.| BERKELEY LAB

EEE

Performance Modeling
and Analysis

Samuel Williams

Computational Research Division
Lawrence Berkeley National Lab

mailto:SWWilliams@lbl.gov

.| BERKELEY LAB

BERKELEY LAB LAWRENCE BERKELEY NATIONAL LABORATORY

Acknowledgements

Jack Deslippe, Charlene Yang, Doug Doerfler, Matt Cordery,
Khaled Ibrahim, Lenny Oliker, Protonu Basu, Terry Ligocki,

Brian Van Straalen (LBL), Linda Lo (formerly Utah), Zakhar
Matveev (Intel), Roman Belenov (Intel)

S5, U.S. DEPARTMENT OF

™| BERKELEY LAB {0/ENERGY

A
(reeeee

BERKELEY LAB LAWRENCE BERKELEY NATIONAL LABORATORY

Acknowledgements

= This material is based upon work supported by the Advanced Scientific Computing Research Program
in the U.S. Department of Energy, Office of Science, under Award Number DE-AC02-05CH11231.

» This material is based upon work supported by the DOE RAPIDS SciDAC Institute.

= This research used resources of the National Energy Research Scientific Computing Center (NERSC),
which is supported by the Office of Science of the U.S. Department of Energy under contract DE-AC02-
05CH11231.

= This research used resources of the Oak Ridge Leadership Facility at the Oak Ridge National

Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under
Contract No. DE-AC05-000R22725.

.| BERKELEY LAB

EEE

Introduction to
Performance
Modeling

Why Use Performance Models or Tools?

= Understand performance differences between Architectures,
Programming Models, implementations, etc...

* Predict performance on future machines / architectures

« Sets realistic expectations on performance for future procurements

« Used for HW/SW Co-Design to ensure future architectures are well-suited for the
computational needs of today’s applications.

= |dentify performance bottlenecks & motivate software optimizations

= Determine when we’re done optimizing

« Assess performance relative to machine capabilities
« Motivate need for algorithmic changes

= A
5 P L

BERKELEY LAB

Computational Complexity

= Assume run time is correlated toragna ono paralle] for #pragna om paraiiel for
with the number of operations 1 -t Prii=0;3a8;3r1

(e.g. FP OpS) 39 += ALTIK] * BIKI[§];

= Users define parameterize their scaling
algorithms, solvers, kernels constants?

= Count the number of operations |

as a function of those parameters FFrs:omiogN)inthe numberoff - Why did we
. . CG: O(N'-33) in the number of d rt f .d I
. DemonStrate run tlme IS MG: O(N) in the number of ele epa rom iaea
correlated with those parameters N-body: O(N?) in the number o scaling?

/

— A
6 q| il

BERKELEY LAB

Data Movement Complexity

. Assume run time iS Correlated Operation FLOPs Data
with the amount of data accessed DAXPY ON) o)
DGEMV O(N?) O(N?)
(or moved) DGEMM | O(N) oMY
= Easy to calculate amount of data o
accessed... count array accesses MG
N-body Which is more

= Data moved is more complex as it
requires understanding cache
behavior...

« Compulsory! data movement (array
sizes) is a good initial guess...

expensive...

Performing FLOPs, or \
Moving words from memory

N /

... but needs refinement for the effects of
finite cache capacities

THill et al, “Evaluating Associativity in CPU Caches”, IEEE - /\lﬂ
Trans. Comput., 19809.

BERKELEY LAB

Machine Balance and Arithmetic Intensity

= Data movement and computation operation | FLOPs pata A Alideal)
can operate at different rates ;(Q‘Exm 08;
= We define machine balance as DGEMM (N)
the ratio of... FFTs O(logN)
Peak DP FLOP/s o
Balance =

Peak Bandwidth N-body

= _..and arithmetic intensity as the
ratio of...

Al

_ FLOPs Performed
Data Moved

Distributed Memory Performance Modeling

= |n distributed memory, one communicates by sending messages
between processors.

= Messaging time can be constrained by several components...

 Overhead (CPU time to send/receive a message)
« Latency (time message is in the network; can be hidden)
« Message throughput (rate at which one can send small messages... messages/second)

« Bandwidth (rate one can send large messages... GBytes/s)

= Bandwidths and latencies are further constrained by the interplay of
network architecture and contention

= Distributed memory versions of our algorithms can be differently
stressed by these components depending on N and P (#processors)

_— A
; Y

BERKELEY LAB

Computational Depth

. Para”el maChIneS incur Operation FLOPs Data Al/eal) Depth
substantial overheads on DAXPY 1) o(1)

DGEMV 1) O(logN)
O(logN)
[AYAVYa1.NA

synchronization (shared memory), ocewm
point-to-point communication, FFTs
reductions, and broadcasts.

= We can classify algorithms by N-body
depth (max depth of the
algorithm’s dependency chain)

> If dependency chain crosses
process boundaries, we incur
substantial overheads.

10

Performance Models

= Many different components can contribute to kernel run time.

= Some are characteristics of the application, some are characteristics of
the machine, and some are both (memory access pattern + caches).

#FP operations FLOP/s

Cache data movement Cache GB/s

DRAM data movement DRAM GB/s
PCle data movement PCle bandwidth
Depth OMP Overhead

MPI| Message Size Network Bandwidth
MPI| Send:Wait ratio Network Gap
... #MPI| Wait's.. Network Latency. ...

11

Performance Models

= Can't think about all these terms all the time for every application...

Computational _________ o ____

Complexity i #FP operations FLOP/s
DRAM data movement DRAM GB/s
PCle data movement PCle bandwidth
Depth OMP Overhead
MPI| Message Size Network Bandwidth
MPI| Send:Wait ratio Network Gap
... #MPI| Wait's.. Network Latency. ...

12

Performance Models

= Because there are so many components, performance models often
conceptualize the system as being dominated by one or more of these
components.

#FP operations FLOP/s

Cache data movement Cache GB/s

DRAM data movement DRAM GB/s
PCle data movement PCle bandwidth
Depth OMP Overhead

MP| Message Size Network Bandwidth
MPI| Send:Wait ratio Network Gap
... #MPI Wait's.. Network Latency. | ...

Culler, et al, "LogP: a practical model of parallel computation", CACM, 1996. 13

Performance Models

= Because there are so many components, performance models often
conceptualize the system as being dominated by one or more of these
components.

#FP operations FLOP/s
Cache data movement Cache GB/s
DRAM data movement DRAM GB/s
PCle data movement PCle bandwidth
______________ Depth. OMP Overhead
" MP| Message Size Network Bandwidth "
' MPI Send:Wait ratio Network Gap

. #M.P.I...Wal.t.s Network Latency

e - - e Em S Em D O D S EE EE EE S EE R EE EE EE EE EE EE D EE R EE Em Em Em o e e

Alexandrov, et al, "LogGP: incorporating long messages into the LogP model - one step clos
towards a realistic model for parallel computation”, SPAA, 1995. 14

Implications of Architectural Evolution...

= Historically, many performance models and simulators tracked time to
predict performance (i.e. counting seconds or counting cycles)

= The last two decades saw a number of latency-hiding techniques...
* Qut-of-order execution (hardware discovers parallelism to hide latency)
« HW stream prefetching (hardware speculatively loads data)

« Massive thread parallelism (independent threads satisfy the latency-bandwidth
product)
= ... resulted in a shift from a latency-limited computing regime to a
throughput-limited computing regime

16

Roofline Model

i P
& crd.Ibl.gov (@] (] O £

o
[
&]
B
[l
®

F71, U.3. DEPARTMENT OF

@)ENERGY

= Roofline Model is a throughput-
oriented performance model

= Tracks rates not times

: A
\\ | COMPUTATIONAL RESEARCH

BERKELEY LAB

PERFORMANCE AND ALGORITHMS RESEARCH STAFF RESEARCH PUBLICATIONS

_CRD
Performance and Algorithms Research

Home » Performance and Algorithms Research » Research » Roofiine

u PERFORMANCE R fl 1 P rf M d I
Iﬂ |ﬂ Iﬂ Iﬂ AND ooriine rerrormance ivioae
. S e S O u a O e e C a a S I S RESEARCH™
RESEARCH Roofline is a visually intuitive performance model used to bound the performance of various numerical methods and operations running on
Research i or p i Rather than simply using percent-of-peak estimates, the model can be used to
Auto-tuning assess the quality of attained performance by combining locality, and different i into a single

performance figure. One can examine the resultant Roofline figure in order to determine both the implementation and inherent performance

BeBOP limitations.

* |Independent of ISA and architecture

Roofline
SciDAC

Arithmetic Intensity

The core parameter behind the Roofline model is Arithmetic Intensity. Arithmetic Intensity is the ratio of total floating-point operations to
total data movement (bytes). A BLAS-1 vector-vector increment (x[i[+=y[i]) would have a very low arithmetic intensity of 0.0417 (N FLOPS
/24N Bytes) and would be independent of the vector size. Conversely, FFT's perform 5*N*logN flops for a N-point double complex

TOP500

Previous Projects

transform. If out of place on a write allocate cache architecture, the transform would move at least 48N bytes. As such, FFT's
would have an arithmetic intensity of 0.104*logN and would grow slowly with data size. Unfortuantely, cache capacities would
limit FFT arithmetic intensity to perhaps 2 flops per byte. Finally, BLAS3 and N-Body Particle-Particle methods would have

applies to CPUs, GPUs, Google
TPUs', etc... |

Google+

0.1-1.0 flops per byte Typically < 2 flops per byte 0O(10) flops per byte
A A A

N7 N T \

&

Twitter

SpMV
BLAS1,2 Particle
ils (PDE: Methods
Stencils (| s) FFTs, Cense
Lattice Boltzmann Spectral Methods Linear Algebra
N Methods e (BLAS3) ,
Y Y Y
o(1) O(log(N)) O(N)

https://crd.lbl.gov/departments/computer-science/PAR/research/roofline

>

b
frrereeer |

17

Jouppi et al, “In-Datacenter Performance Analysis of a Tensor Processing Unit”, ISCA, 2017.
BERKELEY LAB

https://crd.lbl.gov/departments/computer-science/PAR/research/roofline/

Performance Models

= Because there are so many components, performance models often
conceptualize the system as being dominated by one or more of these

components.
"R operations FLOPIs)y feo
' Cache data movement Cache GB/s 4
'DRAM data movement DRAM GR/~* 4.e

PCle data movement PCie bana. ys®" _ae\
O
Depth OMP G ‘ “ﬂ“
MP| Message Size Network B’ W9
MPI| Send:Wait ratio Network“Gay
... #MP| Wait’'s.. Network LateAcy. ...

Williams et al, "Roofline: An Insightful Visual Performance Model For Multicore Architectures",
CACM, 2009. 18

.| BERKELEY LAB

EEE

Introduction to the
Roofline Model

(DRAM) Roofline

= One could hope to always attain

peak performance (FLOP/s)
= However, finite locality (reuse) and
bandwidth limit performance. | SRAM Banduic
andwidth
= Assume: R
|dealized processor/caches DRAM
Cold start (data in DRAM) (data, GB)
(HFP ops / Peak GFLOP/s

Time = max<

_#Bytes / Peak GB/s

20

(DRAM) Roofline

= One could hope to always attain

peak performance (FLOP/s)
= However, finite locality (reuse) and
bandwidth limit performance. | orant o
= Assume: | (5
|dealized processor/caches DRAM
Cold start (data in DRAM) (data, GB)
~
Time 1/ Peak GFLOPI/s
#FP ops MaX™
P _#Bytes | #FP ops / Peak GB/s

21

(DRAM) Roofline

= One could hope to always attain

peak performance (FLOP/s)
= However, finite locality (reuse) and
bandwidth limit performance. | oRaM Banduitt
= Assume: | &2
|dealized processor/caches DRAM
Cold start (data in DRAM) (data, GB)
~
#FP ops _ . _ Peak GFLOP/s
Time _(#FP ops / #Bytes) * Peak GB/s

22

(DRAM) Roofline

= One could hope to always attain

peak performance (FLOP/s)
= However, finite locality (reuse) and

bandwidth limit performance. .
DRAM Bandwidth

= Assume: | 659
« |dealized processor/caches DRAM
« Cold start (data in DRAM) (data, GB)
/"
Peak GFLOP/s
GFLOP/s = min<
_Al * Peak GB/s
Note, Arithmetic Intensity (Al) = Flops / Bytes (as presented to DRAM)
23 e

BERKELEY LAB

Arithmetic Intensity

= The most important concept in Roofline is Arithmetic Intensity

= Measure of data locality (data reuse)
= Ratio of Total Flops performed to Total Bytes moved

= For the DRAM Roofline...

o Total Bytes to/from DRAM and includes all cache and prefetcher effects
o Can be very different from total loads/stores (bytes requested)
o Equal to ratio of sustained GFLOP/s to sustained GB/s (time cancels)

24

(DRAM) Roofline

= Plot Roofline bound using

Arithmetic Intensity as the x-axis |
* Log-log scale makes it easy to Peak FLOP/S
doodle, extrapolate performance § 5
along Moore’s Law, etc... z
= Kernels with Al less than machine £ 5
balance ar,e ultl_mately DRAM < DRAM-bound | Compute-bound
bound (we’ll refine this later...) T
Arithmetic Intensity (FLOP,':Byte) g
Transition @ Al =
Machine Balance
25 il

BERKELEY LAB

Roofline Example #1

= Typical machine balance is 5-10

flops per byte...
« 40-80 flops per double to exploit compute capability Peak FLOP/s
« Artifact of technology and money "
: : o
* Unlikely to improve ®)
o
o
T
. " c
= Consider STREAM Triad... s
#pragma omp parallel for <
for(i=0;i<N;i++){
z[i] = x[i] + alpha*Y[il;
}
. _ 0.083
« 2 flops per iteration Arithmetic Intensity (FLOP:Byte)

« Transfer 24 bytes per iteration (read X][i], Y[i], write Z[i])
- Al =0.083 flops per byte == Memory bound

— A
26 rr/r>| H

BERKELEY LAB

Roofline Example #2

= Conversely, 7-point constant
coefficient stencil... CPU

compute, FLOP/s

7 flops
« 8 memory references (7 reads, 1 store) per point
« Al=0.11 flops per byte (L1)

#pragma omp parallel for
for(k=1; k<dim+1;k++){ .
for(j=l;j<d1’m+1;j++){ DRAM Bandwidth

for(i=1;i<dim+1l;i++){ (GB/s)
new[k][j][i1] = -6.0%old[k 1[3 1[i 1]
+oldlk 1[3 1[i-1]

Ntk 16 i) DRAM
old[k J[j-11[1]
old[k J[j+1][i (data, GB)
old[k-11[3 1[4
old[k+1]1[3 1[4

— A
27 |i|>| u

BERKELEY LAB

Roofline Example #2

= Conversely, 7-point constant
coefficient stencil... CPU

(compute, FLOP/s)

7 flops

« 8 memory references (7 reads, 1 store) per point Cache Bandwidth
(GBI/s)

« Cache can filter all but 1 read and 1 write per point

« Al =0.44 flops per byte CACH E

(only compulsory misses)

#pragma omp parallel for

for(k=1;k<dim+1;k++) { DRAM Bandwidth

for‘(J =1; J<d1llrf1.ﬂ,3++){ (GB/s)
103 10]
103 1[i-1]
103 1[i+1] DRAM
10j-1107]
] [3‘+1] [:_ (data, GB)

= =d LJ

old[k+11[j 1[1

'~ X
2 8 l:r—r>| H

BERKELEY LAB

Roofline Example #2

= Conversely, 7-point constant
coefficient stencil...

« 7 flops Peak FLOP/s
« 8 memory references (7 reads, 1 store) per point

« Cache can filter all but 1 read and 1 write per point

« Al =0.44 flops per byte == memory bound, GFLOP/s <Al * DRAM GB/s

but 5x the flop rate

#pragma omp parallel for

Attainable FLOP/s

for(k=1;k<dim+1;k++) { 7-point
for(j=1;j<dim+1;j++){ .
for(i=1;i<dim+1; ++){ Stencil
new[k][j][i] = -6.0*old[k J[j 1[i1 1
+ old[k 1[j 1[i-1] :
oldlk 1[5 1[i+1] 0.083 044 >

old[k J[j-11[1 1] . . .
old[k J[j+1][i Arithmetic Intensity (FLOP:Byte)

old[k-11[7 1I[i
old[k+1]1[7 1I[i

— A
29 rr/r>| H

BERKELEY LAB

.| BERKELEY LAB

EEE

Question:

Will Performance Always
Lie on the Roofline?

Can performance be below the Roofline?

= Analogous to stating that one can always attain either...

o Peak Bandwidth
o Peak FLOP/s

= No, there can be other performance bottlenecks...

o Cache bandwidth / locality
Lack of vectorization / SIMDization

O
o Load imbalance
O

31

.| BERKELEY LAB

EEE

Extending the

Roofline:
Memory Hierarchy

Hierarchical Roofline

= Processors have multiple levels of Banduidl o e Hovement
memory/cache Cen W s
 Registers L1 D$
« L1, L2, L3 cache o B 1 Py
« MCDRAM/HBM (KNL/GPU device memory) L2"D$
* DDR (main memory) MCDRAM GBls | MCDRAM GB
NVRAM (non-volatile memory) MCDRAM
= Applications have locality in each level DRAM GB/s DRAM GB
= Unique data movements imply unique Al’'s DRAM
= Moreover, each level will have unique peak and
sustained bandwidths
33 Rl

BERKELEY LAB

Hierarchical Roofline

= Processors have multiple levels of Machine Balance Data Movement

memory/cache GFLOP/SW
L1 GB/s L1GB

* Registers L1 D$
« L1, L2, L3 cache GFLOP/s | L2 GB
. L2 GB/s ¥
« MCDRAM/HBM (KNL/GPU device memory) L2 D$
« DDR (main memor s f
* NVRAM (non-volatile memory) MCDRAM
= Applications have locality in each level =~ cfLoes 1 DRAM GB
= Unique data movements imply unique Al’'s DRAM

= Moreover, each level will have unique peak and
sustained bandwidths

— A
3 4 rr/r>| "“|

BERKELEY LAB

Hierarchical Roofline

- Processors have mUIt|p|e |eve|S Of Machine Balance Arithmetic Intensity

memory/cache GFLOP/SW GFLOPs
L1 GB/s L1 GB

 Registers L1 DS$
« L1, L2, L3 cache GFLOP/s i GFLOPs
. L2 GB/s + L2 GB
« MCDRAM/HBM (KNL/GPU device memory) L2 D$
« DDR (main memory) GFLOP/s i GFLOPs
« NVRAM (non-volatile memory) HEDRAN GB/SMCD"R AM HPDRANTEE
' ' I I GFLOP/s 1 GFLOP
= Applications have locality in each level =~ cfLoes 1 oL Lk
= Unique data movements imply unique Al’'s DRAM

= Moreover, each level will have unique peak and
sustained bandwidths

— A
. Y

BERKELEY LAB

Hierarchical Roofline

= Construct superposition of
Rooflines...

= Measure bandwidth Peak FLOP/s

= Measure Al for each level of memory =
. O
« Although an loop nest may have multiple L
Al's and multiple bounds (flops, L1, L2, ... =
DRAM) .. .% DD?)E/E*E\I/Jvnd
- ... performance is bound by the Z MEDRAMATEW
minimum

= A
36 rr/r>| "“|

BERKELEY LAB

Hierarchical Roofline

= Construct superposition of
Rooflines...
= Measure bandwidth . Peak FLOP/s
= Measure Al for each level of memory

« Although an loop nest may have multiple
Al's and multiple bounds (flops, L1, L2, ...
DRAM)...

« ... performance is bound by the
minimum

DDR bottleneck
pulls performance
below MCDRAM

Roofline

>

tic Intensity (FLOP:Byte)

- A
- Py

BERKELEY LAB

Hierarchical Roofline

= Construct superposition of
Rooflines...

= Measure bandwidth Peak FLOP/s

= Measure Al for each level of memory &
. O
« Although an loop nest may have multiple L
Al's and multiple bounds (flops, L1, L2, ... = VMCDRAM bound
DRAM) . _% MCSSQ%%RW <
* ... performance is bound by the Z
minimum

- A
38 ;hl "“|

BERKELEY LAB

Hierarchical Roofline

= Construct superposition of

Rooflines... |
= Measure bandwidth Peak FLOP/s
= Measure Al for each level of memory =
. @)
« Although an loop nest may have multiple L
Al's and multiple bounds (flops, L1, L2, ... =
DRAM)... <
+ ... performance is bound by the 2 S botff;g':ﬂ"u"s
minimum performance below
DDR Roofline

= A
39 rr/rml "“|

BERKELEY LAB

NUMA Effects

= Cori’'s Haswell nodes are built

,T
from 2 Xeon processors (sockets)
 Memory attached to each socket (fast) Peak FLOP/s
* Interconnect that allows remote memory =
access (slow == NUMA) 5
* Improper memory allocation can result in =
more than a 2x performance penalty %
g Without proper
NUMA opt!miza_tion,
CPUO B CPU1 P
cores 0-15 cores 16-31

~50GB/s ~50GB/s

DRAM| |DRAM

— A
40 r:r—r>| "“|

BERKELEY LAB

.| BERKELEY LAB

EEE

Extending the Roofline:
In-Core Effects

In-Core Parallelism

= \We have assumed one can attain peak flops with high locality.

= In reality, we must ...
* Vectorize loops (16 flops per instruction)
« Use special instructions (e.g. FMA)
 Ensure FP instructions dominate the instruction mix
« Use all cores & sockets

= Without these, ...

« Peak performance is not attainable
« Some kernels can transition from memory-bound to compute-bound

= A
12 Py

BERKELEY LAB

Data Parallelism (e.g. SIMD)

= Most processors exploit some

form of SIMD or vectors. |
 KNL uses 512b vectors (8x64Db) Full vectorization
« GPUs use 32-thread warps (32x64b) =
: : 9
= |n reality, applications are a mix of T
scalar and vector instructions. E
 Performance is a weighted average fz*g
between SIMD and no SIMD Lack of full
vectorization pulls
performance below
Arithmetic Intensi DDR Roofline
43 oryf

BERKELEY LAB

Data Parallelism (e.g. SIMD)

= Most processors exploit some

form of SIMD or vectors. |
 KNL uses 512b vectors (8x64b)
« GPUs use 32-thread warps (32x64b) =
: 9
= In reality, applications are a mix of z -
scalar and vector instructions. E Q- ESIOMZRNION,
: : T ' No vectorization
« Performance is a weighted average Z
between SIMD and no SIMD |
. Memory-bound
» There is an implicit ceiling based on \(_ codes can become
this weighted average Arithmetic Intensi compute-bound
44 oryf

BERKELEY LAB

Return of Complex Instruction Set Computing

= Death of Moore’s Law is reinvigorating CISC

* Modern CPUs and GPUs are increasingly reliant on special (fused)
instructions that perform multiple operations.

o FMA (Fused Multiply Add): Z=a"x+y ...Z,X,y are vectors or scalars
o 4FMA (quad FMA): Z=A*x+z ...A is a FP32 matrix; x,z are vectors
o WMMA (Tensor Core): /=AB+C ...Z,A,B,C are FP16 matrices

» Performance is now a weighted average of scalar, vector, FMA, and
WMMA operations.

45

Return of CISC

= Total lack of FMA reduces

performance by 2x on KNL. I
L Partial FMA
_ _ _ _ S VAdd Peak
= |n reality, applications are a mix of =
FMA, FAdd, and FMul. 5
- Performance is a weighted average g EAdd Peak
» There is an implicit ceiling based on
this weighted average
>
46 oryf

BERKELEY LAB

Return of CISC

= On Volta, Tensor cores can

orovide 100TFLOPs of FP16 |
performance Tensor Peak
(vs. 7.5 TFLOPS for DP FMA) §
= Observe, machine balance has g
now grown to ... £
100 TFLOP/s / 800 GB/s < e
= 250 FP16 ops per word !!)

47

Superscalar vs. Instruction mix

= Superscalar processors have finite instruction fetch/decode/issue
bandwidth (e.g. 4 instructions per cycle)

= Moreover, the number of FP units dictates the FP issue rate required to
hit peak (e.g. 2 vector instructions per cycle)

> Ratio of these two rates is the minimum FP instruction fraction
required to hit peak

48

Superscalar vs. Instruction mix

= Haswell CPU

* 4-issue superscalar
 Only 2 FP data paths Peak FLOP/s
. _ . >50% FP
* Requires 50% of the instructions to be FP 2 |
o 25% FP (75% int)
to get peak performance e
= 12% FP (88% int)
e
©
£
I
<
>
= A
49 rr/r}lm

BERKELEY LAB

Superscalar vs. Instruction mix

= Haswell CPU

. t
* 4-issue superscalar
 Only 2 FP data paths Peak FLOP/s {00% FP
* Requires 50% of the instructions to be FP 2 |
O 50% FP (50(yo |nt)
to get peak performance -
z 25% FP (75% int)
= Conversely, on KNL... £
e 2-ISSue superscalar <
2 FP data paths
« Requires 100% of the instructions to be >
FP to get peak performance
50 oryf

BERKELEY LAB

Superscalar vs. Instruction mix

= Haswell CPU

. t
* 4-issue superscalar
 Only 2 FP data paths Peak FLOP/s {00% FP
* Requires 50% of the instructions to be FP 2 |
O 50% FP (50(yo |nt)
to get peak performance -
z 25% FP (75% int)
= Conversely, on KNL... £
e 2-ISSue superscalar <
2 FP data paths
« Requires 100% of the instructions to be >
FP to get peak performance
51 oryf

BERKELEY LAB

Superscalar vs. Instruction mix

= Haswell CPU

. t

* 4-issue superscalar

 Only 2 FP data paths

* Requires 50% of the instructions to be FP 2

to get peak performance 9 \©
° & 25% FP (75% int)

= Conversely, on KNL... £

* 2-issue superscalar = non-FP instructions

« 2 FP data paths sap issue bandwidth

d pull perf
* Requires 100% of the instructions to be Arithmetic Int P e =e

below the Roofline

FP to get peak performance ,
» Codes that would have been memory-

bound are now decode/issue-bound.

- A
52 Py

BERKELEY LAB

Superscalar vs. Instruction mix

= On Volta, each SM is partitioned
among 4 warp schedulers

= Each warp scheduler can Peak FLOPS o ep
dispatch 32 threads per cycle

= However, it can only execute 8
DP FP instructions per cycle.

= |.e. there is plenty of excess
Instruction issue bandwidth
available for non-FP instructions.

12% FP (88% int)
6% FP (94% int)

Attainable FLOP/s

53

.| BERKELEY LAB

EEE

Extending the Roofline:
Modeling Cache Effects

Locality Walls

= Naively, we can bound Al using

only compulsory cache misses
Peak FLOP/s
2
o
@)
-
LL
Q@
O —_—
o <
© No vectorizafjo
< 7
=)
o
S
(@)
° >
Arithmetic Intensity (FLOP:Byte)
Al = #FLOPs
Compulsory Misses
55 il

BERKELEY LAB

Locality Walls

= Naively, we can bound Al using
only compulsory cache misses

= However, write allocate caches Peak FLOP/s
can lower Al o FMA

\o
0‘2)
QQ~
Q

ate
y Al

No vectdrigafjoZ

()

Attainable FLOP/s

+Write Al
Compuls

Arithmetic Intensity (FLOP:Byte)
_ #FLOPs

~ Compulsory Misses + Write Allocates

Al

= A
- Py

BERKELEY LAB

Locality Walls

= Naively, we can bound Al using

only compulsory cache misses I
= However, write allocate caches Peak FLOP/s
can lower Al a 0 FA
= Cache capacity misses can have P
g)=
a huge penalty © No vectcrizgatlog‘
< =
HE
LR
Arithmetic Intensity (FLOP:Byte)
Al = #FLOPs
~ Compulsory Misses + Write Allocates + Capacity Misses
57 oryf

BERKELEY LAB

Locality Walls

= Naively, we can bound Al using

only compulsory cache misses |
= However, write allocate caches Peak FLOP/s
can lower Al T QIEMA
O 2°
= Cache capacity misses can have P 5
2 Qe [>
a huge penalty E 2 g /1
> Compute bound became < S R
memory bound
Arithmetic |
Al = #FLOPs
~ Compulsory Misses + Write Allocates + Capacity Misses
58 oryf

BERKELEY LAB

.| BERKELEY LAB

BERKELEY LAB LAWRENCE BERKELEY NATIONAL LABORATORY

So Why iIs Roofline
Useful?

Why is Roofline Useful?

* |magine a mix of loop nests

= FLOP/s alone may not be useful
iIn deciding which to optimize first

FLOP/s

Kernel (or apps)

60

Why is Roofline Useful?

= We can sort kernels by Al ...

Attainable FLOP/s

Arithmetic Intensity (FLOP:Byte)

61

Why is Roofline Useful?

= We can sort kernels by Al ...

,T
= ... and compare performance
relative to machine capabilities Peak FLOP/s
T
O
n
o
g
s
Z
62)

BERKELEY LAB

Why is Roofline Useful?

= Kernels near the roofline are

making good use of |
computational resources Peak FLOP/s
o kernels can have low performance & '
(GFLOP/s), but make good use of a 5
machine o
o kernels can have high performance %
(GFLOP/s), but make poor use of a Z
machine
63 oryf

BERKELEY LAB

Tracking Progress Towards Optimality

= One can conduct a Roofline

optimization after every |
optimization (or once per quarter) Peak FLOP/s
o Tracks progress towards optimality é
o Allows one to quantitatively speak to ™

ultimate performance / KPPs %
o Can be used as a motivator for new 5

algorithms. <

64 oryf

BERKELEY LAB

Roofline Scaling Trajectories

roofline_summary_sp_Ibl

= QOften, one plots performance as a
function of thread concurrency
o Carries no insight or analysis

1000.0

o Provides no actionable information.

100.0

GFlop/s
10.0
«

1.0

0.1

1 2 4 8 16 32 64
#Threads

— A
. Y

BERKELEY LAB

= QOften, one plots performance as a
function of thread concurrency

Roofline Scaling Trajectories

o Carries no insight or analysis
o Provides no actionable information.

Khaled Ibrahim developed a new
way of using Roofline to analyze

thread (or process) scalability

o Create a 2D scatter plot of performance

as a function of Al and thread
concurrency

o Can identify loss in performance due to

Increased cache pressure

Khaled Ibrahim, Samuel Williams, Leonid Oliker, "Roofline Scaling Trajectories: A Method

High Performance Computing Benchmarking and Optimization (HPBench), July 2018.

GFlop/s
10.0

1000.0

100.0

1.0

roofline_summary_sp_Ibl

.

- _A--

Class A
Class B
Class C

VFMA (1229)

I
0.05

I
0.50

I I
5.00 50.00

Arithmetic Intensity (Flops/Byte)

"
: b
rrrrrrr ‘ |

BERKELEY LAB

Roofline Scaling Trajectories

roofline_summary_sp_Ibl

= QObserve...
o Al (data movement) varies with both S | |-+ ClassA VFMA (1229)
thread concurrency and problem size S || 8:333 B
- u ass C
o Large problems (green and red) move o
much more data per thread, and S e (c32) (77)
eventually exhaust cache capacity 2 - *~,
o Resultant fall in Al means they hit the T = ’@DDC?%) (9.2)
bandwidth ceiling quickly and degrade. © = /" o
o Smaller problems see reduced Al, but
don’t hit the bandwidth ceiling =
; [I I I I I I I
0.01 0.05 0.50 5.00 50.00

.. Arithmetic Intensity (Flops/Byte)

= A
57 ceeer

BERKELEY LAB

Driving Performance Optimization

= Broadly speaking, there are three
approaches to improving
performance: Peak FLOP/s

Attainable FLOP/s

68

Driving Performance Optimization

= Broadly speaking, there are three
approaches to improving
performance: Peak FLOP/s

= Maximize in-core performance
(e.g. get compiler to vectorize)

Attainable FLOP/s

69

Driving Performance Optimization

= Broadly speaking, there are three
approaches to improving
performance: Peak FLOP/s

= Maximize in-core performance
(e.g. get compiler to vectorize)

= Maximize memory bandwidth
(e.g. NUMA-aware, unit-stride)

Attainable FLOP/s

70

Driving Performance Optimization

= Broadly speaking, there are three

approaches to improving I

performance: Peak FLOP/s
= Maximize in-core performance a

(e.g. get compiler to vectorize) z
= Maximize memory bandwidth = <

(e.g. NUMA-aware, unit stride) < g

. . £

= Minimize data movement 3

(e.g. CaChe bIOCklng) Arithmetic Intensity (FLOP:Byte)

71

.| BERKELEY LAB

EEE

How do | build and
use Roofline?

Machine Characterization

= “Theoretical Performance” numbers can be highly optimistic...

 Pin BW vs. sustained bandwidth

 TurboMode at low concurrency
« Underclocking for AVX
« Compiler failing on high-Al loops.

» Take marketing numbers with a grain of salt

- A
- Py

BERKELEY LAB

Machine Characterization

= To create a Roofline model, we must benchmark...
o Sustained Flops
* Double/single/half precision
« With and without FMA (e.g. compiler flag)
« With and without SIMD (e.g. compiler flag)
o Sustained Bandwidth
« Measure between each level of memory/cache

« lterate on working sets of various sizes and identify plateaus
« |dentify bandwidth asymmetry (read:write ratio)

= Benchmark must run long enough to observe effects of power throttling

"
: b
rrrrrrr ‘ |

BERKELEY LAB

Machine Characterization

Cori/ KNL

= “Theoretical Performance”
numbers can be highly optimistic...

« Pin BW vs. sustained bandwidth o x

+ TurboMode / Underclock for AVX e | SUMmMItDev / 4GPUs

« compiler failings on high-Al loops. e o
= | BL developed the Empirical

Roofline Toolkit (ERT)... &

« Characterize CPU/GPU systems

 Peak Flop rates

« Bandwidths for each level of memory o

« MPI+OpenMP/CUDA == multiple GPUs

https://bitbucket.org/berkeleylab/cs-roofline-toolkit/ "
A
https://qgithub.com/cyanquwa/nersc-roofline/ 7 5 rr/rml "“|

https://crd.lbl.gov/departments/computer-science/PAR/research/roofline/ BERKELEVEAB

https://bitbucket.org/berkeleylab/cs-roofline-toolkit/

Measuring Application Al and Performance

» To characterize execution with Roofline we need...
o Time
o Flops (=> FLOPs /time)
o Data movement between each level of memory (=> FLOPs / GB’s)

= \We can look at the full application...

o Coarse grained, 30-min average
o Misses many details and bottlenecks

= or we can look at individual loop nests...

o Requires auto-instrumentation on a loop by loop basis
o Moreover, we should probably differentiate data movement or flops on a core-by-core basis.

"
: b
rrrrrrr ‘ |

BERKELEY LAB

How Do We Count FLOPs?

Manual Counting Perf. Counters Binary Instrumentation

» Gothrueachloopnestand = Read counter before/after = Automated inspection of
count the number of FP v More Accurate assembly at run time
operations v Low overhead (<%)==can ¥ MostAccurate

v Works best for deterministic run full MPI applications v FMA-, VL-, and mask-aware
loop bounds v' Can detect load imbalance v Can count instructions by

v or parameterize by the

number of iterations X Requires privileged access Class/type
(recorded at run time) X Requires manual v' Can detect load imbalance
X Not scalable instrumentation (+toverhead) v° Can include effects from
or full-app characterization non-FP instructions
X Broken counters = garbage v° Automated application to
X May not differentiate multiple loop nests
FMADD from FADD X >10x overhead (short runs /
X Noinsightintospecial reducedconcurrency)

~
&
rrrrrrr H

pipelines 78

BERKELEY LAB

How Do We Measure Data Movement?

Manual Counting Perf. Counters Cache Simulation

» Gothru each loop nestand = Read counter before/after = Build a full cache simulator
estimate how many bytes v Applies to full hierarchy (L2, driven by memory
will be moved DRAM. addresses

= Use a mental model of v Much more Accurate v" Applies to full hierarchy and
caches | v Low overhead (<%) == can multicore |

v" Works best for simple loops run full MPI applications v' Can detect load imbalance

that stream from DRAM

- v Can detect load imbalance ¥ Automated application to
istenalls, FEIS, spare, .. X Requires privileged access multiple loop nests
X N/A for complex caches | X Ignores prefetchers
X Not scalable X Requires manual
instrumentation (+overhead) X >10xoverhead (shortruns /
or full-app characterization reduced concurrency)

- A
79 Py

BERKELEY LAB

Initially Cobbled Together Tools...

= Use tools known/observed to work on NERSC’s _

Login

Site Map | My NERSC | < Share

: R
O rI Powering Scientific Discovery Since 1974
] = = owm

HOME ABOUT SCIENCEATNERSC ~ SYSTEMS WiULIN:N NEWS GPUBLICATIONS R&D EVENTS LIVESTATUS TIMELINE

Home » For Users » Application Performance » Measuring Arithmetic Intensity

FOR USERS

« Used Intel SDE (Pin binary iInstrumentation + oyl MEASURING ARITHMETIC INTENSITY

My NERSC
[Getting Started Avithmetic intensity is a measure of floating-point operations (FLOPs) performed by a given code (or code section) relative to the
Connecting to NERSC amount of memory accesses (Bytes) that are required to support those operations. It is most often defined as a FLOP per Byte
Accounts & Allocations ratio (F/B). This note provides a for arithmetic intensity using Intel's Software Development
R Emulator Toolkit (SDE) and VTune Amplifier (VTune) tools. A tutorial on using SDE on Edison can be found here, and a tutorial

Storage & File Systems
Application Performance

NESAP Historically, processor manufacturers have provided counters for FLOPs and/or Bytes and profiling tools to support the F/B

. Application Porting and calculation. Some modern processors such as Intel's vy Bridge (used in Edison) and Haswell (used in Cori Phase 1) do not
i provide counters for FLOPs. However, Intel's SDE can be used to count floating-point instructions in addition to core-level
IXPUG memory accesses, and VTune can be used to count data accesses to the uncore (off-chip DRAM DIMMs).

Performance and Debugging
Tools.

on using VTune can be found here. This method can also be used to determine arithmetic intensity for use in the Roofline
Performance Model.

The SDE dynamic instruction tracing capability, and in particular the mix histogram tool, captures dynamic instructions executed,

Measuring Arithmetic instruction length, instruction category and ISA extension grouping. Intel has developed a methodology for calculating FLOPs
with SDE. In general the following uses the method “Instructions to Count Unmasked FLOP" from Intel, which is applicable for
Data & Analytics

Edison and Cori Phase 1.

Job Logs & Statistics

Training & Tutorials This application note provides additional instruction on how to only capture traces around certain key segments of a code. This is

Software critical for real applications as both SDE and VTune collect traces that can use large amounts of disk space if tracing is enabled for

Policies more than a few minutes. And maybe more importantly, post-processing the traces can take an intractable amount of time.
» Accurate measurement of FLOPs (HSW) and

NERSC Users Group An example command line for SDE is:

Help

Staff Blogs i $ srun -n 4 -c 6 sde -ivb -d -iform 1 -omix my_mix.out -i -global_region -start_ssc_mark 111:repeat -stop_ssc_mark 222:repeat -;

DRAM data movement (HSW and KNL

» Used by NESAP (NERSC KNL application
readiness project) to characterize apps on Cori...

.

-d specifies to only collect dynamic profile information

-iform 1 turns on compute ISA iform mix

-omix specifies the output file (and turns on -mix)

i specifies that each process will have a unique file name based on process ID (needed for MPI)

~global_region will include any threads spawned by a process (needed for OpenMP)

An example command line for Vune is:

http.//www.nersc.gov/users/application-performance/measuring-arithmetic-intensity/

NERSC is LBL’s production computing division
CRD is LBL’'s Computational Research Division S Sy
NESAP is NERSC’s KNL application readiness project 80 |
LBL is part of SUPER (DOE SciDAC3 Computer Science Institute) BERKELEVEAR

>

http://www.nersc.gov/users/application-performance/measuring-arithmetic-intensity/

More Recently...

= Use tools known/observed to work on NERSC'’s T

nersc.gov.

Login

Site Map | My NERSC | < Share

: 2 F
O rI Powering Scientific Discovery Since 1974
] = = owm

HOME ABOUT SCIENCEATNERSC ~ SYSTEMS WiULIN:N NEWS GPUBLICATIONS R&D EVENTS LIVESTATUS TIMELINE

Home » For Users » Application Performance » Measuring Arithmetic Intensity

FOR USERS

« Used Intel SDE (Pin binary iInstrumentation + oyl MEASURING ARITHMETIC INTENSITY

My NERSC
[Getting Started Avithmetic intensity is a measure of floating-point operations (FLOPs) performed by a given code (or code section) relative to the
Connecting to NERSC amount of memory accesses (Bytes) that are required to support those operations. It is most often defined as a FLOP per Byte
Accounts & Allocations ratio (F/B). This note provides a for ing arithmetic intensity using Intel's Software Development
R Emulator Toolkit (SDE) and VTune Amplifier (VTune) tools. A tutorial on using SDE on Edison can be found here, and a tutorial

Storage & File Systems
Application Performance

NESAP Historically, processor manufacturers have provided counters for FLOPs and/or Bytes and profiling tools to support the F/B
. Application Porting and calculation. Some modern processors such as Intel's vy Bridge (used in Edison) and Haswell (used in Cori Phase 1) do not
i provide counters for FLOPs. However, Intel's SDE can be used to count floating-point instructions in addition to core-level

on using VTune can be found here. This method can also be used to determine arithmetic intensity for use in the Roofline
Performance Model.

IXPUG memory accesses, and VTune can be used to count data accesses to the uncore (off-chip DRAM DIMMs).
Performance and Debugging

Tools

Measuring Arithmetic instruction length, instruction category and ISA extension grouping. Intel has developed a methodology for calculating FLOPs
with SDE. In general the following uses the method “Instructions to Count Unmasked FLOP" from Intel, which is applicable for
Data & Analytics

The SDE dynamic instruction tracing capability, and in particular the mix histogram tool, captures dynamic instructions executed,

Edison and Cori Phase 1.

Job Logs & Statistics

Training & Tutori This application note provides additional instruction on how to only capture traces around certain key segments of a code. This is

Software critical for real applications as both SDE and VTune collect traces that can use large amounts of disk space if tracing is enabled for

Policies more than a few minutes. And maybe more importantly, post-processing the traces can take an intractable amount of time.
» Accurate measurement of FLOPs (HSW) and

NERSC Users Group An example command line for SDE is:

Help

Staff Blogs i $ srun -n 4 -c 6 sde -ivb -d -iform 1 -omix my_mix.out -i -global_region -start_ssc_mark 111:repeat -stop_ssc_mark 222:repeat -;

DRAM data movement (HSW and KNL) —_—

« -ivb is used to target Edison's Ivy Bridge ISA (use -hsw for Cori's Haswell processors)

« -d specifies to only collect dynamic profile information

« -iform 1 turns on compute ISA iform mix

» Used by NESAP (NERSC KNL application
readiness project) to characterize apps on Cori...

http.//www.nersc.gov/users/application-performance/measuring-arithmetic-intensity/

NERSC is LBL’s production computing division
CRD is LBL’'s Computational Research Division S Sy
NESAP is NERSC’s KNL application readiness project 81 |
LBL is part of SUPER (DOE SciDAC3 Computer Science Institute) BERKELEVEAR

>

http://www.nersc.gov/users/application-performance/measuring-arithmetic-intensity/

LIKWID

= LIKWID provides easy to use wrappers for measuring performance

counters...

Works on NERSC production systems

Distills counters into user-friendly metrics (e.g. MCDRAM Bandwidth)
Minimal overhead (<1%)

Scalable in distributed memory (MPI-friendly)

Fast, high-level characterization

No timing breakdowns

xX X N X X X

Suffers from Garbage-in/Garbage Out
(i.e. hardware counter must be sufficient and correct)

https://qgithub.com/RRZE-HPC/likwid
http://www.nersc.gov/users/software/performance-and-debugqging-tools/likwid

= A
82 r:':}l "“|

BERKELEY LAB

https://github.com/RRZE-HPC/likwid
http://www.nersc.gov/users/software/performance-and-debugging-tools/likwid

Profiling with LIKWID

= likwid-perfctr (threaded) + likwid-mpirun (MPI/hybrid)

= no GUI

= |ow overhead -> SDE, VTune, etc
= no code instrumentation required -> CrayPat-tracing
= no root access required -> VTune

= no extra modules required to be installed -> VTune

= use Linux ‘msr’ module to access MSR (Model Specific Register) files

= Cori:

module load vtune
sbatch/salloc --perf=1likwid
module load likwid

- A
83 r:rr}l ""|

BERKELEY LAB

Profiling with LIKWID (2)

= Alternately, one can construct a script and monitor only process 0

srun -n8 -c32 ./a.out args
srun -n8 -c32 ./perfctr.sh ./a.out args

where perfctr.sh 1s

#!/bin/bash

let SLURM MPI_RANK=$SLURM PROCID

if [$SLURM MPI RANK = 0];then

only process 0 runs likwid and it monitors only logical CPUs 0-31
likwid-perfctr -C 0-31 -g CACHES $@

else

$@
fi

— A
84 rr/r>| "“|

BERKELEY LAB

Group name

HBM_OF FCORE
TLB_INSTR
FLOPS_SP
BRANCH
L2CACHE
ENERGY
FRONTEND STALLS

ICACHE
TLB_DATA
MEM

DATA

L2

FLOPS_DP
CLOCK
HBM_CACHE
HBM
UOPS_STALLS

Description

Memory bandwidth in MBytes/s for High
L1 Instruction TLB miss rate/ratio
Single Precision MFLOP/s

Branch prediction miss rate/ratio

L2 cache miss rate/ratio

Power and Energy consumption

Frontend stalls

Instruction cache miss rate/ratio

L2 data TLB miss rate/ratio

Memory bandwidth in MBytes/s

Load to store ratio

L2 cache bandwidth in MBytes/s

Double Precision MFLOP/s

Power and Energy consumption

Memory bandwidth in MBytes/s for High
Memory bandwidth in MBytes/s for High
UOP retirement stalls

Bandwidth Memory (HBM)

Bandwidth Memory (HBM)
Bandwidth Memory (HBM)

Using LIKWID for Roofline

= GPP kernel from BerkeleyGW

= Arithmetic Intensity @ =FLOPS /Bytes (= SDE/ VTuneT)
= FLOPS/sec / Bytes/sec
= FLOPS_DP / Bandwidth

= AI(DRAM) =FLOPS_DP/Bandwidth (DRAM) 2
= Al (MCDRAM) =FLOPS DP / Bandwidth (MCDRAM) S
= Al(L2) = FLOPS_DP / Bandwidth (L2) -
= Al(L1) = FLOPS_DP / Bandwidth (L1) 8
©
<

= Performance =FLOPS DP

- A
86 r:rr}l "“|

BERKELEY LAB

GFLOP/s

= GPP kernel on KNL: 171.960 GFLOPS/sec

o UOPS_RETIRED_PACKED_SIMD
o UOPS_RETIRED_SCALAR_SIMD

= |ikwid-perfctr -C 0-63 -g FLOPS _DP ./gpp.knl.ex 512 2 32768 20
o 8*UOPS_RETIRED PACKED_SIMD+UOPS_RETIRED_SCALAR_SIMD

Runtime (RDTSC) [s] STAT
Runtime unhalted [s] STAT
Clock [MHz] STAT

CPI STAT
DP MFLOP/s (SSE assumed) STAT
DP MFLOP/s (AVX assumed) STAT .
DP MFLOP/s (AVX512 assumed) STAT 171960.
Packed MUOPS/s STAT 21250
Scalar MUOPS/s STAT

-~

A
freeeee "'I

BERKELEY LAB

MCDRAM and DDR GB/s

kernel on KNL: DDR 2.59GB/s + MCDRAM 63.71GB/s

o MC_CAS_READS/ MC_CAS_WRITES
o EDC_RPQ_INSERTS/ EDC_WPQ_INSERTS
o EDC_MISS_CLEAN/ EDC_MISS_DIRTY

likwid-perfctr -C 0-63 -g HBM_CACHE ./gpp.knl.ex 512 2 32768 20

Runtime (RDTSC) [s] STAT : 14.0068
Runtime unhalted [s] STAT . 6.0393
Clock [MHz] STAT : 1499.6763
CPI STAT : 1.2985
MCDRAM Memory read bandwidth [MBytes/s] STAT
MCDRAM Memory read data volume [GBytes] STAT
MCDRAM Memory writeback bandwidth [MBytes/s] STAT
MCDRAM Memory writeback data volume [GBytes] STAT
MCDRAM Memory bandwidth [MBytes/s] STAT
MCDRAM Memory data volume [GBytes] STAT
DDR Memory read bandwidth [MBytes/s] STAT
DDR Memory read data volume [GBytes] STAT
DDR Memory writeback bandwidth [MBytes/s] STAT
DDR Memory writeback data volume [GBytes] STAT
DDR Memory bandwidth [MBytes/s] STAT
DDR Memory data volume [GBytes] STAT

loNoNoNoNoNoNoNoNoNoNONO

L2 GB/s

= kernel on KNL: L2 96.80GB/s
o L2 REQUESTS REFERENCE
o OFFCORE_RESPONSE 0 OPTIONS

= |ikwid-perfctr -C 0-63 -g L2 ./gpp.knl.ex 512 2 32768 20

Runtime (RDTSC) [s] STAT
Runtime unhalted [s] STAT
Clock [MHz] STAT
CPI STAT

L2 non-RFO bandwidth [MBytes/s] STAT
L2 non-RFO data volume [GByte] STAT
L2 RFO bandwidth [MBytes/s] STAT
L2 RFO data volume [GByte] STAT 0]
L2 bandwidth [MBytes/s] STAT 96803.9243
L2 data volume [GByte] STAT 1.354528e+Ub

-~

A
freeeee "'I

BERKELEY LAB

Resultant Roofline

Al (DRAM): 66.39
= Al (MCDRAM): 2.70
Al (L2): 1.78
= Al (L1): 1.01
= Performance: 171.960 GFLOPS/s

Attainable FLOP/s

91

Marking Specific Regions

#include <likwid.h>

LIKWID MARKER INIT;
fpragma omp parallel {
LIKWID MARKER THREADINIT;
}
fpragma omp parallel {
LIKWID MARKER START ("foo") ;
#pragma omp for
for(i = 0; 1 < N; i++) {

e T L resa nmy, [T fOCUS ON specific code regions
}

LIKWID MARKER STOP("foo") ;
}
LIKWID MARKER CLOSE;

cc —gopenmp -DLIKWID PERFMON —I$LIKWID_INCLUDE —L$LIKWID_LIB
-1llikwid -dynamic test.c -o test.x

" Jikwid-perfctr -C 0-3 -g MEM -m ./test.x

- A
o Py

BERKELEY LAB

Why isn’t LIKWID good enough?

= LIKWID counts vector uops

= KNL vuop counters aren't...
o VL-aware
o precision-aware
o mask-aware
o FMA-aware

= Counters don't differentiate instruction types (FP, int, shuffle, ...)
= Flop counters were broken on Haswell.
= Thus, LIKWID might be a good starting point, but its not perfect.

» Need tools that actually count flops correctly and ones that can be
used to understand nuances of instruction mixes.

95

Intel Software Development Emulator (SDE)

= Dynamic instruction tracing
v Accounts for actual loop lengths and branches
v Counts instruction types, lengths, etc...
v" Can mark individual regions
v Support for MPI+OpenMP
v Can be used to calculate FLOPs (VL-, FMA-, and precision-aware)
X Post processing can be expensive.

X No insights into cache behavior or DRAM data movement
X X386 only

https://software.intel.com/en-us/articles/intel-software-development-emulator

96

https://software.intel.com/en-us/articles/intel-software-development-emulator

Compiling with SDE at NERSC

= Makefile...

MPICC = cc

CFLAGS = -g -03 -dynamic —-gopenmp -restrict -gopt-streaming-stores always \
-DSTREAM ARRAY SIZE=400000000 -DNTIMES=50 \
-I$ (VITUNE AMPLIFIER XE 2018 DIR)/include

LDFLAGS = —L$(VTUNE_AMPLIFIER_XE_ZOl8_DIR)/lib64 —littnotify

stream mpil.exe: stream mpil.c Makefile
$ (MPICC) S (CFLAGS) stream mpi.c —-o stream mpil.exe $(LDFLAGS)

clean:
rm -f stream mpil.exe

= module load sde
make

https://bitbucket.org/dwdoerf/stream-ai-example.qit

- A
o7 P

BERKELEY LAB

https://bitbucket.org/dwdoerf/stream-ai-example.git

Running with SDE at NERSC

srun -n 4 -c¢c 6 sde -ivb -d -iform 1 -omix
my mix.out -i -global region -start ssc mark
111l :repeat -stop ssc mark 222:repeat -- foo.exe

-ivb is used to target Edison's lvy Bridge ISA (for Cori use -hsw for Haswell or -knl for KNL processors)
-d specifies to only collect dynamic profile information

-iform 1 turns on compute ISA iform mix

-omix specifies the output file (and turns on -mix)

-i specifies that each process will have a unique file name based on process ID (needed for MPI)
-global_region will include any threads spawned by a process (needed for OpenMP)

http://www.nersc.qov/users/application-performance/measuring- N
arithmetic-intensity/ 98 ,,/,\l ‘...|

BERKELEY LAB

http://www.nersc.gov/users/application-performance/measuring-arithmetic-intensity/

Parsing the Output

$./parse-sde.sh sde 2plé6t*

. When the jOb COmpleteS, yOU,” have a Search stanza is "EMIT GLOBAL DYNAMIC STATS"

elements fp single 1 = 0

series of files prefixed with “sde_". clenents_fp single 2 - ¢
= Parse the output to summarize the crements e omare 80
elements fp double 1 = 2960
rEBE;LJItE;.. . elements:fp:double:2 =0
./parse-sde.sh sde_2plét* lemente fo dowle s - 0

--->Total single-precision FLOPs = 0
-—-->Total double-precision FLOPs = 4000000400

= Use the "Total FLOPs" line as the o R e

mem-read-2 = 1232

numerator in all Al's and performance ren-reaa-s - 157296433

mem-read-8 = 149329207

= Use the "Total Bytes” line as the men-read-16 = 1999995720
denominator in the L1 Al men it 1 - 264992
. . . mem-write-2 = 560
= Can infer vectorization rates and nen-urite-4 = 285974
preCISlon Eiﬁ:XEiti:ég Z 299999680
mem-write-64 = 0

-—-->Total Bytes read = 33752339756
-—-->Total Bytes written = 16117466472

- A
99 r:}l ""|

BERKELEY LAB

Marking Regions of Interest for SDE

// Code must be built with appropriate paths for VTune include file (ittnotify.h) and
library (-littnotify)
#include <ittnotify.h>

SSC_MARK (0x111); // start SDE tracing, note it uses 2 underscores

for (k=0; k<NTIMES,; k++) {

#pragma omp parallel for

for (j=0; j<STREAM ARRAY SIZE; j++)
al[j] = b[j]+scalar*c[]];

}

___SSC MARK (0x222); // stop SDE tracing

http://www.nersc.qov/users/application-performance/measuring-

arithmetic-intensity/ 100 r:\l

BERKELEY LAB

A
I

http://www.nersc.gov/users/application-performance/measuring-arithmetic-intensity/

* Includes Roofline Automation...
v Automatically instruments applications

(one dot per loop nest/function)

v" Computes FLOPS and Al for each 1% Memory-b
funCtiOn (CARM) W & T2z B @ O StartSurveyAnalysis | v| & @

Welcome | €000 X Start Survey Analysis
Start Trip Counts and FLOP Analysis

j) csaine Gex-
AVX_5 1 2 S u p po rt th at I n CO rpo rates m aS kS FILTER:E; Start Memory Access Patterns Analysis Threads v|| Loads and stores ~
B Summary % Survey & Start Dependencies Analysis /

AN

v" Integrated Cache Simulator’ B oo riors, I (G s vesnaroon
1000 f 8 £--8 & ST
100

M Fean
R Rt ":f»}@ S(’uw Kk
OO‘ e 'Q‘,r ‘1

(hierarchical roofline / multiple Al’s)

14 Y
0-1"\
. 0.01 - T T T T T T T T
0.001 0.01 0.1 1 10 100 1000 10000 1.0e+5
v Automatically benchmarks target system | setinnate
.y [Source ITopDown I Code Analytics | Assemnbly |9Recommendations & Why No Vectorization?
(calculates ceilings)
Address | Line Assembly Total Time % Self Time
\/ [function) 0x4107d0 Block 1: 146029716
0x4107d0 492 9 0.020 0.020:
Full integration with existing Advisor SO i s
0x4107d4 492 sub $0x210, %rsp

capabilities
http://www.nersc.gov/users/training/events/roofline-training-1182017-1192017

'Experimental Feature, the look and feel and exact behavior is S
subject for change 101 /\I

BERKELEY LAB

A
I

http://www.nersc.gov/users/training/events/roofline-training-1182017-1192017

Intel® Advisor: 2-pass Approach

Roofline:
X-Axis (Al): #FLOPs / #Bytes
Y-Axis (FLOP/s): #FLOP(mask-aware)/time Overhead
Step 1: Survey (-collect survey) 1x

« Records run times
 User-mode sampling; non-intrusive
* No need for root access

Step 2: FLOPs (-collect tripcounts —-flops) 3-5x

 Record #FLOPs, #Bytes, AVX512 masks

* Precise, instrumentation-based count of the number of (8-37x)1
Instructions

 No need for root access

"With Integrated Roofline (Cache Simulator) enabled. g
103 il

BERKELEY LAB

Intel® Advisor: Roofline Automation

Perfomance (GFlops/sec) Q) « X

A1AE~ .1 =)

Each Ceiling provides peak

¥ mﬁl

CPU/Memory throughput
of your PLATFORM (benchmarked)

Each Dot represents loop or
function in YOUR APPLICATION

(profiled)

6.3921e-3

0.0015
Seff Time: 10.918 s Total Time: 10.918s

Source TopDown Loop Analytics Loop Assembly ¢ Recommendations & Compiler Diagnostic Details

Roof Name Visible Selected
DRAM Bandwidth
L1 Bandwidth
L2 Bandwidth O
L3 Bandwidth]
Scalar Add Peak]
SP Vector Add Peak
DP Vector Add Peak O O
SP Vector FMA Peak
DP Vector FMA Peak]]
Loop Weight Representation Cancel Default
Size Color Visible
+ ® 4 green
Threshold Value | 0.2 %
+ O 6 yellow
Threshold Value | 2 %
+ @ s red

Automatic and integrated — first class citizen in Intel® Advisor

>
b
frrereeer

BERKELEY LAB

NEW: Integrated Roofline

CARM (L1+NTS)
CPU perspective

DRAM (ORM)

optimized e L e \
| Not Memory
bound

All hotspots but 1
are not CPU- .
bound Some Locality

Full waveform Inversion. Seismic Workload

Data: Courtesy
Philippe Thierry

105 =l

BERKELEY LAB

NEW: Integer, Float, Int+Float Rooflines

Summary & Survey & Roofine ™ Refinement Reports

kQ - B ~ | Cores: 1 2.y FLOAT: No Callstacks; CARM (L1 + NTS); L2; L3; DRAM; Loads+Stares * || °* 2 Compared Results ~

- Uperations

c 1 ';:.®°®Aw . EBEAdecccccccccc e s ca e e e n---;
10045 " FLOAT & INT " INT+FLOAT

U" "l el el el el el el el el il il il il il il il il il il il il il il il il s

™ with Callstacks

AFAHENS

- Memory Level
WV CaRrmM LT +NTS) M L2 [L3 ™ DRAM

Memory Operation Type
" Loads (" Stores (¢ Loads+Stores

Default | Apply | Cancel

0.01

I I |

|
0.01) 01 1 10
Physical Cores: 4 hd App Threads: 1 “ o gelf Elapsed Time: 7.524 s Total Time: 7.524 s

106 il

BERKELEY LAB

Integrated Roofline Model

Old Approach...

source advixe-vars.sh

advixe-cl -collect survey --project-dir ./your_project -- <your-executable-with-parameters>

advixe-cl -collect tripcounts -enable-cache-simulation -flop --project-dir ./your_project -- <your-
executable-with-parameters>

New Approach (but not compatible with MPI)...

source advixe-vars.sh

advixe-cl -collect roofline -enable-cache-simulation --project-dir ./your_project -- <your-
executable-with-parameters>

(optional) copy data to your Ul desktop system
advixe-gui ./your_project

https://software.intel.com/en-us/articles/integrated-roofline-model-with-intel-advisor

108 Rl

BERKELEY LAB

https://software.intel.com/en-us/articles/integrated-roofline-model-with-intel-advisor

Advisor on NERSC’s Cori

= http://www.nersc.gov/users/software/performance-and-debugging-tools/advisor/

module load advisor/2018.integrated roofline
cc —g —-dynamic -openmp -02 -0 mycode.exe mycode.c

= Best to run advisor only on rank O... srun calls a script like...

#!/bin/bash

if [[$SLURM PROCID == 0]];then

advixe-cl -collect=survey —--project-dir knl-result -data-limit=0 -- ./a.out
else

sleep 30

./a.out

fi

109 il

BERKELEY LAB

http://www.nersc.gov/users/software/performance-and-debugging-tools/advisor/

.| BERKELEY LAB

EEE

Tools for Roofline
Analysis on GPUs

slides provided by Charlene Yang (CJYang@Ibl.gov)

Roofline on GPUs (Overview)

= Use ERT to obtain empirical Roofline ceilings
o compute: FMA, no-FMA
o bandwidth: system memory, device memory, L2, L1
= Use nvprof to obtain application performance
o FLOPs: active non-predicated threads, divides-aware
o bytes: read + write; system memory, device memory, L2, L1
o runtime: --print-gpu-summary, --print-gpu-trace

= Plot Roofline with Python and Matplotlib

112

Characterizing NVIDIA GPUs

= Empirical Roofline Toolkit (ERT)
https://bitbucket.org/berkeleylab/cs-roofline-
toolkit/

= Sweeps through a variety of configurations:

o 1 data element per thread -> multiple

o 1 FLOP operation per data element -> multiple
o number of threadblocks/threads

o number of trails, dataset sizes, etc

= Four components
o Driver.c, Kernel.c, configuration script, and job script

1e+04 T T T

Total Bandwidth (GB/s)

Ll I Ll I Lol I Lol I L4l I
1e+04 1e+05 1e+06 1e+07 1e+08
Working Set Size (bytes)

113 Rl

BERKELEY LAB

https://bitbucket.org/berkeleylab/cs-roofline-toolkit/src/master

Characterizing GPU-accelerated Applications

» Three measurements: Time, FLOPs, Bytes (on each cache level)

nvprof FLOPs nvprof FLOPs

Performance = : , Arithmetic Intensity =
Runtime

nvprof Data Movement

* Runtime:
o time per invocation of a kernel
nvprof --print-gpu-trace ./application args
o average time over multiple invocations
nvprof --print-gpu-summary ./application args
o same kernel with different input parameters are grouped separately

117 i

BERKELEY LAB

Characterizing GPU-accelerated Applications

= FLOPs:

o predication aware, and divides aware, dp/dp_add/dp_mul/dp_fma, sp*
nvprof --kernels ‘kernel_name’ --metrics ‘flop_count_xx’ ./application

= Bytes for different cache levels to construct hierarchical Roofline

nvprof --kernels ‘kernel_name’ --metrics ‘metric_name’./application
o Bytes = (read transactions + write transactions) x transaction size

Memory

Level

Metrics

Transaction
Size

system write transactions

L1 Cache gld transactions, gst transactions 32B

L2 Cache 12 read transactions, 12 write transactions 32B

Device Memory |dram read transactions, dram write transactions 32B
system read transactions,

System Memory Y — — 32B

118

~
: 0
rrrrrrr H

BERKELEY LAB

Example Output

= [cjyang@voltar source]$ nvprofl——kernels "1l:7:smooth kernel:1" —Pmetrics flop count dp --metrics
gld transactions --metrics gst transactions “—metrics 12 _read transactions --metrics 12 write transactions
--metrics dram read transactions --metrics dram write transactions --metrics sysmem read bytes --metrics
sysmem;wrlte_bytes /backup bin/hpgmg-fv-fp 5 8

= Can collect all metrics at once or one at a time (slowdown)
= Qutput in CSV; Python/Excel for multiple output files

Invocations Metric Name Metric Description
Device "Tesla W10G0-PCIE-16GE (@)"
Kerpet==—wgid smooth_kernel<int=e&, int=3Z, int=4, int=8>(level_type, int, int, double, 1uut1~, 1mt,

Tlop_ cmunf _dp Floating Point Operationsi{Double :

Global Load Tr: ;_CfTHH—

Glokal Store Transactions

L2 Read Transactions

ctions | 2 Llritae Trancactinns

dram_read trz ctions lewice Memory Read Transactions

dram write trz CTTHH— Device Memory Write Transactions

DR S N | TP | | s PR S
Qe | [o) S Ly = R | L',' -

gl
[
B =

=

1t

e e e e e

system Memory Write Bytes

o~

A
freeeee “'I

BERKELEY LAB

Plotting Rooflines of NVProf Data

= Python scripts using Matplotlib

https://github.com/cyanguwa/nersc-roofline/tree/master/Plotting
= Simple example: plot roofline.py data.txt
= Tweaking needed for more sophisticated plotting, see examples

104

data. txt FMA: 7068.9 GFLOP/s

o / No-FMA: 3535.8 GFLOP/s
)
&
o)

all data is space delimited
memroofs 828.758

mem roof names 'HBM’'

comproofs 7068.86 3535.79
comp roof names 'FMA' ’'No-FMA'

omit the following if only plotting roofs
AI: arithmetic intensity; GFLOPs: performance

Performance [GFLOP/sec]

AI 2.584785579 ® FMA nw=1
GFLOPs 2085.756683 10— Y.
labels ‘FMA, nw=1l' Arithmetic Intensity [FLOPs/Byte]

120 2l

BERKELEY LAB

https://github.com/cyanguwa/nersc-roofline/tree/master/Plotting

HBM Roofline on GPUs

" Use BerkeleyGW Proxy app GPP
to see GPU effects | vioo

= HBM Roofline
= Al increases as nw grows

= bandwidth bound -
compute bound

FMA: 7068.9 GFLOP/s
/ 60% FMA: 5655.1 GFLOP/s

v Ae>

~__No-FMA: 3535.8 GFLOP/s
B

Performance [GFLOP/sec]

. . . ® nw=l1 nw=4
= Disable FMA in the compiller... == VA W nw=2 @ nw=5
o (-fmad=true/false) ol N Y wes b e
O “NO'FMA” COnVergeS tO |tS Ceiling Arithmetic Ir11$ensity [FLOPs/Byte] +0
o But FMA doesn'’t
121 2l

BERKELEY LAB

Hierarchical Roofline on GPUs

GPP is HBM bound
L1/L2 performance far from L1/L2 [V100, Gee
ceiling

'_.I
o
Y

FMA: 7068.9 GFLOP/s

No-FMA: 3535.8 GFLOP/s

[GFLOP/sec]

FLOPs are proportional to nw
Increase in HBM Al —

HBM bytes approx. constant
(good L2 locality) 101
Slow increase in L2 Al — |
L2 bytes increase for nw>1 A
(poor L1 locality)

Increase in L1 Al —

L1 bytes approx. constant

(goodregisterfilelocality)
122

Performance

SH%% U.S. DEPARTMENT OF

i BERKELEY LAB) ENERGY

BERKELEY LAB LAWRENCE BERKELEY NATIONAL LABORATORY

Summary

Summary

= Performance Models
= Roofline Model

= Tools for Roofline Analysis...

Machine Characterization (ERT)
Using LIKWID to access performance counters
Using SDE to get more accurate FLOP counts

Using Advisor to provide a single tool that integrates cache simulation and accurate FLOP
counts.

o Using NVProf to affect Roofline on GPUs

O O O O

124 gl

BERKELEY LAB

SH%% U.S. DEPARTMENT OF

i BERKELEY LAB) ENERGY

BERKELEY LAB LAWRENCE BERKELEY NATIONAL LABORATORY

Questions?

SH%% U.S. DEPARTMENT OF

i BERKELEY LAB) ENERGY

BERKELEY LAB LAWRENCE BERKELEY NATIONAL LABORATORY

Backup

.| BERKELEY LAB

EEE

Hierarchical Roofline vs.
Cache-Aware Roofline

...understanding different Roofline
formulations in Advisor

There are two Major Roofline Formulations:

= Hierarchical Roofline (original Roofline w/ DRAM, L3, L2, ...)...

Williams, et al, “Roofline: An Insightful Visual Performance Model for Multicore Architectures”, CACM, 2009
Chapter 4 of “Auto-tuning Performance on Multicore Computers”, 2008
« Defines multiple bandwidth ceilings and multiple Al's per kernel

« Performance bound is the minimum of flops and the memory intercepts (superposition of original, single-metric Rooflines)

= Cache-Aware Roofline

 llic et al, "Cache-aware Roofline model: Upgrading the loft", IEEE Computer Architecture Letters, 2014
« Defines multiple bandwidth ceilings, but uses a single Al (FLOP:L1 bytes)

 As one looses cache locality (capacity, conflict, ...) performance falls from one BW ceiling to a lower one at constant Al

= Why Does this matter?

« Some tools use the Hierarchical Roofline, some use cache-aware == Users need to understand the differences
« Cache-Aware Roofline model was integrated into production Intel Advisor
« Evaluation version of Hierarchical Roofline! (cache simulator) has also been integrated into Intel Advisor

"Technology Preview, not in official product roadmap so far.
(Ll

128 i

BERKELEY LAB

Hierarchical Roofline Cache-Aware Roofline

= (Captures cache effects = (Captures cache effects

= Alis FLOP:Bytes after being filtered by = Alis FLOP:Bytes as presented to the L1
lower cache levels cache (plus non-temporal stores)

= Multiple Arithmetic Intensities = Single Arithmetic Intensity

(one per level of memory)

= Al dependent on problem size = Al independent of problem size
(capacity misses reduce Al)

= Memory/Cache/Locality effects are = Memory/Cache/Locality effects are
observed as decreased Al observed as decreased performance

» Requires performance counters or = Requires static analysis or binary
cache simulator to correctly measure Al instrumentation to measure Al

129 gl

BERKELEY LAB

Example: STREAM

= |1Al.. #pragma omp parallel for
. 2ﬂ0ps 'FOI"('I=0;'I<N;‘I++){

z[1] = X[1] + alpha*Y[i];

2 x 8B load (old) }
1 x 8B store (new)

= 0.08 flops per byte
= No cache reuse...

lteration i doesn’t touch any data associated with
iteration i+delta for any delta.

= ... leads to a DRAM Al equal to
the L1 Al

130 il

BERKELEY LAB

Example: STREAM

Hierarchical Roofline

Attainable FLOP/s

i

- Peak FLOP/s

Performance is bound'to

the minimum of the two
Intercepts.--

Al * L1/ GB/s
Alpram *DRAMIGB/s

«— Multiple Al’s....
: 1) FLOP:DRAM bytes
. 2) FLOP:L1 bytes (same)

' >
0.083
Arithmetic Intensity (FLOP:Byte)

Cache-Aware Roofline

Attainable FLOP/s

i

- Peak FLOP/s

Obsernved performance
IS gorrelated with DRAM
bandwidth

«—— Single Al based on FLOP:L1 bytes

' >
0.083

Arithmetic Intensity (FLOP:Byte)

>
b
rrrrrrr ‘ |

BERKELEY LAB

Example: 7-point Stencil (Small Problem)

O |_1 A| #pragma omp parallel for
for(k=1;k<dim+1;k++) {
* Tflops for(§=1;3<dim+1;3++){
« 7 x 8B load (old) for(i=1;i<dim+1;1++){
. int 1jk = 1 + j*jStride + k*kStride;
1 x 88 store (new) new[ijk] = -6.0%01d[jk]
« =0.11 flops per byte old[ijk-1]
- some compilers may do register shuffles to reduce the old[ijk+1]
number of loads. old[ijk-jsStride]
old[1jk+jStride]
= Moderate cache reuse... old[ijk-kstride]

old[1jk+kStride];

« old[ijk] is reused on subsequent iterations of i,j,k

« old[ijk-1] is reused on subsequent iterations of i.
« old[ijk-jStride] is reused on subsequent iterations of j.
« old[ijk-kStride] is reused on subsequent iterations of k.

= ... leads to DRAM Al larger than
the L1 Al

132 e

BERKELEY LAB

Example: 7-point Stencil (Small Problem)
Hierarchical Roofline Cache-Aware Roofline

! ! Peak FLOP/s Peak FLOP/s
2 L =
D_ 1 1 D—
O I I @)
1 J | -l
Th ! Th
Qo I : @
g ! ' [Performance bound is g
= ! \sthe /minimum)of the two =
Z | Z
Multiple Al's....
«— 1) FLOP:DRAM ~ 0.44
& 2) FLOP:L1 ~ 0.11
0.1 0.44 g 0.11 g
Arithmetic Intensity (FLOP:Byte) Arithmetic Intensity (FLOP:Byte)
— A
133 rereee?]

BERKELEY LAB

Example: 7-point Stencil (Small Problem)

Hierarchical Roofline Cache-Aware Roofline
1 1

Peak FLOP/s

Peak FLOP/s

Obseweddnce

is bet}ve/en L4 and DRAM lines
some)cachelocality)

Berformance boundis
the/minimum)of the 'two

Attainable FLOP/s
Attainable FLOP/s

Multiple Al's....

“— 1) FLOP:DRAM ~ 0.44
— 2) FLOP:L1 ~0.11
0.11 0.44

Arithmetic Intensity (FLOP:Byte) Arithmetic Intensity (FLOP:Byte)

>

134 il

BERKELEY LAB

Example: 7-point Stencil (Large Problem)

Hierarchical Roofline Cache-Aware Roofline
1 1

Peak FLOP/s Peak FLOP/s

o - o : /
a L o :
@) ! @) I
— J I | |
L I L
o : Qo Observedfperformance
O I o) . V4 .
© . . . © isicloserto DRAM line
k= . (Capacitymisses reduce = Eescachellocality)
2 . [PRAM Al and performance & y
WY . | <
OQ) . Multiple Al’s....
,<— 1) FLOP:DRAM ~ 0.20 :
: Single Al based FLOP:L1 byt
& - 2) FLOP:L1 ~ 0.11 ngie Al based on ytes

>

135 il

BERKELEY LAB

Example: 7-point Stencil (Observed Pert.)

Hierarchical Roofline Cache-Aware Roofline
1 1

Peak FLOP/s

Peak FLOP/s

Obseweddnce

is closef to DRAM line
7 :
lessicachelocality)

Actual observed performance
is'tied to'the bottlenecked resource
and can be'well below/ajicache
Roofline/(e/g. L1).

Attainable FLOP/s
Attainable FLOP/s

0.11 0.20

136 gl

BERKELEY LAB

Example: 7-point Stencil (Observed Pert.)

Hierarchical Roofline Cache-Aware Roofline
1 1

! Peak FLOP/s ! Peak FLOP/s
L ' 0 !
o : o :
O I O 1 /
— | 1 |
LL I LL
o : Qo Observedfperformance
® : ® is/closef to DRAM line
-% . /Actualobserved performance -% |éssicache locality)
b= - is'tiedto'the/bottlenecked/resource b=
. [andcanbe'well below/aicache
- Roofine(egy X)) Single Al based on FLOP:L1 bytes
I > >
0.11 0.20
Arithmetic Intensity (FLOP:Byte) Arithmetic Intensity (FLOP:Byte)

137 i

BERKELEY LAB

