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Abstract—Affix-oriented metadata search is one of the essential
fuzzy search capabilities that allow users to find data of interest in
their voluminous data set with incomplete query conditions. With
the recent transition towards object-centric data management
systems in the science community, there is a paramount need
for the support of such features in distributed settings. However,
existing metadata search solutions either do not support efficient
affix-oriented metadata search or do not suit well in a distributed
setting of object-centric data management systems. To bridge this
gap, we introduce IDIOMS, a metadata search solution under-
pinned by a distributed metadata index, meticulously designed
to enable high-performance affix-oriented metadata search for
parallel object-centric storage. One of the standout features of
IDIOMS is its efficiency in supporting four distinct types of
highly demanded metadata queries. Furthermore, IDIOMS is
flexibly catering to both independent and collective metadata
search operations. Our experimental comparisons with SoMeta, a
state-of-the-art metadata query method, demonstrate more than
400× performance boost for independent queries and up to 300×
performance improvements for collective queries, while keeping
a small index management overhead.

Index Terms—Metadata Search, Metadata Management, Par-
allel Data Processing, Distributed Data Management, Scientific
Data Management

I. INTRODUCTION

To swiftly find the desired data in large scientific data

sets [1]–[8], there is a critical need for an efficient metadata

search mechanism to sift through large amounts of metadata.

The sheer volume of data and vast amount of metadata

introduce significant challenges, including uncertainties in

search outcomes and the unpredictable nature of metadata

attributes, making traditional exact-match searches cumber-

some and time-consuming. To mitigate these issues, the affix-

oriented metadata search feature proves beneficial for scientists

who need to sift through data objects with incomplete query

conditions. For instance, in a lattice light-sheet microscopy

(LLSM) application [2], [9], if users would like to query

all the data sets with stage coordinates of any dimension

(e.g., StageX, StageY, StageZ, etc.) to be multiple of 100

(i.e., ending with 00), putting multiple conditions about all

dimensions and iterating all possible coordinates that ends with

“00” is an impossible task for scientists to perform. Rather,

to achieve the same goal, they can issue a simpler query with

a query condition partially matching the affixes of metadata

attributes, such as “Stage*=*00”. Such a query is called

affix-oriented metadata search.

Recently, influenced by the need for high-performance I/O,

scalable data access, and rich metadata management, the

science community is witnessing a data management tran-

sition towards the object-centric data management systems,

a.k.a., ODM systems, such as HEPnOS [10], DAOS [11],

and PDC [12]. However, there are no efficient and scalable

affix-oriented metadata search features in the current ODM

systems. On the one hand, existing ODM systems mostly put

their emphasis on the I/O performance, and some of them are

still in their early ages. This results in insufficient attention on

metadata search and hence accompanying underdevelopment

of such features. For instance, in Proactive Data Containers

(PDC) [12], the latest significant effort in ODM systems,

metadata search requires scanning each metadata attribute on

every server process and conducting basic pattern matching

operations. This comprehensive scanning, both globally and

locally against all attributes of all objects, makes searching

for specific metadata attributes time-consuming, which signif-

icantly affects the efficiency of affix-oriented metadata queries.

On the other hand, existing metadata search solutions were

proposed in the context of general data management, without

complete compatibility to ODM systems. Several of these ef-

forts use external or embedded database management systems

(DBMS) as the backends of their metadata storage. Examples

of these database systems include relational databases such as

PostgreSQL [13] used in BIMM [14], SQLite [15] embedded

in EMPRESS [16] and TagIt [17], NoSQL databases like

MongoDB [18] used in JAMO [19] and SPOT Suite [20]. The

major drawbacks of these database-powered solutions include

1) the need for a dedicated environment to host the database

server; 2) a mismatch between the database schema and

object-centric metadata schema that will enforce the metadata

transformation from an ODM system to the targeting database

(e.g., transform to tabular format in relational databases or

JSON [21] format in MongoDB); 3) inefficient full-text search

for affix-oriented metadata query. While other solutions [22],

[23] were proposed to address the challenge in the context of

self-describing formats, they do not consider the distributed

nature of ODM systems where the clients access the data on

the servers via network communications.

In addition, there is no solution to support efficient dis-

tributed infix metadata search. Although distributed data

structures and corresponding algorithms like DHT [24] and

DART [25] were proposed to address the distributed search
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problem and can be used to facilitate distributed search, infix

search on a DHT/DART-featured distributed system will still

incur a complete scan against all distributed nodes, which can

lead to significant performance deterioration.
Given the rising need for affix-oriented metadata search in

ODM systems, we propose IDIOMS - an INDEX-POWERED

DISTRIBUTED OBJECT-CENTRIC METADATA SEARCH so-

lution. Our solution is designed to support affix-oriented

metadata search in large-scale parallel applications, where

distributed ODM systems are employed. In our design, we

follow the classic client-server architecture that suits the ODM

systems well, and we target both collective and independent

metadata search operations for parallel applications. Our in-

memory index on the server side is specifically crafted for

efficiently serving each metadata query with affixes on both

keys and values. Our client runtime is designed to ensure

deterministic query routing against all servers. In addition,

our design of suffix-tree mode in IDIOMS helps to unleash

the power of infix metadata search, making it as efficient and

smooth as exact metadata search.
We implemented IDIOMS and integrated it into PDC [12].

We also conducted an extensive evaluation on the Perlmut-

ter supercomputer hosted at the National Energy Research

Scientific Computing Center (NERSC). Our experiments with

over 10 million metadata attributes from one million objects

show that IDIOMS achieved at least 307× performance boost

for the independent metadata queries and up to 303× perfor-

mance improvement for the collective queries, as compared

to SoMeta [26] and SQLite-powered metadata search method.

Also, our experiment results show that IDIOMS only adds up

to 52.57% memory overhead.
The contributions of this research are as follows:

• We identify the gaps and challenges of metadata search

in ODM systems - the lack of efficient affix-oriented

metadata search in existing ODM systems as well as the

ignorance of the distributed nature of ODM systems in

existing metadata search solutions.

• We propose IDIOMS - an Index-powered Distributed

Object-centric Metadata Search solution which is de-

signed to achieve efficient affix-oriented metadata search

on top of ODM systems.

• Our metadata index is designed to handle affix-oriented

queries against both metadata attribute keys and metadata

attribute values.

• The client runtime of IDIOMS supports efficient and

deterministic query routing in both independent query

mode and collective query mode, for all four essential

affix-oriented metadata search types.

• The index persistence and recovery mechanism is de-

signed to ensure the adaptability towards server count

changes among different application runs.

• We integrated IDIOMS into the PDC ODM framework.

With the help of IDIOMS, the independent metadata

search gets a 407× performance boost and the collective

metadata search in PDC is now up to 300× faster than

before.

The rest of the paper is organized as follows. In Section II,

we review metadata management in object-centric data man-

agement. We describe the design of IDIOMS in Section III.

We show our experimental results and provide corresponding

discussions in Section IV. After briefly reviewing related

works in section V, we finally conclude in Section VI.

II. MOTIVATION AND CHALLENGES

Metadata search is a well-developed feature in most tra-

ditional file systems [27]. Typically, users can issue prefix,

suffix, infix, and exact queries against file names. Such affix-

oriented metadata queries are essential fuzzy search capabil-

ities available to the users who may not exactly remember

what the file names are. Similarly, such capabilities are also

valuable tools to help users sift through the vast number of

rich metadata attributes in an object-centric data management

system. However, in most modern ODM systems, metadata

search, especially affix-oriented metadata search, is still at its

early stage and there is no particular metadata search solution

specifically developed for ODM systems. For example, some

recent metadata search solutions, like AMI [28], JAMO [19],

SPOT Suite [20], and BIMM [14], use centralized database as

the metadata store. The centralized database limits the scal-

ability of these metadata management solutions and hence is

not well-suited for ODM systems that aim to serve large-scale

parallel applications. Some other solutions, like TagIt [17]

and Empress [16], utilize embedded databases, in particular,

SQLite, as the metadata store. While metadata search can be

served by SQL queries on each distributed server process,

each metadata query would still incur a complete scan on all

distributed server processes, leading to huge communication

overhead. Distributed adaptive radix tree (DART) [25] ad-

dresses the distributed affix-oriented keyword search problem,

but it can only work on every single keyword instead of

key-value formed metadata attributes and it only supports

deterministic query routing for prefix, suffix, and exact queries,

not for infix queries. Therefore, there is a pressing need for

an efficient affix-oriented metadata search solution particularly

crafted for ODM systems.

However, achieving efficient affix-oriented metadata search

on top of ODM systems is a challenging task. The major

challenges are as follows:

� Supporting Key-Value Search: While metadata attributes

in most ODM systems are usually in the form of key-value

pairs, and the keys and values are not completely distinct, we

need to support affix-oriented queries on both the key part and

the value part of the metadata attributes. Although distributed

query routing can be performed on metadata attribute keys,

an appropriate local indexing structure must be designed

to support efficient affix-oriented metadata queries on both

metadata attribute keys and values on the server side.

� Minimizing Communication Cost: Due to the distributed

nature of data objects in ODM systems, without a proper

global indexing technique, an affix-oriented metadata search

operation would necessitate a time-consuming full scan over

all object partitions in the ODM system due to the distributed
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object and metadata model. Thus, the design of the distributed

metadata indexing technique must put minimizing communi-

cation reduction in the first place.

� Supporting Two Query Modes: Scientific applications are

usually highly paralleled and mostly distributed. Depending on

whether the application processes are working independently

or following the same workflow, there are two query modes

we need to support: 1) Independent Query: Some applications

may use independent processes to handle different workflows

simultaneously and hence may issue metadata queries inde-

pendently to the server processes at any given time. Without

a proper index, each affix-oriented metadata query must be

sent to all servers to get the complete query result. This can

cause significant network congestion when multiple clients

issue queries simultaneously. 2) Collective Query: Another

category of applications, may execute the same workflow

among all client processes. A selected set of client processes

can collectively send partial metadata search requests to the

server processes to get partial results. Afterwards, clients must

perform a result exchange to get the complete query result.

Note that, in this case, all the clients, as a whole, can only

send one query at a time, and the query response time largely

relies on the longest turnaround time of all the partial requests.

Therefore, it is necessary to minimize the server response time.

� Adaptability to Server Count Changes: We consider that

the applications may need to scale in and out, and hence

the number of servers of an ODM system may need to be

changed accordingly. Therefore, the distributed metadata in-

dexing mechanism must be designed to cope with the potential

server count change.

III. METHODOLOGY

A. System Overview

The goal of IDIOMS is to provide efficient affix-oriented

metadata search capability to distributed ODM systems. There-

fore, the design of IDIOMS naturally embraces a client-

server based architecture where client processes (or “clients”)

and server processes (or “servers”) communicate via remote

procedure calls (RPC). In the design of IDIOMS, we consider

achieving high performance parallel metadata query capability

as our first priority. Therefore, there are two essential pitfalls

we would like to avoid: 1) query broadcasting on all servers

that may lead to excessive communication overhead, 2) slow

response introduced by local complexities on each server that

may lead to query congestion. Therefore, instead of providing

affix-oriented metadata search directly on top of the distributed

objects and their attached metadata attributes, we consider

building an inverted index for metadata attributes and we

partition such index onto all servers using our implementation

of DART [25] - an index partitioning and query routing

algorithm for affix-oriented metadata search.

As shown in Figure 1, IDIOMS contains three major parts:

� the IDIOMS APIs by which users can create, delete in-

verted metadata index records, and most importantly, perform

affix-oriented metadata search;

� the client-side runtime which comprises 1) a load

distributor that aims to distribute query workloads evenly

among all clients, 2) a request router that routes each metadata

search query to specific one or two servers, and 3) a response

processor which performs result deduplication and optional

result broadcasting. Note that these components exist across

all clients of ODM systems;

� the server-side runtime which consists of an index layer

where the trie-based in-memory inverted index is maintained

and a persistence layer where the persistence and recovery of

the in-memory index is handled.

B. Metadata Index Model in IDIOMS

To address affix-oriented metadata search efficiently for

ODM systems, in IDIOMS, we consider building an inverted

metadata index. Conceptually, if we map all the inverted index

records into a tabular view, we can consider the inverted

metadata index to be a list of 3-element tuples. In each tuple,

the first element corresponds to the metadata attribute key, the

second element corresponds to the metadata attribute value,

and the third corresponds to a list of object IDs. In IDIOMS,

these index tuples are distributed across all servers based on

the first element of the tuple, and, inspired by MIQS [22], are

stored in a double-layered trie-based in-memory index locally

on their destination servers, as shown in Figure 2. It is worth

noting that, in addition to the “indexing by duplicating inverted

strings” methods used in MIQS, we also designed a suffix-tree

mode where these metadata attributes are indexed following a

“indexing by iterating suffixes” approach, where we iterate all

suffixes of keys for index record distribution while inserting

all suffixes of keys and all suffixes of values into the first

and second layer of the in-memory index tree, respectively.

This eliminates the need to create an additional double-layered

index structure specifically for suffixes, and also provides the

capability for efficient infix search. This is because each infix

search is now converted into a prefix search against a certain

suffix of a metadata attribute key or value, which helps reduce

the complexity from O(n∗d) down to O(d) (where n denotes

the total number of attribute keys or values, d denotes the

height of the trie). Although iterating all suffixes seems to

increase the number of index records on the trie and hence may

cause significant memory overhead, in practice, the suffixes of

a meaningful string like a metadata attribute key or a metadata

attribute value may contain duplicated sequences and many of

the trie nodes can be re-used instead of being created.

C. IDIOMS API
The API design of IDIOMS puts simplicity and effective-

ness at its top priority. The create_md_index API can be
used to create an index record when a new metadata attribute
is attached to an object, and the delete_md_index API
can be used when an existing metadata attribute is detached
from an object. Also, when there is an update on the metadata
attribute for a certain object, the delete_md_index API
can be invoked first to delete the stale index record while the
create_md_index API can be used to index the newly
updated metadata attribute of the specified object. Note that
there is no API for updating the metadata index since the
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Network Communication

create_md_index(key, value, object_id) -> None
delete_md_index(key, value, object_id) -> None

md_search(query_condition) -> List[int]IDIOMS API

Load Distributor

Request Router

Response Processor

Query ParserSuffix Iterator

DART Core
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Rank 7
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Rank 8
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Rank 9 ......
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Server
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Server
Rank 2

Server
Rank 3
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Rank 4 ......

Indexing: 1000023: FILE_PATH=stack0000_488nm_0000000msec_0067511977.tif Searching: *PATH=*488nm*

Which client should be sending the request?

Which server should be receiving the request?

No duplication in the final result, broadcast results on demand.

Persistence Layer

PATH
["FILE_PATH", ...,  "PATH", ...]

IDIOMS Client Runtime

IDIOMS Server Runtime

(1)

(2)

(1)

(2)

(3)

(2)

Key-trie

Value-tries

Key-trie

Value-tries

Key-trie

Value-tries

Key-trie

Value-tries

Key-trie

Value-tries

Key-trie

Value-tries

Figure 1: System Overview of IDIOMS. The metadata index operations are shown in blue color, and the metadata search operation is shown
in green color. Note that the indexing-related components and querying-related components uniformly exist in all client processes, we put
them side by side to clearly demonstrate these two different flows.

index records are scattered on different branches of the trie
and the stale index record must be deleted from the trie first
for any metadata attribute update so that the index can remain
consistent with the actual change of the metadata attribute.

In addition to the metadata indexing APIs, the md_search
API is the only API that IDIOMS provides to the end user.

This API takes a query condition string which is in the form of

“:key=:value”, where “=” is the delimiter separating the

key part “:key” and the value part “:value” of the query.

Note that either the key part or the value part in the query

condition string can be written in the form of a complete string

or the form of an affix. This provides users with the greatest

flexibility in writing their affix-oriented metadata search query

conditions without the hassles of taking care of separate

function parameters. Additionally, such an extensible design

also opens up the possibility for unifying the user experience

on new metadata search capabilities in the future.

In Figure 3, we take some sample metadata attributes and

metadata queries from the LLSM application [2] to demon-

strate the following types of queries supported by the IDIOMS

query APIs:

• Prefix Search: Locating data objects whose attribute

keys or attribute values match with the given prefixes.

If prefixes are given for both the key part and the value

part of a query condition, we consider this type of

query as a Complete Prefix Search. For instance, in the

figure, a complete prefix search with query condition

coordY*=12.* is looking for data objects with Y

coordinates within the range of [12.0, 13.0),

regardless of the version of the coordinates.

• Suffix Search: Locating data objects where attribute

keys or attribute values match with a given suffix.

Similarly, for a query with suffixes on the key part and

the value part of a query condition, we name it as a

Complete Suffix Search. For instance, a complete suffix

search with query condition *date=*-26 looks for

data objects that were ever created, updated, or reviewed

on the 26th day of every month.
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AUX_FILE_PATH
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stack0000_488nm_0000000msec_0067511977.tif

[2000023]

[1000023]

......

FILE_PATH

......
0000_488nm_0000000msec_0067511977.tif
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[2000023,1000023]

FILE_PATH stack0000_488nm_0000000msec_0067511977.tif [2000023]
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......
......

......

❶
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❸
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Index by iterating suffixes

Index by duplicating inverted strings
stack

FILE_PATH

^

AUX_
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[2000023,1000023]
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Figure 2: IDIOMS index model. The diagram shows an example of index records on two attributes marked with a red � and a blue �
respectively. Note that indexing by duplicating inverted strings of both keys and values can lead to a quadruple of the index records in which
rare trie nodes can be possibly shared. For instance, all the index records �-	 in the “index by duplicating inverted string” table cannot
share any trie node. In contrast, indexing by iterating suffixes may lead to a much larger number of index records, but in many cases, the
trie nodes can be shared among these records due to the same ordering of the characters in the records and also the repetitive occurrence
of characters in the metadata attribute key or metadata attribute value. For example, index record �, though coming from suffix interaction
on the key of index record �, can share trie node for FILE_PATH. Also, index record � may share some trie nodes on the value trie with
the derivatives of index records �, �, for the first few zeros in the value part.

Object B

update_date: 2019-03-26 original_file_path:
stk00_488nm_000ms.tif

coordY_1:
14.20

Object C

review_date: 2019-05-27

aux_file_name:
stk01_488nm_001ms.tif

coordY_2:
12.78

Object A

create_date: 2019-04-26

original_file_path:
stk00_466nm_000ms.tif

coordY_1:
12.55

[Suffix Search]
*date=*-26

[Infix Search]
*file*=*488nm*

[Prefix Search]
coordY*=12.*

Figure 3: An overview of affix-oriented metadata search in object-
centric metadata model, names of objects, and attributes are tailored
for the ease of demonstration. Metadata attributes that do not match
any given query condition are gray-colored.

• Infix Search: Locating data objects with attribute keys or

attribute values matching with given infix. A query with

infixes on both the key part and the value part of the

query condition is called a Complete Infix Search. For

instance, a complete infix search with query condition

“*file*=*488nm*” looks for data objects that relate

to any original file or auxiliary file with a file name

containing the granularity target “488nm”.

Note that, in a query condition, the key part and value part

can be of any form - either an affix or a complete string. If

both the key part and the value part of a query condition are

in the form of an affix, we call those types of query to be

Complete Affix Queries. In addition to the above, we also

support Exact Search, where the keys or values in the query

condition are given in their complete form.

We consider the single condition queries as the cornerstone

of the metadata search capability, which can be combined to

address more complex queries. Therefore, we do not aim for

multi-condition queries for now.

D. Client-side Runtime

The client (or application) side metadata index handling

APIs provide the metadata index creation and deletion oper-

ations. We consider supporting these two types of operations

in two scenarios: 1) non-MPI based applications where all

operations are independent between each client; 2) MPI-based

applications where collective operations are needed. Therefore,

for each type of operation, we provide support for independent

mode and collective mode, as shown in Figure 4.

In independent mode, each client process works indepen-

dently and a metadata index operation can be initialized from

any client at any time. In this case, the load distributor is

bypassed for all metadata indexing and searching operations.

In contrast, for the collective mode, the load distributor will

be utilized to distribute operation workloads among all clients

first, to ensure that no operation congestion is formulated at

a certain client via multiple times of collective operations.

Since the independent mode and collective mode share the
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Req1Req2 Req3Req1

S2S1S0 S3

C1 C2 C3 C4 C5C0

S2S1S0 S3

C1 C2 C3 C4 C5C0

Collective ModeIndependent Mode

Result Syncing

Figure 4: Two modes based on communication model: independent
mode and collective mode. C0-C5 are client processes and S0-S3 are
server processes. Note that clients may send different independent
requests at the same time, like Req1, Req2, and Req3, while all
clients can only send one collective query at a time.

most significant part of the metadata workflows, we now de-

scribe metadata index handling and metadata search operations

separately in the collective mode. Note the only difference in

independent mode is that all clients are acting independently

and the load distributor is bypassed for any operation.

1) Metadata Index Handling on Client Side: In IDIOMS,

the metadata index is partitioned using DART [25] algorithm

and all metadata index operations will eventually be routed to

2 servers selected by DART. Therefore, in collective mode,

there is no need to have all clients send the same requests and

only one client is selected for performing the actual metadata

index operation. To select such a client, we utilize the load

distributor that resides in each client. In the load distributor of

each client, we maintain an index operation counter for count-

ing the number of collective calls on create_md_index,

delete_md_index, and md_search. Each time a collec-

tive metadata index operation call is triggered, we first increase

the counter by 1 at all clients, and then we utilize the load

distributor to calculate the ID of the request sending client

by performing a modulus operation with two parameters - the

value of the counter and the total number of processes.

Once the client ID is selected, the client process with

the selected ID will proceed to the suffix iterator where all

suffixes of the metadata attribute key are iterated. Then, the

client generates a list of requests with different suffixes of

the metadata attribute key, the metadata attribute value, and

the object ID given in the collective function call. With the

help of the DART algorithm, each request in the request list

will be attached with a virtual node ID tag. Additionally, to

implement the DART replication mechanism on the metadata

index, we also create additional requests for the replicas. With

the request list, the request router will send these requests to

different servers with the guidance of the DART algorithm.

2) Metadata Search on Client Side: Similar to the metadata

indexing operations, a collective metadata search operation

also starts with the load distributor, while the independent

metadata search operations bypass it. At the request sending

client, the metadata search query is firstly parsed so that

the affix type and the actual affix in the key part of the

query condition are extracted. For a given query condition

“:key=:value”, we first split the query string by delimiter

“=”, then we take the key part of the query condition and

determine the query type. If there is only one “*” in the key

part and it appears the beginning of the key, we consider it as a

suffix search against the key; if the “*” appears only at the end

of the key part, it is a prefix search on the key; if “*” shows

at both sides of the key part, it is an infix search against the

key; no “*” will be considered as an exact search on the key.

Based on the DART algorithm, the request router will generate

a destination list containing the IDs of the two servers where

the corresponding metadata index record may exist. Note that

if the key part is solely a “*”, the destination list will include

all server IDs. With the destination list, the request sending

client will send the query condition string to the destination

servers. For example, query condition “*PATH=*488nm*”

will be parsed as a suffix query on the key with the actual

suffix token “PATH”, and a destination list will be generated

with the IDs of destination servers. As the example shown in

Figure 1, the query condition “*PATH=*488nm*” is sent to

server rank 2 where the index records with the suffix “PATH”

of key “FILE_PATH” can be certainly found.

E. Server-side Runtime

The server-side runtime of IDIOMS comprises two layers:

1) the index layer where each server maintains an in-memory

inverted index for efficient metadata search on the server side;

2) the persistence layer where each server process can dump

its own in-memory index to an on-disk index file. Also, the

index recovery based on these index files is also performed at

this layer.

1) Index Layer: At this layer, instead of using any database,

each server process maintains a partial inverted index in its

runtime memory. The in-memory inverted index is a combina-

tion of two-level tries. The first level is a trie that corresponds

to the metadata attribute keys, while the second level contains

multiple tries connecting to the leaf nodes of the first-level trie,

which correspond to the metadata attribute values of every

indexed key. When indexing metadata attributes or deleting

metadata index records with the suffix-tree mode, since the

client side already iterates all the suffixes of the key in the

request, the server side will directly insert the prepared suffixes

of the key into the first-level trie. Then, for the value part, the

server will also iterate all suffixes and insert them into the

second-level tries that correspond to each suffix in the first-

level trie. The corresponding object ID is then inserted at the

leaf nodes of the second-level tries.

When executing a metadata query, once the server receives

the request sent by the client, it will go through the in-memory

index. Since all the suffixes of every indexed key and value are

inserted into the trie-based in-memory index, any exact match

or suffix match will definitely hit a leaf node on the first-level

trie, and any prefix or infix matches will be accomplished

by a scan over the trie branches radiating from the node

that corresponds to the last character in the prefix or infix.

Depending on where the match happens (either on the attribute

key or on its value), the leaf node access or branch scan occurs

either at the first-level trie or at a second-level trie.
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2) Persistence Layer: The persistence layer at the server-

side runtime of IDIOMS is designed to checkpoint the in-

memory index onto disk. When checkpointing the in-memory

index, one thing we would like to make sure is that, even

if the ODM systems are redeployed with a different number

of servers, the in-memory index can still be restored with

uniform distribution across all servers. To this end, we consider

reserving the DART virtual node ID along with each index

record. Therefore, when the client-side runtime of IDIOMS

figures out a server ID for each index request, we include the

corresponding DART leaf virtual node ID in the index request.

When creating the in-memory index on each server, we include

this DART leaf virtual node ID in the corresponding leaf

node of the first-level trie. With this mechanism, we can

reserve the mapping between the key of each index record

and its corresponding virtual node ID. This makes it possible

to restore in-memory index records with a consistent mapping

between the index records and the DART virtual nodes, even

if the ODM system is redeployed with a different number

of servers. Since the index records are distributed evenly

across DART virtual nodes, a uniform distribution of the index

records is guaranteed on all servers.

To ensure an efficient index recovery process, we designed

an index persistence mechanism that makes index recovery

independent and communication-free among all servers. Also,

to maintain the index file in a compact way, we utilize the

one-to-many mapping between index key and index values,

and also the one-to-many mapping between each key-value

pair and object IDs. We first group all index records by the

DART virtual node IDs they are associated with. Then, in each

group, we insert the key of each index record as the key of

the hash table, and we insert a list of compiled structures as

the value of the hash table. Each compiled structure contains

a field storing the DART leaf virtual node ID and a field

storing a list of 2-element tuples, where each tuple stores

the value part of an index record and also the corresponding

object IDs. Then we serialize this hash table into a file

named with the virtual node ID of this group, for instance,

“idioms_{vnode_id}.idx” where “vnode_id” is the

virtual node ID of the group. When restarting all servers, we

initialize the DART core at the persistence layer of server

runtime. Each server will be able to get a list of all DART

virtual node IDs it is mapped to, and will load the index files

whose file names contain the corresponding virtual node IDs.

IV. EVALUATION

A. Experimental Setup

1) Platform: We perform our evaluation on Perlmutter [29],

the current flagship supercomputer at NERSC [30]. Perlmut-

ter’s CPU partition contains 3,072 CPU-only nodes and each

of them is equipped with 2 AMD EPYC 7763 CPUs and

512GB DDR4 DRAM. The storage system features substantial

local SSD scratch space and a sophisticated all-flash Perlmut-

ter Scratch File System with 35 PB of disk. Software-wise,

we build IDIOMS on top of Proactive Data Containers (PDC)

[31] - an ODM system with metadata management over a

distributed object-centric data model.

2) Evaluation Procedure: For our evaluation, we compare 4

different implementations including 1) “SoMeta” - the original

PDC metadata search solution without an inverted metadata

index; 2) SQLite - the implementation that employs SQLite

as the metadata storage. The object-to-metadata mapping is

stored in a 3-column table with the primary key (the first

column) storing the object ID, the second column storing

the key and the third column storing the value (Both key

column and value column are indexed using SQLite indexing

feature); 3) IDIOMS (no suffix tree) - the implementation

where additional compound tries are used for indexing the

inverse of key strings and value strings; 4) IDIOMS (suffix

tree) - the implementation where all the suffixes of keys

and values are indexed using the same set of compound

tries. Throughout our IDIOMS evaluation, we take the default

replication factor setting of DART, which is 10% of the total

server count N . Thus, each index record will be replicated for

floor(N/10) times. Note that we compare with SQLite be-

cause of its adoption in some recent metadata search advances

like TagIt [17] and EMPRESS [16], etc. We would like to show

how IDIOMS can improve metadata search efficiency in an

ODM system without proper metadata index, and how much

IDIOMS outperforms database-powered solutions in terms of

affix-oriented metadata search efficiency.

For clarity and predictability of the evaluation result, we

created a synthetic data set for our evaluation based on the

LLSM application [2], [3] metadata list. We extend the number

of data set records to 1 million, and by following the format

of the original metadata attributes, we extend the number of

metadata attributes to 100 per data set record. Thus, we can

create 1 million objects with a total of 100 million metadata

attributes into our testbed, which can sufficiently pressurize

our system.

We perform our test in four iterations with each at a different

scale with a different server count setting (i.e., 16, 32, 64, and

128). For each iteration, after a clean up procedure, we create

1,000,000 objects in PDC and we attach 10 million metadata

tags on a selection of 100 thousand created objects. Note that

we evenly create 100 metadata tags on each of the selected

objects. We then perform metadata search queries in two

modes - the independent search mode and the collective search

mode, as described previously in section III. When performing

queries in each mode, we send four complete types of queries

mentioned in Section III-C and Figure 3. For each query type,

we send 100 queries with query conditions made from the 100

metadata tags we put on each of the 100 thousand objects. For

example, we take the first 3 and last 3 characters of each key

or value when making prefix and suffix respectively, and we

truncate the leading and trailing characters when making infix.

Note that, for collective query mode, both SoMeta and our

SQLite variant are configured to use the same number of client

processes as server processes. This setup allows for parallel

execution of queries, where each client process independently

retrieves a part of the overall result. Subsequently, both of them
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employ MPI_AllGather to synchronize the partial results

across all client processes. In contrast, IDIOMS only selects

one client process to perform the actual query execution and

then broadcasts the results to all the clients. At the test end of

each scale, we checkpoint the IDIOMS index. Accordingly, at

the beginning of each iteration, after the index is recovered, we

first delete all the metadata tags during the clean up procedure

and then create the metadata attributes and the corresponding

index. To make sure we have metadata tags to be deleted at the

first iteration, we run an initializing program before the first

iteration to create the desired amount of objects and metadata

attributes.

B. Performance Impact on Tag Creation and Tag Deletion
In figure 5, we show the total time for creating these tags

and also the total time for deleting them.

Figure 5: Tag Creation and Deletion Time of 10 Million Tags

As can be seen from the figure, in SoMeta where no

indexing mechanism is applied, the total tag creation time for

10 million tags decreases from 12.5 seconds to 2.6 seconds as

we increase the number of servers. With SQLite, we also see

a decreasing trend for the total tag creation time, from 101

seconds at 16 servers to 16 seconds at 128 servers. The total

tag creation time in IDIOMS does see a rising trend at a higher

level for both cases (with/without suffix tree mode), with non-

suffix-tree mode ranging from 102 to 126 seconds and the

suffix tree mode ranging from 1613 to 3868 seconds. Such an

escalation in indexing time is due to the double index created

for prefix query and suffix query in non-suffix-tree mode and

the iteration of all suffixes of each key and each value in the

suffix-tree mode. Also, the ascending trend is because there

are more replicas to be created by DART when the number of

servers grows with a fixed replication factor - floor(N/10).
It is worth noting that the total tag creation time was

measured in a single-threaded setting with all blocking calls

subject to the current PDC implementation. In practice, there

can be multiple optimization methods such as asynchronous

client-side API calls and server-side multi-threading to further

accelerate the client-side indexing performance. Additionally,

the total tag creation time is measured during the initial tag

creation stage. Considering the 100 million tags we created

during our experiment, with IDIOMS, the average time for

the initial creation operation of each tag is still between 0.01

to 0.38 milliseconds, which is within an acceptable range.
The tag deletion time sees a similar result as compared to

the tag creation time. We do not go through the tag deletion

performance in detail, since tag deletion and tag creation

mostly follow a very similar procedure, and the only difference

is that, in tag deletion, the index record is deleted and the

corresponding memory is deallocated.

C. Index Persistence and Recovery

Figure 6: Index Persistence and Recovery Performance

Although IDIOMS may take a relatively long time to

build the index for unindexed metadata attributes, the index

persistence mechanism can help reconstruct the in-memory

index much more efficiently. As shown in Figure 6, we can

see that, in the worst case, it takes at most 3ms for IDIOMS

to dump the in-memory index of 10M tags from all servers to

disk (16 servers, no suffix tree mode). Also, in the worst case,

it takes at most 4ms for all the servers to load and recover

the in-memory index from disk. Given this result and the fact

that we are able to perform our test at each scale after index

recovery, we can see that IDIOMS is capable of recovering the

index rapidly when the ODM servers need to be rebooted, even

with a different server count setting. This verifies that IDIOMS

is a practical and applicable solution in real applications.

D. Independent Query

The independent query mode in IDIOMS allows each client

to perform metadata search independently. This query mode

is ideal for applications where clients are still distributed but

working without MPI support. Figure 7 shows the average

latency per query. As can be seen in the figure, without any

indexing mechanism, SoMeta takes more than 10 seconds to

finish a single query, due to its full-scan over all distributed

hash tables across all servers. With the help of SQLite, the

query latency slightly drops down, but still remains higher

than 10 seconds. We can see the benefit of local database

adoption within each server process does not outweigh the

drawback of global full-scan across all servers. In particular,

as compared to exact queries, affix-oriented queries can take

more time to finish on SQLite even with the database index

on the key column and value column of the table. This shows

that the index in the database does not help with the efficiency

of affix-oriented metadata search.

In contrast, the performance of all queries in IDIOMS is

immediately better. Without the suffix tree support, IDIOMS

is able to achieve 4 - 14 ms for each exact, prefix, and suffix

query and 47 - 78 ms for every infix query. With the help of

suffix tree mode, IDIOMS is able to achieve an even lower
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Figure 7: Independent Query Time Comparison

average latency for infix queries (ranging from 6 to 23 ms)

with roughly the same performance as non-suffix-tree mode

for exact, prefix, and suffix queries. This is because, firstly,

the inverted index items are distributed across different servers

by the prefix of the metadata key so that each exact query,

prefix, and suffix query can be routed to a specific server

rather than all servers, and secondly, every infix query is

turned into a prefix query on a compound trie with the support

of suffix tree mode. Notice that even without the help of

suffix-tree mode, the performance of the infix query still beats

SoMeta and the SQLite variant, due to the trie-based local

in-memory index that helps to avoid complete examination

on every metadata attribute of every object. Overall, IDIOMS

achieves a 407-19065× performance boost as compared to

SoMeta, and outperforms the SQLite variant by 370-15374×.

E. Collective Query

The collective query mode in IDIOMS is designed for MPI-

powered applications. It allows a group of client processes to

collectively issue the metadata search query and each one of

them is supposed to get a complete search result. Figure 8

reports the latency of collective metadata search queries. As

compared to independent queries where the full scan over all

servers is performed in sequential order, the highest latency of

collective queries in SoMeta and the SQLite variant declined

to about 100 ms at its maximum scale, due to the parallel

query server scanning in these two implementations. We can

see that SoMeta is the slowest and the SQLite variant performs

slightly better for the affix-oriented metadata queries.

When it comes to IDIOMS, we can see that, the exact,

prefix/suffix queries are all finished within 0.8 - 1.7 ms. At the

scale of 16 servers, IDIOMS is able to achieve up to 221×
performance boost as compared to SoMeta and outperforms

the SQLite variant by 180×. Even at the scale of 128 servers,

IDIOMS is able to achieve up to 40× performance boost for

all these queries. Moreover, with the help of suffix-tree mode,

for infix queries, IDIOMS outperforms SoMeta by 100× to

300× and outperforms the SQLite variant by 57× to 178×.

Figure 8: Collective Query Time Comparison

Figure 9: Average Query Time Breakdown for Collective Metadata
Search. The bottom part of each stacked bar indicates the server
response time, the middle part indicates the client-side response time,
and the top part shows the result syncing time for all client processes
to get complete results. “IDIOMS(SFT)” stands for IDIOMS with
suffix tree mode, while “IDIOMS” stands for IDIOMS without suffix
tree mode.

We provide a breakdown of collective metadata search in

Figure 9. The time reported in this figure is the average time of

all 400 queries of all 4 types we’ve issued in the test. We can

see that, since the local full scan of all metadata attributes is

inevitable in both SoMeta and the SQLite variant, the average

server response time dominates the entire query time stack

of each kind at every scale, ranging from 5 to 79 ms. For

IDIOMS, we can see that the average server response time

usually hits its bar at 0.01-0.02 ms. However, without the help

of suffix-tree mode, the average client response time of all

queries we have sent is following an increasing trend as the

number of servers increases. This is largely because the se-

lected query sending client still needs to scan all servers to get

the infix query result. With the help of suffix-tree mode, though

a very gentle upward trend is shown as our evaluation scales

out, the average client response time is significantly reduced

to less than 1.33 ms, leading to a significant drop in average

query time at all scales. Moreover, since IDIOMS only takes

one client to perform query execution, there will be no need
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to perform complex MPI_AllGather operations, and result

syncing is accomplished by more lightweight MPI_Bcast
operations. As compared to SoMeta and the SQLite variant,

we can see that, although not the most dominating factor for

the query time reduction, the average result syncing time is

even reduced to less than 0.04 ms.

F. Memory Overhead

TABLE I: Percentage of Additional Memory Introduced by IDIOMS
(on the basis of 5.9GB metadata memory consumption)

Number of Servers 16 32 64 128
IDIOMS (suffix tree) 4.77% 11.19% 14.54% 20.63%
IDIOMS (no suffix tree) 1.09% 13.04% 25.06% 52.57%

In our evaluation, we also measured the total memory con-

sumption of all servers. We take the total memory consumption

of the metadata part in SoMeta as the basis of our evaluation

(which is 5.918GB), and we show the percentage of additional

memory introduced by IDIOMS at all scales in Table I. In

the suffix tree mode, IDIOMS only introduced up to 20.64%

additional memory. In contrast, as a result of using dedicated

trie for indexing suffixes, which reduced the chance of trie

node sharing among all indexed keys and values, the adoption

of IDIOMS leads to at most 52.57% additional memory. Also,

as the number of servers increases, the indexed keys and values

tend to be more dispersed across all servers and hence have

less chance to share a common trie node on the same server.

This causes the increasing trend of memory consumption in

both cases. But overall, IDIOMS does not introduce significant

memory overhead considering the base memory consumption

for all metadata attributes is only 5.9GB from all servers and

the abundant 100GB+ memory space that each compute node

of a modern supercomputer mostly has.

V. RELATED WORK

Historically, scientific data is mainly stored on file systems,

such as GFS [32], BeeGFS [32], [33], HDFS [34], Lustre [35],

GlusterFS [36], CephFS [37], Spectrum Scale [38], etc. In

these systems, fundamental metadata search capability is sup-

ported for users to locate files of interest based on metadata

attributes of files, mostly file names. Given the limitations in

traditional file systems (e.g. file name length, metadata types,

hierarchical structure, etc), the object-centric data management

(a.k.a ODM) gets more and more popularity. Some of the early

efforts in object-centric data management either expose ODM

features on top of the file system (e.g., Ceph-RADOS [39]) or

store objects into files on file systems (e.g., HDF5, netCDF,

ADIOS) and such practices makes the scalability of these

systems be bound to that of the supporting file systems.

Influenced by the software-defined storage paradigm, modern

software-defined ODM systems like PDC [12], DAOS [11],

HEPnOS [10], tend to provide flexible, scalable and parallel

data management with user-level control.

Since the FAIR guiding principles were proposed in

2016 [40], as one important aspect of “Findability” defined in

the FAIR principles, metadata search has been the subject of

consistent focus in the scientific data management community

and many metadata search solutions have been proposed.

Some of them are using database systems as the store of

metadata, like AMI [28], JAMO [19], SPOT Suite [20], and

BIMM [14]. The centralized database may lead to scalability

issues and single point of failure and hence may not suit the

need of ODM systems. Solutions like TagIt [17] and Em-

press [16], are utilizing embedded databases, such as SQLite,

as the metadata store. However, each affix-oriented metadata

query in ODM systems would still incur a complete scan on

all distributed server processes, which can cause network con-

gestion. Distributed adaptive radix tree (DART) [25] addresses

the distributed affix-based keyword search problem. However,

metadata attributes are not a single keyword. Rather, they are

often in the form of key-value tags in most modern ODM

systems. Thus, DART cannot be directly applied to metadata

search in ODM systems. Additionally, there is no support for

efficient infix query in DART.

VI. CONCLUSION & FUTURE WORK

Affix-oriented metadata search capability is essential to the

day-to-day work of scientists as well as large-scale scientific

applications where finding data sets via metadata information

is highly needed. To enable efficient affix-oriented metadata

search on top of object-centric data management system is sig-

nificant and imperative with the rapid transition towards ODM

systems in the science community. In this study, we proposed

an index-powered distributed object-centric metadata search

solution, named IDIOMS. It offers high-performance affix-

oriented metadata search on top of ODM systems, eliminates

the need of scanning all distributed servers for affix-oriented

metadata search and avoids the effort of encapsulating DBMS

in the implementation of an ODM system, outperforms the

DBMS-powered solution by at least 57-370× and achieves at

least 40-407× performance boost as compared to the pure

metadata scan approach in SoMeta. More importantly, the

design of IDIOMS can be also applied to other distributed stor-

age systems where affix-oriented metadata search is needed. In

the future, we plan to expand IDIOMS’ capability to support

even more types of metadata search queries on even more

types of metadata, and also we plan to provide more complex

metadata search capability in the next version of IDIOMS.
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