorization efficiency. This is to assess whether
tools can accurately report on how well a code is
vectorized, helping code developers decide if efforts
need to be spent on vectoring the code, and also
helping HPC centers decide if architectures with more
VPU’s (Vector Processing Units) are beneficial to their
user base.

Ideally, profiling tools should strive for the following four
qualities and we assess the six abovementioned tools against
them in this paper.

1) Usability: little to no user intervention to activate;

2) Overhead: negligible runtime overhead to the applica-
tion’s ‘native’ performance;

3) Actionability: produces information that can direct de-
velopers toward their next-step optimization or guide
the center with their procurement;

4) Accuracy: produces information as close to the real-
time events as possible.

C. Applications

Each tool is run on three applications, HPGMG [7],
Nyx [8] and Tiramisu[9], to collect the aforementioned
five metrics. These applications are selected so that they
can highlight the difference between tools when reacting to
different performance characteristics. As shown in Table I,
these applications are distinct in scale, parallelization frame-
work, and domain problems solved. A cumulative analysis of
all three applications should provide a comprehensive view
of each tool’s merits and drawbacks.

HPGMG: HPGMG [7], [10] is a geometric multigrid
benchmark designed to proxy the multigrid solves found
in block structured AMR applications. HPGMG is imple-
mented in C with MPI and OpenMP parallelization and
has shown scalability to 8.5 million cores. HPGMG uses
a 4" order, variable-coefficient Laplacian. As such, it is
both compute intensive and demanding of vectorization and
cache locality.

Nyx: Nyx [8], [11] is a cosmological simulation code
which models the evolution of the universe, in order to
identify the initial conditions that give rise to the large-scale
structures observed today. Nyx uses an N-body, particle-
mesh method for tracking dark matter, and an Eulerian
scheme on structured grids (implemented in AMReX) to
track intergalactic gas (ionized states of hydrogen and
helium). The dark matter and gas interact gravitationally,
and so their interaction is determined by the solution to
the Poisson equation at each time step. Nyx solves this
equation using a geometric multigrid gravity solver (with a
constant coefficient Laplacian operator) similar to HPGMG.
However, unlike HPGMG, this solver is 2"? order and
constant coefficient (less compute intensive). Ionization of
hydrogen and helium is effected through an ODE solver.

Tiramisu: Tiramisu [9], [12] is a deep learning model
based on Convolutional Neural Network (CNN), imple-
mented using the Google TensorFlow framework [13], and
used for detection of extreme weathers in climate science.
The code is a mix of Python and C. The Python part of code
specifies dataflow graph, manages workloads and spawns
appropriate number of processes as needed, while the C part
of the code calls highly optimized libraries such as MKL-
DNN [14] and cuDNN [15] to do the heavy-lifting work.
MKL-DNN contains dynamically assembled code by the
Xbyak JIT assembler [16] and also spawns variable number
of threads based on the available resources. So whether the
profiler can capture the activity from the different parts of

Table I
PERFORMANCE CHARACTERISTICS OF THREE APPLICATIONS

HPGMG Nyx Tiramisu
Scale Kernel Full Application | Full Application
Lines of Code ~20K ~2M ~3M
Language C C/C++, Fortran | Python, C/C++
Parallelism | MPI, OMP, CUDA MPI, OMP Python, MKL
HPC HPC Deep Learning
Domain PDE solvers PDE/ODE solvers| TensorFlow
Geometric Multigrid | Mesh Refinement | Image Processing

the code, or the ‘secretly’ spawned threads, is going to be a
challenge.

III. BENCHMARKING AND RESULTS
A. Configuration

All benchmarking is done on Cori at NERSC (Na-
tional Energy Research Scientific Center), LBNL (Lawrence
Berkeley National Laboratory). Applications are compiled
with Cray wrappers for Intel 18.0.1.163 compilers and linked
dynamically, except for Nyx when it’s profiled with IPM. All
codes are ran on the KNL partition. Both HPGMG and Nyx
are run with 8 MPI ranks and 8 OpenMP threads per rank;
Tiramisu is run with 2 Python processes and 33 threads per
process. A fixed nominal CPU frequency 1.401 GHz is used
for all benchmarks in order to avoid timing variation caused
by frequency difference across cores.

B. Results

How Results Are Presented: Since we have three dimen-
sions to the benchmark results (benchmarks, applications
and tools), figures in this subsection are arranged so that
each benchmark is presented in a different figure, each
application is represented by a different color, and each
tool is by a different marker. For example, in Fig. 1, red
datapoints represent results from HPGMG for all tools and
blue represent those from Nyx; diamond markers represent
results from IPM for all applications while circles represent
those from LIKWID. Within the same figure, there are
multiple metric groups and plots are clustered based on
them, for example, the two metric groups in Fig. 1, ‘Overall
Runtime’ and ‘Runtime Per Solve’.

The disparity of markers along each vertical line in these
figures shows the difference between tools for the same
metric and the same application. For example, in Fig. 2,
LIKWID and SDE produce similar results for Scalar
GFLOP’ s for all applications, but different results for
Vector GFLOP’s. Also, placing results for different ap-
plications together in the same metric group highlights how
differently tools react to different performance characteris-
tics of applications. For example, for Vector GFLOP’ s,
LIKWID and SDE produce similar results for HPGMG but
not for Nyx. The reason is that HPGMG is well optimized
for vectorization and cache locality while Nyx is not and it
has many register-to-register instructions. LIKWID counts

V

104F 3

10°F 3

w02k I]

* Baseline
+ CrayPat
O LIKWID
100 ¢ IPM E
—— HPGMG < VTune
— Nyx [> SDE
Tiramisu A Perf

101 I .
Overall Runtime (s) Runtime Per Solve (s)

Figure 1. Comparison of tools on overall runtime and runtime per solve.
Timing for each solve is taken by codes’ internal timers.

both arithmetic floating-point vector instructions, like SDE
does, and some non-arithmetic vector instructions such as
vextract and vpbroadcast, resulting in its overcount-
ing in Nyx’s case.

Due to unavailability of pre-defined performance groups
in some tools, there may be datapoints missing. For example,
in Fig. 3, there is only one set of markers for LIKWID
in the L2 data movement metric group. Also, baseline
datapoints may be absent too. For example, the baseline
data for GFLOP’s for HPGMG and Nyx is unavailable in
Fig. 2 because it is very difficult to calculate the number of
floating-point operations analytically.

Metric 1: Runtime: This benchmark evaluates tools’
overhead both in overall runtime and runtime per internal
step. The purpose of this benchmark is to assess whether
tools only have a fixed amount of startup/finalization over-
head, or it slows down the execution of the code in every
step. The internal step or ‘per solve’ runtime as shown in
Fig. 1 is defined differently for these three applications.
For HPGMGQ, it is the solve of a Poisson problem for a
multigrid with 64 boxes, each of size 128%; for Nyx, it is a
time step in a cosmological simulation of the Lyman-alpha
forest in a Lambda-CDM model of the universe [17], [18];
for Tiramisu, it is the training of the neural network for
10 climate images, each of size 1152 % 768 x 16, in order
to separate pixels that are related to hurricane, atmospheric
river and background noise, from each image.

Fig. 1 shows that all tools closely gather around the
baseline datapoint except for SDE and VTune. More details
are shown in Table II, where CrayPat, LIKWID, IPM and
Perf exhibit a very low overhead (less than 10%) for all
applications but SDE and VTune present a much higher
cost. With the complex workflow Tiramisu, SDE becomes
prohibitively expensive with more than 20x overhead.

Table II
OVERHEAD OF TOOLS (NORMALIZED TO BASELINE RUNTIME)

CrayPat | LIKWID | IPM | VTune | SDE | Perf
HPGMG | Overall 1.093 1.091 | 1.043| 2.057 | 9.560 |1.001
Per Solve | 1.023 1.011 |1.014| 1.306 | 9.84 |1.054

Nyx | Overall 1.004 1.109 |0.975| 1.403 | 7.499 |1.043
Per Solve | 1.012 1.001 |0.915]| 1.016 | 4.464 | 1.015

Tiramisu | Overall - 2.117 - 1.135 | 22.281 | 1.078
Per Solve - 2 - 1.012 | 25.683 | 1.027

Tiramisu is not benchmarked with CrayPat or IPM be-
cause both tools require recompilation of the code for
instrumentation purpose and it is a great challenge to add
custom linking flags or environment variables to the Bazel
module in order to compile TensorFlow. Since the paper is
focused on easy-to-use profilers, these two tools are omitted
from this benchmark.

Metric 2: GFLOP’s and GFLOP/s: GFLOP’s is defined
as the number of giga floating-point operations executed
in the code and GFLOP/s as the number of GFLOP’s
executed per second. Results in Fig. 2 are only for LIK-
WID, SDE and Perf because VTune does not have a
pre-defined performance group for FLOP’s measurement,
and CrayPat and IPM only report FLOP’s performance
when the architecture provides hardware counters that di-
rectly measure the number of FLOP’s executed and/or
retired, which is not the case on KNL. Despite the miss-
ing direct performance counter, LIKWID and Perf make
some assumptions about the instruction mix, and use two
related counters, UOPS_RETIRED.SCALAR_SIMD and
UOPS_RETIRED.PACKED_SIMD, to estimate the FLOP’s
performance of the code. Different from the abovementioned
tools, SDE works by counting the number of floating-point
instructions in the assembly code, thus not affected by the
missing status of direct FLOP’s counters on KNL.

It is very difficult to obtain the canonical FLOP’s from
the code, therefore no baseline data is presented in Fig. 2.
However, Tiramisu is an exception, because its computation
is concentrated in the training of the convolutional and
deconvolutional layers of the network and the algorithm
is tractable enough for us to derive a FLOP’s estimate for
reference.

As shown in Fig. 2, LIKWID, SDE and Perf pro-
duced similar results for GFLOP’s, Scalar GFLOP’s
and Vector GFLOP’s, for HPGMG. Due to timing dif-
ferences, i.e. overhead differences, the rate, GFLOP/s, is
different across the tools. For Nyx and Tiramisu, close
results are reported for Scalar GFLOP’s but there is
some disparity in Vector GFLOP’s. The reason for this
is that Nyx is not well optimized and executes a lot of
memory instructions such as extract and broadcast to
rearrange data before computation. These memory instruc-
tions can be in vector form, which will trigger the perfor-
mance counter, UOPS_RETIRED.PACKED_SIMD, which

JAl
104 F éi i
108 i
2L
10 8 s
A
1L
10 A
100k * Baseline
+ CrayPat
O LIKWID
O IPM
1071 < VTune —— HPGMG
[> SDE — Nyx
A Perf Tiramisu
1 -2 1 1 L
Total GFLOPs Scalar GFLOPs Vector GFLOPs GFLOPS
Figure 2. Comparison of tools on GFLOP’s and GFLOP/s measure-

ment. Total GFLOP’ s is the sum of Scalar GFLOP’s and Vector
GFLOP’ s and the rate GFLOP /s is the Total GFLOP’ s over each tool’s
respective runtime. Note, SDE’s estimate of Tiramisu’s Total GFLOP’s
and GFLOP/s is heavily skewed by SDE’s inability to introspect into
precompiled MKL routines.

both LIKWID and Perf use, resulting in them overcounting
the arithmetic vector instructions. HPGMG does not have
this problem because it is highly optimized for cache locality
and does not have many such memory instructions. Tiramisu
has very different Vector GFLOP’ s from LIKWID, SDE
and Perf is because SDE is not able to capture the C/C++
code executed by its Python wrappers (hence missing those
FLOP’s generated) while the others can.

Metric 3: Memory Bandwidth: This benchmark assesses
tools’ ability to capture average and maximum memory
bandwidth drawn by an application. It requires tools to
measure both overall data movement (in order to produce
the average bandwidth) and instantaneous bandwidth (in
order to obtain the maximum bandwidth), on all levels of
the memory/cache hierarchy, namely on KNL, DDR, HBM,
L2 and L1. Fig. 3 shows the data movement measured
by all possible tools for all four levels, and Fig. 4 shows
the average bandwidth measured for all four levels, and
maximum bandwidth measured only on DDR and HBM
level.

CrayPat and VTune can report data movement on both
DDR and HBM levels, with VTune also being able to
report maximum bandwidth on these two levels. LIKWID
measures data movement on all four levels but does not
report maximum bandwidth on any level. SDE produces L1
data movement, and Perf is only experimented with on the
DDR level (Perf does not have a pre-defined performance
group for data movement measurement but we passed on the
hexadecimal codes for certain performance counters to take
this measurement and so far it’s only the DDR level that we
have experimented with).

108 B 3
o
104 4 00 3
—~ gzxo
B 108 5
€
Q
§ 102]
>
o
=
= -
= 1 * Baseline | |
8 10 + CrayPat
O LIKWID
O IPM
100 —— HPGMG < VTune E
+ — Nyx > SDE
Tiramisu A Perf
10—1 1 1 1 1
DDR HBM L2 L1
Figure 3. Comparison of tools on data movement measurement.
108k : .
© <
8 ?)
102 5]
Y
. §A
& 10¢ o} 3
g
o) i
e 3
£ 400k ——HPGMG | |
g 8 o
] Tiramisu
@ 107" £ % Baseline | -
+ CrayPat
O LIKWID
O IPM
1072 ¢ < VTune 3
4 > SDE
A Perf
03 I I I I I I
Avg DDR AvgHBM AvglL2 Avg L1 Max DDR Max HBM
Figure 4. Comparison of tools on bandwidth measurement. Average

bandwidth is calculated using the data movement results in Fig. 3 and
the overall runtime in Fig. 1. Maximum bandwidth is reported by tools as
the peak instantaneous bandwidth.

For HPGMG, CrayPat, LIKWID and VTune produce very
similar results for DDR and HBM data movement in Fig. 3
(hence their respective average bandwidth in Fig. 4). LIK-
WID and SDE produce L2 and L1 data movement, which is
on an increasing trajectory (see Fig. 3) as the memory/cache
level gets closer to the CPU. The maximum bandwidth
reported by VTune in Fig. 4 on both DDR and HBM levels
also falls within a reasonable range between the average
bandwidth and hardware limit, on each respective level. For
Nyx, CrayPat’s reporting is much lower than LIKWID’s,
VTune’s or Perf’s, on DDR and HBM data movement in
Fig. 3. The reason for this is unclear as the formula behind
CrayPat’s report is not published. For Tiramisu, LIKWID
and VTune are able to produce consistent measurement on
DDR and HBM data movement (hence average bandwidth),

Table III
MEMORY HIGH WATERMARK (GB)

Table IV
VECTORIZATION EFFICIENCY (RANGE OF 0 TO 1)

CrayPat | LIKWID | IPM VTune | SDE | Perf CrayPat | LIKWID | IPM | VTune | SDE Perf

HPGMG 0.255 - 11.93 - - - HPGMG - 0.945 - - 0.949 | 0.949
Nyx 2.76 - 13.52 - - - Nyx - 0.309 - - 0.088 | 0.311
Tiramisu - - - - - - Tiramisu - 0.993 - - 0.999 | 0.993

and reasonable L2 and L1 data movement. However, SDE is
not able to estimate Tiramisu’s L1 data movement due to its
inability to introspect precompiled binaries and count loads
and stores.

Metric 4: Memory High Watermark: This benchmark is
to assess whether tools are able to capture the maximum
memory footprint of an application. As shown in Table III,
only CrayPat and IPM are and their results are very different.
The reason is that CrayPat reports using the information in
/proc/sel f [numa_maps files which are captured near the
end of the program, while IPM reports using the information
in /proc/self /status. Take Nyx as an example. IPM has
proved to be more accurate than CrayPat since Nyx tracks
its memory allocation for grid variable (but not temporary
arrays) and its reporting of 12.3GB can be used as a lower
bound.

Metric 5: Vectorization Efficiency: There are several
definitions of vectorization efficiency and this paper de-
fines it as the ratio of packed arithmetic floating-point
instructions to the total number of arithmetic floating-point
instructions. SDE works on the instruction level while
LIKWID and Perf work on the micro-op level. Since
not all instructions are implemented with one micro-op
(most are), there could be some discrepancy between SDE,
and LIKWID and Perf. Also, the performance counter
UOPS_RETIRED.SCALAR_SIMD that both LIKWID and
Perf read, can be triggered by non-arithmetic operations,
as long as they are vector instructions. This can result in
some inaccuracy in the reporting of arithmetic vectorization
efficiency from LIKWID and Perf.

As shown in Table IV, HPGMG has a very high vector-
ization efficiency reported by all tools and it agrees with the
general understanding of the code that it is well vectorized.
Nyx is not. All three tools report very low efficiency ratio,
with LIKWID and Perf possibly overreporting due to their
inclusion of the non-arithmetic vector micro-ops. Tiramisu
is highly vectorized due to its utilization of libraries such as
MKL-DNN and cuDNN, and all three tools report a near-1
vectorization efficiency.

C. Analysis

In this section, the performance tools are examined along
four qualitative axes: usability, overhead, actionability, and
accuracy.

1) Usability: Three major aspects affect usability.
These include recompilation, instrumentation, and spe-

cial(privileged) access. Any tool requiring manual instru-
mentation by definition mandates recompilation.

Where as IPM requires no code modification for profiling
and can be run without recompilation by appending the
‘native’ execution command, CrayPat requires recompilation
for both sampling and tracing and is thus less attractive when
profiling workflows like Tiramisu.

For basic, time-integrated statistics, LIKWID requires
neither recompilation nor instrumentation. However, when
one desires regional profiling, manual instrumentation with
LIKWID’s Marker API is required. In all cases, LIKWID
requires elevated admin access such as the paranoid level
defined in file /proc/sys/kernel/perf_event_paranoid
being reduced to O (default is 1). Like LIKWID, VTune
requires additional kernel modules and privileged access. Al-
though it requires dynamic linking, no manual instrumenta-
tion is required. Similarly, for time-integrated statistics, SDE
does not require manual instrumentation. However, like LIK-
WID, instrumentation with its API facilitates region based
profiling. Unlike LIKWID or VTune where their designers
have done the hard work and encoded microarchitecture-
specific counter values, Perf requires users to explicitly
specify the hexadecimal counter identifiers of the counters
they wish to monitor. Nevertheless, no code instrumentation
is required. Perf does not support region-based profiling.

2) Overhead: Perhaps one of the biggest impediments to
the deployment and acceptance of a performance tool is the
overhead its use incurs. 10x overheads can turn 30 minute
debug jobs into runs lasting most of a work day. Higher
overheads or attempting to profile longer runs can become
prohibitive as one may be limited by the maximum job time.

CrayPat(sampling), LIKWID, Perf, and IPM all have very
low nominal overheads allowing data collection for long-
running applications. That being said, CrayPat overhead can
increase quickly when tracing is being used, to the point
where it can become intractable when many function groups
are being traced. Similarly, LIKWID can incur substantial
overheads when aggregating performance data at the end of
a run at high concurrency creating an impediment to its use
at scale (n.b. this can be mitigated by collecting data on a
subset of the processes).

VTune (e.g. Memory Access) and SDE both incur very
high overheads. For SDE, there is substantial slowdown
during application execution as well as substantial overheads
in startup and finalization. As such, it is not suitable for
profiling long or high-concurrency production runs. Like
LIKWID, for MPI and hybrid codes, some of VTune’s

overhead can be mitigated by only collecting data on a single
rank. Regardless, as ‘finalization’ is a serial operation, it is
best to defer it to be a post-processing step that is run on a
traditional Xeon rather than on a compute-optimized KNL
node.

3) Actionability: Actionability is multi-faceted. First,
users should be informed of hotspots (where time is going).
This should be coupled with some efficiency analysis to
motivate optimization. Finally, guidance on viable optimiza-
tions distills the nearly unbounded optimization space into
something tractable.

CrayPat supports a wide range of performance mea-
surements and can report on hotspots, load balance, MPI
communication, and IO. The level of detail is selectable at
runtime and presented through a variety of text and graphical
reports. Similarly, VTune can also report on hotspots, load
balance, concurrency and locks and waits, provide optimiza-
tion suggestions, but can also add efficiency metrics. Where
as Perf and LIKWID both provide access to performance
counter data, LIKWID distills this down to GFLOP’s, data
movement, and bandwidths that can be used to infer overall
efficiency. However, LIKWID lacks information on hotspots,
load balance, or MPI communication pattern. IPM is nomi-
nally focused on MPI communication and thus can highlight
communication hot spots, but lacks information on effective
utilization of the network. Although SDE may provide
the gold standard in detailed instruction characteristics, its
ability to identify hot spots, memory usage, and efficiency
is minimal.

4) Accuracy: Most tools produce accurate perfor-
mance information for the metrics they can mea-
sure. LIKWID’s and Perf’s counts of total floating-
point operations is inaccurate because they both rely on
the UOPS_RETIRED.SCALAR_SIMD performance counter
which counts both arithmetic floating-point operation related
vector micro-ops as well as non-arithmetic floating-point
operation related ones. For applications that do not have
good data locality or vectorization, this could skew LIKWID
and Perf’s measurement by a large amount.

IV. CONCLUSION

Through this exploration of six profiling tools, it is found
that CrayPat, LIKWID and Perf are able to collect an
important set of actionable performance information with
low overhead and high accuracy. Furthermore, without the
requirement of code instrumentation, and with some pre-
defined performance groups readily available, LIKWID pro-
vides an easy-to-use, easy-to-automate way to enable mass
performance data collection on Cray systems.

ACKNOWLEDGMENT

This material is based upon work supported by the Ad-
vanced Scientific Computing Research Program in the U.S.

Department of Energy, Office of Science, under Award Num-
ber DE-AC02-05CH11231. This research used resources of
the National Energy Research Scientific Computing Center
(NERSC), which is supported by the Office of Science of the
U.S. Department of Energy under Contract No. DE-ACO02-
05CH11231.

REFERENCES

[1] L. DeRose, B. Homer, D. Johnson, S. Kaufmann, and
H. Poxon, “Cray performance analysis tools,” pp. 191-199,
2008.

[2] T. Rohl, J. Treibig, G. Hager, and G. Wellein, “Overhead
analysis of performance counter measurements,” pp. 176-185,

9 2014.

[3] D. Skinner, Performance Monitoring of Parallel
Scientific Applications, 5 2005. [Online]. Available:
http://www.osti.gov/scitech/servlets/purl/881368

[4] (2017) Intel VTune Amplifier. [Online]. Available:

https://software.intel.com/en-us/intel-vtune-amplifier-xe

[5] (2017) Intel Software Development Emulator. [Online]. Avail-
able: https://software.intel.com/en-us/articles/intel-software-
development-emulator

[6] (2017) Perf Wiki. [Online]. Available:

https://perf.wiki.kernel.org/index.php/Main_Page
[7] https://bitbucket.org/hpgmg/hpgmg.
[8] https://github.com/AMReX-Astro/Nyx.
[9] https://github.com/azrael417/ClimDeepLearn.

[10] http://crd.Ibl.gov/departments/computer-
science/PAR/research/hpgmg.

[11] A. S. Almgren, J. B. Bell, M. J. Lijewski, Z. Luki,
and E. V. Andel, “Nyx: A massively parallel amr
code for computational cosmology,” The Astrophysical
Journal, vol. 765, no. 1, p. 39, 2013. [Online]. Available:
http://stacks.iop.org/0004-637X/765/i=1/a=39

[12] S. Jégou, M. Drozdzal, D. Vazquez, A. Romero, and Y. Ben-
gio, “The one hundred layers tiramisu: Fully convolutional
densenets for semantic segmentation,” in Computer Vision
and Pattern Recognition Workshops (CVPRW), 2017 IEEE
Conference on. 1EEE, 2017, pp. 1175-1183.

[13] (2017) TensorFlow. Available:

https://www.tensorflow.org

[Online].

[14] “Introducing DNN primitives in Intel® Math Kernel Li-
brary,” https://software.intel.com/en-us/articles/introducing-
dnn-primitives-in-intelr-mkl, 2017.

[15] cuDNN website. [Online]. Available:

https://developer.nvidia.com/cudnn
[16] https://github.com/herumi/xbyak.

[17] http://iopscience.iop.org/article/10.1088/0004-
637X/765/1/39/meta.

[18] https://academic.oup.com/mnras/article/446/4/3697/2892888.

