
NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS
Numer. Linear Algebra Appl. 2000; 00:1–6 Prepared using nlaauth.cls [Version: 2002/09/18 v1.02]

Algebraic multigrid methods for constrained linear systems with
applications to contact problems in solid mechanics

Mark F. Adams1

1 Sandia National Laboratories, MS 9417, Livermore CA 94551 (mfadams@ca.sandia.gov)

SUMMARY

This paper develops a general framework for applying algebraic multigrid techniques to constrained
systems of linear algebraic equations that arise in applications with discretized PDEs. We discuss
constraint coarsening strategies for constructing multigrid coarse grid spaces and several classes of
multigrid smoothers for these systems. The potential of these methods is investigated with their
application to contact problems in solid mechanics. Copyright c© 2000 John Wiley & Sons, Ltd.

key words: algebraic multigrid, multigrid methods, saddle point problems, parallel multigrid,

contact in solid mechanics

1. Introduction

This paper investigates the construction of algebraic multigrid methods for constrained linear
systems—saddle point problems or KKT systems. Discretized saddle point problems generate
systems of algebraic equations of the form:

Ax ≡
(

K CT

C 0

)(

u
λ

)

=

(

f
g

)

≡ b (1)

whereK is a large, possibly singular, matrix from a discretized PDE, C is a matrix of constraint
equations, u are the primal variables and λ are Lagrange multipliers. These systems arise in
many applications from contact in solid mechanics to incompressible flow and problems in
mathematical optimization. Several approaches have been developed for these problems, given
a solver for the primal matrix K, namely: Uzawa’s method [6], projection methods [20], and
Schur elimination (or static condensation). These methods generally solve the primal and dual
equations separately, and are attractive in that they can effectively use an existing solver

∗Correspondence to: Sandia National Laboratories, MS 9417, Livermore CA 94551 (mfadams@ca.sandia.gov)
†This paper is authored by an employee(s) of the U.S. Government and is in the public domain.

Contract/grant sponsor: Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed
Martin Company, for the United States Department of Energy; contract/grant number: DE-AC04-94AL85000

Copyright c© 2000 John Wiley & Sons, Ltd.

2 MARK F. ADAMS

implementation for the primal system. Though these methods are useful and have their place
in the repertoire of methods for solving these problems, they all suffer from some shortcomings
(eg, not general, not scalable, not robust, or costly). This paper explores methods of solving
these KKT systems “all-at-once” with algebraic multigrid (AMG) techniques.

Multigrid methods (eg, [14, 23, 12]) are among the most efficient iterative schemes for
solving the linear systems associated with elliptic PDEs. Multigrid methods are well known to
be theoretically optimal for H1-elliptic operators, both scalar problems like Poisson’s equation,
and systems of PDEs like displacement finite element discretizations for elasticity [9]. Hence,
multigrid is a natural choice for solving elasticity problems.

Multigrid has been applied to structured grid problems for decades [11]. In the past ten years,
algebraic multigrid methods have been developed for unstructured problems as well. One such
method, that has proven to be well suited to elasticity problems, is smoothed aggregation
[24, 4, 18]. We have used a smoothed aggregation method extensively as the primal solver in
the Uzawa algorithm for our engineering applications with contact. See Briggs et al., and the
references therein, for an introduction to multigrid and to methods for common PDEs [12].

The remainder of this paper introduces a general framework for applying algebraic multigrid
techniques to constrained systems of equations. This includes a general approach to the design
of AMG methods for KKT systems in §2, and coarse grid spaces for constraints in §3, and
several approaches for constructing smoothers for KKT systems in §4. These techniques are
applied to contact problems in solid mechanics, with example problems from an industrial
finite element application in §5; and we conclude in §6.

2. An AMG framework for constrained linear systems

A multigrid, or multilevel, method for a particular discretized PDE has two primary
components: 1) the coarse grid spaces and 2) the smoother for each level. These coarse grid
spaces are used to construct a prolongation operator P , which maps corrections from the coarse
grid l+1 to the fine grid l and a restriction operator R that maps residuals from the fine grid
to the coarse grid (P = RT for all methods considered here). Note, the columns of P are a
discrete representation on the fine grid of the coarse grid functions.

The multigrid smoother is an inexpensive solver (eg, one iteration of Gauss-Seidel) used
to reduce the error on each grid that is not effectively reduced by the coarse grid projection.
Multigrid methods are designed to be applied recursively until the coarsest grid is small enough
to be easily solved—accurately—usually with a direct solver.

Algebraic multigrid (AMG) generally refers to multigrid methods that construct the coarse
grid spaces and operators from the fine grid operator, with little or no additional input from
the application. The salient feature of AMG is the internal construction of the coarse grid
operators, usually via a Galerkin process. For a fine grid l, given a restriction operator R and
a prolongation operator P , the Galerkin coarse grid operator is constructed via the matrix
triple product Al+1 ← RAlP .

To apply a Galerkin process to the operator in equation 1, care must be taken to ensure
that the coarse grid operator preserves the basic structure of the fine grid operator, to allow
the process to be applied recursively. One solution to this problem is to construct the coarse

Copyright c© 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2000; 00:1–6
Prepared using nlaauth.cls

3

grids as follows:
(

R̂KP̂ R̂CT P̄

R̄CP̂ 0

)

⇐
(

R̂ 0
0 R̄

)(

K CT

C 0

)(

P̂ 0
0 P̄

)

(2)

An attractive property of this formulation is that the coarse grid spaces are, at least formally,
separated. The operator P̂ , the prolongator from the multigrid method for the primal part of
the system, is a well studied topic for some classes of PDEs and is assumed to be available.
Only the operator P̄—the constraint coarse grid spaces need to be defined—the remainder of
this section discusses an approach to the construction of P̄ .

3. Coarse grid spaces for Lagrange multipliers

The design of the coarse grid spaces is critical for any multigrid method. While many methods
have been developed for some classes of PDEs, the design of coarse grid spaces for Lagrange
multipliers has not been addressed by previous work to our knowledge. The simplest choice
for P̄ , in equation 2, is the identity. The identity can be an appropriate choice for some
types of constraints. In particular, constraints that have many nonzero values and are few in
number are probably best served by the identity. An example of such a constraint is a kernel
or rigid body mode constraint (eg, the solution values sum to zero for Poisson’s equation with
pure Neumann boundary conditions). Many important classes of constraints, however, require
coarsening to avoid unacceptable complexity of the coarse grids and to avoid overdetermined,
ill-conditioned, or unstable coarse grid operators.

The simplest type of spaces are piecewise constants—these result in a block diagonal P̄
with columns that contain only zeros and ones, and all rows have only one non-zero entry (in
practice these columns are normalized to have a 2-norm of 1.0). One attraction of this choice
for P̄ is that aggregation techniques can be employed to construct these spaces relatively easily.
Although piecewise constant coarse grid spaces are not generally optimal they will suffice for
this preliminary investigation of these algorithms.

3.1. Aggregation of Lagrange multipliers

Aggregation techniques are often used in AMG algorithms, but their application to constraint
equations is not obvious because, for one, the matrix (or graph G) is not square. Though some
aggregation strategies can be applied to non-square (or non-symmetric) matrices their behavior
is not well understood in the context of aggregates for AMG algorithms. We use greedy
aggregation strategies, based on maximal independents sets [1]; these methods are attractive
because they are relatively easy to implement in parallel, but general graph partitioning
algorithms can also be used for this purpose [4]. Regardless of the aggregation method,
symmetric graphs are often desirable, thus, the first task is to define a suitable symmetric
matrix or graph G.

3.2. An aggregation graph for contact problems in solid mechanics

A natural choice for a symmetric graph G, for the constraint equations in C, is G = CCT .
This choice is not suitable for contact constraints because, for one, CCT is diagonal if the
grids are aligned and common contact formulations are used. We have found in practice that

Copyright c© 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2000; 00:1–6
Prepared using nlaauth.cls

4 MARK F. ADAMS

the use of CCT can lead to slow coarsening and to coarse grid constraint matrices that are
nearly rank deficient due to equations being nearly identical under some conditions. A more
general approach is the matrix inner product G← CY CT , where Y is a symmetric matrix.

We have investigated several choices for Y and have found Y = P̂ P̂T to be very promising.
This choice of Y has the effect of applying the coarsening of the primal equations to the
columns of CT (ie, P̂TCT), and using this matrix inner product to construct the aggregation
matrix: G← CP̂ P̂TCT .

3.3. Considerations for aggregation algorithms vis-a-vis quality of coarse grid spaces

This choice of G (G = CP̂ P̂TCT) allows the angle between coarse grid constraint equations to
be bounded directly. This is due to the construction of the constraint matrix on the coarse grid:
Cl+1 ← P̄TClP̂ (from equation 2). The dot product, and hence the angle, between two coarse
grid constraint equations is closely related to the edges of G that are cut in the partitioning.

These dot products are the off diagonals of C l+1
(

Cl+1
)T

= P̄TClP̂ P̂T
(

Cl
)T

P̄ = P̄TGP̄ ,
with appropriate scaling. The maximum edge cut, in the partitioning of G, is a bound on
the cosine of the minimum angle between coarse grid constraint equations, because P̄ is a
simple aggregation operator. Thus, the standard graph partitioning principle, of minimizing
the maximum edge cut can be employed to directly maximize the minimum angle between
coarse grid constraint equations and thereby improve the stability of the coarse grid operator.
Additionally it is well known from multigrid (or domain decomposition) theory that it is
desirable to have large angles between the functions in the coarse grid space [22].

Multigrid theory also indicates that aggregates should be composed of strongly connected
subdomains and it is common to employ heuristics in the aggregation algorithms to accomplish
this [24]. Though, we are not aware of an analysis that proves that this is the case for the
constraint equations, it is intuitive to believe that it is so. For instance, the contact constraints
considered in this study are enforced with a simple point-on-surface technique in which a
“slave” node on one contact surface is constrained to lie on a “master” quadrilateral face
of the other contact surface. Additionally, our finite element application implements friction
by fixing all three degrees of freedom of a slave node to the master surface, which results
in three Lagrange multipliers that involve the five nodes in each contact constraint. These
three equations are trivially orthogonal because each equation involves displacements in only
one coordinate direction. It is natural to expect that it is advantageous for the aggregation
strategy to interpolate these three equations separately (ie, interpolate ’x’ direction constraints
separately from ’y’ and ’z’ direction constraints, and so on). This criterion can be achieved
by optimizing a standard graph partitioning metric—maximizing the edge weights within an
aggregate—to produce strongly connected subdomains. Note, one complication with our choice
of Y is that the P̂ from many multigrid algorithms (including plain and smoothed aggregation)
weakly couple these equations, that is, the information of their strict orthogonality is lost in
G.

3.4. An aggregation algorithm for Lagrange multipliers

The choice of piecewise constant interpolation requires a disjoint decomposition of the nodes
of the provided aggregation graph G. Our aggregation, or partitioning, strategy is based on a
maximal independent set, defined as follows. An independent set is a set of vertices S ⊆ V in
a graph G = (V,E), in which no two members of S are adjacent (ie, ∀v, w ∈ S, (v, w) /∈ E); a

Copyright c© 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2000; 00:1–6
Prepared using nlaauth.cls

5

maximal independent set (MIS) is an independent set for which no proper superset is also an
independent set.

We use a variant of a parallel MIS algorithm [1]. Define the edge weight between two nodes

i and j as wij =
|Gij |√
GiiGjj

. Given a tolerance γ < 1.0, the graph G is modified by removing all

edges wij < γ. Note, γ = 0.2 is used inn this study. This modified graph is used throughout
the process; for simplicity, the symbol G is retained even though the graph as been modified by

dropping these weak edges. Define the node weight w(i) for node i, by w(i) =
√

∑

j w
2
ij . The

nodes are processed in the greedy MIS algorithm from the highest to the lowest node weight
or alternatively these weights are used to assign the “random” numbers used in the parallel
randomized MIS algorithm [15]. This defines a set S that is used to construct the aggregates
of G.

Given this set S construct sets Cj with each node j in S (ie, Cj = {j}). Next, for all nodes
i ∈ G \S, add i to the aggregate Cj |maxj∈S wij (the MIS definition ensures that such a node,
j ∈ S, exists for all nodes i ∈ G \ S). These sets Cj define the prolongator as follows

P̄ij =

{

|Cj |−
1

2 , if i ∈ Cj

0, otherwise

This defines the coarse grid spaces for the constraint equations used in this study and leaves
only the definition of the KKT smoothers to provide a complete multigrid method.

4. Smoothers for constrained linear systems

Smoothers for constrained systems are a simpler matter than the coarse grid spaces, if for no
other reason than previous work on this topic is informative. Schulz used structured geometric
multigrid for optimization problems and developed a stable incomplete factorization for M-
matrices, by ordering the constraints after all primal equations with which they interact
[21]. Note, this concept—of ordering the constraints after all of the primal equations with
which they interact—is a component of most solution methods for KKT systems. Segregated
methods, or preconditioned Uzawa, have been investigated by Braess and Sarazin for the Stokes
problem [10], and generalized by Zulehner [27]. Vanka used structured geometric multigrid for
incompressible flow problems with a multiplicative Schwarz, constraint centric method [26].

We investigate variants of these three smoothers: 1) processor block incomplete factorizations
(ILU) as preconditioners for a Chebyshev polynomial, 2) segregated (Braess) methods and 3)
a constraint centric (Vanka) Schwarz methods. Note, all Chebyshev smoothers used are first
order and the spectral radius of the matrix is estimated with a few iterations of conjugate
gradient on the primal system M−1K, where M−1 is the smoothing operator for K (see
Adams et al. for details [5]).

The ILU preconditioner is the processor local level fill ILU method in PETSc with level fill of
one [7]; the constraint equations are ordered last on each processor and the processor’s primal
equations are ordered with nested dissection (note, this is not a provably stable method). The
following two sections describe the other two smoothers investigated here: segregated methods
in §4.1, and a constraint centric Schwarz method in §4.2.

Copyright c© 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2000; 00:1–6
Prepared using nlaauth.cls

6 MARK F. ADAMS

4.1. Segregated KKT smoothers

Consider a block factorization of the KKT system
(

K CT

C 0

)

=

(

K 0
C −S

)(

I K−1CT

0 I

)

(3)

where S ≡ CK−1CT is the Schur complement. This factorization suggests the use of the
preconditioning matrix

B ≡
(

K 0
C −S

)

, B−1A =

(

I K−1CT

0 I

)

(4)

and is attractive because the preconditioned system B−1A is well conditioned in that all of its
eigenvalues are 1.0 and the Jordan blocks have size of at most two [17], if an exact solver is
used for S−1 and K−1.

The action of K−1 is approximated with a given smoother for the primal part of the system

M−1. The action of
(

CK−1CT
)−1

is approximated with an approximate Schur complement
Q = CTD−1CT , where D is an approximation to K (eg, D is the diagonal of K). The dual
smoother is processor block Jacobi with Q (ie, the entries Qij , where equations i and j are on
different processors, are dropped from Q and Q−1 is used as the dual smoother).

These choices for the segregated smoother result in the following algorithm. Give an initial
guess λj and uj :

uj+1 ← uj +M−1
(

f −Kuj − CTλj
)

λj+1 ← λj +Q−1
(

Cuj+1 − g
)

Note, this is equivalent to one iteration of the preconditioned inexact Uzawa algorithm without
regularization [13].

This smoother can be symmetrized with a second application of the primal smoother as
discussed by Bank, Welfert and Yserentant [8], as follows,

ûj+1 ← uj +M−1
(

f −Kuj − CTλj
)

λj+1 ← λj +Q−1
(

Cûj+1 − g
)

uj+1 ← ûj+1 −M−1
(

CT
(

λj+1 − λj
))

This symmetrized form is used in this study.

4.2. A constraint centric Schwarz KKT smoother

This section investigates a constraint centric overlapping Schwarz method. This method is
similar to that used by Vanka [26], in that overlapping Schwarz subdomains are constructed
from a non-overlapping decomposition of the constraints.

4.2.1. Constraint centric subdomains Vanka uses one constraint per subdomain. We use
much larger aggregates—all of the constraint equations on each processor. Each of the sets
of constraint equations is augmented with all of the primal equations that interact with any
of the constraint equations (this set of equations is used to define the extraction operator Ri

in §4.2.2). Thus, each subdomain is a KKT system and can be interpreted in physical terms

Copyright c© 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2000; 00:1–6
Prepared using nlaauth.cls

7

as the matrix resulting from applying Dirichlet boundary conditions to all of the nodes in
the problem that are not touched by any of the constraint equations in the aggregate. These
subdomain solves are stable because each subdomain is a well posed KKT system and thus a
factorization, with the constraints ordered last, is well defined and does not require pivoting.
Thus, a non-overlapping decomposition of the constraint equations is used to construct an
overlapping additive Schwarz component (Bd in §4.2.2).

4.2.2. Constraint centric smoother As with the segregated smoother, a smoother for the
primal part of the system is assumed to be available and is denoted, in matrix form, as
M−1. The primal part (domain) of the smoother is defined by Bp = RT

p M
−1Rp where

Rp =
[

I 0
]

. The dual part of the smoother is defined by Bd = (B1 + B2 + · · · + Bk),

where Bi = R̃T
i

(

RiKRT
i

)−1
Ri, for each subdomain i. The matrices Ri and R̃i are extraction

operators (matrices with only ones and zeros) as defined in §4.2.1. R̃i is block diagonal, with
the proper node ordering, but Ri is not because of overlap in the primal equations. That
is, R̃i is constructed by dropping terms in Ri that require communication and results in a
non-overlapped update of the solution.

Thus, an additive formulation is used for ease of parallelization, and the solution for the
primal variables are updated only from the local solve on each processor to negate the effects of
“overshooting” the solution in the overlap region. That is, each subdomain solve first restricts
the residual for the entire overlapping domain (thus requiring inter-processor communication),
then performs the local subdomains solve (with a factorized matrix that includes rows from
other processors), and finally only local solution values are updated and therefore partial
solution values, that would otherwise be communicated in a full overlapping additive Schwarz
formulation, are discarded.

The constraint centric overlapping Schwarz smoother has two subdomains—the pure primal
part Bp and the dual part Bd—and is composed in both additive and multiplicative variants.
Note, the primal smoother is not used by Vanka because incompressible flow constraints touch
all primal variables and thus, the primal variables are smoothed with the dual smoother. The
multiplicative constraint centric Schwarz smoother, with an initial guess x0 and right hand
side b, is defined as

x̂← x0 + (Bp +Bd −BdABp) (b−Ax0) (5)

that is, standard multiplicative Schwarz with two subdomains. The additive variant is defined
as

x̂← x0 + (Bp +Bd) (b−Ax0) (6)

that is, standard additive Schwarz with two subdomains. The additive variant is used
as a preconditioner for an appropriately damped iterative scheme—first order Chebyshev
polynomials [5]. The multiplicative variant is used with a multiplicative primal smoother—
parallel symmetric Gauss-Seidel [3].

5. Numerical results with contact problems in solid mechanics

This section investigates the effectiveness of the algebraic multigrid methods for constrained
systems (AMG/KKT) developed herein with two problems in solid mechanics. The nonlinear

Copyright c© 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2000; 00:1–6
Prepared using nlaauth.cls

8 MARK F. ADAMS

quasi-static solid mechanics application Adagio, from Sandia National Laboratories [16],
is used for these numerical studies. The solver algorithms are implemented in the linear
solver package Prometheus [19], which is built on the parallel numerical package PETSc [7].
Prometheus provides three algebraic multigrid solvers for the primal system: 1) smoothed
aggregation, 2) plain aggregation and 3) an unstructured geometric multigrid method [2].
Because the smoothers are not, in general, symmetric and the preconditioned systems are not
in general positive GMRES is used as the solver—preconditioned with one iteration of V-
cycle AMG/KKT. The Uzawa solver uses conjugate gradient (CG), preconditioned with one
multigrid V-cycle, as the primal solver. All solves use one pre and post smoothing step, with
an exact solver for the coarsest grid.

We investigate our AMG/KKT method with four KKT smoothers: 1) ILU, 2) the segregated
smoother with an additive primal smoother, and both the 3) additive and 4) multiplicative
variant of our constraint centric Schwarz method. The ILU preconditioner is the processor
local, level fill, ILU method in PETSc with a level fill of one.

The performance of the AMG/KKT methods are compared to a highly refined Uzawa
implementation in Prometheus. The augmentation factor for the regularization required with
Uzawa’s method has been hand optimized to provide the best performance and thus, represents
our best effort to solve these systems with Uzawa. Note, Adagio’s implementation of friction
results in fixing the slave node on the corresponding master surface, resulting in three Lagrange
multipliers per contact interaction, before boundary conditions are imposed. The two test
problems investigated here are run with friction.

5.1. The “circles” problem

The first test problem, known as the circles problem, is a disk within a ring within a circular
cutout as shown in Figure 1. The middle ring segment has an elastic modulus 102 times that

Figure 1. Adagio’s “circles” problem

Copyright c© 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2000; 00:1–6
Prepared using nlaauth.cls

9

of the “soft” material of the central disc and outer cutout plate. All materials have a Poisson’s
ratio of 0.3. This problem has two layers of hexahedral elements through the thickness, 7236
primal equations (minus the Dirichlet boundary conditions) and 180 point on surface contact
interactions with a total of 420 Lagrange multipliers. The sliding boundary conditions on
the top and bottom surface result in the smoothed aggregation algorithm having nearly the
same semantics as the plain aggregation algorithm due to the presence of Dirichlet boundary
conditions on all elements (the smoothed aggregation algorithm specifies that equations that
are modified by the Dirichlet boundary conditions are not used in the smoothing [25]). Thus,
we use plain aggregation for this problem.

Two multigrid levels are used and only the first linear solve is investigated. The problem
is run on eight Sun processors and PETSc achieves about 400 Mflops/second in the matrix
vector product on the fine grid matrix. The systems are solved with a tolerance of 10−12, ie,
convergence is declared when the solution x̂ satisfies ‖b−Ax̂‖2 < 10−12‖b‖2.

Figure 2 shows the residual history, as a function of time (measured in units of the time for
one matrix vector product on the fine grid), of the four smoothers in the AMG/KKT algorithm,
of the Uzawa solver, and of the additive constraint centric smoother used as the preconditioner.
This data shows that the KKT smoother used alone (as the GMRES preconditioner) is

0 200 400 600 800 1000
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Time (MatVec on fine grid)

R
el

at
iv

e
re

si
du

al

Relative residual history (circles)

KKT−AMG Seg. sm.
KKT−AMG DD. sm. (additive)
KKT−AMG DD. sm. (mult.)
KKT−AMG ILU sm.
Uzawa (additive sm.)
one level KKT−Smoother (add)

Figure 2. Residual vs. Time (in matrix vector products on the fine grid) for the “circles” problem

stagnating as is expected because it reduces the high frequency error effectively but is slow
at reducing the low frequency content of the error. The AMG/KKT method with constraint
centric smoothers, and the segregated smoother, solve the problem in about two thirds the

Copyright c© 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2000; 00:1–6
Prepared using nlaauth.cls

10 MARK F. ADAMS

time of the Uzawa solver. The ILU smoother is noticeably slower than the other methods.

5.1.1. Scalability issues All four of the AMG/KKT smoothers use the processor subdomains,
in a domain decomposition method, and are hence less powerful as more processors are used
for a given problem. This is not necessarily a problem, because smoothers are only responsible
for the high frequency content of the error which can be reduced effectively with small Schwarz
subdomains. To determine if this is indeed the case in practice, the iteration counts for this
problem on 1, 2, 4 and 8 processors are measured. Table I shows the iteration counts for
the Uzawa solver, the AMG/KKT preconditioner with the constraint centric Schwarz (CCS)
smoother, both the additive and multiplicative variants, the segregated smoother, and the ILU
smoother. This data shows that the smoothers are indeed essentially invariant to the number

Table I. AMG/KKT iteration counts vs. number of processors

Smoothers 1 2 4 8

Segregated 51 57 52 47
CCS (additive) 47 43 47 42
CCS (multiplicative) 35 34 37 31
ILU 30 33 35 32
Uzawa 100 122 127 106

of processors (ie, the size of the subdomains) in this range of processors.

5.2. The forging problem

The second test problem is shown in Figure 3. This problem is from a simulation of a forging

Figure 3. Adagio “forge” problem

Copyright c© 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2000; 00:1–6
Prepared using nlaauth.cls

11

process and has about 127K degrees of freedom and 64 constraint equations after the first five
“time” steps. This is a nonlinear pseudo-static analysis with five steps, with the first contact
occurring in the third step.

The forge problem is run on 16 processors of an SGI Origin 2000 and the matrix vector
product on the fine grid attains about 1900 Mflops/sec. Adagio uses a non-linear CG method
that can be preconditioned with a linear solver, Prometheus is used in this case with a residual
tolerance of 10−2. Three levels of smoothed aggregation multigrid are used. Table II shows
the total (“end-to-end”) time for the simulation along with the time for the solution phase
(with the number of linear solves) and the solver setup phases. This data shows that the ILU

Table II. Solve and run times (sec) for the forge problem

Smoothers end-to-end setup solve (# of solves)

Segregated 1060 259 293 (309)
CCS (additive) 1140 262 383 (306)
CCS (multiplicative) 910 257 182 (306)
ILU 2096 607 1025 (304)
Uzawa 1057 238 355 (304)

smoother is not competitive and that the segregated and constraint centric Schwarz smoothers
are slightly faster than the Uzawa solver. In particular, the solve time for AMG/KKT with
the multiplicative constraint centric Schwarz smoother is about one half of that of the Uzawa
solver.

5.2.1. Scalability issues One measure of scalability for a multigrid method is to test grid
independence by running the same problem with different number of levels. This is best done
with versions of the problem with different levels of resolution. We do not have scaled version
of our test problems and so we must make do with running the same problem with different
numbers of levels. That is, the coarsening process is stopped with two, three and four levels.
Note, the two level solve, with only one coarse grid, is very slow due to the large coarse grid
operator that is factored and repeatedly solved in the multigrid process, the convergence rate
(iteration count) provides a base case with which to compare the rates using more coarse
grids. Table III shows the number of GMRES iterations for the first linear solve with Lagrange
multipliers in the forging problem (and the total number of CG iteration in the inner loop of
the Uzawa solver).

This data shows some growth in the iteration counts with the additive constraint centric
Schwarz smoother. The segregated and multiplicative constraint centric Schwarz smoothers,
however, demonstrate grid independence. This data is encouraging, though we do not see this
as conclusive evidence of the grid independence of these methods.

Copyright c© 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2000; 00:1–6
Prepared using nlaauth.cls

12 MARK F. ADAMS

Table III. Iteration counts of first linear solve of the forging problems

Iterations (1st solve) dof on each level (approx.)

Levels Uzawa CCS (add.) CCS (mult.) Segregated primal Lagrange mult.

2 29 7 4 8 7872 17
3 29 8 5 9 276 5
4 28 10 4 8 30 2

6. Conclusions

We have presented a general framework for applying algebraic multigrid techniques to
constrained systems of linear algebraic equations that shows promise as an effective approach
to designing solvers for saddle point problems. This includes a novel method for automatically
constructing the coarse grid spaces for constraint equations. We have developed one AMG
method within this framework, along with three classes of smoothers, and applied them to
contact problems in solid mechanics.

Two of the smoothers, the segregated and constraint centric Schwarz methods, are at least
competitive to a well optimized Uzawa solver on two test problems. The third smoother, ILU,
is not competitive—but we have not explored the design space of ILU methods, to a significant
degree, and hence ILU methods should not be discarded from consideration in our opinion.
We have demonstrated that our framework for applying algebraic multigrid techniques to
constrained linear systems has the potential of supporting fast, scalable solvers for this class
of constrained linear systems.

Though we have demonstrated the potential of these methods there are many areas of
future work on this topic. First, the convergence rates, that we observe, are not as fast as
the convergence rate in the primal solves in the Uzawa iterations. We believe that this is
achievable and this issue deserves further study. In particular, the damping for the additive
KKT smoothers deserves further investigation.

Piecewise constant coarse grid spaces are well known to be suboptimal for the primal
equations and it is natural to expect this is the case for the constraint equations as well, though
we are not aware of any analysis on this subject. Thus, developing smoothing techniques for
the constraint coarse spaces will likely be necessary for ultrascalability. It is unlikely that these
techniques can be made as robust as the Uzawa algorithm (which we have never seen fail),
but further investigation is needed to asses the robustness of these methods and address any
deficiencies.

And finally, we see problems that are currently intractable, such as challenging constrained
optimization problems with PDEs, as potentially benefiting from the techniques discussed
here.

ACKNOWLEDGEMENTS

Copyright c© 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2000; 00:1–6
Prepared using nlaauth.cls

13

The author would like to thank the Adagio development team at Sandia National Laboratories
for providing the test problems in this study, and the referees and editor for their thoughtful and
constructive criticisms.

REFERENCES

1. M. F. Adams, A parallel maximal independent set algorithm, in Proceedings 5th Copper Countain
Conference on Iterative Methods, 1998.

2. , Parallel multigrid solvers for 3D unstructured finite element problems in large deformation
elasticity and plasticity, International Journal for Numerical Methods in Engineering, 48 (2000), pp. 1241–
1262.

3. , A distributed memory unstructured Gauss–Seidel algorithm for multigrid smoothers, in
ACM/IEEE Proceedings of SC2001: High Performance Networking and Computing, Denver, Colorado,
November 2001.

4. , Evaluation of three unstructured multigrid methods on 3D finite element problems in solid
mechanics, International Journal for Numerical Methods in Engineering, 55 (2002), pp. 519–534.

5. M. F. Adams, M. Brezina, J. J. Hu, and R. S. Tuminaro, Parallel multigrid smoothing: polynomial
versus Gauss–Seidel, J. Comp. Phys., 188 (2003), pp. 593–610.

6. K. Arrow, L. Hurwicz, and H. Uzawa, Studies in nonlinear programming, Stanford University Press,
1958.

7. S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith, PETSc 2.0 users manual, tech. rep., Argonne
National Laboratory, 1996.

8. R. E. Bank, B. D. Welfert, and H. Yserentant, A class of iterative methods for solving mixed finite
element equations, Numer. Math., 56 (1990), pp. 645–666.

9. D. Braess, On the combination of the multigrid method and conjugate gradients, in Multigrid Methods
II, W. Hackbusch and U. Trottenberg, eds., Berlin, 1986, Springer–Verlag, pp. 52–64.

10. D. Braess and R. Sarazin, An efficient smoother for the Stokes problem., Appl. Numer. Math., 23 (1997),
pp. 3–20.

11. A. Brandt,Multi-level adaptive solutions to boundary value problems, Math. Comput., 31 (1977), pp. 333–
390.

12. W. L. Briggs, V. E. Henson, and S. McCormick, A multigrid tutorial, Second Edition, SIAM,
Philadelphia, 2000.

13. H. C. Elman and G. H. Golub, Inexact and preconditioned Uzawa algorithms for saddle point problems,
SAIM J. Numer Anal., 31 (1994), pp. 1645–1661.

14. W. Hackbusch, Multigrid methods and applications, vol. 4 of Computational Mathematics, Springer–
Verlag, Berlin, 1985.

15. M. Luby, A simple parallel algorithm for the maximal independent set problem, SIAM J. Comput., 4
(1986), pp. 1036–1053.

16. J. A. Mitchell, A. S. Gullerud, W. M. Scherzinger, R. Koteras, and V. L. Porter, Adagio:
non-linear quasi-static structural response using the SIERRA framework, in First MIT Conference on
Computational Fluid and Solid Mechanics, K. Bathe, ed., Elsevier Science, 2001.

17. M. F. Murphy, G. H. Golub, and A. J. Wathen, A note on preconditioning for indefinite linear systems,
SIAM J. Sci. Comput., 21 (2000), pp. 1969–1972.

18. G. Poole, Y. Liu, and J. Mandel, Advancing analysis capabilities in ANSYS through solver technology,
Electronic Transactions in Numerical Analysis, 15 (2003), pp. 106–121.

19. Prometheus. www.cs.berkeley.edu/∼madams.
20. P. Saint-Georges, Y. Notay, and G. Warzee, Efficient iterative solution of constrainted finite elemenet
analyses, Comput. Methods Appl. Mech. Engrg., 160 (1998), pp. 101–114.

21. V. Schulz, Incomplete indefinite decompositions as multigrid smoothers for KKT systems, ISNM, 133
(1999), pp. 257–266.

22. B. Smith, P. Bjorstad, and W. Gropp, Domain Decomposition, Cambridge University Press, 1996.
23. U. Trottenberg, C. Oosterlee, and A. Schüller, Multigrid, Academic Press, London, 2001.
24. P. Vaněk, M. Brezina, and J. Mandel, Convergence of algebraic multigrid based on smoothed
aggregation, Numerische Mathematik, 88 (2001), pp. 559–579.

25. P. Vaněk, J. Mandel, and M. Brezina, Algebraic multigrid by smoothed aggregation for second and
fourth order elliptic problems, in 7th Copper Mountain Conference on Multigrid Methods, 1995.

26. S. Vanka, Block-implicit multigrid solution of Navier-Stokes equations in primitive variables, J. Comp.
Phys., (1986), pp. 138–158.

27. W. Zulehner, A class of smoothers for saddle point problems, Computing, 65 (2000), pp. 227–246.

Copyright c© 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2000; 00:1–6
Prepared using nlaauth.cls

