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Introduction to
Performance

Modeling



Why Use Performance Models or Tools?
§ Understand performance differences between Architectures, 

Programming Models, implementations, etc… 
§ Predict performance on future machines / architectures

• Sets realistic expectations on performance for future procurements
• Used for HW/SW Co-Design to ensure future architectures are well-suited for the 

computational needs of today’s applications.

§ Identify performance bottlenecks & motivate software optimizations
§ Determine when we’re done optimizing

• Assess performance relative to machine capabilities
• Motivate need for algorithmic changes
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Computational Complexity
§ Assume run time is correlated 

with the number of operations 
(e.g. FP ops)

§ Users define parameterize their 
algorithms, solvers, kernels

§ Count the number of operations 
as a function of those parameters

§ Demonstrate run time is 
correlated with those parameters
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#pragma omp parallel for
for(i=0;i<N;i++){

Z[i] = alpha*X[i] + Y[i];
}

DAXPY: O(N) complexity where 
N is the number of elements

#pragma omp parallel for
for(i=0;i<N;i++){
for(j=0;j<N;j++){

double Cij=0;
for(k=0;k<N;k++){

Cij += A[i][k] * B[k][j];
}
C[i][j] = sum;

}}

DGEMM: O(N3) complexity 
where N is the number of rows 
(equations)

FFTs: O(NlogN) in the number of elements

CG: O(N1.33) in the number of elements (equations)

MG: O(N) in the number of elements (equations)

N-body: O(N2) in the number of particles (per time step)

?What are the 
scaling 

constants?

?Why did we 
depart from ideal 

scaling?



Data Movement Complexity
§ Assume run time is correlated 

with the amount of data accessed 
(or moved)

§ Easy to calculate amount of data 
accessed… count array accesses
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DAXPY
DGEMV
DGEMM

FFTs
CG

MG
N-body

Operation
O(N)
O(N2)
O(N3)

O(NlogN)
O(N1.33)

O(N)
O(N2)

FLOPs
O(N)
O(N2)
O(N2)
O(N)

O(N1.33)

O(N)
O(N)

Data

1Hill et al, “Evaluating Associativity in CPU Caches”, IEEE 
Trans. Comput., 1989.

§ Data moved is more complex as it 
requires understanding cache 
behavior…
• Compulsory1 data movement (array 

sizes) is a good initial guess…
• … but needs refinement for the effects of 

finite cache capacities

?Which is more 
expensive…

Performing FLOPs, or
Moving words from memory



Machine Balance and Arithmetic Intensity
§ Data movement and computation 

can operate at different rates
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DAXPY

DGEMV

DGEMM

FFTs

CG

MG

N-body

Operation
O(N)

O(N2)

O(N3)

O(NlogN)

O(N1.33)

O(N)

O(N2)

FLOPs
O(N)

O(N2)

O(N2)

O(N)

O(N1.33)

O(N)

O(N)

Data
O(1)

O(1)

O(N)

O(logN)

O(1)

O(1)

O(N)

AI (ideal)

Peak DP FLOP/s
Peak BandwidthBalance = 

§ We define machine balance as 
the ratio of…

FLOPs Performed
Data MovedAI = 

§ …and arithmetic intensity as the 
ratio of…

!Kernels with AI

less than machine 

balance are ultim
ately 

bandwidth lim
ited



Distributed Memory Performance Modeling
§ In distributed memory, one communicates by sending messages 

between processors.
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§ Messaging time can be constrained by several components…
• Overhead (CPU time to send/receive a message)
• Latency (time message is in the network; can be hidden)
• Message throughput (rate at which one can send small messages… messages/second)
• Bandwidth (rate one can send large messages… GBytes/s)

§ Distributed memory versions of our algorithms can be differently 
stressed by these components depending on N and P (#processors)

§ Bandwidths and latencies are further constrained by the interplay of 
network architecture and contention



Computational Depth
§ Parallel machines incur 

substantial overheads on 
synchronization (shared memory), 
point-to-point communication, 
reductions, and broadcasts.

§ We can classify algorithms by 
depth (max depth of the 
algorithm’s dependency chain)

Ø If dependency chain crosses 
process boundaries, we incur 
substantial overheads.
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DAXPY
DGEMV
DGEMM

FFTs
CG

MG
N-body

Operation
O(N)
O(N2)
O(N3)

O(NlogN)
O(N1.33)

O(N)
O(N2)

FLOPs
O(N)
O(N2)
O(N2)
O(N)

O(N1.33)

O(N)
O(N)

Data
O(1)
O(1)
O(N)

O(logN)
O(1)

O(1)
O(N)

AI (ideal)
O(1)

O(logN)
O(logN)
O(logN)

O(N0.33 logN)

O(logN)
O(logN)

Depth

!Overheads can 

dominate at high 

concurrency or small 

problems



Performance Models

11

#FP operations
Cache data movement
DRAM data movement

PCIe data movement
Depth

MPI Message Size
MPI Send:Wait ratio

#MPI Wait’s

FLOP/s
Cache GB/s
DRAM GB/s
PCIe bandwidth
OMP Overhead
Network Bandwidth
Network Gap
Network Latency

§ Many different components can contribute to kernel run time.
§ Some are characteristics of the application, some are characteristics of 

the machine, and some are both (memory access pattern + caches).



Performance Models
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§ Can’t think about all these terms all the time for every application…

#FP operations
Cache data movement
DRAM data movement

PCIe data movement
Depth

MPI Message Size
MPI Send:Wait ratio

#MPI Wait’s

FLOP/s
Cache GB/s
DRAM GB/s
PCIe bandwidth
OMP Overhead
Network Bandwidth
Network Gap
Network Latency

Computational
Complexity



Performance Models
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§ Because there are so many components, performance models often 
conceptualize the system as being dominated by one or more of these 
components.

#FP operations
Cache data movement
DRAM data movement

PCIe data movement
Depth

MPI Message Size
MPI Send:Wait ratio

#MPI Wait’s

FLOP/s
Cache GB/s
DRAM GB/s
PCIe bandwidth
OMP Overhead
Network Bandwidth
Network Gap
Network Latency

LogP

Culler, et al, "LogP: a practical model of parallel computation", CACM, 1996.



Performance Models
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§ Because there are so many components, performance models often 
conceptualize the system as being dominated by one or more of these 
components.

#FP operations
Cache data movement
DRAM data movement

PCIe data movement
Depth

MPI Message Size
MPI Send:Wait ratio

#MPI Wait’s

FLOP/s
Cache GB/s
DRAM GB/s
PCIe bandwidth
OMP Overhead
Network Bandwidth
Network Gap
Network Latency

LogGP

Alexandrov, et al, "LogGP: incorporating long messages into the LogP model - one step closer 
towards a realistic model for parallel computation", SPAA, 1995.



Implications of Architectural Evolution…

§ Historically, many performance models and simulators tracked time to 
predict performance (i.e. counting seconds or counting cycles)

§ The last two decades saw a number of latency-hiding techniques…
• Out-of-order execution (hardware discovers parallelism to hide latency)
• HW stream prefetching (hardware speculatively loads data)
• Massive thread parallelism (independent threads satisfy the latency-bandwidth 

product)
§ … resulted in a shift from a latency-limited computing regime to a 

throughput-limited computing regime

16



Roofline Model
§ Roofline Model is a throughput-

oriented performance model
§ Tracks rates not times
§ Uses bound and bottleneck analysis
§ Independent of ISA and architecture 

(applies to CPUs, GPUs, Google 
TPUs1, etc…)

171Jouppi et al, “In-Datacenter Performance Analysis of a Tensor Processing Unit”, ISCA, 2017.

https://crd.lbl.gov/departments/computer-science/PAR/research/roofline

https://crd.lbl.gov/departments/computer-science/PAR/research/roofline/


Performance Models
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§ Because there are so many components, performance models often 
conceptualize the system as being dominated by one or more of these 
components.

#FP operations
Cache data movement
DRAM data movement

PCIe data movement
Depth

MPI Message Size
MPI Send:Wait ratio

#MPI Wait’s

FLOP/s
Cache GB/s
DRAM GB/s
PCIe bandwidth
OMP Overhead
Network Bandwidth
Network Gap
Network Latency

Roofline
Model

Williams et al, "Roofline: An Insightful Visual Performance Model For Multicore Architectures", 
CACM, 2009.

!Use the

right model



Introduction to the
Roofline Model



(DRAM) Roofline
§ One could hope to always attain 

peak performance (FLOP/s)
§ However, finite locality (reuse) and 

bandwidth limit performance.
§ Assume:

• Idealized processor/caches
• Cold start (data in DRAM)

20

CPU
(compute, FLOP/s)

DRAM
(data, GB)

DRAM Bandwidth
(GB/s)

#FP ops / Peak GFLOP/s
Time = max

#Bytes / Peak GB/s



(DRAM) Roofline
§ One could hope to always attain 

peak performance (FLOP/s)
§ However, finite locality (reuse) and 

bandwidth limit performance.
§ Assume:

• Idealized processor/caches
• Cold start (data in DRAM)
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CPU
(compute, FLOP/s)

DRAM
(data, GB)

DRAM Bandwidth
(GB/s)

1 / Peak GFLOP/sTime
#FP ops #Bytes / #FP ops / Peak GB/s

= max



(DRAM) Roofline
§ One could hope to always attain 

peak performance (FLOP/s)
§ However, finite locality (reuse) and 

bandwidth limit performance.
§ Assume:

• Idealized processor/caches
• Cold start (data in DRAM)
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CPU
(compute, FLOP/s)

DRAM
(data, GB)

DRAM Bandwidth
(GB/s)

Peak GFLOP/s#FP ops
Time (#FP ops / #Bytes) * Peak GB/s

= min



(DRAM) Roofline
§ One could hope to always attain 

peak performance (FLOP/s)
§ However, finite locality (reuse) and 

bandwidth limit performance.
§ Assume:

• Idealized processor/caches
• Cold start (data in DRAM)
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CPU
(compute, FLOP/s)

DRAM
(data, GB)

DRAM Bandwidth
(GB/s)

Peak GFLOP/s
GFLOP/s = min

AI * Peak GB/s
Note, Arithmetic Intensity (AI) = Flops / Bytes (as presented to DRAM )



Arithmetic Intensity
§ The most important concept in Roofline is Arithmetic Intensity

§ Measure of data locality (data reuse)
§ Ratio of Total Flops performed to Total Bytes moved
§ For the DRAM Roofline…

o Total Bytes to/from DRAM and includes all cache and prefetcher effects
o Can be very different from total loads/stores (bytes requested)
o Equal to ratio of sustained GFLOP/s to sustained GB/s (time cancels)

24



(DRAM) Roofline
§ Plot Roofline bound using 

Arithmetic Intensity as the x-axis
§ Log-log scale makes it easy to 

doodle, extrapolate performance 
along Moore’s Law, etc…

§ Kernels with AI less than machine 
balance are ultimately DRAM 
bound (we’ll refine this later…)

25

Peak FLOP/s

At
ta

in
ab

le
 F

LO
P/

s

DRAM G
B/s

Arithmetic Intensity (FLOP:Byte)

DRAM-bound Compute-bound

Transition @ AI =
Machine Balance



Roofline Example #1
§ Typical machine balance is 5-10 

flops per byte…
• 40-80 flops per double to exploit compute capability
• Artifact of technology and money
• Unlikely to improve

§ Consider STREAM Triad…

• 2 flops per iteration
• Transfer 24 bytes per iteration (read X[i], Y[i], write Z[i])
• AI = 0.083 flops per byte == Memory bound
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At
ta

in
ab

le
 F

LO
P/

s

DRAM G
B/s

Arithmetic Intensity (FLOP:Byte)

TRIAD

GFLOP/s ≤ AI * DRAM GB/s

#pragma omp parallel for
for(i=0;i<N;i++){

Z[i] = X[i] + alpha*Y[i];
}

0.083

Peak FLOP/s



Roofline Example #2
§ Conversely, 7-point constant 

coefficient stencil…
• 7 flops
• 8 memory references (7 reads, 1 store) per point
• AI = 0.11 flops per byte (L1)
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#pragma omp parallel for
for(k=1;k<dim+1;k++){
for(j=1;j<dim+1;j++){
for(i=1;i<dim+1;i++){
new[k][j][i] = -6.0*old[k  ][j  ][i ] 

+ old[k  ][j  ][i-1]
+ old[k  ][j  ][i+1]
+ old[k  ][j-1][i ]
+ old[k  ][j+1][i ]
+ old[k-1][j  ][i ]
+ old[k+1][j  ][i ];

}}}

CPU
(compute, FLOP/s)

DRAM
(data, GB)

DRAM Bandwidth
(GB/s)



Roofline Example #2
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#pragma omp parallel for
for(k=1;k<dim+1;k++){
for(j=1;j<dim+1;j++){
for(i=1;i<dim+1;i++){
new[k][j][i] = -6.0*old[k  ][j  ][i ] 

+ old[k  ][j  ][i-1]
+ old[k  ][j  ][i+1]
+ old[k  ][j-1][i ]
+ old[k  ][j+1][i ]
+ old[k-1][j  ][i ]
+ old[k+1][j  ][i ];

}}}

CPU
(compute, FLOP/s)

CACHE
(only compulsory misses)

Cache Bandwidth
(GB/s)

DRAM
(data, GB)

DRAM Bandwidth
(GB/s)

§ Conversely, 7-point constant 
coefficient stencil…
• 7 flops
• 8 memory references (7 reads, 1 store) per point
• Cache can filter all but 1 read and 1 write per point
• AI = 0.44 flops per byte



Roofline Example #2
§ Conversely, 7-point constant 

coefficient stencil…
• 7 flops
• 8 memory references (7 reads, 1 store) per point
• Cache can filter all but 1 read and 1 write per point
• AI = 0.44 flops per byte == memory bound,

but 5x the flop rate
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At
ta

in
ab

le
 F

LO
P/

s

DRAM G
B/s

7-point
Stencil

GFLOP/s ≤ AI * DRAM GB/s

TRIAD

Arithmetic Intensity (FLOP:Byte)
0.083 0.44

Peak FLOP/s

#pragma omp parallel for
for(k=1;k<dim+1;k++){
for(j=1;j<dim+1;j++){
for(i=1;i<dim+1;i++){
new[k][j][i] = -6.0*old[k  ][j  ][i ] 

+ old[k  ][j  ][i-1]
+ old[k  ][j  ][i+1]
+ old[k  ][j-1][i ]
+ old[k  ][j+1][i ]
+ old[k-1][j  ][i ]
+ old[k+1][j  ][i ];

}}}



Question:

Will Performance Always 
Lie on the Roofline?



Can performance be below the Roofline?

§ Analogous to stating that one can always attain either…
o Peak Bandwidth
o Peak FLOP/s

31

§ No, there can be other performance bottlenecks…
o Cache bandwidth / locality
o Lack of vectorization / SIMDization
o Load imbalance
o …



Extending the 
Roofline:

Memory Hierarchy



Hierarchical Roofline
§ Processors have multiple levels of 

memory/cache
• Registers
• L1, L2, L3 cache
• MCDRAM/HBM (KNL/GPU device memory)
• DDR (main memory)
• NVRAM (non-volatile memory)

§ Applications have locality in each level
§ Unique data movements imply unique AI’s
§ Moreover, each level will have unique peak and 

sustained bandwidths
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CPU

L1 D$

DRAM

L2 D$

MCDRAM

Bandwidth

L1 GB/s

L2 GB/s

MCDRAM GB/s

DRAM GB/s

Data Movement

L1 GB

L2 GB

MCDRAM GB

DRAM GB



Hierarchical Roofline
§ Processors have multiple levels of 

memory/cache
• Registers
• L1, L2, L3 cache
• MCDRAM/HBM (KNL/GPU device memory)
• DDR (main memory)
• NVRAM (non-volatile memory)

§ Applications have locality in each level
§ Unique data movements imply unique AI’s
§ Moreover, each level will have unique peak and 

sustained bandwidths
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CPU

L1 D$

DRAM

L2 D$

MCDRAM

Machine Balance

GFLOP/s
L1 GB/s

GFLOP/s
L2 GB/s

GFLOP/s
MCDRAM GB/s

GFLOP/s
DRAM GB/s

Data Movement

L1 GB

L2 GB

MCDRAM GB

DRAM GB



Hierarchical Roofline
§ Processors have multiple levels of 

memory/cache
• Registers
• L1, L2, L3 cache
• MCDRAM/HBM (KNL/GPU device memory)
• DDR (main memory)
• NVRAM (non-volatile memory)

§ Applications have locality in each level
§ Unique data movements imply unique AI’s
§ Moreover, each level will have unique peak and 

sustained bandwidths
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CPU

L1 D$

DRAM

L2 D$

MCDRAM

Machine Balance

GFLOP/s
L1 GB/s

GFLOP/s
L2 GB/s

GFLOP/s
MCDRAM GB/s

GFLOP/s
DRAM GB/s

Arithmetic Intensity

GFLOPs
L1 GB

GFLOPs
L2 GB

GFLOPs 
MCDRAM GB

GFLOPs 
DRAM GB



DDR Bound
DDR AI*BW <

MCDRAM AI*BW

Hierarchical Roofline
§ Construct superposition of 

Rooflines…
§ Measure bandwidth
§ Measure AI for each level of memory
• Although an loop nest may have multiple 

AI’s and multiple bounds (flops, L1, L2, …
DRAM)…

• … performance is bound by the 
minimum
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Peak FLOP/s



Hierarchical Roofline
§ Construct superposition of 

Rooflines…
§ Measure bandwidth
§ Measure AI for each level of memory
• Although an loop nest may have multiple 

AI’s and multiple bounds (flops, L1, L2, …
DRAM)…

• … performance is bound by the 
minimum
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At
ta

in
ab

le
 F

LO
P/

s

MCDRAM ca
ch

e G
B/s

Arithmetic Intensity (FLOP:Byte)

L2
 G

B/s

DDR bottleneck 
pulls performance 
below MCDRAM 

Roofline

Peak FLOP/s



DDR G
B/s

MCDRAM ca
ch

e G
B/s

MCDRAM bound
MCDRAM AI*BW <

DDR AI*BW 

Hierarchical Roofline
§ Construct superposition of 

Rooflines…
§ Measure bandwidth
§ Measure AI for each level of memory
• Although an loop nest may have multiple 

AI’s and multiple bounds (flops, L1, L2, …
DRAM)…

• … performance is bound by the 
minimum
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L2
 G
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Peak FLOP/s



DDR G
B/s

Hierarchical Roofline
§ Construct superposition of 

Rooflines…
§ Measure bandwidth
§ Measure AI for each level of memory
• Although an loop nest may have multiple 

AI’s and multiple bounds (flops, L1, L2, …
DRAM)…

• … performance is bound by the 
minimum
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Peak FLOP/s

A
tta

in
ab

le
 F

LO
P

/s

Arithmetic Intensity (FLOP:Byte)

MCDRAM 
bottleneck pulls 

performance below 
DDR Roofline



NUMA Effects
§ Cori’s Haswell nodes are built 

from 2 Xeon processors (sockets)
• Memory attached to each socket (fast)
• Interconnect that allows remote memory 

access (slow == NUMA)
• Improper memory allocation can result in 

more than a 2x performance penalty
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Peak FLOP/s

At
ta

in
ab

le
 F

LO
P/

s

DDR G
B/s

DDR G
B/s 

(N
UMA)

Arithmetic Intensity (FLOP:Byte)

CPU0
cores 0-15

DRAM
~50GB/s

CPU1
cores 16-31

DRAM
~50GB/s

Without proper 
NUMA optimization, 

bandwidth is 
constrained



Extending the Roofline: 
In-Core Effects



In-Core Parallelism
§ We have assumed one can attain peak flops with high locality.
§ In reality, we must …

• Vectorize loops (16 flops per instruction)
• Use special instructions (e.g. FMA)
• Ensure FP instructions dominate the instruction mix
• Use all cores & sockets

§ Without these, …
• Peak performance is not attainable
• Some kernels can transition from memory-bound to compute-bound

42



Data Parallelism (e.g. SIMD)
§ Most processors exploit some 

form of SIMD or vectors.
• KNL uses 512b vectors (8x64b)

• GPUs use 32-thread warps (32x64b)

§ In reality, applications are a mix of 
scalar and vector instructions.
• Performance is a weighted average 

between SIMD and no SIMD
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Full vectorization

No vectorization

A
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b
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L
O
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DDR G
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Arithmetic Intensity (FLOP:Byte)

Lack of full 
vectorization pulls 
performance below 

DDR Roofline



Data Parallelism (e.g. SIMD)
§ Most processors exploit some 

form of SIMD or vectors.
• KNL uses 512b vectors (8x64b)

• GPUs use 32-thread warps (32x64b)

§ In reality, applications are a mix of 
scalar and vector instructions.
• Performance is a weighted average 

between SIMD and no SIMD

Ø There is an implicit ceiling based on 
this weighted average
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No vectorization

Partial
vectorization

A
tt
a
in

a
b
le

 F
L
O

P
/s

Arithmetic Intensity (FLOP:Byte)

Memory-bound 
codes can become 

compute-bound



Return of Complex Instruction Set Computing
§ Death of Moore’s Law is reinvigorating CISC
§ Modern CPUs and GPUs are increasingly reliant on special (fused) 

instructions that perform multiple operations.
o FMA (Fused Multiply Add): z=a*x+y …z,x,y are vectors or scalars
o 4FMA (quad FMA): z=A*x+z …A is a FP32 matrix; x,z are vectors
o WMMA (Tensor Core): Z=AB+C …Z,A,B,C are FP16 matrices

45

Ø Performance is now a weighted average of scalar, vector, FMA, and 
WMMA operations. 



Return of CISC
§ Total lack of FMA reduces 

performance by 2x on KNL.

(4x on Haswell)
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VFMA Peak
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a
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b
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 F
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P
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D
D
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 G
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Arithmetic Intensity (FLOP:Byte)

VAdd Peak

FAdd Peak 

Partial FMA

§ In reality, applications are a mix of 

FMA, FAdd, and FMul.

• Performance is a weighted average

Ø There is an implicit ceiling based on 
this weighted average



Return of CISC
§ On Volta, Tensor cores can 

provide 100TFLOPs of FP16 
performance
(vs. 7.5 TFLOPS for DP FMA)
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A
tta

in
ab

le
 F

LO
P

/s

HBM G
B/s

Tensor Peak

Arithmetic Intensity (FLOP:Byte)

DP FMA Peak

DP Add Peak

§ Observe, machine balance has 
now grown to …

100 TFLOP/s / 800 GB/s
= 250 FP16 ops per word !!



Superscalar vs. Instruction mix
§ Superscalar processors have finite instruction fetch/decode/issue 

bandwidth (e.g. 4 instructions per cycle)
§ Moreover, the number of FP units dictates the FP issue rate required to 

hit peak (e.g. 2 vector instructions per cycle)

48

Ø Ratio of these two rates is the minimum FP instruction fraction 
required to hit peak



Superscalar vs. Instruction mix
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Peak FLOP/s

25% FP (75% int)

A
tta
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le
 F
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P

/s

DDR G
B/s

Arithmetic Intensity (FLOP:Byte)

12% FP (88% int)

≥50% FP

§ Haswell CPU
• 4-issue superscalar
• Only 2 FP data paths
• Requires 50% of the instructions to be FP 

to get peak performance



Superscalar vs. Instruction mix
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Peak FLOP/s

50% FP (50% int)

At
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in
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P/

s

DDR G
B/s

Arithmetic Intensity (FLOP:Byte)

25% FP (75% int)

100% FP

§ Conversely, on KNL…
• 2-issue superscalar
• 2 FP data paths
• Requires 100% of the instructions to be 

FP to get peak performance

§ Haswell CPU
• 4-issue superscalar
• Only 2 FP data paths
• Requires 50% of the instructions to be FP 

to get peak performance



Superscalar vs. Instruction mix
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Peak FLOP/s

50% FP (50% int)
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DDR G
B/s

Arithmetic Intensity (FLOP:Byte)

25% FP (75% int)

100% FP

§ Conversely, on KNL…
• 2-issue superscalar
• 2 FP data paths
• Requires 100% of the instructions to be 

FP to get peak performance

§ Haswell CPU
• 4-issue superscalar
• Only 2 FP data paths
• Requires 50% of the instructions to be FP 

to get peak performance



Superscalar vs. Instruction mix
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A
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 F
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P

/s

DDR G
B/s

Arithmetic Intensity (FLOP:Byte)

25% FP (75% int)

non-FP instructions 
sap issue bandwidth 
and pull performance 

below the Roofline

§ Conversely, on KNL…
• 2-issue superscalar

• 2 FP data paths

• Requires 100% of the instructions to be 
FP to get peak performance

Ø Codes that would have been memory-
bound are now decode/issue-bound.

§ Haswell CPU
• 4-issue superscalar

• Only 2 FP data paths

• Requires 50% of the instructions to be FP 
to get peak performance



Superscalar vs. Instruction mix
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≥25% FP

§ On Volta, each SM is partitioned 
among 4 warp schedulers

§ Each warp scheduler can 
dispatch 32 threads per cycle

§ However, it can only execute 8 
DP FP instructions per cycle.

§ i.e. there is plenty of excess 
instruction issue bandwidth 
available for non-FP instructions.



Extending the Roofline: 
Modeling Cache Effects



Locality Walls
§ Naively, we can bound AI using 

only compulsory cache misses

55

Peak FLOP/s

No FMA

No vectorization

A
tta

in
ab

le
 F

LO
P

/s

DDR G
B/s

Arithmetic Intensity (FLOP:Byte)

C
om

pu
ls

or
y 

A
I

#FLOPs
Compulsory MissesAI = 



Locality Walls
§ Naively, we can bound AI using 

only compulsory cache misses
§ However, write allocate caches 

can lower AI
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Locality Walls
§ Naively, we can bound AI using 

only compulsory cache misses
§ However, write allocate caches 

can lower AI
§ Cache capacity misses can have 

a huge penalty
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Locality Walls
§ Naively, we can bound AI using 

only compulsory cache misses
§ However, write allocate caches 

can lower AI
§ Cache capacity misses can have 

a huge penalty
Ø Compute bound became 

memory bound
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!Know the theoretical

bounds on your AI.



So Why is Roofline 
Useful?



Why is Roofline Useful?
§ Imagine a mix of loop nests
§ FLOP/s alone may not be useful 

in deciding which to optimize first
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Why is Roofline Useful?
§ We can sort kernels by AI …
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Why is Roofline Useful?
§ We can sort kernels by AI …
§ … and compare performance 

relative to machine capabilities
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Why is Roofline Useful?
§ Kernels near the roofline are 

making good use of 
computational resources
o kernels can have low performance 

(GFLOP/s), but make good use of a 
machine

o kernels can have high performance 
(GFLOP/s), but make poor use of a 
machine
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Tracking Progress Towards Optimality
§ One can conduct a Roofline 

optimization after every 
optimization (or once per quarter)
o Tracks progress towards optimality
o Allows one to quantitatively speak to 

ultimate performance / KPPs
o Can be used as a motivator for new 

algorithms.
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Roofline Scaling Trajectories

65

§ Often, one plots performance as a 
function of thread concurrency
o Carries no insight or analysis
o Provides no actionable information.
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Roofline Scaling Trajectories
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§ Often, one plots performance as a 
function of thread concurrency
o Carries no insight or analysis
o Provides no actionable information.

§ Khaled Ibrahim developed a new 
way of using Roofline to analyze 
thread (or process) scalability
o Create a 2D scatter plot of performance 

as a function of AI and thread 
concurrency

o Can identify loss in performance due to 
increased cache pressure

Khaled Ibrahim, Samuel Williams, Leonid Oliker, "Roofline Scaling Trajectories: A Method 
for Parallel Application and Architectural Performance Analysis", HPCS Special Session on 
High Performance Computing Benchmarking and Optimization (HPBench), July 2018.
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Roofline Scaling Trajectories

67

§ Observe…
o AI (data movement) varies with both 

thread concurrency and problem size
o Large problems (green and red) move 

much more data per thread, and 
eventually exhaust cache capacity

o Resultant fall in AI means they hit the 
bandwidth ceiling quickly and degrade.

o Smaller problems see reduced AI, but 
don’t hit the bandwidth ceiling
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Driving Performance Optimization
§ Broadly speaking, there are three 

approaches to improving 
performance:
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Driving Performance Optimization
§ Broadly speaking, there are three 

approaches to improving 
performance:

§ Maximize in-core performance 
(e.g. get compiler to vectorize)
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Driving Performance Optimization
§ Broadly speaking, there are three 

approaches to improving 
performance:

§ Maximize in-core performance 
(e.g. get compiler to vectorize)

§ Maximize memory bandwidth 
(e.g. NUMA-aware, unit-stride)
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Driving Performance Optimization
§ Broadly speaking, there are three 

approaches to improving 
performance:

§ Maximize in-core performance 
(e.g. get compiler to vectorize)

§ Maximize memory bandwidth 
(e.g. NUMA-aware, unit stride)

§ Minimize data movement
(e.g. cache blocking)
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How do I build and 
use Roofline?



Machine Characterization

73

§ “Theoretical Performance” numbers can be highly optimistic…
• Pin BW vs. sustained bandwidth
• TurboMode at low concurrency
• Underclocking for AVX
• Compiler failing on high-AI loops.

Ø Take marketing numbers with a grain of salt



Machine Characterization

74

§ To create a Roofline model, we must benchmark…
o Sustained Flops

• Double/single/half precision

• With and without FMA (e.g. compiler flag)

• With and without SIMD (e.g. compiler flag)

o Sustained Bandwidth
• Measure between each level of memory/cache

• Iterate on working sets of various sizes and identify plateaus

• Identify bandwidth asymmetry (read:write ratio)

§ Benchmark must run long enough to observe effects of power throttling



Machine Characterization
§ “Theoretical Performance”

numbers can be highly optimistic…
• Pin BW vs. sustained bandwidth
• TurboMode / Underclock for AVX
• compiler failings on high-AI loops.

75
https://bitbucket.org/berkeleylab/cs-roofline-toolkit/

https://github.com/cyanguwa/nersc-roofline/

https://crd.lbl.gov/departments/computer-science/PAR/research/roofline/

§ LBL developed the Empirical 
Roofline Toolkit (ERT)…
• Characterize CPU/GPU systems
• Peak Flop rates
• Bandwidths for each level of memory
• MPI+OpenMP/CUDA == multiple GPUs
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Measuring Application AI and Performance

77

§ To characterize execution with Roofline we need…
o Time
o Flops (=> FLOPs / time)

o Data movement between each level of memory (=> FLOPs / GB’s)

§ We can look at the full application…
o Coarse grained, 30-min average

o Misses many details and bottlenecks

§ or we can look at individual loop nests…
o Requires auto-instrumentation on a loop by loop basis

o Moreover, we should probably differentiate data movement or flops on a core-by-core basis.



How Do We Count FLOPs?
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Manual Counting
§ Go thru each loop nest and 

count the number of FP 
operations

ü Works best for deterministic 
loop bounds

ü or parameterize by the 
number of iterations 
(recorded at run time)

✘ Not scalable

Perf. Counters
§ Read counter before/after

ü More Accurate

ü Low overhead (<%) == can 
run full MPI applications

ü Can detect load imbalance
✘ Requires privileged access

✘ Requires manual 
instrumentation (+overhead) 
or full-app characterization 

✘ Broken counters = garbage
✘ May not differentiate 

FMADD from FADD

✘ No insight into special 
pipelines

Binary Instrumentation
§ Automated inspection of 

assembly at run time

ü Most Accurate

ü FMA-, VL-, and mask-aware

ü Can count instructions by 
class/type

ü Can detect load imbalance

ü Can include effects from 
non-FP instructions

ü Automated application to 
multiple loop nests

✘ >10x overhead (short runs / 
reduced concurrency)



How Do We Measure Data Movement?

79

Manual Counting
§ Go thru each loop nest and 

estimate how many bytes 
will be moved

§ Use a mental model of 
caches

ü Works best for simple loops 
that stream from DRAM 
(stencils, FFTs, spare, …)

✘ N/A for complex caches

✘ Not scalable

Perf. Counters
§ Read counter before/after
ü Applies to full hierarchy (L2, 

DRAM, 
ü Much more Accurate
ü Low overhead (<%) == can 

run full MPI applications
ü Can detect load imbalance
✘ Requires privileged access
✘ Requires manual 

instrumentation (+overhead) 
or full-app characterization 

Cache Simulation
§ Build a full cache simulator 

driven by memory 
addresses

ü Applies to full hierarchy and 
multicore

ü Can detect load imbalance
ü Automated application to 

multiple loop nests
✘ Ignores prefetchers
✘ >10x overhead (short runs / 

reduced concurrency)



Initially Cobbled Together Tools…
§ Use tools known/observed to work on NERSC’s 

Cori (KNL, HSW)…
• Used Intel SDE (Pin binary instrumentation + 

emulation) to create software Flop counters
• Used Intel VTune performance tool (NERSC/Cray 

approved) to access uncore counters
Ø Accurate measurement of FLOPs (HSW) and 

DRAM data movement (HSW and KNL)
Ø Used by NESAP (NERSC KNL application 

readiness project) to characterize apps on Cori…
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http://www.nersc.gov/users/application-performance/measuring-arithmetic-intensity/
NERSC is LBL’s production computing division
CRD is LBL’s Computational Research Division
NESAP is NERSC’s KNL application readiness project
LBL is part of SUPER (DOE SciDAC3 Computer Science Institute)

http://www.nersc.gov/users/application-performance/measuring-arithmetic-intensity/


More Recently…
§ Use tools known/observed to work on NERSC’s 

Cori (KNL, HSW)…
• Used Intel SDE (Pin binary instrumentation + 

emulation) to create software Flop counters
• Used LIKWID performance counter tool (NERSC/Cray 

approved) to access uncore counters
Ø Accurate measurement of FLOPs (HSW) and 

DRAM data movement (HSW and KNL)
Ø Used by NESAP (NERSC KNL application 

readiness project) to characterize apps on Cori…
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http://www.nersc.gov/users/application-performance/measuring-arithmetic-intensity/
NERSC is LBL’s production computing division
CRD is LBL’s Computational Research Division
NESAP is NERSC’s KNL application readiness project
LBL is part of SUPER (DOE SciDAC3 Computer Science Institute)

http://www.nersc.gov/users/application-performance/measuring-arithmetic-intensity/


LIKWID
§ LIKWID provides easy to use wrappers for measuring performance 

counters...
ü Works on NERSC production systems
ü Distills counters into user-friendly metrics (e.g. MCDRAM Bandwidth)
ü Minimal overhead (<1%)
ü Scalable in distributed memory (MPI-friendly)
ü Fast, high-level characterization
✘ No timing breakdowns
✘ Suffers from Garbage-in/Garbage Out

(i.e. hardware counter must be sufficient and correct)
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https://github.com/RRZE-HPC/likwid
http://www.nersc.gov/users/software/performance-and-debugging-tools/likwid

https://github.com/RRZE-HPC/likwid
http://www.nersc.gov/users/software/performance-and-debugging-tools/likwid


Profiling with LIKWID

83

§ likwid-perfctr (threaded) + likwid-mpirun (MPI/hybrid)

§ no GUI 
§ low overhead -> SDE, VTune, etc
§ no code instrumentation required -> CrayPat-tracing
§ no root access required -> VTune
§ no extra modules required to be installed -> VTune

§ use Linux ‘msr’ module to access MSR (Model Specific Register) files 

§ Cori:
module load vtune
sbatch/salloc --perf=likwid
module load likwid



Profiling with LIKWID (2)

84

§ Alternately, one can construct a script and monitor only process 0

srun -n8 -c32              ./a.out args
srun -n8 -c32 ./perfctr.sh ./a.out args

where perfctr.sh is
#!/bin/bash
let SLURM_MPI_RANK=$SLURM_PROCID
if [ $SLURM_MPI_RANK = 0 ];then
# only process 0 runs likwid and it monitors only logical CPUs 0-31
likwid-perfctr -C 0-31 -g CACHES $@
else
$@
fi



Likwid-perfctr –a (KNL)

85



Using LIKWID for Roofline
§ GPP kernel from BerkeleyGW
§ Arithmetic Intensity = FLOPS / Bytes (= SDE / VTune)

= FLOPS/sec / Bytes/sec                               
= FLOPS_DP / Bandwidth

§ AI (DRAM) = FLOPS_DP / Bandwidth (DRAM)
§ AI (MCDRAM) = FLOPS_DP / Bandwidth (MCDRAM)
§ AI (L2) = FLOPS_DP / Bandwidth (L2)
§ AI (L1) = FLOPS_DP / Bandwidth (L1)

§ Performance = FLOPS_DP

86

Peak FLOP/s

A
tta

in
ab

le
 F

LO
P

/s

DDR G
B/s

M
CDRAM

 ca
ch

e 
GB/s

Arithmetic Intensity

L2
 G

B/s
L1

 G
B/s



GFLOP/s
§ GPP kernel on KNL: 171.960 GFLOPS/sec

o UOPS_RETIRED_PACKED_SIMD
o UOPS_RETIRED_SCALAR_SIMD

§ likwid-perfctr -C 0-63 -g FLOPS_DP ./gpp.knl.ex 512 2 32768 20
o 8*UOPS_RETIRED_PACKED_SIMD+UOPS_RETIRED_SCALAR_SIMD
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MCDRAM and DDR GB/s
§ kernel on KNL: DDR 2.59GB/s + MCDRAM 63.71GB/s

o MC_CAS_READS/ MC_CAS_WRITES
o EDC_RPQ_INSERTS/ EDC_WPQ_INSERTS
o EDC_MISS_CLEAN/ EDC_MISS_DIRTY

§ likwid-perfctr -C 0-63 -g HBM_CACHE ./gpp.knl.ex 512 2 32768 20
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L2 GB/s
§ kernel on KNL: L2 96.80GB/s

o L2_REQUESTS_REFERENCE
o OFFCORE_RESPONSE_0_OPTIONS

§ likwid-perfctr -C 0-63 -g L2 ./gpp.knl.ex 512 2 32768 20
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Resultant Roofline

§ AI (DRAM):  66.39
§ AI (MCDRAM):  2.70
§ AI (L2):  1.78
§ AI (L1):  1.01
§ Performance: 171.960 GFLOPS/s 

91

2.7TFLOP/s

At
ta

in
ab

le
 F

LO
P/

s

DDR 77
.0G

B/s

MCDRAM 36
8.5

GB/s

Arithmetic Intensity

L2
 2.

0T
B/s

L1
 12

.2T
B/s

171.96GFLOP/s

1.01 1.78 2.70 66.39



Marking Specific Regions
#include <likwid.h> 
……
LIKWID_MARKER_INIT; 
#pragma omp parallel { 

LIKWID_MARKER_THREADINIT; 
} 
#pragma omp parallel { 

LIKWID_MARKER_START("foo"); 
#pragma omp for 
for(i = 0; i < N; i++) { 

data[i] = omp_get_thread_num(); 
} 
LIKWID_MARKER_STOP("foo"); 

} 
LIKWID_MARKER_CLOSE; 

§ cc -qopenmp -DLIKWID_PERFMON -I$LIKWID_INCLUDE -L$LIKWID_LIB 
-llikwid -dynamic test.c -o test.x

§ likwid-perfctr -C 0-3 -g MEM -m ./test.x

94

focus on specific code regions



Why isn’t LIKWID good enough?

§ LIKWID counts vector uops
§ KNL vuop counters aren’t…

o VL-aware
o precision-aware
o mask-aware
o FMA-aware

§ Counters don’t differentiate instruction types (FP, int, shuffle, …)
§ Flop counters were broken on Haswell.
§ Thus, LIKWID might be a good starting point, but its not perfect.
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Ø Need tools that actually count flops correctly and ones that can be 
used to understand nuances of instruction mixes.



Intel Software Development Emulator (SDE)

§ Dynamic instruction tracing
ü Accounts for actual loop lengths and branches
ü Counts instruction types, lengths, etc…
ü Can mark individual regions
ü Support for MPI+OpenMP
ü Can be used to calculate FLOPs (VL-, FMA-, and precision-aware)
✘ Post processing can be expensive.
✘ No insights into cache behavior or DRAM data movement
✘ X86 only
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https://software.intel.com/en-us/articles/intel-software-development-emulator

https://software.intel.com/en-us/articles/intel-software-development-emulator


Compiling with SDE at NERSC

§ Makefile…
MPICC = cc
CFLAGS = -g -O3 -dynamic -qopenmp -restrict -qopt-streaming-stores always  \

-DSTREAM_ARRAY_SIZE=400000000 -DNTIMES=50 \
-I$(VTUNE_AMPLIFIER_XE_2018_DIR)/include

LDFLAGS = -L$(VTUNE_AMPLIFIER_XE_2018_DIR)/lib64 -littnotify

stream_mpi.exe: stream_mpi.c Makefile
$(MPICC) $(CFLAGS) stream_mpi.c -o stream_mpi.exe $(LDFLAGS)

clean:
rm -f stream_mpi.exe

§ module load sde
make

97https://bitbucket.org/dwdoerf/stream-ai-example.git

https://bitbucket.org/dwdoerf/stream-ai-example.git


Running with SDE at NERSC

srun -n 4 -c 6 sde -ivb -d -iform 1 -omix
my_mix.out -i -global_region -start_ssc_mark
111:repeat -stop_ssc_mark 222:repeat -- foo.exe

§ -ivb is used to target Edison's Ivy Bridge ISA (for Cori use -hsw for Haswell or -knl for KNL processors)
§ -d specifies to only collect dynamic profile information
§ -iform 1 turns on compute ISA iform mix
§ -omix specifies the output file (and turns on -mix)
§ -i specifies that each process will have a unique file name based on process ID (needed for MPI)
§ -global_region will include any threads spawned by a process (needed for OpenMP)
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http://www.nersc.gov/users/application-performance/measuring-
arithmetic-intensity/

http://www.nersc.gov/users/application-performance/measuring-arithmetic-intensity/


Parsing the Output

§ When the job completes, you’ll have a 
series of files prefixed with “sde_”.

§ Parse the output to summarize the 
results…

./parse-sde.sh sde_2p16t*

§ Use the “Total FLOPs” line as the 
numerator in all AI’s and performance

§ Use the “Total Bytes” line as the 
denominator in the L1 AI

§ Can infer vectorization rates and 
precision
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$ ./parse-sde.sh sde_2p16t*
Search stanza is "EMIT_GLOBAL_DYNAMIC_STATS"
elements_fp_single_1 = 0
elements_fp_single_2 = 0
elements_fp_single_4 = 0
elements_fp_single_8 = 0
elements_fp_single_16 = 0
elements_fp_double_1 = 2960
elements_fp_double_2 = 0
elements_fp_double_4 = 999999360
elements_fp_double_8 = 0
--->Total single-precision FLOPs = 0
--->Total double-precision FLOPs = 4000000400
--->Total FLOPs = 4000000400
mem-read-1 = 8618384
mem-read-2 = 1232
mem-read-4 = 137276433
mem-read-8 = 149329207
mem-read-16 = 1999998720
mem-read-32 = 0
mem-read-64 = 0
mem-write-1 = 264992
mem-write-2 = 560
mem-write-4 = 285974
mem-write-8 = 14508338
mem-write-16 = 0
mem-write-32 = 499999680
mem-write-64 = 0
--->Total Bytes read = 33752339756
--->Total Bytes written = 16117466472
--->Total Bytes = 49869806228



Marking Regions of Interest for SDE
// Code must be built with appropriate paths for VTune include file (ittnotify.h) and 

library (-littnotify)
#include <ittnotify.h>

__SSC_MARK(0x111); // start SDE tracing, note it uses 2 underscores
__itt_resume();    // start VTune, again use 2 underscores

for (k=0; k<NTIMES; k++) {
#pragma omp parallel for
for (j=0; j<STREAM_ARRAY_SIZE; j++)
a[j] = b[j]+scalar*c[j];
}

__itt_pause();     // stop VTune
__SSC_MARK(0x222); // stop SDE tracing

100
http://www.nersc.gov/users/application-performance/measuring-
arithmetic-intensity/

!Essential when

analyzing Individual

kernels

http://www.nersc.gov/users/application-performance/measuring-arithmetic-intensity/


Intel Advisor
§ Includes Roofline Automation…

ü Automatically instruments applications
(one dot per loop nest/function)

ü Computes FLOPS and AI for each 
function (CARM)

ü AVX-512 support that incorporates masks
ü Integrated Cache Simulator1

(hierarchical roofline / multiple AI’s)
ü Automatically benchmarks target system 

(calculates ceilings)
ü Full integration with existing Advisor 

capabilities
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Memory-bound, invest into 
cache blocking etc

Compute bound: invest 
into SIMD,..

1Experimental Feature, the look and feel and exact behavior is 
subject for change

http://www.nersc.gov/users/training/events/roofline-training-1182017-1192017

http://www.nersc.gov/users/training/events/roofline-training-1182017-1192017


Intel® Advisor: 2-pass Approach
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Roofline:
X-Axis (AI): #FLOPs / #Bytes
Y-Axis (FLOP/s): #FLOP(mask-aware)/time Overhead
Step 1: Survey (-collect survey)
• Records run times
• User-mode sampling; non-intrusive
• No need for root access

1x

Step 2: FLOPs (-collect tripcounts –flops)
• Record #FLOPs, #Bytes, AVX512 masks
• Precise, instrumentation-based count of the number of 

instructions
• No need for root access

3-5x

(8-37x)1

1With Integrated Roofline (Cache Simulator) enabled.



Intel® Advisor: Roofline Automation
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Each Dot represents loop or 
function in YOUR APPLICATION 

(profiled)

Each Ceiling provides peak 
CPU/Memory throughput 

of your  PLATFORM (benchmarked)

Automatic and integrated – first class citizen in Intel® Advisor



NEW: Integrated Roofline

105

CARM (L1+NTS)
CPU perspective DRAM (ORM)

Not Memory 
bound

Some Locality

Highly 
optimized

All hotspots but 1
are not CPU-
bound

Full waveform Inversion. Seismic Workload
Data: Courtesy
Philippe Thierry



NEW: Integer, Float, Int+Float Rooflines
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Integrated Roofline Model
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Old Approach…
source advixe-vars.sh
advixe-cl -collect survey --project-dir ./your_project -- <your-executable-with-parameters> 
advixe-cl -collect tripcounts -enable-cache-simulation -flop --project-dir ./your_project -- <your-

executable-with-parameters>

New Approach (but not compatible with MPI)…    
source advixe-vars.sh
advixe-cl -collect roofline -enable-cache-simulation --project-dir ./your_project -- <your-

executable-with-parameters> 

(optional) copy data to your UI desktop system
advixe-gui ./your_project

https://software.intel.com/en-us/articles/integrated-roofline-model-with-intel-advisor

https://software.intel.com/en-us/articles/integrated-roofline-model-with-intel-advisor


Advisor on NERSC’s Cori
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§ http://www.nersc.gov/users/software/performance-and-debugging-tools/advisor/

module load advisor/2018.integrated_roofline
cc -g -dynamic -openmp -O2 -o mycode.exe mycode.c

§ Best to run advisor only on rank 0... srun calls a script like…

#!/bin/bash
if [[ $SLURM_PROCID == 0 ]];then
advixe-cl -collect=survey --project-dir knl-result -data-limit=0 -- ./a.out
else
sleep 30
./a.out
fi

http://www.nersc.gov/users/software/performance-and-debugging-tools/advisor/


Tools for Roofline 
Analysis on GPUs
slides provided by Charlene Yang (CJYang@lbl.gov)



Roofline on GPUs (Overview)

§ Use ERT to obtain empirical Roofline ceilings 
o compute: FMA, no-FMA
o bandwidth: system memory, device memory, L2, L1

§ Use nvprof to obtain application performance
o FLOPs: active non-predicated threads, divides-aware
o bytes: read + write; system memory, device memory, L2, L1
o runtime: --print-gpu-summary, --print-gpu-trace  

§ Plot Roofline with Python and Matplotlib
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Characterizing NVIDIA GPUs

§ Empirical Roofline Toolkit (ERT)

§ https://bitbucket.org/berkeleylab/cs-roofline-

toolkit/

§ Sweeps through a variety of configurations: 

o 1 data element per thread -> multiple

o 1 FLOP operation per data element -> multiple

o number of threadblocks/threads

o number of trails, dataset sizes, etc
§ Four components

o Driver.c, Kernel.c, configuration script, and job script
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https://bitbucket.org/berkeleylab/cs-roofline-toolkit/src/master


Characterizing GPU-accelerated Applications
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§ Three measurements: Time, FLOPs, Bytes (on each cache level)

§ Runtime: 
o time per invocation of a kernel

nvprof --print-gpu-trace ./application args
o average time over multiple invocations 

nvprof --print-gpu-summary ./application args
o same kernel with different input parameters are grouped separately 

Performance = +,-./0 FLOPs
Runtime , Arithmetic Intensity = +,-./0 FLOPs

+,-./0 Data Movement



Characterizing GPU-accelerated Applications
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§ FLOPs:
o predication aware, and divides aware, dp/dp_add/dp_mul/dp_fma, sp*

nvprof --kernels ‘kernel_name’ --metrics ‘flop_count_xx’ ./application
§ Bytes for different cache levels to construct hierarchical Roofline

nvprof --kernels ‘kernel_name’ --metrics ‘metric_name’./application
o Bytes = (read transactions + write transactions) x transaction size

Memory
Level Metrics Transaction 

Size
L1 Cache gld_transactions, gst_transactions 32B
L2 Cache l2_read_transactions, l2_write_transactions 32B

Device Memory dram_read_transactions, dram_write_transactions 32B

System Memory
system_read_transactions, 
system_write_transactions 32B



Example Output
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§ [cjyang@voltar source]$ nvprof --kernels "1:7:smooth_kernel:1" --metrics flop_count_dp --metrics 
gld_transactions --metrics gst_transactions --metrics l2_read_transactions --metrics l2_write_transactions 
--metrics dram_read_transactions --metrics dram_write_transactions --metrics sysmem_read_bytes --metrics 
sysmem_write_bytes ./backup-bin/hpgmg-fv-fp 5 8

§ Can collect all metrics at once or one at a time (slowdown)
§ Output in CSV; Python/Excel for multiple output files



Plotting Rooflines of NVProf Data
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§ Python scripts using Matplotlib
https://github.com/cyanguwa/nersc-roofline/tree/master/Plotting

§ Simple example: plot_roofline.py data.txt
§ Tweaking needed for more sophisticated plotting, see examples

data.txt

# all data is space delimited
memroofs 828.758
mem_roof_names 'HBM’
comproofs 7068.86 3535.79
comp_roof_names 'FMA' ’No-FMA’

# omit the following if only plotting roofs
# AI: arithmetic intensity; GFLOPs: performance
AI 2.584785579
GFLOPs 2085.756683
labels ‘FMA, nw=1’

https://github.com/cyanguwa/nersc-roofline/tree/master/Plotting


HBM Roofline on GPUs
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§ Use BerkeleyGW Proxy app GPP 
to see GPU effects

§ HBM Roofline
§ AI increases as nw grows
§ bandwidth bound à

compute bound
§ Disable FMA in the compiler…

o (-fmad=true/false)
o “No-FMA” converges to its ceiling
o But FMA doesn’t 



Hierarchical Roofline on GPUs
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§ GPP is HBM bound
§ L1/L2 performance far from L1/L2 

ceiling

§ FLOPs are proportional to nw
§ Increase in HBM AI → 

HBM bytes approx. constant
(good L2 locality)

§ Slow increase in L2 AI → 
L2 bytes increase for nw>1 
(poor L1 locality)

§ Increase in L1 AI → 
L1 bytes approx. constant
(good register file locality)



Summary



Summary

§ Performance Models
§ Roofline Model
§ Tools for Roofline Analysis…
o Machine Characterization (ERT)
o Using LIKWID to access performance counters
o Using SDE to get more accurate FLOP counts
o Using Advisor to provide a single tool that integrates cache simulation and accurate FLOP 

counts.
o Using NVProf to affect Roofline on GPUs
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Questions?



Backup



Hierarchical Roofline vs.
Cache-Aware Roofline

…understanding different Roofline 
formulations in Advisor



There are two Major Roofline Formulations:
§ Hierarchical Roofline (original Roofline w/ DRAM, L3, L2, …)…

• Williams, et al, “Roofline: An Insightful Visual Performance Model for Multicore Architectures”, CACM, 2009 
• Chapter 4 of “Auto-tuning Performance on Multicore Computers”, 2008
• Defines multiple bandwidth ceilings and multiple AI’s per kernel

• Performance bound is the minimum of flops and the memory intercepts (superposition of original, single-metric Rooflines)

§ Cache-Aware Roofline
• Ilic et al, "Cache-aware Roofline model: Upgrading the loft", IEEE Computer Architecture Letters, 2014
• Defines multiple bandwidth ceilings, but uses a single AI (FLOP:L1 bytes)

• As one looses cache locality (capacity, conflict, …) performance falls from one BW ceiling to a lower one at constant AI
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§ Why Does this matter?
• Some tools use the Hierarchical Roofline, some use cache-aware == Users need to understand the differences
• Cache-Aware Roofline model was integrated into production Intel Advisor

• Evaluation version of Hierarchical Roofline1 (cache simulator) has also been integrated into Intel Advisor

1Technology Preview, not in official product roadmap so far.
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Cache-Aware RooflineHierarchical Roofline
§ Captures cache effects§ Captures cache effects

§ Single Arithmetic Intensity§ Multiple Arithmetic Intensities
(one per level of memory)

§ AI independent of problem size§ AI dependent on problem size
(capacity misses reduce AI)

§ AI is FLOP:Bytes as presented to the L1 
cache (plus non-temporal stores)

§ AI is FLOP:Bytes after being filtered by 
lower cache levels

§ Memory/Cache/Locality effects are 
observed as decreased performance

§ Memory/Cache/Locality effects are 
observed as decreased AI

§ Requires static analysis or binary 
instrumentation to measure AI

§ Requires performance counters or 
cache simulator to correctly measure AI



Example: STREAM
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#pragma omp parallel for
for(i=0;i<N;i++){

Z[i] = X[i] + alpha*Y[i];
}

§ L1 AI…
• 2 flops
• 2 x 8B load (old)
• 1 x 8B store (new)
• = 0.08 flops per byte

§ No cache reuse…
• Iteration i doesn’t touch any data associated with 

iteration i+delta for any delta. 

§ … leads to a DRAM AI equal to 
the L1 AI



Example: STREAM
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Cache-Aware RooflineHierarchical Roofline

Peak FLOP/s

DRAM G
B/sA
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Arithmetic Intensity (FLOP:Byte)
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L1
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B/s

Multiple AI’s….
1) FLOP:DRAM bytes
2) FLOP:L1 bytes (same)

Peak FLOP/s
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B/sA
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P
/s
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Arithmetic Intensity (FLOP:Byte)
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Single AI based on FLOP:L1 bytes

Observed performance
is correlated with DRAM
bandwidth

Performance is bound to
the minimum of the two
Intercepts…

AIL1 * L1 GB/s
AIDRAM * DRAM GB/s



Example: 7-point Stencil (Small Problem)
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#pragma omp parallel for
for(k=1;k<dim+1;k++){
for(j=1;j<dim+1;j++){
for(i=1;i<dim+1;i++){

int ijk = i + j*jStride + k*kStride;
new[ijk] = -6.0*old[ijk ]

+ old[ijk-1      ]
+ old[ijk+1      ]
+ old[ijk-jStride]
+ old[ijk+jStride]
+ old[ijk-kStride]
+ old[ijk+kStride];

}}}

§ L1 AI…
• 7 flops
• 7 x 8B load (old)
• 1 x 8B store (new)
• = 0.11 flops per byte
• some compilers may do register shuffles to reduce the 

number of loads.

§ Moderate cache reuse…
• old[ijk] is reused on subsequent iterations of i,j,k
• old[ijk-1] is reused on subsequent iterations of i.
• old[ijk-jStride] is reused on subsequent iterations of j.
• old[ijk-kStride] is reused on subsequent iterations of k.

§ … leads to DRAM AI larger than 
the L1 AI



Example: 7-point Stencil (Small Problem)
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Cache-Aware RooflineHierarchical Roofline

Peak FLOP/s
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Multiple AI’s….
1) FLOP:DRAM ~ 0.44
2) FLOP:L1 ~ 0.11

Performance bound is
the minimum of the two



Example: 7-point Stencil (Small Problem)
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Cache-Aware RooflineHierarchical Roofline

Peak FLOP/s
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Single AI based on FLOP:L1 bytes

Multiple AI’s….
1) FLOP:DRAM ~ 0.44
2) FLOP:L1 ~ 0.11

Observed performance
is between L1 and DRAM lines
(== some cache locality)

Performance bound is
the minimum of the two



Example: 7-point Stencil (Large Problem)
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Cache-Aware RooflineHierarchical Roofline

Peak FLOP/s
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Multiple AI’s….
1) FLOP:DRAM ~ 0.20
2) FLOP:L1 ~ 0.11

Capacity misses reduce
DRAM AI and performance

Observed performance
is closer to DRAM line
(== less cache locality)



Example: 7-point Stencil (Observed Perf.)
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Cache-Aware RooflineHierarchical Roofline

Peak FLOP/s
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is tied to the bottlenecked resource
and can be well below a cache
Roofline (e.g. L1).

Observed performance
is closer to DRAM line
(== less cache locality)



Example: 7-point Stencil (Observed Perf.)
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Cache-Aware RooflineHierarchical Roofline
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