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Abstract

We consider two parallel-in-time approaches applied to a (reaction) diffusion

problem, possibly non-linear. In particular, we consider PFASST (Parallel

Full Approximation Scheme in Space and Time) and space-time multigrid

strategies. For both approaches, we start from an integral formulation of the

continuous time dependent problem. Then, a collocation form for PFASST

and a discontinuous Galerkin discretization in time for the space-time multi-

grid are employed, resulting in the same discrete solution at the time nodes.

Strong and weak scaling of both multilevel strategies are compared for vary-

ing orders of the temporal discretization. Moreover, we investigate the re-

spective convergence behavior for non-linear problems and highlight quanti-

tative differences in execution times. For the linear problem, we observe that

the two methods show similar scaling behavior with PFASST being more fa-

vorable for high order methods or when few parallel resources are available.

For the non-linear problem, PFASST is more flexible in terms of solution

strategy, while space-time multigrid requires a full non-linear solve.
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1. Introduction

Since the clock frequency of computer processors has not increased sig-

nificantly in the past fifteen years, an increase in computational performance

for numerical algorithms can be achieved only by increasing parallelism, and

modern supercomputers now contain many thousands of computing cores.

Exploiting the capabilities of such massively parallel systems is not straight-

forward; algorithms with optimal complexity and excellent scalability must

be designed to minimize the run-time of computationally intensive problems,

such as the solution of time dependent partial differential equations (PDEs).

When dealing with parallel solvers for discretized PDEs, the solution process

is traditionally parallelized in space using domain decomposition techniques,

until stagnation. Considering the technology trend, the traditional sequen-

tial time stepping will increasingly become the bottleneck for computational

scalability for many applications. Hence, the development of new parallel

methods that exploit concurrency in the time direction has become essen-

tial for time dependent problems. However, parallelization in time can be a

challenging task, as, for many physical processes, the time direction is gov-

erned by a causality principle, with a preferential direction of information

flow through the temporal domain, i.e. forward in time. Nevertheless, sev-

eral new methods for temporal parallelization have been proposed in the last

20 years. For a more comprehensive review regarding the parallel-in-time

literature of the past 50 years we refer to [1].

The objective of this work is to compare two of the most relevant re-

cent approaches: PFASST [2] and space-time multigrid methods (STMG)

[3, 4, 5, 6, 7, 8]. The current paper is similar in spirit to the comparison pre-

sented in [9] (where the authors suggest a future comparison with PFASST).

Since many parallel-in-time methods are based on a coupling between coarse

and fine time propagators, they can be framed in a multilevel-in-time set-

ting; for example, MGRIT [5], Parareal in [10] or PFASST in [11]. Despite

the similarities of these different approaches, the methods can behave quite

differently on some problems. To date, the majority of papers on parallel in

time methods investigate a single method, and very few have investigated the

computational advantages and disadvantages of different methods on well de-

fined benchmarks. Here we attempt to compare two methods using the same
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spatial discretizations and solvers to emphasis the differences in scaling in

the time direction.

In the remainder of this paper we present such a comparison between

PFASST and STMG. In Section 2 we describe the respective time discretiza-

tions of the two approaches. In Section 3 we present a reaction-diffusion PDE

and its discretization in space and time. In Section 4 we describe the solu-

tion methods that will be used in Section 5, where weak and strong scaling

experiments are reported.

2. Preliminaries on the time discretizations

Let us introduce the time discretizations that we use for PFASST and

the space-time multigrid, respectively. Both formulations are based on an

integral form of the continuous problem and converge to the same collocation

solution, if the same nodes are used (see e.g. [12, 13]). To illustrate these

methods we consider the initial value problem with U0 ∈ R, on a single time

step In := [Tn, Tn+1] ⊂ R

u′(t) = f(u(t), t) for Tn < t < Tn+1, u(Tn) = U0. (2.1)

2.1. Collocation form

The PFASST algorithm is based on the spectral deferred correction (SDC)

method, an iterative scheme introduced in [14] based on a collocation approx-

imation of (2.1). Let us consider the Picard integral form of (2.1)

u(t) = U0 +

∫ t

Tn

f(u(τ), τ)dτ, (2.2)

and the M right Gauss-Radau nodes {tm}Mm=1 in In with Tn < t1 < t2 < · · · <
tM = Tn+1. We approximate (2.2) by its collocation form, with Um ≈ u(tm):

U = U0 + ∆tQF (U), (2.3)

where ∆t := Tn+1 − Tn,

U := [U1, ..., UM ], U0 := [U0, ..., U0], F (U) := [f(U1, t1), ..., f(UM , tM)],

(2.4)
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Q is the M ×M matrix Q := (qm,j)
M
m,j=1 with the quadrature weights

qm,j :=
1

∆t

∫ tm

Tn

`j(t)dt,

and {`j}Mj=1 are the Lagrange polynomials at the M nodes. An SDC iteration

can be considered as a preconditioned Richardson iteration to solve (2.3)

(see, e.g. [13, 15]) and, if SDC converges, it is equivalent to an implicit RK

method, with qm,j being the values in the corresponding Butcher tableaux.

The resulting RK method is A−stable and has order of accuracy 2M − 1 for

M Radau quadrature nodes [16].

2.2. Discontinuous Galerkin

Variational time-stepping methods are receiving increasing interest by the

scientific community, especially in the context of adaptivity in space–time,

for example in [17, 18]. Discontinuous Galerkin (DG) methods, in partic-

ular, have been widely used to discretize the time direction in the space-

time setting as they ensure that the information flows in the positive time

direction. They have been employed for a variety of problems such as con-

vection/advection/diffusion equations or the Navier-Stokes equations. For

example see the works [19, 20, 21, 22, 23, 24, 6, 25]. The use of DG dis-

cretization in time was first introduced in [12] for the discretization of a

neutron transport equation. In this paper the authors show that, for finite

elements of order q, the method is strongly A-stable, has convergence order

2q + 1 in the nodes, and is equivalent to an implicit (RK) time stepper with

q intermediate steps. The first analysis on DG methods as time stepping

techniques is provided by [26] and [27], followed by the work in [28, 29, 30].

More recently, specialized solution methods have been introduced, for exam-

ple by [31, 32, 33, 34]. A priori and posteriori error analysis have been also

provided, e.g. see [30, 17, 35, 36]. See [37] for a recent survey on the topic.

Let us consider the weak formulation of (2.1), where the continuity at Tn
is weakly imposed, and its finite dimensional approximation with u ≈ U ∈
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Pq(In) (i.e. the space of polynomials of degree q)1

∫ Tn+1

Tn

U ′(t)v(t) dt+ (U(Tn)− U0)v(Tn) =

∫ Tn+1

Tn

f(U(t), t)v(t) dt, (2.5)

for all test functions v ∈ Pq(In). Equivalently, integrating by parts (2.5), we

obtain the standard DG formulation:

−
∫ Tn+1

Tn

U(t)v′(t) dt+ U(Tn+1)v(Tn+1)− v(Tn)U0 =

∫ Tn+1

Tn

f(U(t), t)v(t) dt,

(2.6)

where the upwind flux is given by the v(Tn)U0 term. In the interval In, we

construct the approximation U in the nodal form,

U(t) =
M∑
m=1

Um`n,m(t), (2.7)

where {`n,m}Mm=1 is the basis of Lagrange polynomials of degree q at the

q + 1 = M Gauss-Radau nodes in In. We can rewrite (2.6), using the ap-

proximation in (2.7) and the definitions in (2.4), as

KqU = JqU0 +MqF (U), (2.8)

with Kq,Mq,Jq ∈ RM×M given by

Kq :=

[
−
∫ Tn+1

Tn

`′n,i(t)`n,j(t) dt+ `n,i(Tn+1)`n,j(Tn+1)

]M
i,j=1

, (2.9)

Mq :=

[∫ Tn+1

Tn

`n,i(t)`n,j(t) dt

]M
i,j=1

, Jq := [`i(Tn)`j(Tn+1)]Mi,j=1 . (2.10)

Let us remark the similarity between (2.3) and (2.8) and that JqU0 =

[U0, 0, ..., 0]T . For multiple adjacent time elements equation (2.8) can be

naturally extended, with obvious notation, as

KqUn = JqUn−1 +MqF (Un). (2.11)

1The DG solution U can be discontinuous at the nodes. Introducing a left/right nodal

values of U we have: U(Tn)− = U0 and U(Tn)+ = U(Tn). Then, in general, U0 6= U(Tn).
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3. Problem setting and discretization

Let Ω = (0, X) be the spatial domain and T ∈ R+ the final time. We

consider the following non-linear reaction diffusion equation:
∂tu− ∂xxu+ γ(u3 − u) = 0, for (t, x) ∈ (0, T )× Ω,

∂xu = 0, for (t, x) ∈ (0, T )× ∂Ω,

u = u0, for t = 0 and x ∈ Ω,

(3.1)

where u := u(t, x), u0 := u0(x), and γ ≥ 0 controls the intensity of the

reaction term. Equation (3.1) is known as the monodomain model or Allen-

Cahn equation, and can be used to describe the progressive activation of

excitable media. For example, in the context of computational medicine,

it is employed to simulate the propagation of the electrical potential in the

human heart [38]. The cubic term is a FitzHugh-Nagumo-type reaction,

with three zeros {−1, 0, 1} corresponding, respectively, to a resting state, a

threshold and an activation state. For γ = 0 equation (3.1) is reduced to the

linear heat equation.

Let Nt, Nx ∈ N be the number of time and space elements respectively,

and define the following uniform partitions in time and space:

ti := i∆t, i = 0, . . . , Nt, ∆t := T/Nt,

xj := jh, j = 0, . . . , Nx, h := X/Nx.

In space, we approximate (3.1) with linear finite elements, constructing the

stiffness and mass matrices Kh,Mh ∈ R(Nx+1)×(Nx+1)

Kh :=

[∫
Ω

ϕ′i(x)ϕ′j(x)dx

]Nx

i,j=0

, Mh :=

[∫
Ω

ϕi(x)ϕj(x)dx

]Nx

i,j=0

, (3.2)

using the linear Lagrange basis functions {ϕi}Nx
i=0 ⊂ H1(Ω). Referring to

Section 2.2, we can consider a space-time finite element approximation of

(3.1) in [tn, tn+1] with a tensor structure:

u(x, t) ≈ U(x, t) =
M∑
i=1

Nx∑
j=0

un+1
i,j `n,i(t)ϕj(x) (3.3)
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and assemble the non-linear space-time system of size NtM(Nx + 1)


Aq,h
Bq,h Aq,h

. . . . . .

Bq,h Aq,h




u1

u2

...

uNt

+It⊗Mq,h


r(u1)

r(u2)
...

r(uNt)

 =


−Bq,hu0

0
...

0

 ,
(3.4)

with

Aq,h := Kq⊗Mh+Mq⊗Kh, Bq,h := −Jq⊗Mh, Mq,h :=Mq⊗Mh,

(3.5)

It being the identity of size Nt. For n = 1, ..., Nt, the solution vector for

the nth time element un has size M(Nx + 1), with values grouped together

according to the ordering in (3.5), i.e.

un :=
[
un1,0, u

n
1,1, ..., u

n
1,Nx

, un2,0, ..., u
n
2,Nx

, ..., ..., unM,0, ..., u
n
M,Nx

]
, (3.6)

and the point-wise reaction defined by

[r(un)]k := γ
(
[un]3k − [un]k

)
for k = 0, ..., NxM. (3.7)

The initial condition is imposed through

u0 := [0, ..., 0, u0(x0), u0(x1), .., u0(xNx)],

having (Nx + 1)(M − 1) zeros. Let use mention that, in the space-time

context, increasing M leads to denser blocks. For a detailed description of

the weak formulation of (3.1) (for γ = 0), the assembly and spectral analysis

of system (3.4), in a more general finite element framework, we refer to

[25]. With respect to standard methods, the storage of system (3.4) can be

expensive in terms of memory; nevertheless, the space-time formulation can

be convenient, in terms of scaling and run-time, if (3.4) is distributed among

multiple processors and solved in parallel. Let us remark that we assemble

(3.4) just in the space-time multigrid case; when using PFASST the assembly

of the spatial operators in (3.2) is sufficient. For technical limitations related

to the current PFASST implementation, we replace the mass matrix Mh

with its lumped version for both discretizations.
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4. Solution methods

Here we introduce the two solution strategies that will be the object of

the comparison.

4.1. PFASST

The parallel full approximation scheme in space and time was intro-

duced by Emmett and Minion in 2012 [2]. As the name suggests, PFASST

can be described in the context of a multigrid in time method based on a

FAS correction on coarse levels [11]. An alternative perspective on how the

PFASST method is organized is to view it as a way to perform SDC iter-

ations for the collocation Eq. (2.3) on multiple time steps simultaneously.

For parallel efficiency, the SDC iterations are done on a hierarchy of levels as

in the multilevel SDC method [39] with communication of new initial con-

ditions passed forward in time between processors after each SDC iteration

on each level. Since the communication is only serial on the coarsest level,

the SDC iterations on the finest level are done concurrently, resulting in a

potential parallel speedup if the total number of PFASST iterations needed

to converge on all the time steps remains relatively small. One advantage of

viewing PFASST from this SDC perspective is that variants of the original

SDC method such as semi-implicit SDC (SISDC) [40], can be easily used

in the PFASST context. SISDC methods (also known as implicit-explicit or

IMEX) are appropriate for differential equations for which the right hand side

of (2.1) can be split into stiff and non-stiff parts. These methods are often

employed in situations where the non stiff component is nonlinear and the

stiff term is linear, so that only a linear implicit equation needs to be solved

in each time step. In Section 5.4, an IMEX treatment is used to treat the

nonlinear reaction terms explicitly and the linear diffusion terms implicitly.

4.2. Space-time multigrid

Specialized parallel solvers have been recently developed for large linear

systems arising from space-time discretizations. We mention in particular the

parallel STMG proposed by [6], the parallel preconditioners for space-time

isogeometric analysis proposed by [41] and [34] as well as the block precon-

ditioned GMRES by [42]. When dealing with a space-time discretization,
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where time is somehow considered as an additional spatial dimension, it is

natural to extend the same paradigm for the solving process and consider

space-time multigrid type algorithms.

Multigrid solvers are optimal preconditioners for elliptic problems, and

they have proven to be efficient, with some precautions, also for space-time

discretizations of parabolic problems, such as the heat equation. The heat

equation is first order in time and its discretization introduces non symmetric

lower bi-diagonal blocks in the space-time system (3.4). When dealing with

anisotropic problems standard multigrid convergence rates deteriorate; see,

e.g., [43]. Traditionally there are various ways to address this problem such

as accounting for anisotropy in the particular choice of line smoothers and/or

adopting a semi-coarsening strategy. In [4, 10, 7, 44], for example, the authors

explain how the STMG convergence depends critically on the ratio µ :=

∆t/h2, unless semi-coarsening strategies are adopted. In particular, for µ�
1 (resp. µ� 1) coarsening only in time (resp. space) is an effective strategy.

Let us consider a hierarchy of L space-time grids denoted with l = 1, ..., L

and l = L corresponding to the coarsest one. We construct the space-time

restriction operator Rl+1
l from level l to level l + 1 as

Rl+1
l = T l+1

l ⊗ P l+1
l ⊗ S l+1

l , for l = 1, ..., L− 1, (4.1)

where T l+1
l and S l+1

l are restriction operators in time and space respectively

and P l+1
l is responsible for M−coarsening in time, i.e. varying the number

of Gauss-Radau nodes M along the multilevel hierarchy. Interpolation op-

erators are obtained considering the transpose of Rl+1
l . Definitions of these

operators will be provided in the next section. Let us mention that any

restriction operator in (4.1) can be replaced by a suitable identity matrix, re-

sulting in various semi-coarsening strategies. If M−coarsening is present, i.e.

if P l+1
l is not an identity, the resulting multigrid is also known as p−multigrid,

or, more precisely, as a p−multigrid in time (as PFASST).

For smoothing, we employ GMRES preconditioned with an incomplete

LU factorization (ILU(0)-PGMRES). When multiple parallel cores are used,

GMRES is preconditioned using a block-Jacobi preconditioner, with blocks

of size (Nx+1)NtM/Cores; for each diagonal block ILU(0) is then employed.

For specialized preconditioners and corresponding tensor solvers applied to
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system (3.4) see, e.g., [45, 46, 34]. On the coarsest level, an LU factorization

is used and coarse problems are assembled through Galerkin assembly. If

γ 6= 0, equation (3.4) is non-linear and the STMG algorithm is encapsulated

in a Newton iteration.

5. Experiments

5.1. Implementation

For the numeric examples in this section, as well as throughout this paper,

we used the PETSc framework [47, 48] and the C++ embedded domain

specific language Utopia2 [49] for the parallel linear algebra and the linear

and non-linear solvers. For PFASST we use the modern Fortran library

LibPFASST3 that was extended to use the same PETSc data structures and

linear solvers as the STMG code to make the comparison as fair as possible4.

The two discretizations produce, up to machine precision, the same solution

in T .

Parallel numerical experiments have been performed on the multi-core

partition of the supercomputer Piz Daint of the Swiss national supercom-

puting centre (CSCS)5.

5.2. Solvers specifics and notation

Next we introduce some of the notation that we are going to use in the

following numerical experiments:

• SMGL
ν

Multigrid with L levels and spatial coarsening, with S l+1
l in (4.1) being

standard linear restriction, using the stencil [1 2 1]/4 and the operator

S l+1
l having size (1 + Nx/2

l+1) × (1 + Nx/2
l). As time coarsening is

not employed, time transfers in (4.1) are replaced by identities, i.e.

2https://bitbucket.org/zulianp/utopia
3https://pfasst.lbl.gov/codes
4For both implementations we used the PETSc type MATMPIAIJ to store distributed

sparse matrices and the KSP type for Krylov solvers.
5https://www.cscs.ch/computers/piz-daint
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T l+1
l = It ∈ RNt×Nt and P l+1

l = IM ∈ RM×M for all l = 1, ..., L − 1.

We use V-cycling, with ν smoothing iterations of ILU(0)-PGMRES.

We refer to [50] for a convergence analysis in this setting.

• STMGL
ν

Space-time multigrid with L levels and T l+1
l and S l+1

l in (4.1) being

standard linear restriction operators, both using the same stencil in-

troduced for SMGL
ν ; the operator T l+1

l has size Nt/2
l+1 × Nt/2

l. We

set P l+1
l = IM for all l = 1, ..., L − 1, i.e. M is constant along the

multilevel hierarchy. We use V-cycling, with ν smoothing iterations of

ILU(0)-PGMRES.

• SMMGL
ν

As SMGL
ν , but using M−coarsening in time, also known as p−multigrid

in time. To perform M−coarsening we consider a non-nested hierarchy

of Gauss-Radau grids on a reference time element, where the number of

time nodes M is reduced progressively on the hierarchy until M = 1 is

reached, i.e. having max{M− l+1, 1} nodes on level l. In (4.1) P l+1
l is

obtained through linear interpolation between successive Gauss-Radau

nodes.

• PFASSTL
ν

PFASST solver, as described in Section 4.1, with L levels and ν sweeps

per level. We use ILU(0)-PGMRES as a spatial solution method and

standard linear restriction to create coarse spatial problems. Regarding

temporal coarsening, for performance reasons, we use M = 1 on all

coarse levels.

In the numerical results the run-times are expressed in seconds; the assembly

of discrete problems and transfer operators are not included in the run-times.

The number of iterations to convergence, if present, is reported in square

brackets. Convergence is reached when the relative or the absolute precon-

ditioned residual is less then a tolerance of 10−9. The acronym “n.c.” stands

for “not converged”, denoting an increasing residual or if 1000 iterations are
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exceeded. The tests are restricted to temporal parallelism, i.e. #Cores ≤ Nt,

with solvers parameters (i.e. L and ν) which minimize run-time for both ap-

proaches. Linear and non-linear iterative solvers are initialized with the zero

vector in the space-time case. The spatial diffusion solver in PFASST (PGM-

RES), are initialized with the best available guess, i.e. the solution at the

previous iteration.

5.3. Linear example: the heat equation

In this section we consider the heat equation, i.e. in the following exper-

iments we set γ = 0 in (3.1), and the initial condition

u0(x) = cos (πx) + 2 cos (3πx) + 3 cos (4πx) for x ∈ [0, X], (5.1)

with the corresponding analytical solution

u(x, t) = cos (πx)e−π
2t + 2 cos (3πx)e−9π2t + 3 cos (4πx)e−16π2t. (5.2)

We also consider the analytical solution ũ, obtained after spatial discretiza-

tion, to focus on the error introduced just by temporal discretization:

ũ(x, t) = cos (πx)eρ1t + 2 cos (3πx)eρ2t + 3 cos (4πx)eρ3t, (5.3)

with

ρ1 = (2 cos(πh)−2)/h2, ρ2 = (2 cos(3πh)−2)/h2, ρ3 = (2 cos(4πh)−2)/h2.

We show, in Figure 5.1, how the error behaves as a function of the temporal

discretization parameters, i.e. Nt and M , for problem (3.1) with T = X =

1, γ = 0 and u0 from equation (5.1), discretized, according to (3.4) with

Nx = 1024. It is possible to observe, in the left plot in Figure 5.1, that the

error compared to the exact solution decreases as the number of time steps

increases until the spatial error of roughly 10−9 dominates. For this reason

the solver tolerance is set to 10−9 in the following numerical experiments.

The right-hand plot shows that the temporal error decreases with the correct

order 2M − 1 until machine precision is reached.
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Figure 5.1: Left: error at the end node w.r.t. the analytical solution (5.2). Right: error

w.r.t. (5.3), i.e. the error of the discrete ODE. In both cases, the errors decrease, with

the expected order (2M − 1), until the spatial error dominates.

In Example 5.1-5.2 we report strong and weak scaling results varying the

discretization order M . We avoid over-resolving in time by reducing Nt as

M increases, according to Figure 5.1. In particular, we set Nt, depending on

M , to be the minimum power of two for which ‖u(·, T )− U(·, T )‖∞ < 10−9

is satisfied. With this methodology, the solver tolerance and the spatial and

temporal accuracies are approximately the same6.

Example 5.1. (Strong scaling). Let us consider the continuous problem

(3.1) with parameters X = T = 1 and u0 from (5.1). We use the discretiza-

tion parameters Nx = 1024, M = {1, ..., 5} and Nt varying according to the

results of Figure 5.1, to avoid over-resolving in time, except for M = 1 where

we use Nt = 1024, with a corresponding accuracy of approximately 10−6.

We show, in Tables 5.1–5.4, run-times and iterations of the three mul-

tilevel approaches described in Section 5.2. The most relevant results are

illustrated in Figure 5.2.

6For M = 1, we use Nt = 1024 with a corresponding temporal accuracy of ∼ 10−6,

since Nt ≈ 107 would be required to reach a temporal accuracy of 10−9.

13



SMG7
3

M = 1, M = 2, M = 3, M = 4, M = 5,

Cores Nt = 1024 Nt = 256 Nt = 32 Nt = 16 Nt = 8

1 1.59 [2] 2.03 [4] 0.49 [4] 0.41 [5] 0.32 [5]

2 1.24 [2] 1.27 [4] 0.29 [4] 0.30 [5] 0.22 [5]

4 0.62 [2] 0.80 [4] 0.18 [4] 0.17 [5] 0.13 [5]

8 0.38 [2] 0.37 [4] 0.10 [4] 0.11 [5] 0.08 [5]

16 0.29 [3] 0.23 [4] 0.08 [4] 0.07 [5]

32 0.18 [3] 0.15 [4] 0.07 [4]

64 0.12 [3] 0.14 [4]

128 0.11 [3] 0.12 [4]

256 0.11 [3] 0.12 [4]

512 0.14 [3]

1024 0.17 [3]

Table 5.1: Seven level space-time multigrid run-times and iterations to convergence with

no temporal coarsening.

STMG5
3

M = 1, M = 2, M = 3, M = 4, M = 5,

Cores Nt = 1024 Nt = 256 Nt = 32 Nt = 16 Nt = 8

1 2.66 [6] 6.57 [18] 2.12 [30] 1.75 [30] 1.23 [30]

2 1.53 [6] 3.71 [18] 1.21 [29] 0.98 [30] 0.71 [31]

4 0.80 [6] 1.82 [18] 0.64 [32] 0.64 [33] 0.43 [32]

8 0.50 [6] 1.05 [18] 0.39 [34] 0.52 [37] 0.27 [34]

16 0.35 [6] 0.67 [18] 0.29 [37] 0.26 [37]

32 0.22 [6] 0.53 [18] 0.22 [38]

64 0.17 [6] 0.45 [17]

128 0.17 [6] 0.37 [17]

256 0.17 [6] 0.37 [17]

512 0.18 [7]

1024 0.29 [9]

Table 5.2: Five level space-time multigrid run-times and iterations to convergence, with

full space-time coarsening.
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SMMG7
3

M = 2, M = 3, M = 4, M = 5,

Cores Nt = 256 Nt = 32 Nt = 16 Nt = 8

1 3.01 [12] 0.99 [17] 0.79 [15] 0.75 [18]

2 1.77 [12] 0.62 [17] 0.44 [15] 0.50 [18]

4 0.86 [12] 0.28 [17] 0.23 [15] 0.28 [18]

8 0.47 [12] 0.17 [17] 0.15 [15] 0.15 [18]

16 0.24 [12] 0.12 [17] 0.11 [15]

32 0.15 [12] 0.09 [17]

64 0.12 [12]

128 0.11 [12]

256 0.11 [12]

Table 5.3: Seven level space-time multigrid run-times and iterations to convergence, with

M−coarsening in time. The column for M = 1 is not present as it would be equivalent to

the one of Table 5.1.

PFASST3
1

M = 1, M = 2, M = 3, M = 4, M = 5,

Cores Nt = 1024 Nt = 256 Nt = 32 Nt = 16 Nt = 8

1 1.49 [2] 0.74 [3] 0.23 [11] 0.17 [12] 0.12 [12]

2 1.26 [3] 0.71 [11] 0.17 [14] 0.12 [14] 0.09 [15]

4 0.85 [4] 0.50 [13] 0.11 [16] 0.08 [17] 0.06 [18]

8 0.55 [6] 0.40 [17] 0.09 [20] 0.07 [21] 0.05 [22]

16 0.37 [7] 0.31 [24] 0.08 [28] 0.06 [29]

32 0.23 [7] 0.21 [29] 0.06 [35]

64 0.18 [7] 0.15 [30]

128 0.15 [8] 0.11 [30]

256 0.15 [7] 0.11 [30]

512 0.16 [8]

1024 0.20 [7]

Table 5.4: Three level PFASST run-times and iterations to convergence.
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Figure 5.2: Strong scaling timing results of SMG (solid lines) and PFASST (dashed lines)

from Example 5.1; run-times of STMG and SMMG are not included since they are not

competitive. We report run-times for M ∈ {1, 2} in the left plot and for M ∈ {3, 4, 5} in

the right one.

The results of Example 5.1 suggest several observations. First, for the space-

time multigrid methods, using spatial coarsening only (SMG) obtains the

fastest space-time multigrid convergence and run-times. We can explain this

behavior using the discretization parameter

µ =
∆t

∆x2
=
N2
x

Nt

.

In all cases considered µ � 1; from space-time multigrid literature (e.g.

[7],[51]) we can expect time coarsening to be not effective in this regime, as

we observe by the larger iteration counts in Table 5.2. The case of µ ≤ 1

would not be meaningful in this setting, as it would result in a unnecessary

over-resolved time discretization, with Nt ≥ N2
x > 106.

Let us remark that differences in the convergence behavior for various

coarsening strategies (cf. Tables 5.1–5.4) are not due to different sizes of

coarse problems but are related to their conditioning. In fact, avoiding time

coarsening results in better conditioned coarse problems. For example, the

condition number of the coarsest matrices for SMG7
3 and STMG4

3 (that have

the same size) is, respectively, 1.7 · 103 and 1.5 · 104 and time coarsening

results in a slower convergence (six iterations) w.r.t. the SMG setting (two
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iterations). The results collected in Table 5.3 suggest that M−coarsening

is the most convenient way to coarsen in time in the space-time multigrid

case, since run-times are close to the case of spatial coarsening only. Note

also that the M−coarsening in time for SMMG and PFASST are the same.

Comparing SMG with PFASST, cf. Figure 5.2, we observe an overall similar

scaling and run-times, especially for M ∈ {1, 2}. As expected from the

space-time paradigm, SMG is characterized by a slower sequential run-time

compensated by a better scaling. As as results, both algorithm achieve a

similar stagnation run-time. For higher values of M , PFASST is somewhat

faster than SMG, presumably due to the reduced cost of the coarsest level.

Finally, it is important to note that for the same accuracy, the higher-order

methods have lower run-times than the lower-order methods, often with fewer

processors. Hence, although the scaling in terms of iterations is better for

the lower-order methods, they are more expensive in practice.

Example 5.2. (Weak time scaling in Nt) Let us consider the continuous

problem (3.1) with parameters X = T = 1 and u0 from (5.1). We use

the discretization parameters Nx = 1024, M = {1, ..., 5} and Nt = CM ·
Cores. The parameter CM depends on M and is chosen according to the

parallel saturation from Example 5.1; for example, for M = 1 and Nt = 1024,

according to Tables 5.1–5.4, we have maximum speedup with 256 cores and

therefore C1 = 4. Similarly C2 = 2 and CM = 1 for M ≥ 3. We point

out that the accuracy of the solution as a function of Nt is varying in the

tables according to Figure 5.1: doubling Nt corresponds to a higher accuracy

as M increases. We report, in Tables 5.5–5.6 and Figure 5.3 run-times and

iterations of the multilevel approaches described in Section 5.2.
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M = 1

Cores Nt L time [its.] R

256 1024 7 0.11 [3] 1

512 2048 8 0.15 [4] 1.4

1024 4096 8 0.33 [5] 3.0

2048 8192 8 0.72 [6] 6.5

M = 2

Cores Nt L time [its.] R

128 256 7 0.11 [4] 1

256 512 7 0.17 [4] 1.5

512 1024 8 0.18 [4] 1.6

1024 2048 8 0.43 [5] 3.9

M = 3

Cores Nt L time [its.] R

32 32 7 0.07 [4] 1

64 64 7 0.08 [5] 1.1

128 128 8 0.10 [5] 1.4

256 256 8 0.14 [5] 2.0

M = 4

Cores Nt L time [its.] R

16 16 7 0.10 [5] 1

32 32 7 0.10 [5] 1.0

64 64 7 0.12 [5] 1.2

128 128 8 0.16 [6] 1.6

M = 5

Cores Nt L time [its.] R

8 8 7 0.12 [5] 1

16 16 7 0.13 [6] 1.1

32 32 7 0.14 [7] 1.2

64 64 7 0.18 [7] 1.5

Table 5.5: Weak scaling in time of space-time multigrid SMG3
L, with no temporal coars-

ening. The ratio R is computed dividing the current run-time by the base one (in the first

line for each table) and R = 1 denotes an ideal weak scaling. Since no temporal coarsening

is present, the weak scaling is poor for M ∈ {1, 2}.
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M = 1

Cores Nt time [its.] R

256 1024 0.16 [7] 1.0

512 2048 0.26 [8] 1.6

1024 4096 0.49 [10] 3.1

2048 8192 0.96 [10] 6.0

M = 2

Cores Nt time [its.] R

128 256 0.09 [30] 1.0

256 512 0.11 [30] 1.2

512 1024 0.16 [29] 1.8

1024 2048 0.25 [30] 2.8

M = 3

Cores Nt time [its.] R

32 32 0.06 [35] 1.0

64 64 0.11 [38] 1.8

128 128 0.12 [38] 2.0

256 256 0.13 [36] 2.2

M = 4

Cores Nt time [its.] R

16 16 0.07 [29] 1.0

32 32 0.10 [38] 1.4

64 64 0.12 [42] 1.4

128 128 0.12 [42] 1.7

M = 5

Cores Nt time [its.] R

8 8 0.05 [22] 1.0

16 16 0.08 [30] 1.6

32 32 0.10 [39] 2.0

64 64 0.11 [42] 2.2

Table 5.6: Weak scaling in time of PFASST3
1. The ratio R is computed dividing the

current run-time by the base one (in the first line for each table) and R = 1 denotes an

ideal weak scaling. We can notice that the weak scaling for M = 1 is poor, since no

temporal coarsening is present in this case.
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Figure 5.3: Weak scaling timing results of SMG (solid lines) and PFASST (dashed lines)

from Tables 5.5–5.6; run-times of STMG and SMMG are not included since they are not

competitive. We report run-times for M ∈ {1, 2} in the left plot and for M ∈ {3, 4, 5} in

the right one.

It is clear from Figure 5.3 that higher-order methods display better weak

scaling than the lower-order ones. This is partly due to the absence of time-

coarsening w.r.t. Nt for both methods, that becomes relevant as Nt grows.

It should be noted that for M > 1, the error w.r.t. the analytical solution is

already saturated in the first rows of Tables 5.5–5.6 (according to Figure 5.1)

and increasing Nt does not produce a more accurate solution. In this scaling

regime, there is no consistent winner between SMG and PFASST for all M

and Nt.

5.4. Non-linear example: the monodomain equation.

In this section we consider the full reaction-diffusion model, i.e. γ > 0

in (3.1). Note that for the space-time discretization in (3.4), a non-linear

solver is required due to the cubic reaction term. For the implementation in

PFASST an IMEX or semi-implicit method is employed for each correction

substep [52] treating the nonlinear reaction terms explicitly. Hence the cost

per iteration of the PFASST method is essentially the same as for the linear

case since the implicit part is much more expensive. One could instead use a

fully implicit substepping method such as backward-Euler in PFASST, which

would result in a more expensive method, but one with a larger stability

region (see for example [53]). Alternatively, a multi-implicit approach could
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also be chosen as in [54]. A careful comparison of each approach is beyond the

scope of the current study, but it is important to emphasize that the flexibility

in the PFASST methods is one important difference between PFASST and

STMG.

To model a traveling wave in an excitable media we consider reaction

dominated examples. In this case we set a narrow initial stimulus in the

centre of the domain and we chose T such that the final solution is stationary,

i.e. for all x we have u(T, x) ' 1 and ∂tu(T, x) ' 0.

Example 5.3. (Strong scaling) Let us consider the continuous problem (3.1)

with model parameters X = 10, T = 2, γ = 5 and the initial condition

u0 = 2 exp

(
x−X

0.1

)2

.

We use the discretization parameters Nx = Nt = 1024 and M = {1, ..., 5}.
We show, in Table 5.7, run-times and Newton iterations of the space-time

strategy, using SMG7
3 as linear solver and, in Table 5.8, the PFASST data.

SMG7
3

M = 1, M = 2, M = 3, M = 4, M = 5,

Cores Nt = 1024 Nt = 256 Nt = 32 Nt = 16 Nt = 8

1 46.4 [16] 31.1 [16] 6.47 [16] 5.18 [16] 301 [58]

2 29.7 [16] 19.5 [16] 4.50 [16] 3.75 [16] 123 [45]

4 16.6 [16] 11.0 [16] 2.61 [16] 2.17 [16] 125 [47]

8 10.6 [16] 7.45 [16] 1.81 [16] 1.60 [16] 34.4 [18]

16 8.51 [16] 5.81 [16] 1.36 [16]. 1.16 [16]

32 7.22 [16] 4.92 [16] 1.07 [16]

64 6.11 [16] 4.54 [16]

128 5.10 [16] 3.90 [16]

256 5.50 [16] 5.48 [16]

512 5.64 [16]

1024 6.20 [16]

Table 5.7: Run-time of a seven level space-time multigrid, with no temporal coarsening

and corresponding Newton iterations.
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PFASST3
1

M = 1, M = 2, M = 3, M = 4, M = 5,

Cores Nt = 1024 Nt = 256 Nt = 32 Nt = 16 Nt = 8

1 1.51 [2] 0.54 [5] 0.23 [93] n.c. n.c.

2 1.16 [3] 0.42 [6] 0.20 [94] n.c. n.c.

4 0.67 [4] 0.25 [8] n.c. n.c. n.c.

8 0.40 [5] 0.16 [8] n.c. n.c. n.c.

16 0.27 [6] 0.11 [8] n.c. n.c.

32 0.18 [6] 0.07 [8] n.c.

64 0.14 [6] 0.07 [8]

128 0.13 [6] 0.07 [8]

256 0.15 [6] 0.08 [8]

512 0.16 [6]

1024 0.20 [6]

Table 5.8: Three level PFASST run-times and iterations, n.c. abbreviating “not con-

verged”.

Note that in the cases where PFASST converges, the run-time is significantly

smaller than the corresponding SMG times. As mentioned above, this is due

to the fact that the PFASST implementation is using a semi-implicit or IMEX

time stepping method, while SMG method is fully implicit requiring Newton

iterations. The failure of PFASST to converge for large time steps is also due

to the IMEX stepping, which has a time step restriction due to the explicit

treatment of the reaction term (see, e.g. [40]). The reaction term could also

be handled implicitly in PFASST using a multi-implicit approach [55] as was

done in [54] to increase the stability, but we defer this sort of comparison to

future work.

Let us remark that using an IMEX approach is a standard choice for

reaction-diffusion problems, but is not favorable in the space-time context.

For space-time, both a fully explicit and an IMEX approach would lead to a

non-linear system to be solved. An explicit/IMEX space-time discretization

of the reaction term leads to approximately the same number of Newton

iterations and run-times obtained for the implicit case.
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6. Conclusions

In this paper we discussed the parallel performance of multilevel space-

time solution strategies and of the algorithm PFASST for a (reaction) dif-

fusion problem. From an implementation prospective, space-time multigrid

approaches are convenient since the time parallelization boils down to the

parallel solution of a system of equations (in (3.4)), for example using fast

and parallel preconditioned Krylov methods as PGMRES. A tensor struc-

ture between space and time grids allows for a flexible choice of coarsening

strategies, since transfer operators in (4.1) can be set independently. On the

other hand, the assembly of system (3.4) comes at a cost, in terms of time7

and, especially, memory footprint8. Such cost can be be reduced significantly

when (3.4) is distributed among many processors and if highly parallel as-

sembly routines are used, as parallel Kronecker products in (3.5). Let us

mention that matrix-free implementations of (3.4) are also possible, avoiding

assembling costs and reducing storage, but have more limitations in terms

of solution strategy (e.g. ILU preconditioners are typically not available in a

matrix-free context).

In Examples 5.1–5.2 we investigated the scalability of different parallel

iterative strategies for a diffusion problem. We obtained similar performance

from PFASST and the parallel space-time multigrid with no temporal coars-

ening (SMG). The use of high order methods in time, reducing the number

of time steps Nt accordingly, is convenient for both approaches, in terms of

overall performance and especially for the weak scaling in time.

As expected from the literature, full space-time coarsening or time coars-

ening are not effective in the settings we considered (µ � 1). In the space-

time multigrid framework M−coarsening in time can be advantageous w.r.t.

coarsening in the number of time steps Nt, in terms of stability, but employ-

7With reference to Example 5.1, the serial assembly of the space-time system (3.4)

takes 0.28 seconds for M = 1 and 0.04 for M = 5, corresponding to ∼ 15% of the STMG

solving time. Similarly, the assembly of space-time restriction operators (4.1) takes 0.26

seconds for M = 1 and 0.01 for M = 5. Assembly routines are fully scalable.
8The number of non-zero elements in the coefficient matrix of the space-time sys-

tem (3.4), is given by O(NxNtM
2). Memory footprint is quadratic w.r.t. M , but, for a

fixed accuracy, as in the presented experiment, NtM
2 is decreasing as M increases

23



ing just coarsening in space remains the best option for the discretizations

considered.

In Example 5.3 we considered a non-linear reaction-diffusion problem. For

such a problem the space-time approach is limited to a fully implicit treat-

ment of the non-linearity and the corresponding use of a non-linear solver,

such as Newton’s method. In particular, we observe that the number of New-

ton iterations to convergence is not robust in terms of problem parameters

and initial guess. On the other hand, in this respect PFASST is more flexi-

ble since it allows one to treat the non-linearity explicitly, through an IMEX

approach. Such a strategy, even if less stable (especially for large ∆t and

high order M), can reduce dramatically the time-to-solution.
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[46] S. Börm, R. Hiptmair, Analysis of tensor product multigrid, Numerical

Algorithms 26 (3) (2001) 219–234.

[47] S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschel-

man, L. Dalcin, A. Dener, V. Eijkhout, W. D. Gropp, D. Karpeyev,

D. Kaushik, M. G. Knepley, D. A. May, L. C. McInnes, R. T. Mills,

T. Munson, K. Rupp, P. Sanan, B. F. Smith, S. Zampini, H. Zhang,

H. Zhang, PETSc users manual, Tech. Rep. ANL-95/11 - Revision 3.12,

29

https://www.mcs.anl.gov/petsc


Argonne National Laboratory (2019).

URL https://www.mcs.anl.gov/petsc

[48] S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschel-

man, L. Dalcin, A. Dener, V. Eijkhout, W. D. Gropp, D. Karpeyev,

D. Kaushik, M. G. Knepley, D. A. May, L. C. McInnes, R. T. Mills,

T. Munson, K. Rupp, P. Sanan, B. F. Smith, S. Zampini, H. Zhang,

H. Zhang, PETSc Web page, https://www.mcs.anl.gov/petsc (2019).

URL https://www.mcs.anl.gov/petsc
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