
Performance Modeling
and Analysis

Samuel Williams
Computational Research Division
Lawrence Berkeley National Lab

SWWilliams@lbl.gov

mailto:SWWilliams@lbl.gov

Jack Deslippe, Charlene Yang, Doug Doerfler, Matt Cordery,
Khaled Ibrahim, Lenny Oliker, Protonu Basu, Terry Ligocki,
Brian Van Straalen (LBL), Linda Lo (formerly Utah), Zakhar
Matveev (Intel), Roman Belenov (Intel)

Acknowledgements

§ This material is based upon work supported by the Advanced Scientific Computing Research Program
in the U.S. Department of Energy, Office of Science, under Award Number DE-AC02-05CH11231.

§ This material is based upon work supported by the DOE RAPIDS SciDAC Institute.
§ This research used resources of the National Energy Research Scientific Computing Center (NERSC),

which is supported by the Office of Science of the U.S. Department of Energy under contract DE-AC02-
05CH11231.

§ This research used resources of the Oak Ridge Leadership Facility at the Oak Ridge National
Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under
Contract No. DE-AC05-00OR22725.

Acknowledgements

Introduction to
Performance

Modeling

Why Use Performance Models or Tools?
§ Understand performance differences between Architectures,

Programming Models, implementations, etc…
§ Predict performance on future machines / architectures

• Sets realistic expectations on performance for future procurements
• Used for HW/SW Co-Design to ensure future architectures are well-suited for the

computational needs of today’s applications.

§ Identify performance bottlenecks & motivate software optimizations
§ Determine when we’re done optimizing

• Assess performance relative to machine capabilities
• Motivate need for algorithmic changes

5

Computational Complexity
§ Assume run time is correlated

with the number of operations
(e.g. FP ops)

§ Users define parameterize their
algorithms, solvers, kernels

§ Count the number of operations
as a function of those parameters

§ Demonstrate run time is
correlated with those parameters

6

#pragma omp parallel for
for(i=0;i<N;i++){

Z[i] = alpha*X[i] + Y[i];
}

DAXPY: O(N) complexity where
N is the number of elements

#pragma omp parallel for
for(i=0;i<N;i++){
for(j=0;j<N;j++){

double Cij=0;
for(k=0;k<N;k++){

Cij += A[i][k] * B[k][j];
}
C[i][j] = sum;

}}

DGEMM: O(N3) complexity
where N is the number of rows
(equations)

FFTs: O(NlogN) in the number of elements

CG: O(N1.33) in the number of elements (equations)

MG: O(N) in the number of elements (equations)

N-body: O(N2) in the number of particles (per time step)

?What are the
scaling

constants?

?Why did we
depart from ideal

scaling?

Data Movement Complexity
§ Assume run time is correlated

with the amount of data accessed
(or moved)

§ Easy to calculate amount of data
accessed… count array accesses

7

DAXPY
DGEMV
DGEMM

FFTs
CG

MG
N-body

Operation
O(N)
O(N2)
O(N3)

O(NlogN)
O(N1.33)

O(N)
O(N2)

FLOPs
O(N)
O(N2)
O(N2)
O(N)

O(N1.33)

O(N)
O(N)

Data

1Hill et al, “Evaluating Associativity in CPU Caches”, IEEE
Trans. Comput., 1989.

§ Data moved is more complex as it
requires understanding cache
behavior…
• Compulsory1 data movement (array

sizes) is a good initial guess…
• … but needs refinement for the effects of

finite cache capacities

?Which is more
expensive…

Performing FLOPs, or
Moving words from memory

Machine Balance and Arithmetic Intensity
§ Data movement and computation

can operate at different rates

8

DAXPY

DGEMV

DGEMM

FFTs

CG

MG

N-body

Operation
O(N)

O(N2)

O(N3)

O(NlogN)

O(N1.33)

O(N)

O(N2)

FLOPs
O(N)

O(N2)

O(N2)

O(N)

O(N1.33)

O(N)

O(N)

Data
O(1)

O(1)

O(N)

O(logN)

O(1)

O(1)

O(N)

AI (ideal)

Peak DP FLOP/s
Peak BandwidthBalance =

§ We define machine balance as
the ratio of…

FLOPs Performed
Data MovedAI =

§ …and arithmetic intensity as the
ratio of…

!Kernels with AI

less than machine

balance are ultim
ately

bandwidth lim
ited

Distributed Memory Performance Modeling
§ In distributed memory, one communicates by sending messages

between processors.

9

§ Messaging time can be constrained by several components…
• Overhead (CPU time to send/receive a message)
• Latency (time message is in the network; can be hidden)
• Message throughput (rate at which one can send small messages… messages/second)
• Bandwidth (rate one can send large messages… GBytes/s)

§ Distributed memory versions of our algorithms can be differently
stressed by these components depending on N and P (#processors)

§ Bandwidths and latencies are further constrained by the interplay of
network architecture and contention

Computational Depth
§ Parallel machines incur

substantial overheads on
synchronization (shared memory),
point-to-point communication,
reductions, and broadcasts.

§ We can classify algorithms by
depth (max depth of the
algorithm’s dependency chain)

Ø If dependency chain crosses
process boundaries, we incur
substantial overheads.

10

DAXPY
DGEMV
DGEMM

FFTs
CG

MG
N-body

Operation
O(N)
O(N2)
O(N3)

O(NlogN)
O(N1.33)

O(N)
O(N2)

FLOPs
O(N)
O(N2)
O(N2)
O(N)

O(N1.33)

O(N)
O(N)

Data
O(1)
O(1)
O(N)

O(logN)
O(1)

O(1)
O(N)

AI (ideal)
O(1)

O(logN)
O(logN)
O(logN)

O(N0.33 logN)

O(logN)
O(logN)

Depth

!Overheads can

dominate at high

concurrency or small

problems

Performance Models

11

#FP operations
Cache data movement
DRAM data movement

PCIe data movement
Depth

MPI Message Size
MPI Send:Wait ratio

#MPI Wait’s

FLOP/s
Cache GB/s
DRAM GB/s
PCIe bandwidth
OMP Overhead
Network Bandwidth
Network Gap
Network Latency

§ Many different components can contribute to kernel run time.
§ Some are characteristics of the application, some are characteristics of

the machine, and some are both (memory access pattern + caches).

Performance Models

12

§ Can’t think about all these terms all the time for every application…

#FP operations
Cache data movement
DRAM data movement

PCIe data movement
Depth

MPI Message Size
MPI Send:Wait ratio

#MPI Wait’s

FLOP/s
Cache GB/s
DRAM GB/s
PCIe bandwidth
OMP Overhead
Network Bandwidth
Network Gap
Network Latency

Computational
Complexity

Performance Models

13

§ Because there are so many components, performance models often
conceptualize the system as being dominated by one or more of these
components.

#FP operations
Cache data movement
DRAM data movement

PCIe data movement
Depth

MPI Message Size
MPI Send:Wait ratio

#MPI Wait’s

FLOP/s
Cache GB/s
DRAM GB/s
PCIe bandwidth
OMP Overhead
Network Bandwidth
Network Gap
Network Latency

LogP

Culler, et al, "LogP: a practical model of parallel computation", CACM, 1996.

Performance Models

14

§ Because there are so many components, performance models often
conceptualize the system as being dominated by one or more of these
components.

#FP operations
Cache data movement
DRAM data movement

PCIe data movement
Depth

MPI Message Size
MPI Send:Wait ratio

#MPI Wait’s

FLOP/s
Cache GB/s
DRAM GB/s
PCIe bandwidth
OMP Overhead
Network Bandwidth
Network Gap
Network Latency

LogGP

Alexandrov, et al, "LogGP: incorporating long messages into the LogP model - one step closer
towards a realistic model for parallel computation", SPAA, 1995.

Implications of Architectural Evolution…

§ Historically, many performance models and simulators tracked time to
predict performance (i.e. counting seconds or counting cycles)

§ The last two decades saw a number of latency-hiding techniques…
• Out-of-order execution (hardware discovers parallelism to hide latency)
• HW stream prefetching (hardware speculatively loads data)
• Massive thread parallelism (independent threads satisfy the latency-bandwidth

product)
§ … resulted in a shift from a latency-limited computing regime to a

throughput-limited computing regime

16

Roofline Model
§ Roofline Model is a throughput-

oriented performance model
§ Tracks rates not times
§ Uses bound and bottleneck analysis
§ Independent of ISA and architecture

(applies to CPUs, GPUs, Google
TPUs1, etc…)

171Jouppi et al, “In-Datacenter Performance Analysis of a Tensor Processing Unit”, ISCA, 2017.

https://crd.lbl.gov/departments/computer-science/PAR/research/roofline

https://crd.lbl.gov/departments/computer-science/PAR/research/roofline/

Performance Models

18

§ Because there are so many components, performance models often
conceptualize the system as being dominated by one or more of these
components.

#FP operations
Cache data movement
DRAM data movement

PCIe data movement
Depth

MPI Message Size
MPI Send:Wait ratio

#MPI Wait’s

FLOP/s
Cache GB/s
DRAM GB/s
PCIe bandwidth
OMP Overhead
Network Bandwidth
Network Gap
Network Latency

Roofline
Model

Williams et al, "Roofline: An Insightful Visual Performance Model For Multicore Architectures",
CACM, 2009.

!Use the

right model

Introduction to the
Roofline Model

(DRAM) Roofline
§ One could hope to always attain

peak performance (FLOP/s)
§ However, finite locality (reuse) and

bandwidth limit performance.
§ Assume:

• Idealized processor/caches
• Cold start (data in DRAM)

20

CPU
(compute, FLOP/s)

DRAM
(data, GB)

DRAM Bandwidth
(GB/s)

#FP ops / Peak GFLOP/s
Time = max

#Bytes / Peak GB/s

(DRAM) Roofline
§ One could hope to always attain

peak performance (FLOP/s)
§ However, finite locality (reuse) and

bandwidth limit performance.
§ Assume:

• Idealized processor/caches
• Cold start (data in DRAM)

21

CPU
(compute, FLOP/s)

DRAM
(data, GB)

DRAM Bandwidth
(GB/s)

1 / Peak GFLOP/sTime
#FP ops #Bytes / #FP ops / Peak GB/s

= max

(DRAM) Roofline
§ One could hope to always attain

peak performance (FLOP/s)
§ However, finite locality (reuse) and

bandwidth limit performance.
§ Assume:

• Idealized processor/caches
• Cold start (data in DRAM)

22

CPU
(compute, FLOP/s)

DRAM
(data, GB)

DRAM Bandwidth
(GB/s)

Peak GFLOP/s#FP ops
Time (#FP ops / #Bytes) * Peak GB/s

= min

(DRAM) Roofline
§ One could hope to always attain

peak performance (FLOP/s)
§ However, finite locality (reuse) and

bandwidth limit performance.
§ Assume:

• Idealized processor/caches
• Cold start (data in DRAM)

23

CPU
(compute, FLOP/s)

DRAM
(data, GB)

DRAM Bandwidth
(GB/s)

Peak GFLOP/s
GFLOP/s = min

AI * Peak GB/s
Note, Arithmetic Intensity (AI) = Flops / Bytes (as presented to DRAM)

Arithmetic Intensity
§ The most important concept in Roofline is Arithmetic Intensity

§ Measure of data locality (data reuse)
§ Ratio of Total Flops performed to Total Bytes moved
§ For the DRAM Roofline…

o Total Bytes to/from DRAM and includes all cache and prefetcher effects
o Can be very different from total loads/stores (bytes requested)
o Equal to ratio of sustained GFLOP/s to sustained GB/s (time cancels)

24

(DRAM) Roofline
§ Plot Roofline bound using

Arithmetic Intensity as the x-axis
§ Log-log scale makes it easy to

doodle, extrapolate performance
along Moore’s Law, etc…

§ Kernels with AI less than machine
balance are ultimately DRAM
bound (we’ll refine this later…)

25

Peak FLOP/s

At
ta

in
ab

le
 F

LO
P/

s

DRAM G
B/s

Arithmetic Intensity (FLOP:Byte)

DRAM-bound Compute-bound

Transition @ AI =
Machine Balance

Roofline Example #1
§ Typical machine balance is 5-10

flops per byte…
• 40-80 flops per double to exploit compute capability
• Artifact of technology and money
• Unlikely to improve

§ Consider STREAM Triad…

• 2 flops per iteration
• Transfer 24 bytes per iteration (read X[i], Y[i], write Z[i])
• AI = 0.083 flops per byte == Memory bound

26

At
ta

in
ab

le
 F

LO
P/

s

DRAM G
B/s

Arithmetic Intensity (FLOP:Byte)

TRIAD

GFLOP/s ≤ AI * DRAM GB/s

#pragma omp parallel for
for(i=0;i<N;i++){

Z[i] = X[i] + alpha*Y[i];
}

0.083

Peak FLOP/s

Roofline Example #2
§ Conversely, 7-point constant

coefficient stencil…
• 7 flops
• 8 memory references (7 reads, 1 store) per point
• AI = 0.11 flops per byte (L1)

27

#pragma omp parallel for
for(k=1;k<dim+1;k++){
for(j=1;j<dim+1;j++){
for(i=1;i<dim+1;i++){
new[k][j][i] = -6.0*old[k][j][i]

+ old[k][j][i-1]
+ old[k][j][i+1]
+ old[k][j-1][i]
+ old[k][j+1][i]
+ old[k-1][j][i]
+ old[k+1][j][i];

}}}

CPU
(compute, FLOP/s)

DRAM
(data, GB)

DRAM Bandwidth
(GB/s)

Roofline Example #2

28

#pragma omp parallel for
for(k=1;k<dim+1;k++){
for(j=1;j<dim+1;j++){
for(i=1;i<dim+1;i++){
new[k][j][i] = -6.0*old[k][j][i]

+ old[k][j][i-1]
+ old[k][j][i+1]
+ old[k][j-1][i]
+ old[k][j+1][i]
+ old[k-1][j][i]
+ old[k+1][j][i];

}}}

CPU
(compute, FLOP/s)

CACHE
(only compulsory misses)

Cache Bandwidth
(GB/s)

DRAM
(data, GB)

DRAM Bandwidth
(GB/s)

§ Conversely, 7-point constant
coefficient stencil…
• 7 flops
• 8 memory references (7 reads, 1 store) per point
• Cache can filter all but 1 read and 1 write per point
• AI = 0.44 flops per byte

Roofline Example #2
§ Conversely, 7-point constant

coefficient stencil…
• 7 flops
• 8 memory references (7 reads, 1 store) per point
• Cache can filter all but 1 read and 1 write per point
• AI = 0.44 flops per byte == memory bound,

but 5x the flop rate

29

At
ta

in
ab

le
 F

LO
P/

s

DRAM G
B/s

7-point
Stencil

GFLOP/s ≤ AI * DRAM GB/s

TRIAD

Arithmetic Intensity (FLOP:Byte)
0.083 0.44

Peak FLOP/s

#pragma omp parallel for
for(k=1;k<dim+1;k++){
for(j=1;j<dim+1;j++){
for(i=1;i<dim+1;i++){
new[k][j][i] = -6.0*old[k][j][i]

+ old[k][j][i-1]
+ old[k][j][i+1]
+ old[k][j-1][i]
+ old[k][j+1][i]
+ old[k-1][j][i]
+ old[k+1][j][i];

}}}

Question:

Will Performance Always
Lie on the Roofline?

Can performance be below the Roofline?

§ Analogous to stating that one can always attain either…
o Peak Bandwidth
o Peak FLOP/s

31

§ No, there can be other performance bottlenecks…
o Cache bandwidth / locality
o Lack of vectorization / SIMDization
o Load imbalance
o …

Extending the
Roofline:

Memory Hierarchy

Hierarchical Roofline
§ Processors have multiple levels of

memory/cache
• Registers
• L1, L2, L3 cache
• MCDRAM/HBM (KNL/GPU device memory)
• DDR (main memory)
• NVRAM (non-volatile memory)

§ Applications have locality in each level
§ Unique data movements imply unique AI’s
§ Moreover, each level will have unique peak and

sustained bandwidths

33

CPU

L1 D$

DRAM

L2 D$

MCDRAM

Bandwidth

L1 GB/s

L2 GB/s

MCDRAM GB/s

DRAM GB/s

Data Movement

L1 GB

L2 GB

MCDRAM GB

DRAM GB

Hierarchical Roofline
§ Processors have multiple levels of

memory/cache
• Registers
• L1, L2, L3 cache
• MCDRAM/HBM (KNL/GPU device memory)
• DDR (main memory)
• NVRAM (non-volatile memory)

§ Applications have locality in each level
§ Unique data movements imply unique AI’s
§ Moreover, each level will have unique peak and

sustained bandwidths

34

CPU

L1 D$

DRAM

L2 D$

MCDRAM

Machine Balance

GFLOP/s
L1 GB/s

GFLOP/s
L2 GB/s

GFLOP/s
MCDRAM GB/s

GFLOP/s
DRAM GB/s

Data Movement

L1 GB

L2 GB

MCDRAM GB

DRAM GB

Hierarchical Roofline
§ Processors have multiple levels of

memory/cache
• Registers
• L1, L2, L3 cache
• MCDRAM/HBM (KNL/GPU device memory)
• DDR (main memory)
• NVRAM (non-volatile memory)

§ Applications have locality in each level
§ Unique data movements imply unique AI’s
§ Moreover, each level will have unique peak and

sustained bandwidths

35

CPU

L1 D$

DRAM

L2 D$

MCDRAM

Machine Balance

GFLOP/s
L1 GB/s

GFLOP/s
L2 GB/s

GFLOP/s
MCDRAM GB/s

GFLOP/s
DRAM GB/s

Arithmetic Intensity

GFLOPs
L1 GB

GFLOPs
L2 GB

GFLOPs
MCDRAM GB

GFLOPs
DRAM GB

DDR Bound
DDR AI*BW <

MCDRAM AI*BW

Hierarchical Roofline
§ Construct superposition of

Rooflines…
§ Measure bandwidth
§ Measure AI for each level of memory
• Although an loop nest may have multiple

AI’s and multiple bounds (flops, L1, L2, …
DRAM)…

• … performance is bound by the
minimum

36

At
ta

in
ab

le
 F

LO
P/

s

DDR G
B/s

MCDRAM ca
ch

e G
B/s

Arithmetic Intensity (FLOP:Byte)

L2
 G

B/s

Peak FLOP/s

Hierarchical Roofline
§ Construct superposition of

Rooflines…
§ Measure bandwidth
§ Measure AI for each level of memory
• Although an loop nest may have multiple

AI’s and multiple bounds (flops, L1, L2, …
DRAM)…

• … performance is bound by the
minimum

37

At
ta

in
ab

le
 F

LO
P/

s

MCDRAM ca
ch

e G
B/s

Arithmetic Intensity (FLOP:Byte)

L2
 G

B/s

DDR bottleneck
pulls performance
below MCDRAM

Roofline

Peak FLOP/s

DDR G
B/s

MCDRAM ca
ch

e G
B/s

MCDRAM bound
MCDRAM AI*BW <

DDR AI*BW

Hierarchical Roofline
§ Construct superposition of

Rooflines…
§ Measure bandwidth
§ Measure AI for each level of memory
• Although an loop nest may have multiple

AI’s and multiple bounds (flops, L1, L2, …
DRAM)…

• … performance is bound by the
minimum

38

At
ta

in
ab

le
 F

LO
P/

s

Arithmetic Intensity (FLOP:Byte)

L2
 G

B/s

Peak FLOP/s

DDR G
B/s

Hierarchical Roofline
§ Construct superposition of

Rooflines…
§ Measure bandwidth
§ Measure AI for each level of memory
• Although an loop nest may have multiple

AI’s and multiple bounds (flops, L1, L2, …
DRAM)…

• … performance is bound by the
minimum

39

Peak FLOP/s

A
tta

in
ab

le
 F

LO
P

/s

Arithmetic Intensity (FLOP:Byte)

MCDRAM
bottleneck pulls

performance below
DDR Roofline

NUMA Effects
§ Cori’s Haswell nodes are built

from 2 Xeon processors (sockets)
• Memory attached to each socket (fast)
• Interconnect that allows remote memory

access (slow == NUMA)
• Improper memory allocation can result in

more than a 2x performance penalty

40

Peak FLOP/s

At
ta

in
ab

le
 F

LO
P/

s

DDR G
B/s

DDR G
B/s

(N
UMA)

Arithmetic Intensity (FLOP:Byte)

CPU0
cores 0-15

DRAM
~50GB/s

CPU1
cores 16-31

DRAM
~50GB/s

Without proper
NUMA optimization,

bandwidth is
constrained

Extending the Roofline:
In-Core Effects

In-Core Parallelism
§ We have assumed one can attain peak flops with high locality.
§ In reality, we must …

• Vectorize loops (16 flops per instruction)
• Use special instructions (e.g. FMA)
• Ensure FP instructions dominate the instruction mix
• Use all cores & sockets

§ Without these, …
• Peak performance is not attainable
• Some kernels can transition from memory-bound to compute-bound

42

Data Parallelism (e.g. SIMD)
§ Most processors exploit some

form of SIMD or vectors.
• KNL uses 512b vectors (8x64b)

• GPUs use 32-thread warps (32x64b)

§ In reality, applications are a mix of
scalar and vector instructions.
• Performance is a weighted average

between SIMD and no SIMD

43

Full vectorization

No vectorization

A
tt
a
in

a
b
le

 F
L
O

P
/s

DDR G
B/s

Arithmetic Intensity (FLOP:Byte)

Lack of full
vectorization pulls
performance below

DDR Roofline

Data Parallelism (e.g. SIMD)
§ Most processors exploit some

form of SIMD or vectors.
• KNL uses 512b vectors (8x64b)

• GPUs use 32-thread warps (32x64b)

§ In reality, applications are a mix of
scalar and vector instructions.
• Performance is a weighted average

between SIMD and no SIMD

Ø There is an implicit ceiling based on
this weighted average

44

No vectorization

Partial
vectorization

A
tt
a
in

a
b
le

 F
L
O

P
/s

Arithmetic Intensity (FLOP:Byte)

Memory-bound
codes can become

compute-bound

Return of Complex Instruction Set Computing
§ Death of Moore’s Law is reinvigorating CISC
§ Modern CPUs and GPUs are increasingly reliant on special (fused)

instructions that perform multiple operations.
o FMA (Fused Multiply Add): z=a*x+y …z,x,y are vectors or scalars
o 4FMA (quad FMA): z=A*x+z …A is a FP32 matrix; x,z are vectors
o WMMA (Tensor Core): Z=AB+C …Z,A,B,C are FP16 matrices

45

Ø Performance is now a weighted average of scalar, vector, FMA, and
WMMA operations.

Return of CISC
§ Total lack of FMA reduces

performance by 2x on KNL.

(4x on Haswell)

46

VFMA Peak

A
tt
a
in

a
b
le

 F
L
O

P
/s

D
D
R
 G

B
/s

Arithmetic Intensity (FLOP:Byte)

VAdd Peak

FAdd Peak

Partial FMA

§ In reality, applications are a mix of

FMA, FAdd, and FMul.

• Performance is a weighted average

Ø There is an implicit ceiling based on
this weighted average

Return of CISC
§ On Volta, Tensor cores can

provide 100TFLOPs of FP16
performance
(vs. 7.5 TFLOPS for DP FMA)

47

A
tta

in
ab

le
 F

LO
P

/s

HBM G
B/s

Tensor Peak

Arithmetic Intensity (FLOP:Byte)

DP FMA Peak

DP Add Peak

§ Observe, machine balance has
now grown to …

100 TFLOP/s / 800 GB/s
= 250 FP16 ops per word !!

Superscalar vs. Instruction mix
§ Superscalar processors have finite instruction fetch/decode/issue

bandwidth (e.g. 4 instructions per cycle)
§ Moreover, the number of FP units dictates the FP issue rate required to

hit peak (e.g. 2 vector instructions per cycle)

48

Ø Ratio of these two rates is the minimum FP instruction fraction
required to hit peak

Superscalar vs. Instruction mix

49

Peak FLOP/s

25% FP (75% int)

A
tta

in
ab

le
 F

LO
P

/s

DDR G
B/s

Arithmetic Intensity (FLOP:Byte)

12% FP (88% int)

≥50% FP

§ Haswell CPU
• 4-issue superscalar
• Only 2 FP data paths
• Requires 50% of the instructions to be FP

to get peak performance

Superscalar vs. Instruction mix

50

Peak FLOP/s

50% FP (50% int)

At
ta

in
ab

le
 F

LO
P/

s

DDR G
B/s

Arithmetic Intensity (FLOP:Byte)

25% FP (75% int)

100% FP

§ Conversely, on KNL…
• 2-issue superscalar
• 2 FP data paths
• Requires 100% of the instructions to be

FP to get peak performance

§ Haswell CPU
• 4-issue superscalar
• Only 2 FP data paths
• Requires 50% of the instructions to be FP

to get peak performance

Superscalar vs. Instruction mix

51

Peak FLOP/s

50% FP (50% int)

At
ta

in
ab

le
 F

LO
P/

s

DDR G
B/s

Arithmetic Intensity (FLOP:Byte)

25% FP (75% int)

100% FP

§ Conversely, on KNL…
• 2-issue superscalar
• 2 FP data paths
• Requires 100% of the instructions to be

FP to get peak performance

§ Haswell CPU
• 4-issue superscalar
• Only 2 FP data paths
• Requires 50% of the instructions to be FP

to get peak performance

Superscalar vs. Instruction mix

52

A
tta

in
ab

le
 F

LO
P

/s

DDR G
B/s

Arithmetic Intensity (FLOP:Byte)

25% FP (75% int)

non-FP instructions
sap issue bandwidth
and pull performance

below the Roofline

§ Conversely, on KNL…
• 2-issue superscalar

• 2 FP data paths

• Requires 100% of the instructions to be
FP to get peak performance

Ø Codes that would have been memory-
bound are now decode/issue-bound.

§ Haswell CPU
• 4-issue superscalar

• Only 2 FP data paths

• Requires 50% of the instructions to be FP
to get peak performance

Superscalar vs. Instruction mix

53

Peak FLOP/s

12% FP (88% int)

A
tta

in
ab

le
 F

LO
P

/s

DDR G
B/s

Arithmetic Intensity (FLOP:Byte)

6% FP (94% int)

≥25% FP

§ On Volta, each SM is partitioned
among 4 warp schedulers

§ Each warp scheduler can
dispatch 32 threads per cycle

§ However, it can only execute 8
DP FP instructions per cycle.

§ i.e. there is plenty of excess
instruction issue bandwidth
available for non-FP instructions.

Extending the Roofline:
Modeling Cache Effects

Locality Walls
§ Naively, we can bound AI using

only compulsory cache misses

55

Peak FLOP/s

No FMA

No vectorization

A
tta

in
ab

le
 F

LO
P

/s

DDR G
B/s

Arithmetic Intensity (FLOP:Byte)

C
om

pu
ls

or
y

A
I

#FLOPs
Compulsory MissesAI =

Locality Walls
§ Naively, we can bound AI using

only compulsory cache misses
§ However, write allocate caches

can lower AI

56

Peak FLOP/s

No FMA

No vectorization

At
ta

in
ab

le
 F

LO
P/

s

DDR G
B/s

Arithmetic Intensity (FLOP:Byte)

C
om

pu
ls

or
y

AI

#FLOPs
Compulsory Misses + Write AllocatesAI =

+W
rit

e
Al

lo
ca

te

Locality Walls
§ Naively, we can bound AI using

only compulsory cache misses
§ However, write allocate caches

can lower AI
§ Cache capacity misses can have

a huge penalty

57

Peak FLOP/s

No FMA

No vectorization

At
ta

in
ab

le
 F

LO
P/

s

DDR G
B/s

Arithmetic Intensity (FLOP:Byte)

C
om

pu
ls

or
y

AI

#FLOPs
Compulsory Misses + Write Allocates + Capacity MissesAI =

+W
rit

e
Al

lo
ca

te

+C
ap

ac
ity

 M
is

se
s

Locality Walls
§ Naively, we can bound AI using

only compulsory cache misses
§ However, write allocate caches

can lower AI
§ Cache capacity misses can have

a huge penalty
Ø Compute bound became

memory bound

58

Peak FLOP/s

No FMA

No vectorization

At
ta

in
ab

le
 F

LO
P/

s

DDR G
B/s

Arithmetic Intensity (FLOP:Byte)

C
om

pu
ls

or
y

AI

#FLOPs
Compulsory Misses + Write Allocates + Capacity MissesAI =

+W
rit

e
Al

lo
ca

te

+C
ap

ac
ity

 M
is

se
s

!Know the theoretical

bounds on your AI.

So Why is Roofline
Useful?

Why is Roofline Useful?
§ Imagine a mix of loop nests
§ FLOP/s alone may not be useful

in deciding which to optimize first

60

FL
O

P/
s

Kernel (or apps)

Why is Roofline Useful?
§ We can sort kernels by AI …

61

At
ta

in
ab

le
 F

LO
P/

s

Arithmetic Intensity (FLOP:Byte)

Why is Roofline Useful?
§ We can sort kernels by AI …
§ … and compare performance

relative to machine capabilities

62

Peak FLOP/s

At
ta

in
ab

le
 F

LO
P/

s

DDR G
B/s

Arithmetic Intensity (FLOP:Byte)

Why is Roofline Useful?
§ Kernels near the roofline are

making good use of
computational resources
o kernels can have low performance

(GFLOP/s), but make good use of a
machine

o kernels can have high performance
(GFLOP/s), but make poor use of a
machine

63

Peak FLOP/s

A
tta

in
ab

le
 F

LO
P

/s

DDR G
B/s

50
%

 of
 S

TREAM

Arithmetic Intensity (FLOP:Byte)

50% of Peak

Tracking Progress Towards Optimality
§ One can conduct a Roofline

optimization after every
optimization (or once per quarter)
o Tracks progress towards optimality
o Allows one to quantitatively speak to

ultimate performance / KPPs
o Can be used as a motivator for new

algorithms.

64

Peak FLOP/s

At
ta

in
ab

le
 F

LO
P/

s

DDR G
B/s

Arithmetic Intensity (FLOP:Byte)

Q4

Q3
Q2

Q1

Roofline Scaling Trajectories

65

§ Often, one plots performance as a
function of thread concurrency
o Carries no insight or analysis
o Provides no actionable information.

0.01 0.05 0.50 5.00 50.00

0.
1

1.
0

10
.0

10
0.

0
10

00
.0

Arithmetic Intensity (Flops/Byte)
G

Fl
op

/s

VFMA (1229)

ADD (c32) (77)

 ADD (c1) (9.2)
DRAM (c3

2) (1
28)

DRAM (c1
) (1

4.3)

●

●

●

●

●
●●

roofline_summary_sp_lbl

● Class A
Class B
Class C

c1

c2

c4
c8

c16c32c64

#Threads
1 2 4 8 16 32 64

Roofline Scaling Trajectories

66

§ Often, one plots performance as a
function of thread concurrency
o Carries no insight or analysis
o Provides no actionable information.

§ Khaled Ibrahim developed a new
way of using Roofline to analyze
thread (or process) scalability
o Create a 2D scatter plot of performance

as a function of AI and thread
concurrency

o Can identify loss in performance due to
increased cache pressure

Khaled Ibrahim, Samuel Williams, Leonid Oliker, "Roofline Scaling Trajectories: A Method
for Parallel Application and Architectural Performance Analysis", HPCS Special Session on
High Performance Computing Benchmarking and Optimization (HPBench), July 2018.

0.01 0.05 0.50 5.00 50.00

0.
1

1.
0

10
.0

10
0.

0
10

00
.0

Arithmetic Intensity (Flops/Byte)
G

Fl
op

/s

VFMA (1229)

ADD (c32) (77)

 ADD (c1) (9.2)
DRAM (c3

2) (1
28)

DRAM (c1
) (1

4.3)

●

●

●

●

●
●●

roofline_summary_sp_lbl

● Class A
Class B
Class C

c1

c2

c4
c8

c16c32c64

Roofline Scaling Trajectories

67

§ Observe…
o AI (data movement) varies with both

thread concurrency and problem size
o Large problems (green and red) move

much more data per thread, and
eventually exhaust cache capacity

o Resultant fall in AI means they hit the
bandwidth ceiling quickly and degrade.

o Smaller problems see reduced AI, but
don’t hit the bandwidth ceiling

0.01 0.05 0.50 5.00 50.00

0.
1

1.
0

10
.0

10
0.

0
10

00
.0

Arithmetic Intensity (Flops/Byte)
G

Fl
op

/s

VFMA (1229)

ADD (c32) (77)

 ADD (c1) (9.2)
DRAM (c3

2) (1
28)

DRAM (c1
) (1

4.3)

●

●

●

●

●
●●

roofline_summary_sp_lbl

● Class A
Class B
Class C

c1

c2

c4
c8

c16c32c64

Driving Performance Optimization
§ Broadly speaking, there are three

approaches to improving
performance:

68

Peak FLOP/s

No FMA

At
ta

in
ab

le
 F

LO
P/

s

DDR G
B/s

Arithmetic Intensity (FLOP:Byte)

Driving Performance Optimization
§ Broadly speaking, there are three

approaches to improving
performance:

§ Maximize in-core performance
(e.g. get compiler to vectorize)

69

Peak FLOP/s

No FMA

At
ta

in
ab

le
 F

LO
P/

s

DDR G
B/s

Arithmetic Intensity (FLOP:Byte)

Driving Performance Optimization
§ Broadly speaking, there are three

approaches to improving
performance:

§ Maximize in-core performance
(e.g. get compiler to vectorize)

§ Maximize memory bandwidth
(e.g. NUMA-aware, unit-stride)

70

Peak FLOP/s

No FMA

At
ta

in
ab

le
 F

LO
P/

s

Arithmetic Intensity (FLOP:Byte)

DDR G
B/s

Driving Performance Optimization
§ Broadly speaking, there are three

approaches to improving
performance:

§ Maximize in-core performance
(e.g. get compiler to vectorize)

§ Maximize memory bandwidth
(e.g. NUMA-aware, unit stride)

§ Minimize data movement
(e.g. cache blocking)

71

Peak FLOP/s

No FMA

At
ta

in
ab

le
 F

LO
P/

s

DDR G
B/s

Arithmetic Intensity (FLOP:Byte)

C
om

pu
ls

or
y

AI

C
ur

re
nt

 A
I

How do I build and
use Roofline?

Machine Characterization

73

§ “Theoretical Performance” numbers can be highly optimistic…
• Pin BW vs. sustained bandwidth
• TurboMode at low concurrency
• Underclocking for AVX
• Compiler failing on high-AI loops.

Ø Take marketing numbers with a grain of salt

Machine Characterization

74

§ To create a Roofline model, we must benchmark…
o Sustained Flops

• Double/single/half precision

• With and without FMA (e.g. compiler flag)

• With and without SIMD (e.g. compiler flag)

o Sustained Bandwidth
• Measure between each level of memory/cache

• Iterate on working sets of various sizes and identify plateaus

• Identify bandwidth asymmetry (read:write ratio)

§ Benchmark must run long enough to observe effects of power throttling

Machine Characterization
§ “Theoretical Performance”

numbers can be highly optimistic…
• Pin BW vs. sustained bandwidth
• TurboMode / Underclock for AVX
• compiler failings on high-AI loops.

75
https://bitbucket.org/berkeleylab/cs-roofline-toolkit/

https://github.com/cyanguwa/nersc-roofline/

https://crd.lbl.gov/departments/computer-science/PAR/research/roofline/

§ LBL developed the Empirical
Roofline Toolkit (ERT)…
• Characterize CPU/GPU systems
• Peak Flop rates
• Bandwidths for each level of memory
• MPI+OpenMP/CUDA == multiple GPUs

 10

 100

 1000

 10000

 0.01 0.1 1 10 100

G
FL

O
Ps

 /
se

c

FLOPs / Byte

Empirical Roofline Graph (Results.quadflat.2t/Run.002)

2450.0 GFLOPs/sec (Maximum)

L1
 - 6

44
2.9

 G
B/s

L2
 - 1

96
5.4

 G
B/s

DRAM - 4
12

.9
GB/s

Cori / KNL

 10

 100

 1000

 10000

 100000

 0.01 0.1 1 10 100

G
FL

O
Ps

 /
se

c

FLOPs / Byte

Empirical Roofline Graph (Results.summitdev.ccs.ornl.gov.02.MPI4/Run.001)

17904.6 GFLOPs/sec (Maximum)

L1
 - 6

50
6.5

 G
B/s

DRAM - 1
92

9.7
 G

B/s

SummitDev / 4GPUs

https://bitbucket.org/berkeleylab/cs-roofline-toolkit/

Measuring Application AI and Performance

77

§ To characterize execution with Roofline we need…
o Time
o Flops (=> FLOPs / time)

o Data movement between each level of memory (=> FLOPs / GB’s)

§ We can look at the full application…
o Coarse grained, 30-min average

o Misses many details and bottlenecks

§ or we can look at individual loop nests…
o Requires auto-instrumentation on a loop by loop basis

o Moreover, we should probably differentiate data movement or flops on a core-by-core basis.

How Do We Count FLOPs?

78

Manual Counting
§ Go thru each loop nest and

count the number of FP
operations

ü Works best for deterministic
loop bounds

ü or parameterize by the
number of iterations
(recorded at run time)

✘ Not scalable

Perf. Counters
§ Read counter before/after

ü More Accurate

ü Low overhead (<%) == can
run full MPI applications

ü Can detect load imbalance
✘ Requires privileged access

✘ Requires manual
instrumentation (+overhead)
or full-app characterization

✘ Broken counters = garbage
✘ May not differentiate

FMADD from FADD

✘ No insight into special
pipelines

Binary Instrumentation
§ Automated inspection of

assembly at run time

ü Most Accurate

ü FMA-, VL-, and mask-aware

ü Can count instructions by
class/type

ü Can detect load imbalance

ü Can include effects from
non-FP instructions

ü Automated application to
multiple loop nests

✘ >10x overhead (short runs /
reduced concurrency)

How Do We Measure Data Movement?

79

Manual Counting
§ Go thru each loop nest and

estimate how many bytes
will be moved

§ Use a mental model of
caches

ü Works best for simple loops
that stream from DRAM
(stencils, FFTs, spare, …)

✘ N/A for complex caches

✘ Not scalable

Perf. Counters
§ Read counter before/after
ü Applies to full hierarchy (L2,

DRAM,
ü Much more Accurate
ü Low overhead (<%) == can

run full MPI applications
ü Can detect load imbalance
✘ Requires privileged access
✘ Requires manual

instrumentation (+overhead)
or full-app characterization

Cache Simulation
§ Build a full cache simulator

driven by memory
addresses

ü Applies to full hierarchy and
multicore

ü Can detect load imbalance
ü Automated application to

multiple loop nests
✘ Ignores prefetchers
✘ >10x overhead (short runs /

reduced concurrency)

Initially Cobbled Together Tools…
§ Use tools known/observed to work on NERSC’s

Cori (KNL, HSW)…
• Used Intel SDE (Pin binary instrumentation +

emulation) to create software Flop counters
• Used Intel VTune performance tool (NERSC/Cray

approved) to access uncore counters
Ø Accurate measurement of FLOPs (HSW) and

DRAM data movement (HSW and KNL)
Ø Used by NESAP (NERSC KNL application

readiness project) to characterize apps on Cori…

80

http://www.nersc.gov/users/application-performance/measuring-arithmetic-intensity/
NERSC is LBL’s production computing division
CRD is LBL’s Computational Research Division
NESAP is NERSC’s KNL application readiness project
LBL is part of SUPER (DOE SciDAC3 Computer Science Institute)

http://www.nersc.gov/users/application-performance/measuring-arithmetic-intensity/

More Recently…
§ Use tools known/observed to work on NERSC’s

Cori (KNL, HSW)…
• Used Intel SDE (Pin binary instrumentation +

emulation) to create software Flop counters
• Used LIKWID performance counter tool (NERSC/Cray

approved) to access uncore counters
Ø Accurate measurement of FLOPs (HSW) and

DRAM data movement (HSW and KNL)
Ø Used by NESAP (NERSC KNL application

readiness project) to characterize apps on Cori…

81

http://www.nersc.gov/users/application-performance/measuring-arithmetic-intensity/
NERSC is LBL’s production computing division
CRD is LBL’s Computational Research Division
NESAP is NERSC’s KNL application readiness project
LBL is part of SUPER (DOE SciDAC3 Computer Science Institute)

http://www.nersc.gov/users/application-performance/measuring-arithmetic-intensity/

LIKWID
§ LIKWID provides easy to use wrappers for measuring performance

counters...
ü Works on NERSC production systems
ü Distills counters into user-friendly metrics (e.g. MCDRAM Bandwidth)
ü Minimal overhead (<1%)
ü Scalable in distributed memory (MPI-friendly)
ü Fast, high-level characterization
✘ No timing breakdowns
✘ Suffers from Garbage-in/Garbage Out

(i.e. hardware counter must be sufficient and correct)

82

https://github.com/RRZE-HPC/likwid
http://www.nersc.gov/users/software/performance-and-debugging-tools/likwid

https://github.com/RRZE-HPC/likwid
http://www.nersc.gov/users/software/performance-and-debugging-tools/likwid

Profiling with LIKWID

83

§ likwid-perfctr (threaded) + likwid-mpirun (MPI/hybrid)

§ no GUI
§ low overhead -> SDE, VTune, etc
§ no code instrumentation required -> CrayPat-tracing
§ no root access required -> VTune
§ no extra modules required to be installed -> VTune

§ use Linux ‘msr’ module to access MSR (Model Specific Register) files

§ Cori:
module load vtune
sbatch/salloc --perf=likwid
module load likwid

Profiling with LIKWID (2)

84

§ Alternately, one can construct a script and monitor only process 0

srun -n8 -c32 ./a.out args
srun -n8 -c32 ./perfctr.sh ./a.out args

where perfctr.sh is
#!/bin/bash
let SLURM_MPI_RANK=$SLURM_PROCID
if [$SLURM_MPI_RANK = 0];then
only process 0 runs likwid and it monitors only logical CPUs 0-31
likwid-perfctr -C 0-31 -g CACHES $@
else
$@
fi

Likwid-perfctr –a (KNL)

85

Using LIKWID for Roofline
§ GPP kernel from BerkeleyGW
§ Arithmetic Intensity = FLOPS / Bytes (= SDE / VTune)

= FLOPS/sec / Bytes/sec
= FLOPS_DP / Bandwidth

§ AI (DRAM) = FLOPS_DP / Bandwidth (DRAM)
§ AI (MCDRAM) = FLOPS_DP / Bandwidth (MCDRAM)
§ AI (L2) = FLOPS_DP / Bandwidth (L2)
§ AI (L1) = FLOPS_DP / Bandwidth (L1)

§ Performance = FLOPS_DP

86

Peak FLOP/s

A
tta

in
ab

le
 F

LO
P

/s

DDR G
B/s

M
CDRAM

 ca
ch

e
GB/s

Arithmetic Intensity

L2
 G

B/s
L1

 G
B/s

GFLOP/s
§ GPP kernel on KNL: 171.960 GFLOPS/sec

o UOPS_RETIRED_PACKED_SIMD
o UOPS_RETIRED_SCALAR_SIMD

§ likwid-perfctr -C 0-63 -g FLOPS_DP ./gpp.knl.ex 512 2 32768 20
o 8*UOPS_RETIRED_PACKED_SIMD+UOPS_RETIRED_SCALAR_SIMD

87

MCDRAM and DDR GB/s
§ kernel on KNL: DDR 2.59GB/s + MCDRAM 63.71GB/s

o MC_CAS_READS/ MC_CAS_WRITES
o EDC_RPQ_INSERTS/ EDC_WPQ_INSERTS
o EDC_MISS_CLEAN/ EDC_MISS_DIRTY

§ likwid-perfctr -C 0-63 -g HBM_CACHE ./gpp.knl.ex 512 2 32768 20

88

L2 GB/s
§ kernel on KNL: L2 96.80GB/s

o L2_REQUESTS_REFERENCE
o OFFCORE_RESPONSE_0_OPTIONS

§ likwid-perfctr -C 0-63 -g L2 ./gpp.knl.ex 512 2 32768 20

89

Resultant Roofline

§ AI (DRAM): 66.39
§ AI (MCDRAM): 2.70
§ AI (L2): 1.78
§ AI (L1): 1.01
§ Performance: 171.960 GFLOPS/s

91

2.7TFLOP/s

At
ta

in
ab

le
 F

LO
P/

s

DDR 77
.0G

B/s

MCDRAM 36
8.5

GB/s

Arithmetic Intensity

L2
 2.

0T
B/s

L1
 12

.2T
B/s

171.96GFLOP/s

1.01 1.78 2.70 66.39

Marking Specific Regions
#include <likwid.h>
……
LIKWID_MARKER_INIT;
#pragma omp parallel {

LIKWID_MARKER_THREADINIT;
}
#pragma omp parallel {

LIKWID_MARKER_START("foo");
#pragma omp for
for(i = 0; i < N; i++) {

data[i] = omp_get_thread_num();
}
LIKWID_MARKER_STOP("foo");

}
LIKWID_MARKER_CLOSE;

§ cc -qopenmp -DLIKWID_PERFMON -I$LIKWID_INCLUDE -L$LIKWID_LIB
-llikwid -dynamic test.c -o test.x

§ likwid-perfctr -C 0-3 -g MEM -m ./test.x

94

focus on specific code regions

Why isn’t LIKWID good enough?

§ LIKWID counts vector uops
§ KNL vuop counters aren’t…

o VL-aware
o precision-aware
o mask-aware
o FMA-aware

§ Counters don’t differentiate instruction types (FP, int, shuffle, …)
§ Flop counters were broken on Haswell.
§ Thus, LIKWID might be a good starting point, but its not perfect.

95

Ø Need tools that actually count flops correctly and ones that can be
used to understand nuances of instruction mixes.

Intel Software Development Emulator (SDE)

§ Dynamic instruction tracing
ü Accounts for actual loop lengths and branches
ü Counts instruction types, lengths, etc…
ü Can mark individual regions
ü Support for MPI+OpenMP
ü Can be used to calculate FLOPs (VL-, FMA-, and precision-aware)
✘ Post processing can be expensive.
✘ No insights into cache behavior or DRAM data movement
✘ X86 only

96
https://software.intel.com/en-us/articles/intel-software-development-emulator

https://software.intel.com/en-us/articles/intel-software-development-emulator

Compiling with SDE at NERSC

§ Makefile…
MPICC = cc
CFLAGS = -g -O3 -dynamic -qopenmp -restrict -qopt-streaming-stores always \

-DSTREAM_ARRAY_SIZE=400000000 -DNTIMES=50 \
-I$(VTUNE_AMPLIFIER_XE_2018_DIR)/include

LDFLAGS = -L$(VTUNE_AMPLIFIER_XE_2018_DIR)/lib64 -littnotify

stream_mpi.exe: stream_mpi.c Makefile
$(MPICC) $(CFLAGS) stream_mpi.c -o stream_mpi.exe $(LDFLAGS)

clean:
rm -f stream_mpi.exe

§ module load sde
make

97https://bitbucket.org/dwdoerf/stream-ai-example.git

https://bitbucket.org/dwdoerf/stream-ai-example.git

Running with SDE at NERSC

srun -n 4 -c 6 sde -ivb -d -iform 1 -omix
my_mix.out -i -global_region -start_ssc_mark
111:repeat -stop_ssc_mark 222:repeat -- foo.exe

§ -ivb is used to target Edison's Ivy Bridge ISA (for Cori use -hsw for Haswell or -knl for KNL processors)
§ -d specifies to only collect dynamic profile information
§ -iform 1 turns on compute ISA iform mix
§ -omix specifies the output file (and turns on -mix)
§ -i specifies that each process will have a unique file name based on process ID (needed for MPI)
§ -global_region will include any threads spawned by a process (needed for OpenMP)

98
http://www.nersc.gov/users/application-performance/measuring-
arithmetic-intensity/

http://www.nersc.gov/users/application-performance/measuring-arithmetic-intensity/

Parsing the Output

§ When the job completes, you’ll have a
series of files prefixed with “sde_”.

§ Parse the output to summarize the
results…

./parse-sde.sh sde_2p16t*

§ Use the “Total FLOPs” line as the
numerator in all AI’s and performance

§ Use the “Total Bytes” line as the
denominator in the L1 AI

§ Can infer vectorization rates and
precision

99

$./parse-sde.sh sde_2p16t*
Search stanza is "EMIT_GLOBAL_DYNAMIC_STATS"
elements_fp_single_1 = 0
elements_fp_single_2 = 0
elements_fp_single_4 = 0
elements_fp_single_8 = 0
elements_fp_single_16 = 0
elements_fp_double_1 = 2960
elements_fp_double_2 = 0
elements_fp_double_4 = 999999360
elements_fp_double_8 = 0
--->Total single-precision FLOPs = 0
--->Total double-precision FLOPs = 4000000400
--->Total FLOPs = 4000000400
mem-read-1 = 8618384
mem-read-2 = 1232
mem-read-4 = 137276433
mem-read-8 = 149329207
mem-read-16 = 1999998720
mem-read-32 = 0
mem-read-64 = 0
mem-write-1 = 264992
mem-write-2 = 560
mem-write-4 = 285974
mem-write-8 = 14508338
mem-write-16 = 0
mem-write-32 = 499999680
mem-write-64 = 0
--->Total Bytes read = 33752339756
--->Total Bytes written = 16117466472
--->Total Bytes = 49869806228

Marking Regions of Interest for SDE
// Code must be built with appropriate paths for VTune include file (ittnotify.h) and

library (-littnotify)
#include <ittnotify.h>

__SSC_MARK(0x111); // start SDE tracing, note it uses 2 underscores
__itt_resume(); // start VTune, again use 2 underscores

for (k=0; k<NTIMES; k++) {
#pragma omp parallel for
for (j=0; j<STREAM_ARRAY_SIZE; j++)
a[j] = b[j]+scalar*c[j];
}

__itt_pause(); // stop VTune
__SSC_MARK(0x222); // stop SDE tracing

100
http://www.nersc.gov/users/application-performance/measuring-
arithmetic-intensity/

!Essential when

analyzing Individual

kernels

http://www.nersc.gov/users/application-performance/measuring-arithmetic-intensity/

Intel Advisor
§ Includes Roofline Automation…

ü Automatically instruments applications
(one dot per loop nest/function)

ü Computes FLOPS and AI for each
function (CARM)

ü AVX-512 support that incorporates masks
ü Integrated Cache Simulator1

(hierarchical roofline / multiple AI’s)
ü Automatically benchmarks target system

(calculates ceilings)
ü Full integration with existing Advisor

capabilities

101

Memory-bound, invest into
cache blocking etc

Compute bound: invest
into SIMD,..

1Experimental Feature, the look and feel and exact behavior is
subject for change

http://www.nersc.gov/users/training/events/roofline-training-1182017-1192017

http://www.nersc.gov/users/training/events/roofline-training-1182017-1192017

Intel® Advisor: 2-pass Approach

103

Roofline:
X-Axis (AI): #FLOPs / #Bytes
Y-Axis (FLOP/s): #FLOP(mask-aware)/time Overhead
Step 1: Survey (-collect survey)
• Records run times
• User-mode sampling; non-intrusive
• No need for root access

1x

Step 2: FLOPs (-collect tripcounts –flops)
• Record #FLOPs, #Bytes, AVX512 masks
• Precise, instrumentation-based count of the number of

instructions
• No need for root access

3-5x

(8-37x)1

1With Integrated Roofline (Cache Simulator) enabled.

Intel® Advisor: Roofline Automation

104

Each Dot represents loop or
function in YOUR APPLICATION

(profiled)

Each Ceiling provides peak
CPU/Memory throughput

of your PLATFORM (benchmarked)

Automatic and integrated – first class citizen in Intel® Advisor

NEW: Integrated Roofline

105

CARM (L1+NTS)
CPU perspective DRAM (ORM)

Not Memory
bound

Some Locality

Highly
optimized

All hotspots but 1
are not CPU-
bound

Full waveform Inversion. Seismic Workload
Data: Courtesy
Philippe Thierry

NEW: Integer, Float, Int+Float Rooflines

106

Integrated Roofline Model

108

Old Approach…
source advixe-vars.sh
advixe-cl -collect survey --project-dir ./your_project -- <your-executable-with-parameters>
advixe-cl -collect tripcounts -enable-cache-simulation -flop --project-dir ./your_project -- <your-

executable-with-parameters>

New Approach (but not compatible with MPI)…
source advixe-vars.sh
advixe-cl -collect roofline -enable-cache-simulation --project-dir ./your_project -- <your-

executable-with-parameters>

(optional) copy data to your UI desktop system
advixe-gui ./your_project

https://software.intel.com/en-us/articles/integrated-roofline-model-with-intel-advisor

https://software.intel.com/en-us/articles/integrated-roofline-model-with-intel-advisor

Advisor on NERSC’s Cori

109

§ http://www.nersc.gov/users/software/performance-and-debugging-tools/advisor/

module load advisor/2018.integrated_roofline
cc -g -dynamic -openmp -O2 -o mycode.exe mycode.c

§ Best to run advisor only on rank 0... srun calls a script like…

#!/bin/bash
if [[$SLURM_PROCID == 0]];then
advixe-cl -collect=survey --project-dir knl-result -data-limit=0 -- ./a.out
else
sleep 30
./a.out
fi

http://www.nersc.gov/users/software/performance-and-debugging-tools/advisor/

Tools for Roofline
Analysis on GPUs
slides provided by Charlene Yang (CJYang@lbl.gov)

Roofline on GPUs (Overview)

§ Use ERT to obtain empirical Roofline ceilings
o compute: FMA, no-FMA
o bandwidth: system memory, device memory, L2, L1

§ Use nvprof to obtain application performance
o FLOPs: active non-predicated threads, divides-aware
o bytes: read + write; system memory, device memory, L2, L1
o runtime: --print-gpu-summary, --print-gpu-trace

§ Plot Roofline with Python and Matplotlib

112

Characterizing NVIDIA GPUs

§ Empirical Roofline Toolkit (ERT)

§ https://bitbucket.org/berkeleylab/cs-roofline-

toolkit/

§ Sweeps through a variety of configurations:

o 1 data element per thread -> multiple

o 1 FLOP operation per data element -> multiple

o number of threadblocks/threads

o number of trails, dataset sizes, etc
§ Four components

o Driver.c, Kernel.c, configuration script, and job script

113

https://bitbucket.org/berkeleylab/cs-roofline-toolkit/src/master

Characterizing GPU-accelerated Applications

117

§ Three measurements: Time, FLOPs, Bytes (on each cache level)

§ Runtime:
o time per invocation of a kernel

nvprof --print-gpu-trace ./application args
o average time over multiple invocations

nvprof --print-gpu-summary ./application args
o same kernel with different input parameters are grouped separately

Performance = +,-./0 FLOPs
Runtime , Arithmetic Intensity = +,-./0 FLOPs

+,-./0 Data Movement

Characterizing GPU-accelerated Applications

118

§ FLOPs:
o predication aware, and divides aware, dp/dp_add/dp_mul/dp_fma, sp*

nvprof --kernels ‘kernel_name’ --metrics ‘flop_count_xx’ ./application
§ Bytes for different cache levels to construct hierarchical Roofline

nvprof --kernels ‘kernel_name’ --metrics ‘metric_name’./application
o Bytes = (read transactions + write transactions) x transaction size

Memory
Level Metrics Transaction

Size
L1 Cache gld_transactions, gst_transactions 32B
L2 Cache l2_read_transactions, l2_write_transactions 32B

Device Memory dram_read_transactions, dram_write_transactions 32B

System Memory
system_read_transactions,
system_write_transactions 32B

Example Output

119

§ [cjyang@voltar source]$ nvprof --kernels "1:7:smooth_kernel:1" --metrics flop_count_dp --metrics
gld_transactions --metrics gst_transactions --metrics l2_read_transactions --metrics l2_write_transactions
--metrics dram_read_transactions --metrics dram_write_transactions --metrics sysmem_read_bytes --metrics
sysmem_write_bytes ./backup-bin/hpgmg-fv-fp 5 8

§ Can collect all metrics at once or one at a time (slowdown)
§ Output in CSV; Python/Excel for multiple output files

Plotting Rooflines of NVProf Data

120

§ Python scripts using Matplotlib
https://github.com/cyanguwa/nersc-roofline/tree/master/Plotting

§ Simple example: plot_roofline.py data.txt
§ Tweaking needed for more sophisticated plotting, see examples

data.txt

all data is space delimited
memroofs 828.758
mem_roof_names 'HBM’
comproofs 7068.86 3535.79
comp_roof_names 'FMA' ’No-FMA’

omit the following if only plotting roofs
AI: arithmetic intensity; GFLOPs: performance
AI 2.584785579
GFLOPs 2085.756683
labels ‘FMA, nw=1’

https://github.com/cyanguwa/nersc-roofline/tree/master/Plotting

HBM Roofline on GPUs

121

§ Use BerkeleyGW Proxy app GPP
to see GPU effects

§ HBM Roofline
§ AI increases as nw grows
§ bandwidth bound à

compute bound
§ Disable FMA in the compiler…

o (-fmad=true/false)
o “No-FMA” converges to its ceiling
o But FMA doesn’t

Hierarchical Roofline on GPUs

122

§ GPP is HBM bound
§ L1/L2 performance far from L1/L2

ceiling

§ FLOPs are proportional to nw
§ Increase in HBM AI →

HBM bytes approx. constant
(good L2 locality)

§ Slow increase in L2 AI →
L2 bytes increase for nw>1
(poor L1 locality)

§ Increase in L1 AI →
L1 bytes approx. constant
(good register file locality)

Summary

Summary

§ Performance Models
§ Roofline Model
§ Tools for Roofline Analysis…
o Machine Characterization (ERT)
o Using LIKWID to access performance counters
o Using SDE to get more accurate FLOP counts
o Using Advisor to provide a single tool that integrates cache simulation and accurate FLOP

counts.
o Using NVProf to affect Roofline on GPUs

124

Questions?

Backup

Hierarchical Roofline vs.
Cache-Aware Roofline

…understanding different Roofline
formulations in Advisor

There are two Major Roofline Formulations:
§ Hierarchical Roofline (original Roofline w/ DRAM, L3, L2, …)…

• Williams, et al, “Roofline: An Insightful Visual Performance Model for Multicore Architectures”, CACM, 2009
• Chapter 4 of “Auto-tuning Performance on Multicore Computers”, 2008
• Defines multiple bandwidth ceilings and multiple AI’s per kernel

• Performance bound is the minimum of flops and the memory intercepts (superposition of original, single-metric Rooflines)

§ Cache-Aware Roofline
• Ilic et al, "Cache-aware Roofline model: Upgrading the loft", IEEE Computer Architecture Letters, 2014
• Defines multiple bandwidth ceilings, but uses a single AI (FLOP:L1 bytes)

• As one looses cache locality (capacity, conflict, …) performance falls from one BW ceiling to a lower one at constant AI

128

§ Why Does this matter?
• Some tools use the Hierarchical Roofline, some use cache-aware == Users need to understand the differences
• Cache-Aware Roofline model was integrated into production Intel Advisor

• Evaluation version of Hierarchical Roofline1 (cache simulator) has also been integrated into Intel Advisor

1Technology Preview, not in official product roadmap so far.

129

Cache-Aware RooflineHierarchical Roofline
§ Captures cache effects§ Captures cache effects

§ Single Arithmetic Intensity§ Multiple Arithmetic Intensities
(one per level of memory)

§ AI independent of problem size§ AI dependent on problem size
(capacity misses reduce AI)

§ AI is FLOP:Bytes as presented to the L1
cache (plus non-temporal stores)

§ AI is FLOP:Bytes after being filtered by
lower cache levels

§ Memory/Cache/Locality effects are
observed as decreased performance

§ Memory/Cache/Locality effects are
observed as decreased AI

§ Requires static analysis or binary
instrumentation to measure AI

§ Requires performance counters or
cache simulator to correctly measure AI

Example: STREAM

130

#pragma omp parallel for
for(i=0;i<N;i++){

Z[i] = X[i] + alpha*Y[i];
}

§ L1 AI…
• 2 flops
• 2 x 8B load (old)
• 1 x 8B store (new)
• = 0.08 flops per byte

§ No cache reuse…
• Iteration i doesn’t touch any data associated with

iteration i+delta for any delta.

§ … leads to a DRAM AI equal to
the L1 AI

Example: STREAM

131

Cache-Aware RooflineHierarchical Roofline

Peak FLOP/s

DRAM G
B/sA
tta

in
ab

le
 F

LO
P

/s

Arithmetic Intensity (FLOP:Byte)
0.083

L1
 G

B/s

Multiple AI’s….
1) FLOP:DRAM bytes
2) FLOP:L1 bytes (same)

Peak FLOP/s

DRAM G
B/sA

tta
in

ab
le

 F
LO

P
/s

0.083
Arithmetic Intensity (FLOP:Byte)

L1
 G

B/s

Single AI based on FLOP:L1 bytes

Observed performance
is correlated with DRAM
bandwidth

Performance is bound to
the minimum of the two
Intercepts…

AIL1 * L1 GB/s
AIDRAM * DRAM GB/s

Example: 7-point Stencil (Small Problem)

132

#pragma omp parallel for
for(k=1;k<dim+1;k++){
for(j=1;j<dim+1;j++){
for(i=1;i<dim+1;i++){

int ijk = i + j*jStride + k*kStride;
new[ijk] = -6.0*old[ijk]

+ old[ijk-1]
+ old[ijk+1]
+ old[ijk-jStride]
+ old[ijk+jStride]
+ old[ijk-kStride]
+ old[ijk+kStride];

}}}

§ L1 AI…
• 7 flops
• 7 x 8B load (old)
• 1 x 8B store (new)
• = 0.11 flops per byte
• some compilers may do register shuffles to reduce the

number of loads.

§ Moderate cache reuse…
• old[ijk] is reused on subsequent iterations of i,j,k
• old[ijk-1] is reused on subsequent iterations of i.
• old[ijk-jStride] is reused on subsequent iterations of j.
• old[ijk-kStride] is reused on subsequent iterations of k.

§ … leads to DRAM AI larger than
the L1 AI

Example: 7-point Stencil (Small Problem)

133

Cache-Aware RooflineHierarchical Roofline

Peak FLOP/s

DRAM
 G

B/sA
tt
a
in

a
b
le

 F
L
O

P
/s

0.11

Arithmetic Intensity (FLOP:Byte)

0.44

L1
 G

B/s

Peak FLOP/s

DRAM
 G

B/sA
tt
a
in

a
b
le

 F
L
O

P
/s

0.11

Arithmetic Intensity (FLOP:Byte)

L1
 G

B/s

Multiple AI’s….
1) FLOP:DRAM ~ 0.44
2) FLOP:L1 ~ 0.11

Performance bound is
the minimum of the two

Example: 7-point Stencil (Small Problem)

134

Cache-Aware RooflineHierarchical Roofline

Peak FLOP/s

DRAM G
B/sA
tta

in
ab

le
 F

LO
P

/s

0.11
Arithmetic Intensity (FLOP:Byte)

0.44

L1
 G

B/s

Peak FLOP/s

DRAM G
B/sA

tta
in

ab
le

 F
LO

P
/s

0.11
Arithmetic Intensity (FLOP:Byte)

L1
 G

B/s

Single AI based on FLOP:L1 bytes

Multiple AI’s….
1) FLOP:DRAM ~ 0.44
2) FLOP:L1 ~ 0.11

Observed performance
is between L1 and DRAM lines
(== some cache locality)

Performance bound is
the minimum of the two

Example: 7-point Stencil (Large Problem)

135

Cache-Aware RooflineHierarchical Roofline

Peak FLOP/s

DRAM G
B/sA
tta

in
ab

le
 F

LO
P

/s

0.11
Arithmetic Intensity (FLOP:Byte)

0.20

L1
 G

B/s

Peak FLOP/s

DRAM G
B/sA

tta
in

ab
le

 F
LO

P
/s

0.11
Arithmetic Intensity (FLOP:Byte)

L1
 G

B/s

Single AI based on FLOP:L1 bytes

Multiple AI’s….
1) FLOP:DRAM ~ 0.20
2) FLOP:L1 ~ 0.11

Capacity misses reduce
DRAM AI and performance

Observed performance
is closer to DRAM line
(== less cache locality)

Example: 7-point Stencil (Observed Perf.)

136

Cache-Aware RooflineHierarchical Roofline

Peak FLOP/s

A
tta

in
ab

le
 F

LO
P

/s

0.11
Arithmetic Intensity (FLOP:Byte)

0.20

L1
 G

B/s

Peak FLOP/s

DRAM
 G

B/sA
tta

in
ab

le
 F

LO
P

/s

0.11
Arithmetic Intensity (FLOP:Byte)

L1
 G

B/s

Single AI based on FLOP:L1 bytes

Actual observed performance
is tied to the bottlenecked resource
and can be well below a cache
Roofline (e.g. L1).

Observed performance
is closer to DRAM line
(== less cache locality)

Example: 7-point Stencil (Observed Perf.)

137

Cache-Aware RooflineHierarchical Roofline

Peak FLOP/s

A
tta

in
ab

le
 F

LO
P

/s

0.11
Arithmetic Intensity (FLOP:Byte)

0.20

Peak FLOP/s

DRAM
 G

B/sA
tta

in
ab

le
 F

LO
P

/s

Arithmetic Intensity (FLOP:Byte)
0.11

L1
 G

B/s

Single AI based on FLOP:L1 bytes

Actual observed performance
is tied to the bottlenecked resource
and can be well below a cache
Roofline (e.g. L1).

Observed performance
is closer to DRAM line
(== less cache locality)

DRAM
 G

B/s

