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Abstract—The growing scientific demands of climate predica-
tion and climate projection have promoted to manage the com-
putational resources of climate model rationally. The Community
Earth System Model (CESM) is one of the state-of-the-art and
the most widely-used coupled models for simulating the earth
system. Although considerable effort has been put to improve
the scalability of single component, CESM is still struggling with
the poor performance due to load balance across components.
To solve this problem, an easy-used and easy-ported auto-tuning
framework named CESMTuner is proposed in this paper. It
targets to reduce the time consumed of CESM as much as possible
by looking for the optimal process configuration. In which, a
novel process layout searching algorithm is presented that can
look for the optimal process count of each component as well
as the best process layout across components simultaneously.
Moreover, a lightweight and accurate performance model is built
to reduce searching overhead effectively. With the evaluation
over TianHe-1A, CESMTuner can achieve 58.49% performance
improvement compared to the widely-used sequential process
layout and achieve 38.23% performance improvement compared
to the heuristic branch and bound algorithm based on the
performance model of simply fitting each component’s runtime.

Keywords: auto-tuning; CESM; load balance; processor allo-
cation; performance prediction

I. INTRODUCTION

As the climate change has become a pivotal topic in both

industry and science, coupled models have been developed

into an indispensable tool for climate and projection of an-

thropogenic activities on the earth climate. The challenge of

climate simulation is due to that it involves a large number

of physical processes interacting over a large range of space

and time scales. The finer grid mesh and larger number of

physical processes with more complicated theories, which

leads to significantly increased demand for computing power.

Especially it always runs for long-term simulation, typically

decades, centuries, and sometimes even millennium.

The Community Earth System Model (CESM)[1] is one of

the state-of-the-art and the most widely-used climate models,

which is developed and maintained for over nearly 30 years

by the National Center for Atmospheric Research (NCAR).

It has been regarded as one of the killer applications of

the modern supercomputers, such as TITAN, TianHe-1A[2].

Moreover, it is one of the most popular high performance

applications ported to both highend system and local clusters

all over the world. Now the latest version of CESM is 1.2.0, it

normally contains seven components on potentially different

grids of atmospheric general circulation model, ocean general

circulation model, land surface model, sea ice model, land

ice model, river transport model and ocean wave model,

which exchange boundary data with each other via a coupler

component. According to the report from National Energy

Research Scientific Computing Center(NERSC) [3], CESM

has been awarded 30M hours for anticipating the climate

change research in 2013, and the estimated need will increase

to 800-1000M hours with the scientific simulations for the

resolution changing from 1 to 0.25 degree in 2017.
So far, a lot of works have been done targeting the scal-

ability of stand alone component. Worley[4] and Alexeev[5]

presented a comprehensive theory analysis of the performance

optimization of each component from a practical view. Tony

Craig et al. analyzed the factors of computational performance

of CICE [6]. Dennis et al. studied the scalability of the

atmosphere component with high resolution[7] and demon-

strate the performance of the physical processes in differ-

ent parameter configurations under different load balancing

strategies[8]. They also conducted the scalability researches

on the scalability of different dynamical cores in the atmo-

sphere model[9][10]. As to POP, there were quite a lot of

work on analyzing the impacts of grid partitioning and the

corresponding scalability[11][12][13][14].
The poor performance of CESM lies in the complex inter-

action between components and their diverse computational

characteristics. Only increasing the process count can not

satisfy the performance requirements. The experiments show

36.8% performance improvement was achieved by rearranging

process layout across components from a sequential run to

make the atmosphere, land and ice components shared the

same process set (as shown in Figure 1). Tuning CESM by

manpower in such case is unrealistic. According to the widely-

used of CESM and a variety of potential applications with

CESM, it is better to design and implement an easy-used and

effective tool, which can help the user community improving

the performance of CESM. However, it is not easy to get

the optimum process configuration effectively in practice. In

summary, the main challenges of tuning CESM include:

• Huge searching space. The diverse combinations of

both process layout across components and process count
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ATM  108

LND 36 ICE  72

CPL  108

OCN  32
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ATM  144

LND 144

ICE  144

CPL  144

OCN  144

Processors

Time

Simulated years per day: 5.031 Simulated years per day: 6.881

Fig. 1: Performance improvement by rearranging the

component layout.

contribute to the huge searching space, which challenges

the design of efficient optimization algorithm.

• High overhead of CESM runs. There usually take days

and even months for one CESM run. Sampling-based

optimization algorithm will suffer from the high overhead

of CESM runs. We need to build a lightweight and

effective performance model, emulating the performance

behavior of CESM on certain platform.

• Difficulty of tool development: Effectively profiling and

analyzing complex computation and communication be-

haviors bring the challenges of designing and implement-

ing an easy-used and easy-ported auto-tuning tool.

In this paper, we propose an easy-used and easy-ported auto-

tuning framework named CESMTuner, which has been inte-

grated into the script system of CESM. In CESMTuner, a novel

process layout search algorithm is presented to solve the mixed

integer nonlinear programming problem arises from searching

the best process configuration. Moreover, a lightweight per-

formance model is proposed to quickly and accurately predict

the running time of each CESM component by quantifying the

computation and communication performance behaviors of the

important kernels in each component. In summary, the main

contributions of this work are:

• Building an easy-used and easy-ported auto-tuning frame-

work for searching the best process configuration of

CESM. The auto-tuning tool has been integrated into

the existing script system and can be used in different

applications of CESM. Even an inexperienced CESM

user can easily use this tool to improve the computational

performance of CESM. We get over 58% performance

improvement compared to the widely-used sequential

process layout and achieve 38.23% performance im-

provement compared to the heuristic branch and bound

algorithm [15] on TianHe-1A.

• An accurate and lightweight performance model for

CESM components. It avoids the long-term CESM simu-

lations while keeping high predicting accuracy. Compared

to the performance model used in[15], our performance

model focuses on predicting the running times of different

components and takes the computation and communica-

tion of the important kernels in each component into

account separately which keeps the model simplicity

while getting better accuracy of prediction. With the

evaluations using TianHe-1A and local cluster, the model

error can be reduced to 10% compared to the performance

model of simply fitting each component’s runtime [15]

with the profiling overhead is only of 8% in total.

• A novel process layout search algorithm which reduces

the searching overhead largely. We take the optimal pro-

cess count of each component as well as the best process

layout across components into account simultaneously

and use the improved branch and bound ideology method

to further enhance the searching efficiency. The overhead

of the searching strategy is less than 1% on TianHe-1A.

The rest of this paper is organized as follows. Section II

provides an overview of CESM and the corresponding compu-

tation and communication characteristics of each component.

In Section III, we introduce the process layout searching

algorithm, the performance modeling of CESM components

and the implementation of CESMTuner. Following a brief

introduction of TianHe-1A and TH-HPCA, and the experiment

results are presented as well as the analysis of the performance

results in Section IV. Section V is a summary of the related

work in performance tuning and performance modeling. Sec-

tion VI concludes the paper and presents the future work.

II. THE ANALYSIS OF CESM

CESM is a complex software comprised of a system of

multi-geophysical components, which periodically exchange

two-dimensional boundary in the coupler. It consists of the

atmosphere,ocean, land surface, sea ice, river transport, ocean

wave and land ice and the coupler. Except the land ice and

ocean wave are stub components, they all support to execute

in dynamic model or data model which can satisfy with the

different research purposes.The components and the coupler

run simultaneously as a multi-program-multi-data (MPMD)

message passing system, using MPI to exchange data which al-

ways exhibits irregular computation loads and communication

patterns. Achieving maximum possible performance on CESM

is more challenging than ever due to the increasing complexity

of MPMD parallel scientific program and its interaction with

the underlying hardware. We conducted the experiments using

CESM1.2.0 coupling with the Parallel Ocean Program version

2 (POP2.0) [16], the Community Atmosphere Model Version

5(CAM5.0) [17], the Community Land Model Version 4

(CLM4.0) [18], the Los Alamos sea ice model version 4

(CICE4.0) [19] and the river transport model (RTM) [20]. A

new WAV model is introduced to CESM1.2 with initial support

as the stub and dead versions.

The atmosphere component is characterized by two phases:

the dynamics, which expresses the evolutionary equations for

the atmospheric flow, and the physics which approximates

subgrid-scale phenomena. These two phases are executed in

turn during each simulation timestep. In the dynamics, update

halo and computation of integration are the main cost. To
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balance the computational load as well as minimizing update

halo cost, space-filling curve is used to map the basic elements

from finite-volume grid to the processor. In the physics, the

computation cost occupies the entire cost. Each timestemp of

POP is divided into two phases: baroclinic and barotropic. The

baroclinic phase utilizes an explicit time integration method

for the three-dimensional fluid equations which is a typical

CPU-bound program. The barotropic phase uses precondi-

tioned conjugate gradient method to solve the two-dimensional

surface pressure which contains a large amount of update-

halo operation and global communication MPI Allreduce.

CLM is a single column model with nested subgrid hierarchy

whose grid cells are composed of multiple landunits, each

has multiple snow/soil with multiple plant functional types.

The grid columns are grouped into blocks of nearly equal

computational cost and these blocks are subsequently assigned

to MPI processes. Each process has only one block with

MPI-only parallelism. A two-dimensional grid in horizontal

is the representation to CICE, and the vertical direction is on

behalf of sea ice thickness. Its computational cost is mainly

manifested in the constantly grid changing both spatially and

temporally over a climate simulation which also bring the

load imbalance. While CICE4.0 applies a rake algorithm to

improved load balance across processors, and redistribution

based on space-filling curves.

III. APPROACH AND IMPLEMENTATION

To construct the auto-tuning framework CESMTuner,

we have to solve the mixed integer nonlinear program-

ming(MINLP) problem as below.

min
p≤P

T (component, layout, process count) (1)

where P represents the maximum number of computing

nodes for searching, function T(.) is the running time of

the whole CESM along with the critical path, which can be

determined by both process layouts across components and

process count for each component. The component, layout and

process count are the decision variables, where process count
is required to be integer valued. Due to complex interaction

between component code and the underlying hardware, the

running time of each component is a nonlinear function of

the process count. Furthermore, there are a large number of

possible process layouts across components, which make the

problem more difficult to solve than ever. Such problem is

not feasible to solve with the traditional optimization method

for huge searching space. Different from the traditional op-

timization method enumerates all possible solutions and then

determines which one is the best, we use depth first search

(DFS) method combining with branch and bound ideology

method to solve the MINLP. Moreover, we have two choices

to get the function between running time and the process

count of each component. One is to perform a component run

with certain process count and to record the corresponding

computational time, which is unaffordable because of taking

days even months for one run. The other one is to build

an efficient and lightweight performance model to guide the

load balancing decisions. In this paper, we mainly focus on

modeling the key kernels of each component separating the

running time into computation part and communication part.

Thus it can ensure the accuracy of performance model while

can prevent the large overhead of fine-grained performance

modeling.

A. The novel process layout search algorithm

Branch and bound ideology algorithm is a typical method to

solve the MINLP problem as well as to find optimal solutions

of various optimization problems, especially in discrete and

combinatorial optimization. In CESMTuner, it is an especially

complicated situation that we have to consider both process

count of component and process layout at the same time. we

propose a novel process layout search algorithm for the best

process configuration of CESM, and we use branch and bound

algorithm to ensure the efficiency of the optimization process.

As shown in Figure 2, the DFS algorithm begins with the

state in which no component has been started, then we try to

fill any possible component starting at the beginning time point

with all possible number of processes. In the searching node

of next level (for example, the left node of level-2 in Figure

2), the end time points of all placed components have been

recorded (including the end time point of LND component is

recorded as well as the beginning time point in Figure 2) and

we try to perform the same placement process with any other

component starting from all possible end time points already

recorded later than the starting point of last level (for example,

the OCN component can be started from the end time point of

LND component or the beginning time point in Figure 2). It

is noted that the sequence of component placement should be

recorded for avoid searching the same process configuration

multiple times. By using this method, we can search all the

possible process counts and process layouts and get an optimal

one.

Fig. 2: The overview of the DFS tree. The x-axis is the

parallelism and the y-axis is time. Each node represents a

series of nodes with the same layout but with the different

process count. It is noted that we only take one node as an

example to expand in each depth.

Several useful pruning strategies strongly reduce the running

284284284284284284284



time of our algorithm. Both theoretical pruning method and

experimental ways are used:

• Time pruning. Pruning the branches where the time cost

in the current state is larger than the shortest time so far.

• Searching order. Adjusting the search sequence of pro-

cess count in descending order. This can avoid searching

the process counts that are smaller ones can meet the

conditions in the first pruning strategy.

• Scientific dependency between components. Avoiding

the scenarios that the atmosphere model runs parallel

with the ICE and LND models for the computational

dependency between those components.

• Stopping searching when larger process count than
the best parallelism. Preventing the ICE and LND com-

ponents from using their best performance because the

performance of the ICE and LND will get decreased when

they have more processes than the best parallelism.

• Large stride processor unit for searching. Stipulating

the unit of processes allocated to each component equals

to multiple of the processor number in one node when

using large parallelism, which can reduce the searching

time, as well as can reduce the communication overhead

across nodes.

These strategies mentioned above reduce the time consum-

ing greatly. But the novel process layout search algorithm still

costs a lot of time when the number of available processors

is increased to hundreds of thousand. We further propose a

novel process layout searching algorithm, which first uses

large stride of process count to get coarse-grain solution and

then refine the solution with local optimization.

B. Performance modeling of CESM

The most time-consuming components are the OCN, ATM

and ICE components in Figure 3. The LND component and

the coupler have a relatively small effect on the overall perfor-

mance. The RTM nearly has no effect on the CESM timing.

Without loss of generality we focus on the relatively detailed

performance models of the POP, CAM and ICE components

and use a simple modeling method for CLM component. The

time of CPL is mainly used for synchronization due to the

load imbalance and the computation dependency.

The performance model of curve-fitting presented in [15]

got impressive accuracy while keeping the simplicity for FMO

computation. However, as shown in Figure 4, the model error

can be up to 46% with this method. To solve the problem,

we try to build a more accurate and lightweight performance

model for CESM components based on the fact that there only

are a few computation and communication patterns dominated

the performance behaviors of climate models like CESM. We

focus on predicting the running time of each components and

takes the computation and communication kernels in each

component into account separately which keeps the simplicity

of the models while getting better accuracy of prediction. For

the computation part of POP, CAM and ICE, we use the

fitting approach to predicted the computation time, because the

Fig. 3: The time proportion of CESM components(B1850,

f19 g16)for one month simulation on TH-HPCA.

computation part have to take charge of the initialization, final-

ization and the load imbalance, and it can fit the Amdahl’s law

perfectly. For the communication pattern is mainly composed

of update halo which we associated the total communication

size with the time cost. Here we don’t model the performance

of individual messages due to the large overhead and the

difficulty on the accurate concurrency analysis.

Fig. 4: The error of simple performance model on

TianHe-1A. The x-axis is the parallelism and the y-axis is

performance model error percentage. The component

performance model error is 46% and the total prediction

error is 26%.

In POP, the explicit three-dimensional baroclinic solver is

the most computationally intensive while the preconditioned

conjugate gradient solver for the barotropic process consists of

a two-dimensional nine-point stencil operator with many small

message update-halo and relatively few floating point opera-

tions and global reductions. In CAM, the dynamics contains

computation and the irregular neighborhood communication.

The main job for physics process is to compute in each

independent cell column. By the diversity of regions, each

column may assign to different amount of workloads. The

ICE acts as a barrier between the polar atmosphere and the

ocean to hinder flux exchange including heat, greenhouse gas

and so on. The main cost of ICE is the dynamics run. Update-
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halo of ICE is the critical part with major irregularity and the

computation of ICE only lies in where there is sea ice.

The performance model is generally established by depict-

ing the performance of each computational and communica-

tion kernels in Figure 5. Note that the ICE communication has

a different tendency with others, it is due to the serious load

imbalance.

Kernel Computational  
Characteristic

Communicational
Characteristic

Model Description

computation communication

POP

baroclinic Update Halo

T= a/p+b *p^c+ d

Thalo=(a*Stotal+b)/P
Tglo=a*logP+b

barotropic
Update Halo

Global 
communication

CAM
dynamic Update Halo T=(a*Stotal+b)/P

physics

CICE dynamic Update Halo T=a*Stotal^b

CLM Global 
communication

T=a/p+b *p^c+ d

Simply fitting 
according 
the Amdahl's 
law 

Fig. 5: The performance model of CESM.

The performance model of computation part can be built

based on the basis of Amdahl’s law. In our performance

model, the computation time of different components can be

associated with parallelism suggested by [15].

T (p) = a/p+ b× pc + d (2)

Where a,b,c and d is the model parameters, p is the process

count. As for communication, update halo and the global

communication are the two important patterns in CESM.

Update halo is the communication pattern widely-use in ev-

ery component. Global communication is the main part in

barotropic of POP which is given priority to MPI AllReduce.

MPI AllReduce is implemented by a kind of binary tree

algorithm to gather the data and to perform the calculation and

then to broadcast the final result to each process, whose timing

can be fit into the log curve. With the increasing parallelism

of strong scaling experiment, message size of each process de-

creases while the total message count is increasing, it is quite a

hard rock for performance modeling because the complexity of

both processing messages in queue system and exploiting the

concurrency of messages cannot be accurately modeled using

the timing of individual message in one process. We try to

use an overall modeling approach for update-halo operation

to reduce the negative effect of the performance deviation

aggregating individual message deliveries. It is worth noting

that launching vary processor number in one node shares the

similar trend.

C. Implementation of CESMTuner

CESMTuner consists of four modules: Performance Model
Builder, Layout Optimization, Layout Configuration and Time
Parser, which can be integrated into the existing script system

of CESM, as shown in Figure 6.

Fig. 6: Overview of CESMTuner

A lightweight performance model is built in Performance
Model Builder module to predict the running time of each

component which supports on-line and off-line use to deter-

mine the parameters of the performance model. For the on-

line use, CESMTuner will perform at least 12 five-day simu-

lations including four sampling parallelism and each having

three repeated runs. The Layout Optimization module take

charge of auto-tuning CESM process layout which combines

the depth first search algorithm and the branch and bound

algorithm to ensure the effectiveness of the tool. Time Parser
module uses mpiP[21] to capture the performance behaviour of

communication. At the same time, we use the model timing

outputs produced by CESM itself for getting time costs of

each component. Layout Configuration module reformulates

the existing env mach pes.xml script using the optimal pro-

cess configuration we get.To build the performance model,

sampling and analysis procedure is conducted automatically in

CESMTuner. We use mpiP to trace the communication time

as well as the message size. To reduce the overhead of trace

collection, we use MPI Pcontrol to limit the scope of profiling

measurements to specific regions of CESM. It will reduce the

overhead from 13% to 6.6%. In which, we first locate the code

positions need to be measured. Then MPI Pcontrol(1) and

MPI Pcontrol(0) are put at the beginning and the end of these

code segments. To collect profiling from different kernels with

the same CESM run, we can classify the communication traces

from different kernels using the identifications of File/Address,

Line Parent Funct and MPI Call.

IV. EXPERIMENTS AND RESULTS

We evaluate CESMTuner over two platforms as shown in

Table 1. TH-HPCA is a dedicated-use cluster which only

has 16 compute nodes for total 192 cores. As a petascale

supercomputer, TianHe-1A features an MPP architecture of

hybrid CPU-GPU computing. Note in this work we only use

CPU to run CESM. A proprietary high-speed interconnection

network, the TH-net, is designed and implemented to enhance

the communication capabilities of the system. The topology of

the TH-net is an optoelectronic hybrid, hierarchical fat tree.

The MPI implementation on the TianHe-1A is customized
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TianHe-1A TH-HPCA
CPU 2× Intel Xeon X5670 (6

cores)
2× Intel Xeon X5650 (6

cores)
Frequence 2.93GHz 2.67GHz
Complier icc 11.1 icc 11.0.069

MPI MPICH2 Version 1.4.1p1 Intel MPI Version 3.2
File

System
Lustre NFS

Network TH-net InfiniBand QDR
Node

Number
7168 16

TABLE I: Information of the two platforms

to achieve high-bandwidth and low latency data transfers. It

is worth noting that TianHe-1A is shared-use supercomputer

during CESMTuner evaluation.

We selected B1850 f19 g16 as the performance test case,

which is the control run experiment of the IPCC AR5

experiments[22]. B1850 represents all active components for

pre-industrial simulation. It is used to get the climate model

into a stable state before any historical experiments and

projection experiments. The running time of this experiment

is expected to be as short as possible.It is also the opti-

mization objective of CESMTuner. f19 g16 represents the

atmosphere and land surface models with 1.9x2.5 degree

horizontal resolution (144x96 computational gird) are coupled

with the ocean and sea ice models using a normal 1 degree

horizontal resolution (384x320 computational grid). During

the performance experiments on these 2 systems, the output

of CESM is turned off due to large disturbance of I/O .

A. Performance Model Validation

The parameters of our performance model can be fitted by

profiling the runs using 12, 64, 108 and 128 cores on TH-

HPCA, as listed in Figure 7. And the total communication

cost of the experiment can be obtained by profiling tool mpiP

and the computation cost of the experiment can be got by

CESM timing outputs. Figure 8 shows the time predictions

according to the performance model for fully sequential one-

month simulation of CESM on TH-HPCA. And Figure 9 gives

the time predictions for sequential one-month simulation of

CESM on TianHe-1A.

computation communication

a b c d a b

OCN

Baroclinic 0.046 -1 -8.312 0 0.274 0.052

Barotropic

Update
halo -0.003 47.68 0 0

2.807e-010 0.5737 

global 62.61 -1406

ATM
dynamic 0.104 24.45 0 0 1.16e-005 38.98

physics 180 -1.404 3.667 0

ICE 1.064e+004 -1.878 0 0 8.982e+014 -2.152

LND a=85.94 b=-0.69 c=778.7 d=0

Fig. 7: Parameters of the performance model over TH-HPCA

As shown in Figure 8 and 9, the relative error of the

performance model is mostly less than 10% while most of

the cases in performance model presented in [15] is larger

than 20%, which proves that the proposed performance model

can get more accurate performance results than curve-fitting

model over whole component perspective. Due to well-reduced

profiling mechanism, the overhead of our performance model

is less than 7% compared with no-profiling run, which is

feasible to use during tuning CESM. We consider the errors of

our performance model might lie in two folds. The first one is

the ignorance of non-critical parts of CESM component in our

performance model which give rise to 5% the model error. The

second one is the interaction between software and hardware

such as memory and communication contention in the system

that is hard to capture accurately in performance model. It is

noted that the errors over TianHe-1A is less than those on the

dedicated-use TH-HPCA is still under investigation.

We conduct a 500-years experiment on TH-HPCA which

takes 45.7 days, while the predicted time using our perfor-

mance model and profiling strategy is 42.8 days with 6.26%

prediction error. This suggests shorter-simulation samples can

satisfy the predicition precision. With a lot of experiments,

we carry out the performance model by five-day simulations

along with mpiP profiling.

B. Performance Tuning of CESM

The performance tuning of CESM over TH-HPCA and

TianHe-1A can be found in Figure 10(a) and 10(b). On TH-

HPCA, the simulated years per day can increase to 12.19 years

with the increase of parallelism while the fully sequential run

can only get 10 years with 144 cores and get decrease to 6.3

years with 192 cores. The detailed analysis shows that the

optimal process configuration has a reduce of communication

time by 62.85%. The similar results can be found on TianHe-

1A. When process count equals to 360, the optimum process

configuration is different than the other parallelism. This is

because LND and ICE components both achieve the best

performance with 168 cores, CESMTuner can figure out the

feature and make these two components use the maximum

process count simultaneously to get better performance.

Figure 10(c) shows the performance improvement by using

CESMTuner compared to using the curve-fitting performance

model in [15]. Note that a remarkable performance improve-

ment by 38.23% can be achieved with CESMTuner compared

to curve-fitting one. Although the process layouts across the

components are pretty the same with our results, the process

count are different between two methods. It is obviously to

note that the accuracy of performance model has a consider-

able influence on performance tuning of CESM.

V. RELATED WORK

Performance modeling and auto-tuning have been and con-

tinue to be of great practical and theoretical importance.

A heuristic static load-balancing algorithm applied to the

Fragment Molecular Orbital (FMO) Method in reference[15]

along with a curve-fitting based performance model. Although
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Fig. 8: The model error on TH-HPCA is around 10%. Fig. 9: The model error on TianHe-1A is around 6%.
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Fig. 10: The performance tuning of CESM. (a) is the result on TH-HPCA.With the parallelism increasing, the component

layout varies and the performance continues to improve. Such achievement lies in the layout can well overlap the

computation and communication time. (b) is the result on TianHe-1A. With the parallelism increasing, the performance

improvement get increased from 144 cores to 480 cores. (c) shows that CESMTuner can achieve 38.23% performance

improvement compared to the curve-fitting performance model.

their performance model has low overhead, the model accuracy

cannot be satisfying due to the lack of considering the kernel

characteristics and the hardware and software interaction, the

error of their performance model can achieve even up to 46%,

which leads to 38.23% performance decrease when using the

model for CESM tuning. Furthermore, their heuristic load

balance strategy had the limitation of not taking the process

layouts across components into account at all while the process

layout issue has been proved to be critical in the coupled

climate model. A processor allocation strategy was proposed

in [7] for ultra-high-resolution CESM while the performance

impact of different layouts did not be addressed. D. Kimet
al. targeted the dynamical load balancing for CCSM [23],

while the approach strongly depends on the Malleable MCT

environment. There was some work focusing on the perfor-

mance prediction framework for undeliverable machines in

[24] which gives us the inspiration for designing CESMTuner.
While there is a spectrum of different approaches for

performance modeling. Tracing data method [25] is often used

to predict performance while it always comes with larger

overhead. Construct probabilistic model to predict parallel

performances by analyzing the runtime distribution of the

sequential runs [26] with the limitation that the expectation of

the minimum distribution must be able to compute. Kim et al.

predicted the potential speedup of serial code by constructing

a memory performance model [27], but the communication

contention was not addressed, which is not suitable for CESM

contains large amount of communication. Kerbysonet al. [28]

built a fine-grained sample-based performance model for the

POP in the fat-tree InfiniBand network. It is not suitable for

CESMTuner with the large overhead as well as not practice

to use for the whole CESM package.

In CESMTuner, we build a lightweight and accurate per-

formance model of CESM qualifying the computation and

communication of important kernels separately and propose

the effective process layout search algorithm taking account

of both process counts of each component and process layout

across components. The evaluations show our final design of

CESMTuner can achieve 58.49% performance improvement

compared to the sequential process configuration while only

introducing the profiling overhead of 8%.

VI. CONCLUSION

CESM is one of the state-of-the-art and the most widely-

used coupled models for simulating the earth. Although con-

siderable effort has been put to improve the scalability of

single component, it is still struggling with the poor perfor-

mance due to load imbalance across components. We pre-
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sented an easy-used and easy-ported auto-turning framework,

CESMTuner, for automatically configuring and submitting the

optimum process count of each component and the process

layout across the components which strongly reduce the time

consumed of CESM run. A lightweight performance model is

built by taking the computation and communication of the im-

portant kernels in each component into account separately. Our

experimental results demonstrate CESMTuner has achieved

58.49% performance improvement comparing with the easy-

used sequential process layout and also has a 38.23% per-

formance improvement compared to the process configuration

conducted by the curve-fitting performance model.
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